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Abstract—Resource allocation is of crucial importance in
wireless communications. However, it is extremely challenging
to design efficient resource allocation schemes for future wireless
communication networks since the formulated resource allocation
problems are generally non-convex and consist of various coupled
variables. Moreover, the dynamic changes of practical wireless
communication environment and user service requirements thirst
for efficient real-time resource allocation. To tackle these issues,
a novel partially observable deep multi-agent active inference
(PODMAI) framework is proposed for realizing intelligent re-
source allocation. A belief based learning method is exploited for
updating the policy by minimizing the variational free energy.
A decentralized training with a decentralized execution multi-
agent strategy is designed to overcome the limitations of the
partially observable state information. Exploited the proposed
framework, an intelligent spectrum allocation and trajectory
optimization scheme is developed for a spectrum sharing un-
manned aerial vehicle (UAV) network with dynamic transmission
rate requirements as an example. Simulation results demonstrate
that our proposed framework can significantly improve the sum
transmission rate of the secondary network compared to various
benchmark schemes. Moreover, the convergence speed of the
proposed PODMAI is significantly improved compared with the
conventional reinforcement learning framework. Overall, our
proposed framework can enrich the intelligent resource allocation
frameworks and pave the way for realizing real-time resource
allocation.

Index Terms—Deep active inference, intelligent resource allo-
cation, spectrum sharing, trajectory optimization.

I. INTRODUCTION

RESOURCE allocation design is a fundamental problem

in wireless communication networks since it can im-

prove the achievable performance (e.g., spectrum efficiency,

energy efficiency, etc.) and efficiently make the best of the

precious and limited resources [1]. However, it is extremely

challenging to design efficient resource allocation schemes for

future wireless communication networks. The reasons are from

two aspects. On the one hand, in the sixth-generation (6G)

and beyond wireless communication networks, multi-domain
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resources, such as energy, frequency spectrum, computing,

caching, etc., are required to be jointly optimized since sens-

ing, communication, and computing functions are envisioned

to be integrated [2], which results in challenging non-convex

problems and high-dimensional coupling variables. On the

other hand, wireless communication environment and user

service requirements vary dynamically over time. In this case,

it is imperative to achieve real-time resource allocation [3].

To date existing resource allocation methods for wireless

communication networks can be mainly classified into two

categories, namely, the optimization theory based methods and

the intelligent methods based on machine learning (represen-

tative deep reinforcement learning (DRL)). The optimization

theory based methods mainly adopt conventional mathematical

skills such as alternating optimization and successive convex

approximation. For instance, in [4], the authors proposed a

successive convex approximation based resource allocation

algorithm to jointly optimize the transmit power of the sec-

ondary base station and the unmanned aerial vehicle (UAV)

trajectory for maximizing the total average secrecy rate of the

spectrum sharing network with orthogonal frequency division

multiplexing. However, resource allocation problems in future

wireless communication networks are generally NP-hard [5]

and the solutions obtained by adopting the traditional opti-

mization based methods are not globally optimal. Moreover,

the high computational complexity and the poor real-time

performance cannot adapt to the highly dynamic wireless

communication networks.

Recently, DRL has been widely applied to develop in-

telligent resource allocation schemes due to its outstand-

ing advantages in efficient and rapid processing of large-

scale complicated problems [5]. Specifically, the exploration

strategy allows the agent to discover new and potentially

better solutions that cannot be identified by the traditional

optimization based methods [6]. Moreover, the agent can adapt

its policy to the time-varying environment, which is important

when dealing with dynamic resource allocation problems [7].

Inspired by these properties, in [8], the deep Q-network (DQN)

was utilized to optimize the sub-band allocation and the

power level in vehicle-to-vehicle communications. However,



the power allocation was based on an ideal assumption that the

transmit power can be discretized into three levels. Indeed, the

instant quantization errors resulted in significant performance

degradation. Therefore, the deep deterministic policy-gradient

based algorithm was proposed in order to realize continuous

action optimization [9].

