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Abstract

Most existing works on dual-function radar-communication (DFRC) systems mainly focus on active

sensing, but ignore passive sensing. To leverage multi-static sensing capability, we explore integrated

active and passive sensing (IAPS) in DFRC systems to remedy sensing performance. The multi-antenna

base station (BS) is responsible for communication and active sensing by transmitting signals to user

equipments while detecting a target according echo signals. Passive sensing is performed at the receive

access points (RAPs). We consider both the cases where the capacity of the backhaul links between

the RAPs and BS is unlimited and limited and adopt different fusion strategies. Specifically, when

the backhaul capacity is unlimited, the BS and RAPs send sensing signals they received to the fusion

center (FC) for signal fusion. The FC processes the signals and uses the generalized likelihood ratio test

detector to determine if a target is present. However, when the backhaul capacity is limited, each RAP,

as well as the BS, makes decisions independently and sends its binary inference results to the FC for

result fusion via voting aggregation. Then, two power optimization algorithms are proposed to maximize

the target detection probability under communication quality of service constraints. Finally, numerical

simulations demonstrate that the sensing performance in the case of unlimited backhaul capacity is much

better than that in the case of limited backhaul capacity, and the proposed IAPS scheme outperforms

only-passive and only-active sensing schemes, especially when backhaul capacity is unlimited.
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I. INTRODUCTION

Communication networks are evolving from 5G to 6G in pursuit of a network that achieves

global coverage, green intelligence, sensory interconnection, and synesthesia integration [1]. To

achieve this vision, besides the communication ability, environmental perception ability is also

required. Electromagnetic wave has the ability to both sense environment and transmit data, but

most existing works study and treat these two techniques independently, resulting in a conflict of

wireless resources between sensing and communication systems. In order to improve frequency

spectrum and hardware efficiency, researchers are recently considering the function integration

of wireless communication and radar sensing, which promotes the research on dual-function

radar-communication (DFRC) systems [2–4].

The primary idea behind DFRC systems is to share infrastructure and resources between

communication and sensing functions, thereby combining radar sensing with wireless communi-

cation [5–8]. Recently, DFRC systems have garnered significant attention from both the academia

and industry and there have been some works on the design and performance analysis of DFRC

systems, e.g., [9–13]. Specifically, the feasibility of coexistence of multiple-input multiple-output

(MIMO) radar and orthogonal frequency division multiplexing communication was demonstrated

and transmit precoding was optimized to eliminate mutual interference between the radar and

communication in [9]. [10] proposed two operational options. The first option involved sensing

and communication each occupying a subset of antennas and the radar signal was designed to

fall into the null space of downlink communication channel. The other option used a unified

waveform for both radar and communication functions. In [11], the DFRC system transmitted

the weighted sum of independent radar and communication symbols and formed multiple beams

towards the target and the communication receivers. Different from [11], [12] proposed to jointly

optimizing DFRC waveform and precoding matrix toward to realize sensing and communication

functions simultaneously and the Cramér-Rao bound was used as a performance metric of target

estimation. [13] designed a novel radar waveform for accurate estimations of timing offset and

channel parameters. However, only signals of mono-static sensing transceiver was used in [9–13].

To improve the sensing accuracy, [14–16] attempted to make use of multiple signals for sensing.

[14] proposed an uplink sensing scheme which jointly processed all measurements from spatial,

temporal, and frequency domains for perceptive mobile networks with asynchronous transceivers.

In [15], a base station (BS) working as a mono-static radar receiver was used to estimate angles-
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of-arrival of targets based on itself downlink echo signals and uplink reflected signals from the

users. To address self-interference problem of echo signal caused by the concurrent information

transmission, [16] proposed to select one BS as a receiver to receive echo signals while other

BSs act as transmitters.

Different from the above works which are based on mono-static sensing, recently multi-

static sensing has attracted growing interests and is expected to bring various advantages over

the conventional mono-static sensing. Multi-static sensing can not only reduce the mono-static

sensing uncertainties caused by noise or incompleteness due to wireless fading and interference

[17], but also provide better sensing coverage and capture richer sensing information [18]. There

are only a few works on multi-static sensing in DFRC systems. In [19], a centralized federated

processing method was proposed for the information received at multiple receive access points

(RAPs) in a cell-free massive multiple-input multiple-output (MIMO) system. [20] attempted to

improve sensing accuracy of human-sized objects by increasing the number of receive devices

under indoor cellular deployment. [21] utilized a set of distributed transmitters which sent

individual information and multiple sensing receivers to estimate the target. Assuming time

synchronization among BSs in [22], each BS can exploit reflected signals of itself and other BSs

for joint detection. [23] proposed to fuse the outputs of multiple dual-function radars to achieve

higher sensing performance, but the communication and sensing signals were sent in different

time slots in [23]. Despite the above progress, these previous works still suffer from many

limitations. First of all, although multi-static sensing provides enhanced sensing capability, we

note that most existing works focus on active sensing in DFRC systems and ignore the potential

performance gain from passive sensing. In multi-static sensing, we refer to the sensing operation

based on echo signals as active sensing, whereas the sensing operation based on the received

signals from other transmitters (such as BSs and RAPs) as passive sensing. Secondly, challenges

are still presented in terms of wireless resource allocation to properly balance the performance

between sensing and communication. Finally, direct transmission of multi-static sensing signals

to a fusion center (FC) for centralized processing leads to high communication overhead. But,

the channel links to the FC are often capacity-limited.

