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On the Closed-Form Detection Error Rate Analysis
in Physical Layer Anonymous Communications

Yifan Cui, Student Member, IEEE, Zhongxiang Wei, Member, IEEE, Christos Masouros, Senior
Member, IEEE, Xu Zhu, Senior Member, IEEE, and Hong Tang

Abstract—In recent years, physical layer (PHY) anonymous
precoding has become imperative in applications that carry
personal and sensitive data. While manipulating the signaling
pattern of transmitted signals for obtaining high communication
utility, the anonymous precoding masks the sender’s PHY char-
acteristics for the purpose of sender anonymity. Nevertheless,
the anonymity provided by anonymous precoding has only
been numerically demonstrated, and the relevant literature still
lacks analytic results regarding the detection error rate (DER)
performance. In this paper, we give the first attempt to show an
analytic DER result of generic precoders. Tight closed-form DER
expression is derived, as a function of the precoder employed at
the sender, block length, propagation channel, and noise status.
Some important properties are revealed, such as the impacts of
block length, noise, and channel correlation on the DER result.
Finally, simulation results validate that the normalized mean
squared error (NMSE) between the closed-form and actual DER
results is on the levels of 0 ∼ 10−1. The proposed analytic DER
results help easily quantify the anonymity performance of existing
anonymity-agnostic and anonymous precoders.

Index Terms—Closed-form DER, anonymous communications,
physical layer, anonymous precoding.

I. INTRODUCTION

IN the era of the Internet of Things, provision of security
and privacy is a pervasive issue. In general, the purpose

of data security is to prevent confidential communication
from being exploited or attacked by external eavesdroppers.
Authentication [1], cryptography [2], covert communication
[3], securing beamforming and other methods [4] from the
PHY to the upper layers of networks have been extensively
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studied for security. By contrast, the aim of privacy protection
is to minimize the receiver’s capability to infer the non-
shared information, while guaranteeing the communication
quality of the same receiver for utility [5]. For example,
when receiving signal for utility in smart homes and tele-
medicine, a legitimate but curious receiver may infer the user’s
non-shared data, such as users’ identity/age/health metrics,
lifestyle and whereabouts. Hence, when communicating with
service providers for utility, users wish to remain anonymous
towards the receiver for avoiding potential cyberfraud, known
as anonymous communications.

On the upper layers of networks, a bundle of anonymous
protection strategies have been studied, including anonymous
encryption [6], anonymous authentication [7], routing designs
[8] and so on. These techniques conceal users’ characteristics
of the higher layers, such as their identities (ID)s or media
access control/Internet protocol addresses. As a further step,
the work in [5] points out that the signaling pattern at the
PHY can also be leveraged to unmask sender information. To
be specific, when employing classic minimum mean squared
error (MMSE), zero-forcing (ZF) [9], singular value decom-
position (SVD) [10], power minimization (PM) [11] and other
anonymity-agnostic precoders, the pattern of the received sig-
nal is coupled with the user’s unique channel state information
(CSI). As the differences among users’ channels commonly
exist in wireless communications, CSIs can be regarded as the
PHY IDs of the users. Therefore, the receiver is able to identify
the sender by extracting the correct CSI from the received
signal. Since the sender detection can be realized only with
the PHY information, it invalidates the anonymous protection
schemes on the upper layers of networks. As a countermeasure
at the PHY, anonymous precoding [5] is capable of concealing
a sender’s CSI from the transmitted signal, thereby scrambling
the accuracy of sender detection at the receiver side [5].

Nevertheless, the provision of anonymity by the anony-
mous precoder has only been numerically evaluated. The
work in [5] was the first to show that, with an empirical
anonymous constraint, the pattern of the transmitted signal
can be controlled for the purpose of sender anonymity. The
design in [12] pointed out that a stricter value of anonymous
constraint is able to better guarantee the anonymity, thus
deteriorating the DER performance of the receiver. Despite of
recent progress made, the analytic DER performance achieved
by different precoders is still an open challenge. As a result,
the anonymity performance gain of the anonymous precoder

Copyright ©2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2024.3375919

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on April 03,2024 at 18:37:37 UTC from IEEE Xplore.  Restrictions apply. 



