
Citation: Hussein, Z.; Slack, R.W.;

Baldeweg, S.E.; Mazomenos, E.B.;

Marcus, H.J. Machine Learning

Analysis of Post-Operative Tumour

Progression in Non-Functioning

Pituitary Neuroendocrine Tumours: A

Pilot Study. Cancers 2024, 16, 1199.

https://doi.org/10.3390/

cancers16061199

Academic Editor: Giuseppe Minniti

Received: 29 January 2024

Revised: 11 March 2024

Accepted: 13 March 2024

Published: 19 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Machine Learning Analysis of Post-Operative Tumour
Progression in Non-Functioning Pituitary Neuroendocrine
Tumours: A Pilot Study
Ziad Hussein 1,2,3,*,† , Robert W. Slack 4,5,†, Stephanie E. Baldeweg 2,3, Evangelos B. Mazomenos 4,5,*,‡

and Hani J. Marcus 6,‡

1 Department of Diabetes & Endocrinology, Sheffield Teaching Hospitals NHS Foundation Trust,
Sheffield S10 2JF, UK

2 Department of Diabetes & Endocrinology, University College London Hospital NHS Foundation Trust,
London NW1 2BU, UK

3 Centre for Obesity & Metabolism, Department of Experimental & Translational Medicine, Division of
Medicine, University College London, London WC1N 3BG, UK

4 Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London,
London WC1E 6BT, UK; robert.slack.18@ucl.ac.uk

5 Department of Medical Physics and Biomedical Engineering, University College London,
London WC1E 6BT, UK

6 Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK;
h.marcus@ucl.ac.uk

* Correspondence: ziad.hussein1@nhs.net (Z.H.); e.mazomenos@ucl.ac.uk (E.B.M.);
Tel.: +44-2031087154 (E.B.M.)

† These authors contributed equally to this work.
‡ These authors also contributed equally to this work.

Simple Summary: Effective models for predicting non-functioning pituitary neuro-endocrine tu-
mours (NF PitNET) recurrence and regrowth following surgical intervention remain elusive. Previous
studies have identified conflicting risk factors in predictions of tumour progression for patients re-
ceiving surgery for NF PitNET. The aim of this study was to develop machine learning (ML) models
to improve prediction of post-operative NF PitNET progression up to 15 years following surgery.
ML models were shown to be effective for predicting tumour remission, stability, and regrowth, but
were non-performant when predicting tumour recurrence or reduction in size. The extent of surgical
resection was shown to have the strongest influence in the performant models, with lesser influence
from age, tumour volume, and the use of post-operative radiotherapy, and with no influence shown
from pre- or post-operative endocrine function.

Abstract: Post-operative tumour progression in patients with non-functioning pituitary neuroen-
docrine tumours is variable. The aim of this study was to use machine learning (ML) models to
improve the prediction of post-operative outcomes in patients with NF PitNET. We studied data from
383 patients who underwent surgery with or without radiotherapy, with a follow-up period between
6 months and 15 years. ML models, including k-nearest neighbour (KNN), support vector machine
(SVM), and decision tree, showed superior performance in predicting tumour progression when com-
pared with parametric statistical modelling using logistic regression, with SVM achieving the highest
performance. The strongest predictor of tumour progression was the extent of surgical resection,
with patient age, tumour volume, and the use of radiotherapy also showing influence. No features
showed an association with tumour recurrence following a complete resection. In conclusion, this
study demonstrates the potential of ML models in predicting post-operative outcomes for patients
with NF PitNET. Future work should look to include additional, more granular, multicentre data,
including incorporating imaging and operative video data.
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1. Introduction

Pituitary neuroendocrine tumours are benign adenomas of the adenohypophysis, but
may exhibit aggressive and invasive behaviour [1]. Non-functioning pituitary neuroen-
docrine tumours often present late with invasion and compression of critical structures
in the immediate vicinity of the sellar region [2–4]. Surgical excision via transsphenoidal
route is the gold standard approach to alleviate mass effect and preserve the optic pathway.
Advancements in surgical techniques over recent years may allow for a more complete
tumour resection, which is crucial to reducing the risk of tumour recurrence [4–6]. Adjuvant
radiotherapy is another treatment modality that can be utilised when surgery is not feasible
or to control progressive residual disease [7,8].