Motivated by the analysis above, we aim to improve sensing performance by integrated active

and passive sensing (IAPS) in DFRC systems without sacrificing communication performance.

Specifically, BSs are responsible for communication as well as active sensing by transmitting

signals to user equipments (UEs) while simultaneously detecting targets according to echo
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signals. RAPs do not transmit signals to UEs but they can achieve reflected signals. To leverage

the multi-static sensing capability and to address the uncertainty in sensing due to the fading

and interference characteristics of wireless communication, we explore the performance gain

of passive sensing performed at RAPs based on reflected signals they received. Considering the

capacity of backhaul links between BSs and RAPs are usually limited, it is hard for each RAP to

send its observation (i.e., reflected signals they received) directly to BSs or a FC. This practical

consideration poses a challenge on the integration of active and passive sensing. In this work,

we consider both the cases with unlimited and limited backhaul capacity and propose different

fusion strategies. The contributions of this work are summarized as follows:

1) We consider a DFRC system where a BS communicates with UEs and senses a target

simultaneously. Multiple RAPs are connected to the BS via backhaul links. In addition to

active sensing signals received at the BS, passive sensing signals received at the RAPs are

also exploited and then the IAPS scheme is proposed to improve sensing performance under

communication quality-of-service (QoS) constraints. Furthermore, we consider two cases,

i.e., one with unlimited backhaul capacity and the other with limited backhaul capacity,

and propose power optimization algorithms, respectively.

2) In the case where the backhaul capacity is unlimited, the BS and RAPs send sensing

signals they received to the FC for signal fusion. The FC processes the received signals

and uses the generalized likelihood ratio test (GLRT) detector to determine if a target is

present. Moreover, we proposed a power allocation algorithm to maximize the detection

probability for improving sensing performance.

3) In the case where backhaul capacity is limited, the BS and RAPs make decisions based on

their observation independently and send binary inference results to the FC for result fusion.

A whitening filter is adopted to eliminate direct path interference [24]. Upon receiving

active and passive sensing binary inference results, the FC performs voting aggregation

to determine whether the target exists. We convert the probability of error minimization

into a maximization problem of joint detection probability and propose a heuristic power

optimization algorithm.

4) Finally, numerical simulations in the cases with unlimited and limited backhaul capacity

are conducted. Numerical results demonstrate that the sensing performance in the case

of unlimited backhaul capacity is much better than that in the case of limited backhaul
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capacity. It is also observed that the performance of the proposed IAPS scheme is better

than that of only-active and only-passive sensing scheme especially when backhaul capacity

is unlimited. Besides, we find that the overall performance can be improved by increasing

the numbers of RAPs.

The structure of this paper is given as follows. Firstly, Section II presents the system model.

Then, Sections III and IV formulate the sensing performance optimization problems with com-

munication QoS constraints in the cases where the backhaul capacity is unlimited and limited,

respectively, and then propose corresponding power allocation algorithms. Numerical results are

provided and discussed in Section V. Finally, Section VI concludes this paper.

Notation: Matrices and vectors are represented by bold uppercase and lowercase symbols,

respectively. E[·] denotes the expectation operator. diag(·) and blkdiag(·) stand for the construc-

tion of a diagonal matrix and the construction of a block diagonal matrix, respectively. ∥ ·∥1 and

∥·∥2 represent l1 and l2 norm, respectively. tr(·) and vec(·) denote the trace and the vectorization

operations, respectively. R(·) and I(·) denote the real and imaginary parts of the argument. (·)T

and (·)H stand for transpose and Hermitian transpose of the matrices, respectively. I is the

identity matrix. ⌈·⌉ denotes the ceiling function.

II. SYSTEM MODEL

A. System Setting

We consider a downlink DFRC system, as depicted in Fig. 1, where a BS equipped with M

transmit antennas and N0 receive antennas is response for serving K single-antenna UEs and

detecting a single target simultaneously. There are also R RAPs each with N1 receive antennas,

which can be used to receive the reflected signals for sensing. Here, we refer to the sensing

operation at the BS and RAPs as active and passive sensing, respectively. Note that K ≤ M is

required to ensure the feasibility of downlink multi-user MIMO communications and M < N0

is typically required to avoid the loss of information about the target [12]. Besides, a FC is

introduced to process both the active and passive sensing signals. For notation convenience, we

denote the set of UEs and the set of RAPs by K = {1, 2, . . . , K} and R = {1, 2, . . . , R},

respectively. The BS is indexed using 0 and the set of the BS and RAPs are denoted by R′ =

R
⋃
{0}, Besides, the target is indexed using 0 and the set of UEs and target are denoted by

K′ = K
⋃
{0}.
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Fig. 1. The snapshot of a DFRC system.

Define s0 ∈ CL×1 as the dedicated sensing symbol vector and sk ∈ CL×1 as the communication

symbol vector of the k-th UE, respectively. It is assumed that the sensing and communication

symbols are independent of each other with 1
L
E{SSH} = IK+1, where S = [s0, s1, ..., sK ]. Then,

the DFRC signal matrix is given as X = WS, where

W = [
√
p0w̃0,

√
p1w̃1, ...,

√
pKw̃K ] ∈ CM×(K+1), (1)

where pk and w̃k, k ∈ K′ are the transmit power and the normalized precoding vector of targer

and the k-th UE, respectively, with ||w̃k||2 = 1.