Despite the promising results revealed in the literatures,

the aforementioned works assumed that the complete envi-

ronmental observations can be obtained. Unfortunately, it is

difficult to be achieved because of the limited sensing ability of

sensing devices and the finite communication and computing

overhead [5]. Thus, in practice, it is of crucial importance

to design resource allocation schemes under the partially

observable wireless communication environment. Moreover,

DRL based methods rely on the environment feedback for

optimizing the long-term expected reward. Therefore, DRL

based methods have low convergence speed, which limits their

practical applications.

In this paper, in order to tackle the above challenges and

overcome the drawback of DRL based resource allocation

schemes, a novel partially observable deep multi-agent active

inference framework (PODMAI) is proposed for intelligent

resource allocation. A belief based learning method is ex-

ploited for achieving active inference to simulate how agents

perceive and act in the real world by minimizing the free

energy. A decentralized training with a decentralized execu-

tion multi-agent strategy is proposed to further improve the

system performance. In order to demonstrate the efficiency

of our proposed framework, an intelligent spectrum allocation

and trajectory optimization scheme is proposed for spectrum

sharing UAV networks. Simulation results demonstrate that

our proposed framework can significantly improve the sum

transmission rate of the secondary system while satisfying the

dynamic transmission rate requirements of the users. More-

over, a faster convergence speed can be obtained compared

with the DRL based benchmark scheme.

The remainder of this paper is organized as follows. The ar-

chitecture of our proposed deep active inference framework is

presented in Section II. Section III presents the exploitation of

our framework for designing an intelligent spectrum allocation

and trajectory optimization scheme in spectrum sharing UAV

networks. Section IV presents the simulation results. Finally,

the paper concludes with Section V.

II. ARCHITECTURE OF OUR PROPOSED DEEP ACTIVE

INFERENCE FRAMEWORK

As shown in Fig. 1, motivated by the free energy theory

[10], a deep active inference framework is established for

intelligent resource allocation. It contains an experience replay

memory and four sub-networks, namely, the value network for

the expected free energy (EFE) estimation, the policy network

to generate the action policy, the target network for target

EFE, and the transition network for the current state prediction.

After obtaining the action at based on the observed state st,
the immediate reward rt and the new state st+1 are returned

to the agent. Afterwards, the experience obtained at time slot t
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Fig. 1: The architecture of our proposed deep active inference

framework for intelligent resource allocation.

and the past state st−1 are stored in the replay memory block.

A mini-batch of experiences (st+1, st, st−1, at+1, at, rt) with

size Ntr is randomly selected when the memory block is filled.

Compared with the on-policy based methods, the exploitation

of mini-batch experiences rather than the current time slot

experience is to ensure the independence of the training tuples

and avoid the problem caused by the excessive correlation

among the tuples.

The active inference based methods rely on the assumption

that the agents perceive and act in the environment to minimize

the variational free energy, which can be expressed as

Ft = Eq(st)[ln(p(ot|st))] +DKL[q(st)||p(st|st−1, at−1)]

+DKL[q(at|st)||p(at|st)], (1)

where Eq(st) is the expectation over the variational density

q(st) and DKL is the Kullback-Leibler (KL) divergence. The

second term is the state prediction error, which is expressed

as the KL divergence between the state st and the state that is

predicted at time step t− 1. Therefore, the mean squared loss

(MSE) is used to replace the KL divergence. Specifically, the

value network is used to estimate the EFE, given as Gθ(at|st),
and θ is the weight parameters of the value network. The target

network is used to output the target EFE, given as Qω(st+1),
ω is the weight parameters of the target network. According

to the output action policy, the target EFE is weighted as

Qω(st+1)πϑ(at+1|st+1). Then, the estimated EFE after the

policy output πϑ(at+1|st+1) is obtained by bootstrapping,

given as

yt = −rt + l(μ) + βπϑ(at+1|st+1)Qω(st+1), (2)

where ϑ is the weight parameters of the policy network, ω
is the weight parameters of the target network and β is the

discount rate. l(μ) is the predicted error of the transition

network, given as

l(μ) = L(Aμ(st−1, at−1), st), (3)

where L is the MSE function and μ is the weight parameters

of the transition network. The value network loss is used to



show the difference between the predicted EFE and the target

EFE, given as

lval = L(yt, Gθ(at|st)). (4)