The consensus for patients with NF PitNET is to undergo long-term postoperative
surveillance with pituitary imaging for early detection of tumour recurrence and regrowth,
which remain challenging to predict and can be associated with many tumour-related co-
morbidities. However, the timing and frequency of imaging vary greatly in clinical practice.
Currently, ascertaining the likelihood of recurrence/regrowth of NF PitNET poses a consid-
erable challenge. The utilisation of markers such as Ki-67, P53, or transcription factors is
contingent upon the examination of tumour pathology following resection. Conversely, the
reported factors available for preoperative prediction are limited [9–13].

Machine learning algorithms have been shown to have the ability to identify tumour
risk factors and surgical outcomes [14–17]. Prediction models have the potential to be
built for the purpose of identifying treatment response and predicting the rate of tumour
recurrence in patients with PitNET. This might potentially lead to improved management
strategies for these patients.

In this study, the authors sought to build a model using supervised machine learning
to predict surgical outcome of NF PitNET following surgery with and without radiotherapy.

2. Methods

The study received ethics approval from the Westminster Research Ethics Committee
on 7 April 2020. The publication was prepared using the Transparent Reporting of a Multi-
variable Prediction Model for Individual Prognosis Or Diagnosis (TRIPOD) Statement [18].
The present investigation constituted a retrospective cohort study conducted at a single
medical centre. It encompassed all individuals who underwent surgical excision for NF
PitNET between the time frame of 1987 and 2018. Furthermore, the study required a
minimum follow-up period of six months for inclusion. The research was carried out at
the National Hospital for Neurology and Neurosurgery, which is affiliated with University
College London Hospitals in London. Surgery was primarily conducted by three highly
skilled neurosurgeons. A retrospective analysis of medical case records was conducted. The
diagnosis of NF PitNET was established by considering the lack of clinical and biochemical
indications of active tumours. Information regarding the demographic characteristics of
patients, the various treatment methods employed, as well as the occurrence and regrowth
of tumours, was gathered and documented. The complete compilation of fields and their
corresponding descriptions can be located in Appendix A.

The decision of surgical excision for each patient was reached subsequent to careful
discussion in the pituitary multidisciplinary meeting at our institution. Patients who had
NF Pit NET causing compression of the optic pathway or were adenomas that were growing
and posing a threat to the optic chiasm underwent primary surgery. Immunohistological
examination was performed on all tumour tissues to ascertain the specific type of pituitary
adenoma. The MIB-1 monoclonal antibody was employed for the purpose of identifying
the presence of the Ki-67 antigen in tissues that had been fixed in formalin and embedded
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in paraffin. A high level of Ki-67 expression was defined as above 3% according to previous
studies [19,20]. The degree of surgical resection was assessed in all patients by post-
operative imaging techniques, either Magnetic Resonance Imaging (MRI) or, in cases
where MRI was not feasible, Computed Tomography (CT). These imaging procedures were
conducted between 3–6 months after the surgery. The neuroradiologists independently
described radiological imaging as either full resection, incomplete resection, or residual
tissue of uncertain significance (Figure 1) [9]. Tumour recurrence was defined as the
reappearance of a tumour on subsequent radiological imaging after complete surgical
removal. On the other hand, regrowth was characterised by the emergence of residual
tumour tissue following an incomplete surgical resection, as assessed by an independent
neuroradiologist. The decision to perform a surgical procedure and administer radiotherapy
was determined by a comprehensive evaluation of the patient’s visual fields, a review of
relevant imaging results, deliberation in a multidisciplinary meeting, and consideration of
patient’s personal preferences.
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Figure 1. T1-weighted coronal Magnetic Resonance Imaging (MRI) scans demonstrating the degree of
surgical excision in patients with non-functioning pituitary neuroendocrine tumours. The appearance
of imaging is classified into three categories: complete resection, residual tumour, and sellar tissue
of uncertain significance. These classifications are based on the visual appearance of the imaging
results after the surgical procedure. In Case 1, the imaging protocol consisted of three distinct time
points: (a) a preoperative MRI scan, (b) the first postoperative MRI scan indicating full excision,
and (c) a follow-up MRI scan performed 5 years after the surgical intervention. In Case 2, the
patient underwent a preoperative magnetic resonance imaging (MRI) scan (a). Subsequently, a first
post-operative MRI was conducted (b) which revealed the presence of residual sellar tissue with
undetermined relevance, as stated. Finally, a follow-up period of 5 years was observed after the
surgery (c). In Case 3, (a) MRI scan before surgery, (b) the first postoperative MRI revealing evident
residual disease, and (c) the 5-year follow-up MRI conducted after surgery. The image has been
utilised in accordance with the permissions granted by Frontiers in Surgery [9].
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The data were first gathered using Microsoft Excel v2307 and then imported into a set
of specialised Python v3.9.7 (64-bit|Windows 10) scripts for the purpose of analysis and
visualisation. Reference to the specific software environment can be found in Appendix A,
Table A1. Automated procedures were implemented to facilitate the conversion of text,
numbers, and dates. Specifically, for date fields, the system verified the necessary fields
against a range of potential acceptable forms and converted them to an ISO standard data
type if feasible.