B. Communication Model

The received signal in the l-th communication symbol at the k-th UE is given as

yk[l] = hH
k

K∑
k′=1

√
pk′w̃k′sk′ [l] +

√
p0h

H
k w̃0s0[l] + nk[l], (2)
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where nk[l] ∼ CN (0, σ2
n) denotes the additive Gaussian white noise (AWGN) with zero mean

and variance σ2
n and hk denotes the channel between the k-th UE and the BS, which is assumed

to be flat Rayleigh fading and statistically independent of each other.

Then, the signal to interference plus noise ratio (SINR) of the k-th UE is given by

γk =
pk|hH

k w̃k|2∑K
k′=1,k′ ̸=k pk′|hH

k w̃k′|2 + p0|hH
k w̃0|2 + σ2

n

. (3)

C. Sensing Model

The BS can sense the target through the echo signal, which is given as

z0[l] = α0b0(θ)a
H(θ)X[l] + n′

0[l] ∈ CN0×1, (4)

where n′
0[l] ∼ CN (0, σ2

nIN0) denotes the AWGN vector, X[l] represents the l-th column of X,

α0 ∼ CN (0, σ2
rcs) is the combined sensing channel gain that includes the path-loss through target

and the radar cross section (RCS) of the target [25], and θ is the azimuth angle of target relative

to the antenna array at the BS. The transmit and receive steering vectors of the BS are denoted

by

a(·) =
[
1, ej2π∆sin(·), . . . , ej2π(M−1)∆ sin(·)]T ∈ CM×1, (5)

b0(·) =
[
1, ej2π∆sin(·), . . . , ej2π(N0−1)∆ sin(·)]T ∈ CN0×1, (6)

respectively, where ∆ is the spacing between adjacent antennas normalized by wavelength.

When a target is present, the reflected sensing signal received at the r-th RAP for passive

sensing is given as

zr[l] = αrb1(φr)a
H(θ)X[l] +GrX[l] + n′

r[l] ∈ CN1×1, (7)

where n′
r[l] ∼ CN (0, σ2

nIN1) denotes the AWGN vector, αr ∼ CN (0, σ2
rcs) is the combined

sensing channel gain, φr is the azimuth angle of target relative to the r-th RAP, Gr ∈ CN1×M

represents the target-free channel between the BS and the r-th RAP, and b1(·) is the steering

vector of the RAPs, given as

b1(·) =
[
1, ej2π∆sin(·), . . . , ej2π(N1−1)∆ sin(·)]T ∈ CN1×1, (8)
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D. Transmit Precoding Vectors

The transmit precoding is designed based on the regularized zero-forcing (RZF) scheme, i.e.,

w̃k = w̄k/∥w̄k∥2 with

w̄k = (HHH + λIM)−1hk, (9)

where H = [h1,h2, ...,hK ] ∈ CM×K and λ is the regularization parameter.

In order to eliminate the interference caused by sensing symbols to the UEs, we employ the

zero-forcing radar (ZFR) precoder w̃0 = w̄0/∥w̄0∥2 [26], where

w̄0 = (IM −HHH)−1a (θ) . (10)

The BS and RAPs are connected through the backhaul channel using wired or wireless links.

In this work, we conduct analysis in two cases, i.e., unlimited and limited backhaul capacity.

Specifically, when the backhaul capacity is unlimited (such as fiber links), both the BS and

RAPs directly sends the received sensing signals to the FC for joint processing, which will be

introduced in Section III. However, when the backhaul capacity is limited (such as wireless

links), it is impractical for the RAPs to send the sensing signal directly due to the large amount

of sensing signals. As an alternative solution, each RAP first make decisions independently and

then send binary inference results to the FC for voting aggregation, such that only a few bits

are needed to exchange. More details about the latter solution will given in Section IV.

III. DFRC SYSTEM WITH UNLIMITED BACKHAUL CAPACITY

In this section, we assume the backhaul capacity is unlimited, thus the BS and RAPs can

directly send the received sensing signals to the FC for joint processing.

A. Active and Passive Sensing Signal Fusion

With the unlimited backhaul capacity, it is reasonable to assume X and G = [G0,G1, ...,GR]

are known at the FC, which can be estimated using the method proposed in [27]. Therefore, the

target-free portion of the received sensing signal at the RAPs can be mitigated perfectly. Then,

zr in (7) can be rewritten as

zr[l] = αrAr[l] + n′
r[l], (11)

where Ar[l] = b1 (φr) a
H (θ)X[l] is the known part at the FC.
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We collect the received sensing signals at the BS and RAPs into a vector z[l] =
[
zT0 [l] . . . z

T
R[l]
]T ,

and the overall sensing signal is expressed as

z[l] = A[l]α+ n′[l] ∈ C(N0+RN1)×1, (12)

where α = [α0, α1, ..., αR]
T is a collection of the unknown sensing channel coefficients, n′[l] =[

n′T
0 [l] . . .n′T

R [l]
]T is the concatenated noise, and A[l] is the known part and is given as

A[l] = blkdiag(A0[l],A1[l], ...,AR[l]) ∈ C(N0+RN1)×(R+1). (13)

B. GLRT Detector

Here, the received signals in L communication time slots are used for detection. We define the

vectors zL ∈ C(N0+RN1)L×1, n′
L ∈ C(N0+RN1)L×1, and A′

L ∈ C(N0+RN1)L×1, which are constructed

by concatenating z[l], n′[l], and A[l]α, respectively, i.e.,

zL =
[
zT [1] . . . zT [L]