2

has not been quantified yet. This further hinders researcher
from flexibly balancing the anonymity and communication
performance. Motivated by this issue, in this paper, we attempt
to present theoretical analysis of the DER performance. Our
contributions are summarized as follows.

Exploiting the statistics of the signal, we first demonstrate
the analytic DER performance of two classic PHY sender
detectors, i.e., the maximum Frobenius norm (MFN) and the
maximum likelihood estimation (MLE) detectors. The tight
closed-form expression of DER is derived, as a function of
the precoder employed at the sender, block length, propaga-
tion channel, and noise status. Then, we evaluate the DER
of several classic anonymity-agnostic precoders, as well as
anonymous precoders. Also, a series of important properties
regarding the PHY anonymity have been revealed.

Notation: Matrices and vectors are represented by boldface
capital and lower case letters, respectively. In denotes an n-
by-n identity matrix. [A]mn abstracts the element in row m
and column n of a matrix. AH , tr(A) and ∥A∥F denote the
Hermitian transpose, trace and Frobenius norm of a matrix.
∥x∥2 denotes the 2-norm of a vector. | · | denotes absolute
value of a complex number. N{·} and CN{·} represent Gaus-
sian distribution and complex Gaussian distribution. Pr(a|b)
denotes the conditional probability of a given b. E{·} and
V{·} denote expectation and variance of a random variable.
cov{a, b} denotes covariance of two random variables.

II. SYSTEM MODEL AND SENDER DETECTION
STRATEGIES

In this section, system model and PHY sender detectors are
introduced in subsections II-A and II-B.

A. System Model

Consider an uplink multiuser multiple-input and multiple-
output (MIMO) transmission scenario, where a group of users
K (|K| = K) send signals to a base station (BS) under time-
division-multiple-access. In particular, users remain anony-
mous during the transmission phase. That is, the BS can
correctly receive the data but cannot identify which user is
the real sender. Assume that each user is equipped with Nt

transmit-antennas, while the BS is equipped with Nr receive-
antennas. Define Hk ∈ CNr×Nt as the block-fading MIMO
channel between the k -th user and the BS. As the sender
detection is performed at the block level, denote L as block
length. Define W k ∈ CNt×Ns as the precoding matrix of the
k-th user, and Sk ∈ CNs×L as the symbol matrix transmitted
by the k-th user, where Ns denotes the number of symbols
transmitted per slot depending on the specific multiplexing
strategy. Denote N ∈ CNr×L as the circularly symmetric
complex Gaussian noise with noise variance σ2 and element
as [N ]mn ∼ CN (0, σ2). Without loss of generality, assume
that the k-th user sends signal to the BS in the considered
block, and the received signal at the BS is written as

Y = HkW kSk +N . (1)

At the PHY, the BS only analyzes the received signal and the
inherent characteristics of the wireless channels to detect the

sender. The sender detection can be formulated as a multiple
hypotheses testing (MHT) problem [5]

Y =


H0 : N ,

H1 : H1W 1S1 +N ,

...
HK : HKWKSK +N ,

(2)

where the hypothesis H0 denotes that only noise appears at
the BS, while hypothesis Hk means a signal coming from the
k -th user is received.

B. Sender Detection Strategies

In this subsection, the MFN and the MLE sender detectors
are briefly discussed for the sake of completeness, while the
details can be found in [5]. For handling the MHT problem in
(2), the BS can first detect the presence of a signal, generally
solved by the classic energy detection [13]. The test statistic
is given by Γ (Y ) =

∥Y ∥2
F

LNr
. On comparing Γ (Y ) against a

detection threshold ε, the hypothesis H0 is determined to be
true when Γ (Y ) < ε, and to be false otherwise. Once H0 is
decided to be a false hypothesis, i.e., the BS confirming the
presence of an incoming signal, it turns to detect the sender
of the signal (hypothesis H1 to HK). Since the propagation
channel can be regarded as the unique PHY identity of the
user, the detection is essentially the identification of the
channel from which the signal is actually transmitted.