The distribution over actions can be modelled as a precision-

weighted Boltzmann distribution over the estimated EFE in

the value network, given as σ(−γGθ(at|st)). σ represents the

softmax function. Therefore, the third term in eq. (1) can be

expressed as
∑
a
πϑ(at|st) ln(σ(−γGθ(at|st))) +Ht. Finally,

the VFE can be expressed as

Ft =
∑
a

πϑ(at|st) ln(σ(−γGθ(at|st))) +Ht + l(μ), (5)

where Ht is the entropy, given as

Ht =
∑
a

πϑ(at|st) ln(πϑ(at|st)). (6)

The value network, target network, transition network, and pol-

icy network are jointly updated by minimizing the variational

free energy Ft.

Note that the proposed deep active inference framework is

tailored for designing resource allocation schemes in wireless

communications since it enables the system to actively update

the policy and learn the optimal policies for resource allocation

under dynamic and partial observations. In order to clearly

explain our framework and demonstrate its efficiency, an in-

telligent joint spectrum allocation and trajectory optimization

scheme is proposed in the following section as an example.

III. INTELLIGENT SPECTRUM ALLOCATION AND

TRAJECTORY OPTIMIZATION ENABLED BY OUR

FRAMEWORK

A. System Model and Problem Formulation
As shown in Fig. 2, a dynamic spectrum sharing UAV

network is taken as an example, which is a classical scenario in

the future wireless communication networks. A practical and

emerging case is considered that the user transmission rate

requirements are dynamic due to multi-modal communication

services, such as audio, video, and haptic transmission [2].

In the network, there are K SUs, J PUs, a primary base

station (PBS), and N cognitive UAVs (C-UAVs). In order

to serve more SUs and provide better services, a wideband

spectrum is divided into M equal sub-carrier frequency bands.

Let k ∈ K � {1, 2, ...,K}, j ∈ J � {1, 2, ..., J}, and

m ∈ M � {1, 2, ...,M} denote the set of SUs, PUs, and sub-

bands, respectively. To avoid the interference among different

PUs, each PU occupies one sub-carrier frequency band.

The three-dimensional Cartesian coordinate system is con-

sidered. The horizontal positions of the PBS, the jth PU,

the kth SU, and the nth C-UAV are denoted as wb =
(xb, yb), wp,j = (xp,j , yp,j), ws,k = (xs,k, ys,k) and qc,n =
(xc,n, yc,n), respectively. Without loss of generality, it is

assumed that the UAVs fly at a constant vertical height Hu.

The total transmission time interval is within a duration of

T , and T is divided into L equal-length time intervals, where

each time interval is given by δt =
T
L

. The status of the UAVs

Primary Network

Secondary Network

...

......

C-UAV1
C-UAVN

SU1

SU2

SUK PU1

PU2

PUJ

PBS

Fig. 2: The spectrum sharing UAV network with dynamic user

requirements.

can be regarded as static since δt is sufficiently small [13].

The dynamic position of the nth C-UAV can be formulated as

xc,n[t+ 1] = xc,n[t] + vc,0 cos(φc,n[t]), (7a)

yc,n[t+ 1] = yc,n[t] + vc,0 sin(φc,n[t]), (7b)

where φc,n[t] and vc,0 represent the direction of the C-UAV

at time step t and the fixed flying speed, respectively. The

distance between the nth C-UAV and the kth SU, and that

between the PBS and the jth PU are respectively given as

dck,n[t] =

√
‖qc,n[t]−ws,k[t]‖2 +H2

u, (8a)

dpj [t] =

√
‖wb[t]−wp,j [t]‖2. (8b)

Similar to the works in [10] and [13], the wireless channel

between the UAV and the ground users is dominated by the

line of sight link. Let βref represent the channel power gain

at the reference distance of 1 meter. Thus, the channel power

gain from the nth C-UAV to the kth SU can be expressed as

hlos
k,n[t] = βrefd

c
k,n[t]

−2
. (9)

The channel model between the ground nodes (PBS, PUs,

SUs) is different from that of the air-to-ground link. It is

required to consider both the distance-dependent path loss with

exponent ϕ ≥ 2 and small-scale Rayleigh fading [11]. Thus,

the channel gain from the PBS to the jth PU is given as

hg
j [t] = βrefd

p
j [t]

−ϕ
ζj , (10)

where dpj [t] represents the distance between the PBS and the

jth PU at time step t. ζj is an exponentially distributed random

variable with unit mean accounting for the Rayleigh fading.