]T
, (14)

n′
L =

[
n′T [1] . . .n′T [L]

]T
. (15)

and

A′
L =

[
[A[1]α]T . . . [A[L]α]T

]T
, (16)

The binary hypothesis used in the GLRT detector is written asH0 : zL = n′
L,

H1 : zL = A′
L + n′

L.
(17)

Then the corresponding GLRT detector is given by

Λ =
maxα f(zL|α,H1)

f(zL|H0)

H1

≷
H0

ξ, (18)

where ξ is the threshold of the GLRT detector, which is selected to achieve a desired false alarm

probability PFA under Neyman-Pearson criterion [28]. The joint probability density function

(PDF) of the overall received sensing signal in cases H1 and H0 is computed as [29]

f(zL|α,H1) =
1

(πσ2
n)

(R+1)L
· exp[−

L∑
l=1

(z[l]−A[l]α)H(z[l]−A[l]α)

σ2
n

], (19)
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f(zL|H0) =
1

(πσ2
n)

(R+1)L
· exp(−

L∑
l=1

z[l]Hz[l]

σ2
n

), (20)

respectively. We note that maximizing f(zL|α,H1) with respect to α is equivalent to

min
α

L∑
l=1

(z[l]−A[l]α)H(z[l]−A[l]α)

σ2
n

, (21)

which in turn is equivalent to

max
α

2R{αH
( L∑

l=1

AH [l]z[l]

σ2
n

)
} −αH

( L∑
l=1

AH [l]A[l]

σ2
n

)
α. (22)

Thus, α can be estimated as

α̂ =
( L∑

l=1

AH [l]A[l]
)−1( L∑

l=1

AH [l]z[l]
)
. (23)

Inserting the estimated α̂ into the GLRT detector, we obtain the test statistic as

ln(Λ) =
1

σ2
n

(
L∑
l=1

zH [l]A[l])(
L∑
l=1

AH [l]A[l])−1(
L∑
l=1

AH [l]z[l])
H1

≷
H0

ln(ξ). (24)

According to [28], the asymptotic distribution of (24) can be expressed as

ln(Λ) ∼

 H1 : X 2
2 (ρ),

H0 : X 2
2 ,

(25)

where X 2
2 and X 2

2 (ρ) are central and non-central chi-squared distributions with two Degrees of

Freedom (DoFs), respectively, and ρ is the non-central parameter. When the GLRT is used, the

threshold ξ can be expressed as

ξ = F−1
X 2

2
(1− PFA) , (26)

and the detection probability PD is given as [30]

PD = 1− FX 2
2 (ρ)

(ξ), (27)

where FX 2
2 (ρ)

is the non-central chi-square Cumulative Distribution Function (CDF) with two

DoFs.
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Because different RCSs are assumed to be independent and have zero mean, we have

E{A[l]ααHAH [l]} = E{blkdiag(|α0|2A0[l]A0[l]
H , ..., |αR|2AR[l]AR[l]

H)}

= σ2
rcsblkdiag(B0ŴBH

0 , ...,BRŴBH
R ), (28)

where Ŵ = WWH , B0 = b0 (θ) a
H (θ), and Br = b1 (φr) a

H (θ). Then, the non-centrality

parameter ρ is given as

ρ =
L∑
l=1

tr
(
E{A[l]ααHAH [l]}(E{n′

L})−1
)

=
Lσ2

rcs

L(N0 +RN1)σ2
n

tr
(
blkdiag(B0ŴBH

0 , ...,BRŴBH
R )
)

=
σ2
rcs

(N0 +RN1)σ2
n

R∑
r=0

tr
(
BrŴBH

r

)
. (29)

C. Problem Formulation

The goal is to maximize the detection performance under SINR constraints of the UEs and a

power constraint of the BS, which is formulated as

P0 : max
p≥0

PD

s.t. γk ≥ Γ, k ∈ K, (30a)

||p||1 ≤ Pmax, (30b)

where p = [p0, p1, ..., pK ]
T , Γ is the minimum SINR threshold for the UEs, and Pmax is the power

budget of the BS. It is observed that PD is a monotonically increasing function with respect to

ρ [28] and σ2
rcs

(N0+RN1)σ2
n

is a constant. Therefore, problem P0 can be equivalently formulated as

P1 : max
p≥0

R∑
r=0

tr
(
BrŴBH

r

)
s.t. (30a) and (30b).
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According to the properties of matrix trace, we have

tr
(
BrŴBH

r

)
= tr

(
ŴBH

r Br

)
= tr

(
diag(p)W̃HBH

r BrW̃
)
, (31)

where W̃ = [w̃0, w̃1, ..., w̃K ] . Since W̃HBH
r BrW̃ is a Hermitian symmetric matrix where the

elements on the diagonal must be real, i.e., tr
(
I{W̃HBH

r BrW̃}
)
= 0,∀p. The QoS constraints

can be rewritten in the form of second-order cone (SOC) as [19]

∥[ϱk,0
√
p0, ϱk,1

√
p1, . . . , 0, . . . , ϱk,K

√
pK , σn]∥2 ≤

√
pkϱk,k
√
Γ

, k = 1, . . . , K, (32)

where ϱk,j =
∣∣hH

k w̃j

∣∣. Now, problem P1 is reformulated as

P2 : min
p≥0

−
R∑

r=0

tr
(
diag(p)R{W̃HBH

r BrW̃}
)

s.t. (30b) and (32).