1) MFN Sender Detection: The philosophy of the MFN
detection is to leverage the match filter for sender detec-
tion. First, the received signal is equalized with different
HH

i ,∀i ∈ K. Since ∥HH
k Hk∥2F is more likely to be

larger than ∥HH
i Hk∥2F , ∀i ̸= k, i ∈ K, the resulted F-

norm Gk = ∥HH
k Y ∥2F = ∥HH

k HkW kSk + HH
k N∥2F

calculated by the correct hypothesis channel Hk has a high
probability to be higher than the norm Gi = ∥HH

i Y ∥2F =
∥HH

i HkW kSk+HH
i N∥2F , calculated by a false hypothesis

channel Hi. Thus, the MFN sender detection is written as
ΨMFN = argmax

k∈K
{∥HH

1 Y ∥2F , . . . , ∥H
H
KY ∥2F }. The MFN

detector can be used for arbitrary number of Nt (Nt > 1).
2) MLE Sender Detection: The philosophy of the MLE

detection is to estimate the transmitted signal with differ-
ent users’ channels, and then compute the Euclidean dis-
tance between the reconstructed and actual received sig-
nals. Explicitly, if the i-th (i ̸= k) user’s channel is ex-
ploited for estimation, a reconstructed signal is given as
Ŷ i = HiH

†
iY = HiH

†
iHkW kSk + HiH

†
iN , where

H†
i = (HH

i Hi)
−1HH

i . Then, the Euclidean distance be-
tween the reconstructed and actual received signal is calculated
as Di = ∥Y − Ŷ i∥2F = ∥(HiH

†
i − INr )HkW kSk +

(HiH
†
i − INr

)N∥2F . In a similar vein, when the real sender
k’s channel is exploited for detection, the Euclidean dis-
tance is computed as Dk = ∥(HkH

†
k − INr )N∥2F , where

H†
k = (HH

k Hk)
−1HH

k . As Dk only contains a noise term,
there is a high probability that Di > Dk. Therefore, the
MLE sender detection algorithm is expressed as ΨMLE =
argmin

k∈K
{∥(H1H

†
1−INr

)Y ∥2F , . . . , ∥(HKH†
K−INr

)Y ∥2F }.
The MLE detector only works in the case of Nr > Nt.
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It is because when Nr ≤ Nt, the pseudo-inverse result
H†

k = (HH
k Hk)

−1HH
k becomes incomputable due to the

rank-insufficient matrices HH
k Hk.

III. ANALYSIS OF DETECTION ERROR RATE
PERFORMANCE

In this section, the DER performance of the MFN and MLE
detectors is quantified with tight closed-form expressions.

A. DER Analysis of MFN Detector
Exploiting the MHT problem (2), evidently, DER is the

probability that under Hk, the BS falsely declaring either that
no signal is received, or that a signal is transmitted from a
user other than the k-th user, written as

ζMFN = 1− Pr(Γ (Y ) ≥ ε|Hk)

K∏
i,i ̸=k

Pr(Gi ≤ Gk|Hk). (3)

The term Pr(Γ (Y ) ≥ ε|Hk) denotes the probability that
under Hk, the BS correctly identifies an incoming signal. The
term

∏K
i,i ̸=k Pr(Gi ≤ Gk|Hk) denotes the probability that the

BS correctly identifies user k as the sender. Assuming that
the signal is transmitted through the Rayleigh channel, the
test statistic Γ (Y ) of the energy detector follows chi-square
distribution with 2NrL degree of freedom and non-centrality
parameter 2∥HkW kSk∥2

F

σ2 [13]. Hence, the term Pr(Γ (Y ) ≥
ε|Hk) is calculated as

Pr(Γ (Y ) ≥ ε|Hk) = 1− Pr(Γ (Y ) < ε|Hk) = 1− C
(
2NrεL

σ2

)
,

(4)
where C(·) denotes the cumulative distribution function of the
non-central chi-square distributed variable Γ (Y ). To calculate
the term Pr(Gi ≤ Gk|Hk), we first investigate the statistics
of Gk and Gi as summarized in Lemma 1.