Considering the sub-band allocation, the binary variable

ρk,n[m] is used to characterize the allocation strategy of SUs.

Specifically, the mth sub-band is used by the kth SU from the

nth C-UAV when ρk,n[m] = 1, otherwise, ρk,n[m] = 0. Each

PU operates on a preassigned orthogonal spectrum channel

with a fixed transmit power. The C-UAV aims to learn the

best allocation strategy to access the shared spectrum to meet

the dynamic transmission rate requirements of SUs.



The SINR between the nth C-UAV and the kth SU in the

mth sub-band can be expressed as

γs
k,n,m =

ρk,n[m]P c
mhlos

k,n

σ2 +
J∑

j=1

P b
mhg

j

, (11)

where P c
m and P b

m denote the transmit power of the C-UAV

and the PBS in the mth sub-band, respectively. σ2 is the noise

power. Similarly, the SINR between the PBS and the jth PU

in the mth sub-band can be expressed as

γp
j,m =

ρj [m]P b
mhg

j

σ2 +
N∑

n=1

K∑
k=1

ρk,n[m]P c
mhlos

k,n

. (12)

Then, the achievable transmission rate of the kth SU and

the jth PU can be respectively expressed as

Rs
k,n,m = Blog2(1 + γs

k,n,m), (13a)

Rp
j,m = Blog2(1 + γp

j,m), (13b)

where B denotes the bandwidth for each sub-band.

In this paper, in order to efficiently utilize the spectrum

resource, protect the PUs from harmful interference, and

guarantee the dynamic transmission rate requirements of SUs,

a joint spectrum resource allocation and UAV trajectory opti-

mization problem is formulated as

P1 : max
ρ,φ

N∑
n=1

K∑
k=1

M∑
m=1

Rs
k,n,m (14a)

s.t.C1 :
M∑

m=1

Rp
j,m > Rmin

j , ∀j ∈ J , (14b)

C2 :
M∑

m=1

N∑
n=1

Rs
k,n,m > Rthr

k , ∀k ∈ K, (14c)

C3 : ρk,n[m] ∈ {0, 1}, ∀k ∈ K, ∀m ∈ M, ∀n ∈ N ,
(14d)

C4 :
N∑

n=1

K∑
k=1

ρk,n[m] ≤ 1, ∀m ∈ M, (14e)

C5 : |φc,n| ≤ π, ∀n ∈ N , (14f)

where ρ = {ρk,n[m]}m∈M,n∈N ,k∈K. φ = {φc,n}n∈N . Rmin
j

is the minimum transmission rate requirement of the jth PU.

Constraint C2 indicates the minimum transmission rate re-

quirements of the kth SU, denoted by Rthr
k . It should be noted

that the services provided for SUs are multi-modal. Therefore,

the requirement for the transmission rate Rthr
k is dynamically

changed over time. Constraints C3 and C4 indicate that a

sub-band can only be occupied by one SU in order to avoid

the interference among SUs. Constraint C5 means that the

direction of C-UAV is within the interval [−π, π]. The problem

given by eq. (14) is highly non-convex and difficult to solve.

In this paper, in order to tackle this problem, an intelligent

spectrum allocation and trajectory optimization scheme is

proposed by exploiting our presented PODMAI framework.
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Fig. 3: Our proposed intelligent spectrum allocation and tra-

jectory optimization scheme based on our presented PODMAI

framework.

B. Intelligent Spectrum Allocation and Trajectory Optimiza-
tion in Spectrum Sharing UAV Networks

Since the overall observations of the spectrum sharing UAV

network is difficult to be obtained in practice, the formulated

optimization problem will be modelled as a multi-agent par-

tially observable problem. Specifically, the spectrum sharing

UAV network is regarded as the environment. All the sub-

bands and the C-UAVs are regarded as multi-agents. The

interaction system between multi-agents is shown in Fig. 3.