Now, P2 becomes a standard Semidefinite Program (SDP) which can be solved using optimization

tools, such as CVX [31].

IV. DFRC SYSTEM WITH LIMITED BACKHAUL CAPACITY

When the backhaul capacity is limited, the RAPs cannot directly send the reflected signals

they received. Instead, they independently make decisions based on their own observation and

then send binary inference results to the FC for result fusion via voting aggregation.

A. GLRT Detector

Since the backhaul capacity is limited and the RAPs have to make decisions locally, the

interference to the sensing signal at the RAPs from the BS via the target-free channel cannot be

ignored. Then, the binary hypothesis is described as:H0 : zr[l] = GrX[l] + n′
r[l],

H1 : zr[l] = αrBrX[l] +GrX[l] + n′
r[l].

(33)

For simplicity, we assume that the RAPs have accurately estimated the interference-plus-noise

covariance matrix [24]. We use the GLRT detector to solve the unknown parameters αr, φr and
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θ. In order to consider the sufficient statistic of received signal, a matching filter is adopted [32],

i.e.,

Z̃r =
1√
L

L∑
l=1

zr[l]X
H [l]

= αr

√
LBrŴ +

1√
L
(GrX+ n′

r)X
H . (34)

Define z̃ as the vectorization of Z̃, which is given as

z̃r = vec(Z̃r)

= αr

√
Lvec(BrŴ) + εr, (35)

where εr = 1√
L
vec((GrX + n′

r)X
H) is zero-mean, complex Gaussian distributed, and has the

following block covariance matrix:

Cr =


Qr + σ2

nIN1 0

· · ·

0 Qr + σ2
nIN1

 ∈ CN1M×N1M , (36)

where Qr = GrŴGH
r .

Before using the GLRT detector, we apply a whitening filter to εr. Specifically, considering

that Cr is a positive-definite Hermitian matrix, the Cherosky decomposition is adopted as C−1
r =

UrU
H
r , where Ur is the lower triangle matrix. Then, UH

r is used as the whitening filter in (33),H0 : z̃r = UH
r εr,

H1 : z̃r = αr

√
LUH

r d(φr, θ) +UH
r εr,

(37)

where d(φr, θ) = vec(BrŴ). Thus, the corresponding GLRT detector is given by

∆r =
maxαr,φr,θ f(z̃r|αr, φr, θ,H1)

f(z̃r|H0)

H1

≷
H0

ζ, (38)

where f(z̃r|αr, φr, θ,H1) and f(z̃r|H0) are the PDF under H1 and H0, respectively, and ζ is

the decision threshold. For the given φr and θ, the maximum likelihood estimation (MLE) of

αr is obatined using the complex least-squares estimation and is given as

α̂r =
dH(φr, θ)C

−1
r z̃r

dH(φr, θ)C−1
r d(φr, θ)

. (39)
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By substituting (39) into (38), the MLE of [φr, θ] can be expressed as

[φ̂r, θ̂] = argmax
φr,θ

∣∣dH(φr, θ)C
−1
r z̃r

∣∣2
dH(φr, θ)C−1

r d(φr, θ)
. (40)

Hence, the GLRT test statistic is expressed as

ln(Λr) =

∣∣∣dH(φ̂r, θ̂)UrU
H
r z̃r

∣∣∣2∥∥∥UH
r d(φ̂r, θ̂)

∥∥∥2
=

∣∣∣tr(Z̃rŴ
HB̂H

r Q̃
−1
r

)∣∣∣2
tr
(
B̂rŴŴHB̂HQ̃−1

r

)H1

≷
H0

ln(ζ), (41)

where Q̃r = Qr + σ2
nIN1 . The asymptotic distribution is expressed as

ln(Λr) ∼

 H1 : X 2
2 (ρr),

H0 : X 2
2 ,

(42)

where the non-centrality parameter ρr of the r-th RAP is given as

ρr = E{|αr|2L vecH(BrŴ)C−1
r vec(BrŴ)}

= σ2
rcsL tr

(
BrŴŴHBH

r

(
Qr + σ2

nIN1

)−1
)
. (43)

Besides, the non-centrality parameter ρ0 of the BS is given as

ρ0 = E{|α0|2L vecH(B0Ŵ)C−1
0 vec(B0Ŵ)}

= σ2
rcsL tr

(
B0ŴŴHBH

0

(
σ2
nIN1

)−1
)
. (44)

Similar to (27), we can obtain the detection probability PDr of the r-th RAP as well as PD0 of

the BS.

B. Voting Aggregation

The FC performs voting aggregation when receiving the binary inference results from the

RAPs and BS, which can be modeled by:H0 : No target,

H1 : Exist target.
(45)
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Then the voting rule is expressed asH0 :
∑R

r=0 Dr ≤ κ,

H1 :
∑R

r=0 Dr ≥ κ,
(46)

where Dr, r ∈ R′ is the binary inference result, with Dr = 0 standing for no target and Dr = 1

standing for an existing target, κ represents the voting threshold. The probability of error at the

FC is [33]

Υ(κ, P̂D) =
1

2
+

1

2

κ−1∑
i=0

(
R + 1

i

)[
(P̂D)

i(1− P̂D)
R+1−i − (P̂FA)

i(1− P̂FA)
R+1−i

]
, (47)

where

P̂D =
1

R + 1

R∑
r=0

PDr , (48)

P̂FA =
1

R + 1

R∑
r=0

PFAr , (49)

PDr and PFAr ,r ∈ R′ represent the detection probability and the false alarm probability, respec-

tively, and (
R + 1

i

)
=

(R + 1)!

i!(R + 1− i)!
. (50)

The optimal κ is obtained as [33]

κ̃ = min

(
R + 1,

⌈
R + 1

1 + β(P̂D)

⌉)
, (51)

where

β(P̂D) =
ln P̂FA

P̂D

ln 1−P̂D

1−P̂FA

. (52)

C. Problem Formulation

We aim to minimize the probability of error at the FC, but the expression of Υ(κ, P̂D), as

shown in (47), is quite complex. To handle this issue, we first introduce the following lemmas.