In anticipation of the use of machine learning algorithms, more advanced timetables
were developed for individual patients in relation to radiological results. The inclusion of
these timeframes was crucial to providing a comprehensive sequence of radiological obser-
vations that offer sufficient detail to gain clinical understanding and ensure consistency
for analysis throughout the whole patient cohort. Radiological outcomes were determined
based on the closest radiological assessment to the start-date of each period. For ease of
reporting, initial post-operative scans showing complete resection were categorised as
“No Residual Tumour”, and all other residual tumour classifications were categorised as
“Residual Tumour Stable” until such time as an increase or reduction in size was exhibited.
Incorporation of resection and residual tumour data into both the radiology timeline and
the features being used to make predictions led to overstated accuracy when predicting
early tumour progression in patients yet to receive another post-operative scan. This was
considered appropriate, given the importance of resection completeness as a predictive
feature of tumour recurrence and regrowth in previous studies, and given that any increase
in predictive performance would be experienced equivalently across ML algorithms and
with the logistic regression model being used as a comparative. The same parameters
(radiological, endocrinological outcomes, and demographics) used to develop the ML
models were used for logistic regression. This allowed a fair comparison between logistic
regression and the proposed ML models.

The investigation was conducted by filtering the radiological result timings to allow
the focused application of machine learning methods. Machine learning techniques were
used for each successive period of radiological scans, with a maximum duration of 15 years.
To ensure optimal clinical applicability, the radiological outcomes were refined by excluding
secondary outcomes such as optic nerve contact/compression and cavernous invasion.
The endocrine profiles were aligned with the temporal periods of radiological outcomes,
including a pre-operative profile. Subsequently, additional features included in the source
data were given the opportunity to be incorporated into the machine learning dataset, with
the consideration of suitable normalisation techniques for factors such as age and tumour
volume. Features that include just two potential values, such as sex, were simplified into a
single Boolean characteristic. Features that provide various outputs, such as the Second
Radiology Scan, were transformed into two distinct features to account for each potential
outcome, as shown by the Second Scan. Complete Resection: True, Second Scan Complete
Resection: False. This approach mitigated the possible influence of unrecorded outcomes
on the machine learning models, enabling the algorithms to consider both the presence and
absence of a certain outcome when identifying the optimal predictive model.