Lemma 1: Define U i = HH
i HkW kSk. The expectation

and variance of Gi are given as

E{Gi} = Lσ2tr(HiH
H
i ) + tr(UH

i U i), (5)

and

V{Gi} = Lσ4tr(HiH
H
i HiH

H
i ) + 2σ2tr(UH

i HH
i HiU i). (6)

Proof of Lemma 1: please see Appendix. ■
The expectation and variance of Gk can be obtained in the

same manner. Although the expectation and variance of Gi

are given by Lemma 1, it is still difficult to obtain an exact
probability density function (pdf) of Gi. The exact pdf of such
a quadratic form was presented in [14]. However, it involves
complicated integral calculations, which limits its application
in our DER analysis. Fortunately, as Gi in fact contains the
summation of NrL samples, it can be approximated as a
Gaussian distributed variable based on central limit theorem.

Fig. 1 (a) shows that the values of Gi and Gk indeed
approximately follow Gaussian distributions. Denote p(x) and
q(x) as two probability distributions of a discrete random
variable x, the Kullback–Leibler (KL) divergence of q(x) from
p(x) is defined as DKL(p(x)∥q(x)) =

∑
x∈X p(x) ln p(x)

q(x) .
In particular, DKL(p(x)∥q(x)) = 0 if and only if p(x) and
q(x) are exactly the same distribution. Denote NGk

as the
Gaussian random variable that is used to approximate Gk,
and NGi

as the Gaussian random variable that is used to

Fig. 1. The actual and approximated pdfs of the values of Gk , Gi, Dk

and Di. MMSE precoder is employed by the sender [9], signal-to-noise ratio
(SNR) is set to 10 dB.

approximate Gi. With the simulation setup in Fig. 1 (a),
we obtain the KL divergence DKL(Gk∥NGk

) = 0.0304 and
DKL(Gi∥NGi

) = 0.0274, which means that the distributions
of Gk and Gi can be well approximated by Gaussian distribu-
tions. More importantly, Gk and Gi show distinct expectations
and variances, which thus can be used to distinguish the two
statistics.

Defining γi = Gk −Gi, its expectation and variance are

E{γi} = E{Gk} − E{Gi}
= Lσ2tr(HkH

H
k −HiH

H
i ) + tr(UH

k Uk −UH
i U i),

(7)

and
V{γi} = V{Gk}+ V{Gi}+ cov{Gk, Gi}

= Lσ4tr(HkH
H
k HkH

H
k +HiH

H
i HiH

H
i )

+ 2σ2tr(UH
k HH

k HkUk +UH
i HH

i HiU i),

(8)

where the covariance term cov{Gk, Gi} is ignored because Gk
and Gi are weakly correlated. Given that γi follows Gaussian
distribution, we have

Pr(Gi ≤ Gk|Hk) = Pr(γi ≥ 0|Hk)

=

∫ ∞

0

fγi(t)dt =
1

2

(
1 + erf

(
E(γi)√
2V(γi)

))
,

(9)

where fγi
(·) denotes the pdf of the variable γi, and erf(·)

denotes the Gaussian error function. Substituting (7) and (8)
into (9), Pr(γi ≥ 0|Hk) is rewritten as (10). Substituting (4)
and (10) into (3) leads a tight closed-form DER expression of
the MFN detector in (11), as shown at the top of the page.

As the term C
(
2NrεL

σ2

)
approaches 0 when ε is a small

value, the miss detection rate can be omitted. Based on the
Neyman-Pearson criterion, the probability of false alarm may
be raised by the small valued ε. However, its effect can be
significantly reduced on account of the multiple antennas at
the receiver. Ignoring the effect of miss detection, a tight
expression of DER is given as (12), which is shown at the
top of the next page.