Lemma 1: Given P̂D ∈ (0, 1), β(P̂D) decreases as P̂D increases.

Proof: See Appendix A.

Lemma 2: Given P̂D ∈ (0, 1), Υ(κ̃, P̂D) decreases as P̂D increases.
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Proof: See Appendix B.

Based on Lemma 2, the minimization of the probability of error at the FC is equivalent to

the maximization of P̂D. Thus, the optimization problem is formulated as

P3 : max
p≥0

P̂D

s.t. γk ≥ Γ, k ∈ K,

||p||1 = Pmax,

which is a non-convex problem. Before giving the solution to problem P3, we first introduce

the following lemma.

Lemma 3: When p0 gradually increases and satisfies the transmit power constraint ||p||1 =

Pmax, P̂D gradually increases.

Proof: See Appendix C.

For further validation of Lemma 3, we plot the trend of P̂D with respect to p0, as shown

in Fig. 2. We first initialize p0 = 0 and then gradually increase p0 with a step size of ∆p.

After obtaining the power allocation vector, PDr and P̂D are calculated using (27) and (48),

respectively. The simulation result in Fig. 2 is obtained averaging over 1000 samples, which is

consistent with the conclusion in Lemma 3.

Based on Lemma 3, we propose a heuristic algorithm and summarize the proposed algo-

rithm in Algorithm 1. Specifically, we decrease p0 by ∆p gradually and find the solution,

p′ = [p1, p2, . . . , pK ]
T , to the power minimization problem under the SINR constraints. Such

a process is repeated until ∥p∥1 ≤ Pmax.

Algorithm 1 Proposed heuristic algorithm of power allocation.
1: Initialize p′0 = Pmax, the step size ∆p, and Psum = p′0.
2: while Psum >= Pmax do
3: Set p0 = p′0 −∆p.
4: Find solution to the following problem using SDP, i.e.,{

minp′ ∥p∥1
s.t. γk ≥ Γ, k ∈ K.

5: Set Psum = ∥p∥1.
6: Set p′0 = p0.
7: end while
8: Output: p.
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Fig. 2. The relation between P̂D and p0 with {Pmax =1W, Γ =15dB}.

V. NUMERICAL RESULTS

To evaluate the performance of the proposed DFRC system, we perform numerical simulations

in a 500 m × 500 m region with a BS, R = 10 RAPs, and K = 8 UEs. The locations of the

RAPs, UEs, and BS are randomly generated and the target is in the center of the region, as

shown in Fig. 3. The BS and RAPs each is equipped with N0 = N1 = 20 receive antennas.

Besides, the BS is equipped with M = 16 transmit antennas. Similar to [34], the channel model

is generated using hk =
√
mkh̃k ∈ CM×1, where h̃k ∼ CN (0, IM) is the small-scale fading and

mk = 128.1 + 37.6 log10(d) [dB] represents the path loss between the k-th UE and BS with d

being the distance in kilometers. The target-free channel G is generated using the same channel

model. The combined sensing channel gain of target is used the Swerling-I model [35]. The

SINR threshold is set as Γ = 15 dB and the symbol number is set as L = 30. The detection

threshold is determined by the false alarm probability PFA = 10−5.
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Fig. 3. The 2D locations of the RAPs, DFRC BS, and the target.

A. Results with Unlimited Backhaul Capacity

We first consider the case where the backhaul capacity is unlimited. Before presenting the

numerical results, we first introduce the following baseline schemes for comparison.

1) Firstly, we find the solution to problem P2 considering the cases with and without dedicated

sensing symbols (marked as “with s0” and “w/o s0”, respectively).

2) Then, only-active and only-passive sensing schemes (marked as “active” and “passive”,

respectively) are introduced.

3) Finally, we also introduce the communication-centric scheme which aims to minimize

the total power consumption (marked as “minPtotal”) under the same constraints for

comparison.

We evaluate these schemes using average detection probability, which is calculated by averaging

over 1000 random samples. Fig. 4 shows that the average detection probability increases with

the increase of σ2
rcs. We find the proposed IAPS scheme with sensing symbols has the best

performance, whose average detection probability can reach 1 when σ2
rcs = -35 dB. The perfor-
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mance of the only-passive sensing scheme is worse than that of the proposed IAPS scheme, but

is much better than that of the only-active sensing scheme in both the cases with and without

dedicated sensing symbols. This is because when the backhaul capacity is unlimited, all the

RAPs can send the reflective signals they received to the FC and R observed signals can be

utilized in the only-passive sensing scheme. However, only the echo signal received at the BS

is utilized in the only-active sensing scheme. Besides, the average detection probability of the

communication-centric scheme is almost 0 when σ2
rcs ≤ −7 dB since the sensing requirement is

not considered. We also observe that compared to the cases without dedicated sensing symbols,

the average detection probability of difference schemes can be improved by using dedicated

sensing symbols, which validates the importance of dedicated sensing symbols.