State: The optimization objective is achieved by collabo-

rative gaming in the multi-agent system. The state observed

by the nth C-UAV agent can be defined as stn = qt−1
c,n .

Specifically, the state of the mth sub-band agent at the current

time stm includes the sub-band allocation at the previous time

at−1
m , the location of the C-UAVs at the previous time qt−1

c , the

channel information Ht−1
m for the SUs, and the transmission

rate in the mth sub-band Rt−1
m . Specifically, the state stm of

the mth agent at time slot t is defined as

stm = {at−1
m ,Ht−1

m ,Rt−1
m ,qt−1

c }, (15)

where at−1
m represents the sub-band allocation policy of the

mth agent at time step t− 1. Ht−1
m = {hlos

k,n, h
g
k}∀n∈N ,∀k∈K,

where hlos
k,n and hg

k denote that the channel gain from the nth

C-UAV to the kth SU and that from the PBS to the kth SU

at time step t− 1, respectively. Rt−1
m = {Rt−1

k,n,m}∀n∈N ,k∈K,

where Rt−1
k,n,m is the transmission rate from the nth C-UAV to

the kth SU in the mth sub-band.

Action: The action space can be divided into two parts.

One part is for the sub-band allocation ρk,n[m] between the

C-UAVs and SUs, and the other part is for the C-UAV flying

direction φc,n. Therefore, the action of the kth sub-band agent

at time step t can be defined as

atm = {ρk,n[m]}k∈K,n∈N , (16)

where ρk,n[m] = {0, 1} indicates whether the sub-band m is

occupied by the communication between the kth SU and the

nth C-UAV. The action space dimension is greatly reduced



from 2M to N×K+1 compared to the use of the SUs as multi-

agents. The action of the nth C-UAV agent is ac,n = φc,n.

Reward: According to the optimization problem formulated

in eq. (14), the goal of the reward function for UAV agents is

to provide the SUs with high transmission rate requirements

without being overly far away from the SUs with low trans-

mission rate requirements. Therefore, the reward function for

the nth C-UAV agent is formulated as

rn = −w1

∑
k∈KH

dk,n − w2

∑
k∈KL

ςk,n, (17)

where KH and KL = K\KH are the sets of the SUs with

high transmission rate requirements and low transmission rate

requirements, respectively. dk,n is the distance between the

kth SU and the nth C-UAV. ςk,n ≥ 0 is the penalty item when

the distance between the C-UAV and low rate requirements

users exceeds the tolerated threshold dthr, which is given as

ςk,n =

{
dk,n, dk,n > dthr
0, 0 ≤ dk,n < dthr.

(18)

The reward function of the sub-band agents consists of

three parts, namely, the sum transmission rate of the secondary

system, the interference to the primary system, and the SUs

with different transmission rate requirements. Specifically, the

reward function is formulated as

rm = α1

N∑
n=1

K∑
k=1

Rs
k,n,m + α2

∑
k∈KH

δHk

+ α3

∑
k∈KL

δLk + α4

∑
j∈J

δPj , (19)

where α1, α2, α3, and α4 are non-negative constant coef-

ficients. δPj , δHj , and δLj are the penalty items when the

transmission rate requirements of the PUs, the high rate

requirement SUs and the low rate requirement SUs are not

satisfied, given as

δPj =

{
0, Rp

j > Rmin
j

Rp
j −Rmin

j , 0 ≤ Rp
j < Rmin

j ,
(20a)

δHk =

{
0, Rs

k > RH
thr

Rs
k −RH

thr, 0 ≤ Rs
k < RH

thr,
(20b)

δLk =

{
0, Rs

k > RL
thr

Rs
k −RL

thr, 0 ≤ Rs
k < RL

thr,
(20c)

where RH
thr and RL

thr are the thresholds for SUs with high

transmission rate requirements and low transmission rate re-

quirements, respectively. In order to satisfy all users’ dynamic

requirements, the penalty term for SUs with low transmission

rate requirements is higher than that of high rate requirements,

which can avoid the agent from allocating excessive channel

resources to users with high requirements to obtain higher sum

transmission rate.