Machine learning classification techniques were used in order to forecast the subse-
quent behaviour of tumours after the first surgical procedure over a period of up to 15 years.
The algorithms that were evaluated in this study were basic logistic regression, k-nearest
neighbour (KNN), support vector machine (SVM), and decision tree. The selection of these
methods was based on their superior performance in classifying models when applied to
datasets of comparable size [21]. Given the limited size of the sample, the training data
was generated by randomly selecting 80% of the patients. Subsequently, the test dataset,
comprising the remaining 20%, was used for model evaluation. The performance of the
models was evaluated based on metrics such as accuracy, F1 score, precision, recall, and the
Area Under the Receiver Operating Characteristic curve (AUC-ROC). A confusion matrix
was produced for each scenario. The One-vs-Rest (OvR) approach was used for model
development and metric computation in the context of a multiclass challenge.



Cancers 2024, 16, 1199 5 of 12

In order to address the possibility of model instability, the algorithm under test was ex-
ecuted 20 times, and the resultant output was converted to a mean and standard deviation
for each metric. The algorithms’ performance was evaluated by comparing their predic-
tion power for radiological outcomes at certain time points after the surgical procedure,
including 6 months, 1 year, 5 years, and 10 years. The decision tree technique was used
to gather data pertaining to feature significance, thereby enabling the identification of the
most significant characteristics for each outcome period.

Following model execution across all tumour progression outcomes, the SVM and
decision tree models were rerun with the outcome under prediction limited to recurrence
or regrowth at and beyond 2 years post-operatively (earlier post-operative periods showed
too few patients in these classes to be effectively modelled).

3. Results
3.1. Population Statistics

Simple population statistics for the patient cohort are shown in Table 1. Knosp clas-
sification and size of non-functioning pituitary adenomas on imaging before surgery are
demonstrated in Table 2.

Table 1. Patient cohort summary.

Measure Value

Total number of patients 383
Average age 56.8

Standard age (in years) 13.5
Sex ratio, expressed as the ratio of males to females. 67:33

Percentage of patients underwent one or more surgeries 100
Percentage of patients who had two or more surgeries 22

Percentage of patients who had three surgeries 4
Percentage of patients had radiotherapy 17

Mean follow-up (range in years) 8 (0.5–23)
Total number of patients who had follow up between 0–5 years 86
Total number of patients who had follow up between 5–10 years 195
Total number of patients who had follow up between 10–15 years 92

Table 2. Knosp classification (expressed in percentage), and dimensions and volume of non-
functioning pituitary adenomas on preoperative imaging with the risk of recurrence and regrowth
following primary surgery. Cm: Centimetre; IQR: Interquartile Range. permission granted by
Frontiers in Surgery [9].

Knosp Classification on Preoperative Imaging of Non-Functioning Pituitary Macroadenomas

Grade I 38%
Grade II 33%
Grade III A 17%
Grade III B 2%
Grade IV 11%

Dimensions and Volume on Preoperative Imaging

Tumour
recurrence/regrowth

No tumour
recurrence/regrowth

p
value

Craniocaudal diameter (IQR) 3.2 cm (2.4–3.9) 2.5 cm (1.9–3.2) 0.001
Transverse diameter (IQR) 2.7 cm (2.1–3.0) 2.2 cm (1.8–2.7) 0.001
Anteroposterior diameter (IQR) 2.3 cm (1.9–2.6) 1.9 cm (1.6–2.3) 0.001
Volume (IQR) 10.5 cm3 (5–16) 5.8 cm3 (3–10) 0.001

Complete surgical resection was achieved in 229 patients (60%).
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3.2. Cumulative Probability of Recurrence and Regrowth

Figure 2 features a Kaplan–Meier curve, showing the cumulative risk over time of post-
operative tumour recurrence and regrowth for the populations exhibiting these outcomes.
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3.3. Derived Radiological Outcome Timelines

Figure 3 shows the radiological outcome rates as a function of time for the derived
timelines, with specific rates shown at time of surgery and 6 months, 1 years, 5 years,
and 10 years post-operatively, selected for clinical significance, included as Table A2 in
Appendix A.
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Figure 3. Radiological outcome populations as a function of time following the first surgery in
patients with non-functioning pituitary adenomas.