Fig. 4. The average detection probability vs. σ2
rcs with Pmax = 1 W.

Fig. 5 shows the average detection probability with respect to the transmit power budget

of the BS Pmax. We find that the average detection probability can be improved with more

available power. Consistent with the results in Fig. 4, the proposed IAPS scheme shows better

performance than the other two schemes in both the cases with and without dedicated sensing

symbols. Besides, with the advantage of quantity, the proposed scheme without dedicated sensing
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symbols, as well as the only-passive sensing scheme without dedicated sensing symbols, shows

better performance than the only-active sensing scheme with dedicated sensing symbols. This is

because the communication symbols can also be used for target detection.
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Fig. 5. The average detection probability vs. the transmit power budget of the BS Pmax with σ2
rcs = −37dB.

Fig. 6 further shows the relationship between the average detection probability and the RAP

number. The only-active sensing scheme is independent of the RAP number and thus is not

presented in Fig. 6. It is observed that with the growth of the RAP number, the average detection

probability of the proposed IAPS scheme, as well as the only-passive sensing scheme, gradually

increases. This fact indicates that the FC gains more information as the RAP number increases.

In addition, we find that the use of the dedicated sensing symbols allows a fast convergence

rate, compared to the scheme without dedicated sensing symbols.

Fig. 7 illustrates the effect of the number of UEs on the average detection probability. We

observe that the average detection probability of the schemes with dedicated sensing symbols

gradually decreases as the UE number increases. This is because, with the fixed power budget

Pmax and the increase of the UE number, more power is allocated to meet user SINR constraints

and less power is allocated to dedicated sensing symbols. However, in the case of without
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Fig. 6. The average detection probability vs. the number of RAPs with {σ2
rcs = −37dB, Pmax = 1W}.

dedicated sensing symbols as the UE number increases, the average detection probability of

the proposed IAPS scheme, as well as the only-passive sensing scheme, increases first and then

decreases. The reason behind this phenomenon is that a small increase of the UE number leads to

more communication symbols used for sensing and further the increase of the average detection

probability. However, when the UE number exceeds a threshold value (i.e., 6 in Fig. 7), more

power is used to satisfy the increasing SINR constraints, which is not conducive to sensing

performance.

B. Results with Limited Backhaul Capacity

We first introduce two labels, i.e., “unlimited” and “limited” to distinguish the two cases

with unlimit and limited backhaul capacity. Fig. 8 shows that the average detection probability

increases with the increase of σ2
rcs, regardless of whether backhaul capacity is unlimit or limited.

We also observe that the achieved performance with the limited backhaul capacity is worse

than that with the unlimited backhaul capacity because more sensing information is exploited

in the case of unlimited backhaul capacity but only binary inference results is integrated in the
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Fig. 7. The average detection probability vs. the number of UEs with {σ2
rcs = −36dB, Pmax = 1W}.

case of limited backhaul capacity. Similar to the results in (5), it is observed that the proposed

IAPS scheme always achieves a higher average detection probability than that of the only-active

and only-passive sensing schemes. Note that in the only-active sensing scheme, the influence of

backhaul capacity can be ignored because no passive sensing is involved.

Fig. 9 shows the average detection probability with respect to the number of RAPs with

different σ2
rcs values. The increase of the RAP number can reduce the probability of misjudgment

after the voting aggregation. We note that the average detection probability increases as the

number of the RAPs increases when σ2
rcs ≥ −36 dB, but the curve with σ2

rcs = −35dB rises

faster than the curve with σ2
rcs = −36dB. In addition, we also find that when σ2

rcs = −37dB,

the average detection probability is almost unchanged. This is because the voting aggregation

at the FC highly depends on the binary inference results of each single RAP and the detection

probability of each single RAP relies on σ2
rcs.



23

Fig. 8. The average detection probability vs. σ2
rcs, Pmax = 1 W.
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Fig. 9. The average detection probability vs. the number of RAPs, Pmax = 1 W.
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VI. CONCLUSION

This paper considered a DFRC system and proposed IAPS scheme to improve sensing perfor-

mance under communication QoS constraints. According to the backhaul capacity between RAPs

and BS (i.e., limited or unlimited), different fusion schemes were adopted to exploit the active

sensing and passive sensing information. Specifically, when the backhaul capacity is unlimited,

the BS and RAPs send the sensing signal they received to the FC for signal fusion. The FC

processes the signals and uses the GLRT detector to determine if a target is present. However,

which the backhaul capacity is limited, the RAPs make decisions and send binary inference

results to the FC for result fusion via voting aggregation. Different power allocation algorithms

are designed to maximize the detection probability. Finally, numerical simulations in the cases

with unlimited and limited backhaul capacity were conducted, which validated the performance

gain of the proposed IAPS scheme and the positive effect of dedicated sensing symbols. Besides,

we also found that the overall performance can be improved by increasing the number of RAPs.