Remark 1: The value of the term tr(UH
k Uk −UH

i U i) is
typically a non-zero finite number, when anonymity-agnostic
precoders are employed. As the term tr(HkH

H
k −HiH

H
i )

approaches 0, a small value of noise makes the value of the
error function in (12) approach 1, where the DER approaches
0. Hence, the principle of the anonymous precoder against the
MFN detector is to manipulate the term tr(UH

k Uk−UH
i U i),
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Pr(γi ≥ 0|Hk) =
1

2

(
1 + erf

(
Lσ2tr(HkH

H
k −HiH

H
i )+tr(UH

k Uk−UH
i Ui)√

2Lσ4tr(HkH
H
k

HkH
H
k

+HiH
H
i HiH

H
i )+4σ2tr(UH

k
HH

k
HkUk+UH

i HH
i HiUi)

))
. (10)

ζMFN = 1−
(
1− C

(
2NrεL

σ2

)) K∏
i,i̸=k

1

2

(
1 + erf

(
Lσ2tr(HkH

H
k −HiH

H
i )+tr(UH

k Uk−UH
i Ui)√

2Lσ4tr(HkH
H
k

HkH
H
k

+HiH
H
i HiH

H
i )+4σ2tr(UH

k
HH

k
HkUk+UH

i HH
i HiUi)

))
. (11)

ζMFN = 1−
K∏

i,i̸=k

1

2

(
1 + erf

(
Lσ2tr(HkH

H
k −HiH

H
i )+tr(UH

k Uk−UH
i Ui)√

2Lσ4tr(HkH
H
k

HkH
H
k

+HiH
H
i HiH

H
i )+4σ2tr(UH

k
HH

k
HkUk+UH

i HH
i HiUi)

))
. (12)

and make it approach or even less than 0. As a result, the
value of the error function in (12) approaches or is less than
0, thus scrambling the DER performance.

B. DER Analysis of MLE Detector
Recalling the MLE detection, its DER is expressed as

ζMLE = 1− Pr(Γ (Y ) ≥ ε|Hk)

K∏
i,i̸=k

Pr(Di ≥ Dk|Hk). (13)

To calculate the term Pr(Di ≥ Dk|Hk), we first investigate
the distributions of Dk and Di. For the sake of simplicity,
denote Θi = HiH

†
i − INr and V i = ΘiHkW kSk. The

expectation and variance of Di are summarized in Lemma 2.
Lemma 2: The expectation and variance of Di are given

as
E{Di} = Lσ2tr(ΘiΘ

H
i ) + tr(V H

i V i), (14)

and

V{Di} = Lσ4tr(ΘiΘ
H
i ΘiΘ

H
i ) + 2σ2V H

i ΘH
i ΘiV i. (15)

The proof of Lemma 2 is similar to that of Lemma 1, and
thus is omitted due to page limit. ■

Similarly, the expectation and variance of Dk are given as

E{Dk} = Lσ2tr(ΘkΘ
H
k ), (16)

and
V{Dk} = Lσ4tr(ΘkΘ

H
k ΘkΘ

H
k ). (17)

Again leveraging the central limit theorem, Di and Dk
approximately follow Gaussian distributions. Fig. 1 (b) demon-
strates that, the approximated Gaussian variables indeed match
the actual simulation results. Denote NDk

and NDi as the
Gaussian random variables that are used to approximate Dk
and Di, respectively. With the simulation setup in Fig. 1 (b),
the terms DKL(Dk∥NDk

) and DKL(Di∥NDi) are calculated
as 0.0094 and 0.0139. It indicates that the distributions of Dk
and Di also can be approximated by Gaussian distributions.
Defining ρi = Gk −Gi, its expectation is

E{ρi} = E{Dk} − E{Di}
= Lσ2tr(ΘkΘ

H
k −ΘiΘ

H
i )− tr(V H

i V i).
(18)

Since it is easy to find that tr(ΘkΘ
H
k −ΘiΘ

H
i ) = 0, (18)

can be simplified into

E{ρi} = −tr(V H
i V i). (19)

The variance of ρi is

V{ρi} = V{Dk}+ V{Di}+ cov{Dk, Di}
= Lσ4tr(ΘiΘ

H
i ΘiΘ

H
i +ΘkΘ

H
k ΘkΘ

H
k )