3.4. Machine Learning for Determining Post-Operative Radiological Outcome
3.4.1. Model Performance Analysis

Model accuracy and AUC-ROC comparison between the selected algorithms is shown
in Table 3 as a mean and standard deviation across all prediction periods and classes.

3.4.2. Feature Importance in Determining Radiology Outcomes

Table 4 shows the derived feature importance as mean ± standard deviation for each
decision tree model, excluding features with a mean importance of less than 0.2, or where
the standard deviation of the importance was greater than or equal to the mean. Boolean
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features where both positive and negative results contribute strongly are shown regardless
of standard deviation, as this value will appear inflated due to the sensitivity of the model
to Boolean decisions.

Table 3. Comparison of tumour progression model performance, taken as a mean and standard
deviation of accuracy and AUC-ROC for all future periods being modelled.

Accuracy AUC-ROC

Mean Std Mean Std

Logistic
Regression 0.67 0.06 0.64 0.08

KNN 0.74 0.05 0.62 0.03
SVM 0.82 0.04 0.67 0.02

Decision Tree 0.78 0.05 0.66 0.05

Table 4. Mean ± Standard Deviation feature importance in predicting radiological outcomes follow-
ing first surgery.

Feature
Feature Importance (Mean ± Std)

at Post-Operative Prediction Period

6 Months 1-Year 5 Years 10 Years

Second Scan Complete
Resection: True 0.33 ± 0.34 0.31 ± 0.32 0.32 ± 0.27 0.33 ± 0.28

Second Scan Complete
Resection: False 0.33 ± 0.34 0.31 ± 0.32 0.21 ± 0.27 0.22 ± 0.28

Age 0.10 ± 0.03 0.11 ± 0.03 0.11 ± 0.03 0.11 ± 0.04
Tumour Volume (cc) 0.08 ± 0.04 0.09 ± 0.04 0.09 ± 0.03 0.09 ± 0.03

Radiotherapy Administered:
True 0.03 ± 0.02 0.03 ± 0.02

3.4.3. Predicting Tumour Recurrence and Regrowth

A breakdown of the AUC-ROC scores for each radiology outcomes is shown in Table 5.
No patients exhibited a reduction in size within a year of initial surgery.

Table 5. Mean ± Standard Deviation Area Under Curve—Receiver Operating Curve (AUC-ROC)
scores for each radiology outcome, as predicted by decision tree model using pre-operative en-
docrine profiles.

Radiology
Outcome

AUC-ROC (Mean ± Std)
at Post-Operative Prediction Period

6 Months 1-Year 5 Years 10 Years

No Residual
Tumour 0.99 ± 0.02 0.98 ± 0.02 0.91 ± 0.03 0.88 ± 0.05

Residual
Tumour Stable 1 ± 0.01 0.92 ± 0.06 0.78 ± 0.06 0.78 ± 0.08

Increase in Size 0.5 ± 0 0.52 ± 0.07 0.68 ± 0.1 0.6 ± 0.13
Recurrence 0.5 ± 0 0.5 ± 0 0.51 ± 0.06 0.5 ± 0.01

Reduction in
Size 0.5 ± 0 0.5 ± 0.01

The SVM and decision tree models were subsequently executed limiting each to
predicting a single Boolean outcome, either for tumour recurrence or regrowth. Due to the
limited number of early post-operative results in either class, both models began predictions
at 2 years post-operative. The AUC-ROC scores for each model are shown in Table 6.
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Table 6. Mean ± Standard Deviation Area Under Curve—Receiver Operating Curve (AUC-ROC)
scores for SVM and decision tree models predicting tumour recurrence and regrowth in isolation at 2,
5, and 10 years post-operatively.