APPENDIX

A. Proof of Lemma 1

The derivative of β(P̂D) is given as

dβ(P̂D)

dP̂D

=
(1− P̂D)(ln(1− P̂FA)− ln(1− P̂D)) + P̂D(ln P̂FA − ln P̂D)

P̂D(1− P̂D)(ln(1− P̂D)− ln(1− P̂FA))2
, (53)

whose denominator is greater than 0. Define β1(P̂D) = (1− P̂D)(ln(1− P̂FA)− ln(1− P̂D)) +

P̂D(ln P̂FA − ln P̂D). The first and second derivatives of β1(P̂D) are given as

dβ1(P̂D)

dP̂D

= − ln(1− P̂FA) + ln(1− P̂D) + ln P̂FA − ln P̂D, (54)

and

d2β1(P̂D)

d(P̂D)2
= − 1

1− P̂D

− 1

P̂D

, (55)

respectively. Note that (55) is less than 0 because of P̂D ∈ (0, 1), which suggests that β1(P̂D)

is a concave function and its maximum (i.e., 0) is achieved at the point P̂D = P̂FA. We further

have β1(P̂D) ≤ 0 and dβ(P̂D)

dP̂D
≤ 0. Thus, β(P̂D) decreases as P̂D increases. ■
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B. Proof of Lemma 2

Based on Lemma 1,
⌈

R+1

1+β(P̂D)

⌉
follows a stepwise ascent as P̂D increases. We first define

P̂ κ̃,min
D and P̂ κ̃,max

D , which satisfy

P̂ κ̃,min
D = argmin

P̂D

[
min

(
R + 1,

⌈
R + 1

1 + β(P̂D)

⌉)
= κ̃

]
, (56)

and

P̂ κ̃,max
D = argmax

P̂D

[
min

(
R + 1,

⌈
R + 1

1 + β(P̂D)

⌉)
= κ̃

]
, (57)

respectively. κ is a constant and equal to κ̃ when P̂D ∈ [P̂
˜κ,min

D , P̂ ˜κ,max
D ]. We will prove Lemma

2 in two steps. Specifically, we first prove that the probability of error Υ(κ, P̂D) at the FC

decreases as P̂D increases when P̂ κ̃
D ∈ (P̂ κ̃

Dmin
, P̂ κ̃

Dmax
]. In such a case, κ̃ is fixed and equal to κ̃

and Υ(κ, P̂D) can be simplified as

Υ1(P̂D) =
1

2

κ̃−1∑
i=0

(
R + 1

i

)
(P̂D)

i(1− P̂D)
R+1−i, (58)

which decreases as P̂D increases. This is because the CDF of the binomial distribution Υ1(P̂D)

can be represented in terms of the regularized incomplete beta function [36]:

Υ(P̂D) = (R + 2− κ̃)

(
R + 1

i

)∫ 1−P̂D

0

tR+1−κ̃(1− t)κ̃−1dt,

whose derivative meets the following constraint,

dΥ(P̂D)

dP̂D

= −(R + 2− κ̃)

(
R + 1

i

)
(1− P̂D)

R+1−κ̃(P̂D)
κ̃−1 ≤ 0. (59)

Secondly, we prove that the probability of error Υ(κ, P̂D) at the FC decreases when κ varies

from κ̃ to κ̃+ 1 due to the increase of P̂D. According to (56) and (57), we have

Υ(κ̃+ 1, P̂ κ̃+1,min
D )−Υ(κ̃, P̂ κ̃,max

D )

≤Υ(κ̃+ 1, P̂ κ̃,max
D )−Υ(κ̃, P̂ κ̃,max

D )

=

(
R + 1

κ̃

)[
(P̂ κ̃,max

D )κ̃(1− P̂ κ̃,max
D )R+1−κ̃ − (P̂FA)

κ̃(1− P̂FA)
R+1−κ̃

]
, (60)
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and

κ̃ =
R + 1

1 + β(P̂ κ̃,max
D )

=
(R + 1) ln 1−P̂FA

1−P̂ κ̃,max
D

ln
P̂ κ̃,max
D (1−P̂FA)

P̂FA(1−P̂ κ̃,max
D )

. (61)

Then, substituting (61) into (60), we obtain

Υ(κ̃+ 1, P̂ κ̃,max
D )−Υ(κ̃, P̂ κ̃,max

D ) = 0 (62)

which suggests that Υ(κ, P̂D) decreases when κ varies from κ̃ to κ̃+1. Finally, we can conclude

that Υ(κ, P̂D) decreases as P̂D increases in the whole feasible region P̂D ∈ (0, 1). ■

C. Proof of Lemma 3

Since P̂D is the average of PDr and PDr is a monotonically increasing function with respect to

ρr [28], we just need to prove that ρr increases as p0 increases. It is observed that tr(Qr+σ2
nIN1)

is a constant associated with Pmax, thus it can be approximated as

tr(Qr + σ2
nIN1) ≃ tr(Ŵ), (63)

where ≃ represents the same trend with respect to the variation of p0 on the left-hand and

right-hand sides. We also have

tr
(
BrŴŴHBH

r

)
= tr

(
ŴŴHa(θ)bH

1 (φr)b1(φr)a
H(θ)

)
≃ tr

(
ŴŴHa(θ)aH(θ)

)
. (64)

Then,

ρr ≃ tr

(
BrŴŴHBH

r

Qr + σ2
nIN1

)

≃ tr

(
ŴŴHa(θ)aH(θ)

Ŵ

)
= tr

(
diag(p)W̃Ha(θ)aH(θ)W̃

)
, (65)

it is obvious that w̃H
0 a(θ) > w̃H

i a(θ) due to the ZFR precoder in (10). Thus, ρr increases as p0

increases. ■
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