+ 2σ2tr(V H
i ΘH

i ΘiV i),

(20)

where the covariance term cov{Dk, Di} is ignored because
Dk and Di are weakly correlated. With simple manipulations,

it proves that ΘkΘ
H
k ΘkΘ

H
k = ΘkΘ

H
k and ΘiΘ

H
i ΘiΘ

H
i =

ΘiΘ
H
i . Thus, (20) can be simplified into

V{ρi} = Lσ4tr(ΘiΘ
H
i +ΘkΘ

H
k ) + 2σ2tr(V H

i V i). (21)

Since ρi follows Gaussian distribution, the value of Pr(ρi ≤
0|Hk) can be calculated by the pdf of ρi as

Pr(ρi ≤ 0|Hk) =

∫ 0

−∞
fρi(t)dt =

1

2

(
1 + erf

(
0−E(ρi)√

2V(ρi)

))
,

(22)
where fρi(·) denotes the pdf of ρi. Substituting (19) and (21)
into (22), Pr(ρi ≤ 0|Hk) is rewritten as

Pr(ρi ≤ 0|Hk) =

1

2

(
1 + erf

(
tr(V H

i V i)√
2Lσ4tr(ΘiΘ

H
i +ΘkΘ

H
k

)+4σ2tr(V H
i V i)

))
.

(23)

Substituting (4) and (23) into (13) leads to a tight expression
of ζMLE as

ζMLE = 1−
K∏

i,i ̸=k

1

2

(
1 + erf

(
tr(V H

i V i)√
2Lσ4tr(ΘiΘ

H
i +ΘkΘ

H
k

)+4σ2tr(V H
i V i)

))
.

(24)
With the closed-form DER, we are able to conclude a series

important insights, summarized in the remarks below.
Remark 2: For classic anonymity-agnostic precoders, their

design utilities can be rate, user fairness, power minimiza-
tion, or weighted signal-to-interference-and-noise ratio (SINR)
maximization. Since the value of tr(V H

i V i) is typically a
non-zero finite number, a small or moderate value of noise
variance makes the value of the error function in (24) approach
1, meaning that the receiver can correctly reveal the real
sender. By contrast, the anonymous precoder manipulates the
signaling pattern to let the value of tr(V H

i V i) approach 0.
As a result, user i acts as an alias sender, and makes the
receiver unable to distinguish the real sender k and the alias
i. Evidently, to achieve better DER performance, one needs to
add more anonymous constraints, and let the associated value
of tr(V H

i V i) approach 0.
Remark 3: As block length L increases, the value of the

error function in (12) and (24) gradually approaches 1. As
a result, DER of the MFN and MLE detectors gradually
approaches 0. In other words, with more samples for sender
detection, it becomes easier to identify the sender. Also, a
small value of σ2 makes the value of the error function in (12)
and (24) approach 1, resulting in better DER performance of
MFN and MLE detectors. Similar to the impact of noise, dif-
ferent forms of interference, such as the inter-cell interference,
helps improve the anonymity.

Remark 4: As the MFN and MLE detectors exploit the

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2024.3375919

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on April 03,2024 at 18:37:37 UTC from IEEE Xplore.  Restrictions apply. 



5

users’ CSI for sender detection, the DER performance is
dependent of the channel correlation among users. As the cor-
relation among user channels increases, the detection accuracy
of the detectors gradually decreases. When there is a strong
correlation between the channels of user k and i, the channel
characteristics of Hk and Hi become similar, which makes
tr(UH

k Uk −UH
i U i) and tr(V H

i V i) approach 0. As a result,
it becomes difficult for the BS to distinguish the real sender.

Remark 5: The MLE detector identifies the sender by
exploiting the difference in distributions of Dk and Di. As
shown in subsection II-B2, Di (∀i ̸= k) involves the term
(HiH

†
i − INr

)HkW kSk and colored noise, while Dk only
contains a colored noise. However, for the MFN detector, both
Gk and Gi contain the signal related term and colored noise, as
shown in subsection II-B1. As a result, the detection accuracy
of MFN detector is inferior to that of the MLE detector, but
is with lower computational complexity.