Compared with the single agent based method, the dimen-

sion of the action space in our proposed framework is reduced

significantly. In our considered system with M sub-bands,

K SUs, and J UAVs, the action space is (K × N)M in

the single agent system. However, M sub-bands agents are
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Fig. 4: The sub-band agent convergence performance compar-

ison of our proposed scheme with the benchmark schemes.
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Fig. 5: The C-UAV agent convergence comparison of our

proposed scheme with the benchmark schemes.

configured with distributed deep active inference networks in

our proposed framework. In this way, the action space can

be reduced from (K × N)M to K × N × M . Moreover,

collaborative games among multi-agents can compensate for

the incomplete observation states of the single agent so as to

improve the sum transmission rate.

IV. SIMULATION RESULTS

In this section, simulation results are presented to evaluate

the performance of our proposed resource allocation scheme.

The simulation settings are based on the work in [12]. In the

simulation, βref = 1 × 10−3 represents the channel power

gain at the reference distance of 1 meter. A three-dimensional

coordinate system is established. SUs and PUs are located

randomly in two 500× 500 cells, respectively. The UAVs fly

at a constant altitude of 100 m. The background noise power

is -169 dBm.

Two benchmark schemes are considered for the performance

comparison. DQN: DQN is used for spectrum allocation pol-

icy and UAV trajectory optimization [8], Random: spectrum

allocation and UAV trajectory are randomly generated [12].

As shown in Fig. 4, the convergence performance of our

proposed scheme is presented with respect to the training

episodes. It can be seen that the reward of our proposed
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Fig. 6: System sum transmission rate versus the C-UAV

transmit power under different schemes (a) The transmission

rate of the primary system and the secondary system. (b) The

transmission rate of SUs with different service requirements.

scheme fluctuates in the first 600 episodes and tends to be

stable after 1000 episodes. Moreover, compared with the

DQN based method, the proposed framework achieves a faster

convergence speed by about 400 training episodes due to

its capability in performing multiple updates simultaneously.

Moreover, it is seen that the proposed PODMAI has a larger

reward than the random spectrum allocation and UAV trajec-

tory method. Therefore, it demonstrates the efficiency of our

proposed scheme in terms of the achievable rewards.

The comparison of the convergence performance for C-UAV

agents is shown in Fig. 5. It can be seen that our proposed

scheme converges 600 episodes faster than the DQN based

method. It is demonstrated that the belief based learning in

our proposed scheme is more practical than the value based

learning in DQN. In fact, more efficient exploration is achieved

by the proposed one in the early training episodes.

Fig. 6 (a) shows the system sum transmission rate with

different transmit power levels. It can be seen that 10 Mbps

and 70 Mbps gains of the transmission rate are achieved

compared with DQN and random based methods. Moreover,

the interference caused to the PUs exceeds the threshold

when the transmit power is 180 mW. Therefore, the sum

transmission rate gain in the secondary network for these

scheme is limited.

The transmission rate of the SUs with different transmission

rate requirements is shown in Fig. 6 (b). It can be seen

that our proposed scheme achieves about 10 Mbps and 58

Mbps transmission rate gains than the DQN and random based

methods, respectively when the transmit power is 180 mW.

Moreover, the transmission rate of the SUs with high rate

requirements increases significantly with the UAV transmit

power while ensuring the performance of the SUs with low

requirements. This is because the increasing transmission rate

of high requirement users results in a higher instant reward

compared to that of the low requirement users.

V. CONCLUSION

In this paper, a novel PODMAI framework was proposed

for designing efficient resource allocation in wireless com-

munications. Moreover, in order to verify the efficiency of

our proposed framework, an intelligent spectrum allocation

and trajectory optimization scheme was presented by using

our proposed framework in a spectrum sharing UAV network.

Simulation results demonstrated that our proposed framework

obtains the highest sum transmission rate of the secondary sys-

tem among all the considered benchmark schemes. Moreover,

the convergence speed was improved significantly compared

with the DRL based benchmark schemes.
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