Radiology
Outcome ML Model

AUC-ROC (Mean ± Std)
at Post-Operative Prediction Period

2 Years 5 Years 10 Years

Increase in Size
SVM 0.5 ± 0 0.86 ± 0.09 0.88 ± 0.04

Decision Tree 0.63 ± 0.13 0.79 ± 0.07 0.85 ± 0.07

Recurrence
SVM 0.5 ± 0 0.5 ± 0 0.5 ± 0

Decision Tree 0.5 ± 0.01 0.49 ± 0.01 0.49 ± 0.03

4. Discussion

Machine learning models possess the ability to acquire the most optimal characteristics
for predicting outcomes in clinical practice. Instead of relying on a human operator to
manually identify these data, which is time-consuming and requires a lot of effort, machine
learning models may automatically discover the most reliable predictive variables and
potentially apply this knowledge to improve patients’ outcomes. Our work serves as a pilot
study to elucidate the applicability of ML models, based on a number of peri-operative
parameters, typically recorded in PitNET, for predicting post-operative tumour progression.

Limited models exist for predicting post-operative outcomes for patients receiving
surgery for NF PitNET. The existing literature provides conflicting evidence of factors
affecting tumour progression, although complete resection is indicated in many studies as
reducing the risk of recurrence and regrowth. ML models have shown strong predictive
capabilities for tumour progression, but the most performant of these use neuroimaging
data as the basis for prediction. This study applied ML algorithms in predicting post-
operative tumour progression for a large cohort of patients with NF PitNET, with data
covering presentation, details of interventions, tumour characteristics, Ki-67, and follow-up
results of radiology scans. SVM and decision tree models were successful in outperforming
conventional statistical models in predicting radiological outcomes for patients with NF
PitNET. SVM was shown as the strongest ML model for predicting tumour progression
(mean accuracy 0.82; mean AUC-ROC 0.67) when compared with logistic regression (mean
accuracy 0.67; mean AUC-ROC 0.64). This model showed a strong association between
tumour progression and resection completeness, with weaker associations with age, tumour
size, and the use of postoperative radiotherapy. Our results indicate that the relationships
between these parameters and post-operative outcomes are better described using non-
linear modelling (i.e., SVM) than a typical statistical approach (logistic regression).

Surgical resection via transsphenoidal route remains the gold standard for treating NF
PitNET with pressure effect on the nearby crucial structures. Tumour recurrence remains a
risk, even in cases of complete resection, with no consistent link shown between risk factors
and tumour recurrence/regrowth. Post-operative tumour growth for patients with residual
tumour is generally slow, but follow-up surgeries and/or radiotherapy are indicated in
cases where regrowth is aggressive, or in the presence of mass-effects.

Several studies have shown an inverse correlation between radiologically assessed
complete resection of NF PitNET and tumour recurrence and regrowth [22–24], however,
this was not supported by a meta-analysis conducted by Roelfsema et al. in cases of
recurrence following remission [25]. PitNET invasion of the parasellar spaces is considered
one of the limiting factors to achieving complete resection posing the subsequent risk
of tumour progression following operation. Magnetic resonance imaging (MRI) is the
main diagnostic technique used to assess tumour extension. The utilisation of high-field
strength 3 Tesla scanners has become prevalent in clinical settings, resulting in substantial
enhancements in image quality and spatial resolution and being superior to conventional
1.5T MRI in accurately delineating the extent of surgical resection and the presence of
residual disease [25,26]. Prospective research is required to explore the use of such scanners
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with ML to assess the prediction of surgical resection degree in patients with PitNET. Within
this cohort of 383 patients, 229 (60%) exhibited total surgical resection as an outcome of
their first surgery, with recurrence following complete surgical removal identified in 26
(7%) within 5 years of initial surgery, and 28 (7%) within 10 years of initial surgery. The
number of patients exhibiting tumour regrowth after incomplete resection rose in the years
following surgery, reaching a maximum of 58 patients (15%) at 5 years post-operatively.