IV. SIMULATION RESULTS

To verify the tightness of the analytic results, Monte Carlo
simulation is carried out. Quadrature phase shift keying is
used in modulation. Assume that there are K = 5 users,
and the signal sender is randomly generated per slot. The
energy detection threshold is ε = 10−2, and the antenna
configuration of the BS and the user is Nr = 9 and Nt = 8
respectively. We normalize the maximum power pmax = 1
watt, while changing SNR by tuning the noise power. Assume
that the block size L = 50. Consider Rayleigh block fading
MIMO channel, we evaluate the following classic precoders:
1) MMSE precoder [9], 2) SVD precoder [10], 3) PM precoder
[11], 4) constructive interference (CI) precoder [15], 5) CI-
based anonymous (CIA) precoder [5]. Note that CI and CIA
precoders perform at symbol-by-symbol level, while others
perform at block-by-block level. Also, the CIA precoder is
specifically designed for anonymity, which manipulates the
transmitted signal for masking the real sender.
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Fig. 2. The impact of transmit-SNR on the DER by different precoders.
Nt = 8, Nr = 9. The per-antenna SINR of the PM precoder is set to 5 dB.
The anonymous related thresholds of CIA (against MFN) and CIA (against
MLE) precoders are set to 2 and 0.01.

To evaluate the deviation between the closed-form and
actual DER results, the NMSE is defined as NMSE =∑M

m=1(DERm
c −DERm

a )2∑M
m=1(DERm

a )2
, where DERm

a and DERm
c denote the

actual and derived closed-form DER results in the m-th
simulation, and M denotes the total number of the simulation
results. Fig. 2 shows the closed-form and actual DER results

of the MFN and MLE detectors. It is observed that the closed-
form DER is close to the actual DER regardless of the em-
ployed precoders and SNR statuses. Typically, with a generic
precoder, the NMSE between the closed-form and actual DER
results is on the levels of 0 ∼ 10−1 for the MFN and MLE
detectors. It is observed that a high level of SNR improves the
detection performance of the MFN detector. However, when
the MMSE precoder is applied by the user, the DER of the
MFN detector increases with the increase of the SNR. It is
because the structure of the MMSE precoder approaches that
of the ZF precoder with a small value of noise, which removes
the sender’s CSI from the received signal. As a result, the
MMSE precoder occasionally achieves better anonymity at
high SNR regime. Also, it proves that the CIA precoder obtains
a higher DER and hence a better anonymity performance than
other anonymity-agnostic precoders. It validates our analysis
in Remarks 1 and 2 that, by manipulating transmitted signaling
pattern, the DER performance of sender detection can be
scrambled. Note that the DER of the PM precoder is not
visible in Fig. 2 (b), as the DER of the MLE detector by
the PM precoder is reduced to 0. Also, although the MMSE
precoder approaches the ZF precoder at high SNR regime,
the MLE detector still identifies the sender. It is because Dk

and Di can be distinguished due to their different statistics,
as analyzed in subsection II-B2. In addition, it shows that the
MLE detector achieves better detection accuracy then the MFN
detector, validating the analysis in Remark 5.
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Fig. 3. The impact of channel correlation on the DER by different precoders.
Nt = 8, Nr = 9. The per-antenna SINR of the PM precoder is set to 5 dB.
The anonymous related thresholds of CIA (against MFN) and CIA (against
MLE) precoders are set to 2 and 0.01, while the transmit-SNR is set to 20
dB and 10 dB.

Fig. 3 shows the closed-form and actual DER
results with different channel correlation coefficients.
Based on the Pearson correlation coefficient [16],
the channel correlation coefficient between MIMO
channel matrices Hi and Hj is defined as ωij =∑Nr

m=1

∑Nt
n=1([Hi]mn−H̄i)([Hj ]mn−H̄j)√

(
∑Nr

m=1

∑Nt
n=1([Hi]mn−H̄i)2)(

∑Nr
m=1

∑Nt
n=1([Hj ]mn−H̄j)2)