Our study has shown superior accuracy and AUC-ROC performance of SVM (accuracy:
0.82; AUC-ROC: 0.67) and decision tree (accuracy: 0.78; AUC-ROC: 0.66) models over
conventional logistic regression (accuracy: 0.67; AUC-ROC: 0.64) when predicting future
radiology outcomes. In the case of the decision tree model, the highest influence in
predicting post-operative tumour progression came from the extent of surgical resection,
supporting studies showing a similar correlation. Crucially, however, analysis of AUC-ROC
scores for individual outcomes shows that while these models are strong predictors of
continued remission, stable tumours, and tumour regrowth (mean ± std AUC-ROC of
0.91 ± 0.03, 0.78 ± 0.06 and 0.68 ± 0.1, respectively, at 5 years post-operative, the latter
rising to 0.79 ± 0.07 when modelled in isolation), they perform no better than chance in
their predictions of recurrence or tumour reduction. This may be in part due to the small
number of patients exhibiting these radiology results at a point in time, with maximum
population percentages of 1% and 2% across the “Recurrence” and “Reduction in Size”
groups, respectively, in any one prediction period. However, when limiting the models to
predict recurrence in isolation from other outcomes, both the SVM and decision tree models
showed consistent AUC-ROC scores in the range 0.49–0.5 across all prediction periods,
supporting the existing literature in showing no strong indicator within this dataset for
predicting post-operative recurrence of NF PitNET following complete resection. Therefore,
long term imaging surveillance is warranted even following complete resection, albeit
at a reduced frequency compared to patients with residual disease. The authors of this
study have proposed a long-term follow-up strategy for patients with NF PitNET following
primary surgery, shown in Figure 4 [9].
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5. Conclusions

ML models have been shown to deliver strong predictive performance when compared
with conventional statistical methods for predicting post-operative tumour progression
following surgical intervention. Models were executed over a feature-rich, single-centre
dataset of 383 patients, which included details of population demographics, endocrine
profiles, treatment modalities and results, and assessments of pre and post-operative radi-
ology scans. SVM and decision tree models showed strong performance in the prediction
of remission, stability, and regrowth, with predictions strongly influenced by the extent
of surgical resection, and with lesser influence from age, tumour volume, and the use of
post-operative radiotherapy. SVM showed the strongest overall performance (accuracy:
0.82; AUC-ROC: 0.67) when compared with conventional logistic regression (accuracy:
0.67; AUC-ROC: 0.64). No models successfully predicted recurrence or tumour reduction,
suggesting a lack of association between these outcomes and the patient and treatment
features included in this study. No association was shown between pre- and post-operative
endocrine function and post-operative tumour progression. ML models can be employed
to predict tumour progression and endocrine outcomes in NF PitNET, as demonstrated in
this study. Further research is required to further develop and optimise high-performing
ML models to aid in identifying post-operative risk factors for patients treated for NF
PitNET. Patients exhibiting residual tumour are at a higher risk of post-operative regrowth,
and these patients require long-term monitoring using neuroimaging to ensure timely
interventions and optimise patient outcomes.
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Appendix A

Table A1. Software packages used for algorithm development.

Software/Library Version

Spyder IDE 5.1.5

Python 3.9.7 (64-bit)

https://rdr.ucl.ac.uk/


Cancers 2024, 16, 1199 11 of 12

Table A1. Cont.

Software/Library Version

Qt 5.9.7

PyQt 5.9.2

MS Windows 10

Pandas 1.3.4

Sklearn 1.1.2

Matplotlib 3.4.3

Seaborn 0.11.2

Table A2. Population percentages for radiological scan outcomes over clinically relevant periods,
extracted from derived patient timelines.

Time Relative to First Surgery
0–6 Months 6–12 Months 1–1.5 Years 5 Years 10 Years

No Residual
Tumour 59.9% 59.7% 58.4% 53.1% 53.3%

Residual
Tumour
Stable

40.1% 39.8% 36.4% 29.3% 32.9%

Increase in
Size 0.0% 0.3% 3.7% 15.2% 12.5%

Reduction in
Size 0.0% 0.0% 0.0% 1.6% 1.3%

Cumulative
Recurrence 0.0% 0.3% 1.6% 6.8% 7.3%
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