,

where H̄i = 1
NrNt

∑Nr

m=1

∑Nt

n=1[Hi]mn and
H̄j = 1

NrNt

∑Nr

m=1

∑Nt

n=1[Hj ]mn, i ̸= j. It is observed that
the closed-form DER is close to the actual DER regardless of
the employed precoders and the correlation coefficient. The
NMSE between the closed-form and actual DER results is on
the levels of 10−3 ∼ 10−2 for the MFN and MLE detectors.
With the increase of channel correlation, the DER by the
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CIA precoder is maintained at a high level, while DER by
other anonymity-agnostic precoders shows an upward trend.
In particular, the DER by the anonymity-agnostic precoders
in Fig. 3 (b) reduces to 0 when channel correlation coefficient
is less than 0.8, which is thus not visible.
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Fig. 4. The impact of different antenna configurations on the DER of the
MFN detector by different precoders, where Nt=8. The per-antenna SINR of
the PM precoder is set to 5 dB. The anonymous related thresholds of the CIA
precoder is set to 2. The transmit-SNR is set to 20 dB.

Fig. 4 shows the closed-form and actual DER results of the
MFN detector with different numbers of receive-antennas. It
is observed that the closed-form DER is close to the actual
DER. Typically, with a generic precoder, the NMSE between
the closed-form and actual DER results is on the levels of 0 ∼
10−2. When the classic MMSE, SVD, PM, CI precoders are
employed by the users, DER of the MFN detector decreases
with the increase of Nr. It is because a large number of Nr

means there are more samples for detection, resulting in better
DER performance. Also, when Nr is less than 16, DER by the
CIA precoder decreases with the increase of Nr. It is because
with a fixed anonymity threshold, the anonymous constraint
of the CIA precoder becomes stricter when the dimension
of the channel matrix increases. However, when Nr > 16,
the DER by the CIA precoder shows an upward trend. It is
because the CIA always tries to multiplex Nr streams under
the anonymous constraint. As a result, the CIA precoder tends
to use lower power which occasionally helps the anonymity
performance at the cost of low communication performance.
Due to page limit, the impact of Nr on the DER performance
by the MLE detector is not demonstrated.

V. CONCLUSION

In this paper, the DER performance of two classic PHY
sender detectors has been theoretically analyzed, and their
tight closed-form expressions have been derived. Based on
the analytic DER results, we have theoretically built the
relation between the instantaneous signaling pattern and the
statistical DER performance for generic precoders. In addition,
a series of important insights have been presented, such as
the impact of block length, noise status, and precoder on the
DER performance. Finally, we have benchmarked the derived
closed-form DER against actual results, and the tightness of
the derived closed-form results has been verified.

APPENDIX
PROOF OF LEMMA 1

Denote y(j), ui(j) and µ(j) as the j-th column of Y ,
U i and HkW kSk, respectively. We have that Gi =

∑L
j=1 ∥H

H
i y(j)∥22, where y(j) ∼ N (µ(j),Λ) and Λ =

σ2INr
. Since the term ∥HH

i y(j)∥22 is quadratic with respect
to y(j), its expectation is calculated as

E{∥HH
i y(j)∥

2
2} = σ2tr(HiH

H
i ) + uH

i(j)ui(j). (25)

Let D(t) = INr− 2tHiH
H
i Λ, and the moment

generating function of yH
(j)HiH

H
i y(j) is written as

M(t)=|D|− 1
2 e−

1
2 [INr−D−1(t)]Λ−1µ(j) . We further let k(t) =

ln(M(t)), and denote its second-order derivative as k′′(t).
Substituting the value of |D|t=0, d|D|

dt |t=0, d2|D|
dt2 |t=0, D|t=0,

D−1|t=0, dD
dt |t=0 and d2D

dt2 |t=0 into k′′(t), we have

V{∥HH
i y(j)∥

2
2} = σ4tr(HiH

H
i HiH

H
i ) + 2σ2uH

i(j)H
H
i Hiui(j).

(26)
Considering the block length L, the expectation and vari-

ance of Gi are

E{Gi} = Lσ2tr(HiH
H
i ) + tr(UH

i U i), (27)

and

V{Gi} = Lσ4tr(HiH
H
i HiH

H
i ) + 2σ2tr(UH

i HH
i HiU i). (28)
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