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Introduction: Parkinson’s disease (PD) is the most common motor
neurodegenerative disease worldwide. Given the complexity of PD etiology
and the different metabolic derangements correlated to the disease,
metabolomics profiling of patients is a helpful tool to identify patho-
mechanistic pathways for the disease development. Dopamine metabolism
has been the target of several previous studies, of which some have reported
lower phenylalanine and tyrosine levels in PD patients compared to controls.

Methods: In this study, we have collected plasma from 27 PD patients,
18 reference controls, and 8 high-risk controls to perform a metabolomic
study using liquid chromatography-electrospray ionization–tandem mass
spectrometry (LC-ESI-MS/MS).

Results: Our findings revealed higher intensities of trans-cinnamate, a
phenylalanine metabolite, in patients compared to reference controls. Thus,
we hypothesize that phenylalanine metabolism has been shifted to produce
trans-cinnamate via L-phenylalanine ammonia lyase (PAL), instead of producing
tyrosine, a dopamine precursor, via phenylalanine hydroxylase (PAH).

Discussion: Given that these metabolites are precursors to several other
metabolic pathways, the intensities of many metabolites such as dopamine,
norepinephrine, and 3-hydroxyanthranilic acid, which connects phenylalanine
metabolism to that of tryptophan, have been altered. Consequently, and in
respect to Metabolic Control Analysis (MCA) theory, the levels of tryptophan
metabolites have also been altered. Some of these metabolites are tryptamine,

OPEN ACCESS

EDITED BY

Steffen Halbgebauer,
Ulm University Medical Center, Germany

REVIEWED BY

Henning Großkopf,
University Hospital in Halle, Germany
Lorenzo Barba,
University Hospital in Halle, Germany

*CORRESPONDENCE

Mohamed Salama,
Mohamed-Salama@aucegypt.edu,
Mohamed.salama@gbhi.org

†These authors have contributed equally to
this work

RECEIVED 21 November 2023
ACCEPTED 18 January 2024
PUBLISHED 07 March 2024

CITATION

Shebl N, El-Jaafary S, Saeed AA, Elkafrawy P,
El-Sayed A, Shamma S, Elnemr R, Mekky J,
Mohamed LA, Kittaneh O, El-Fawal H, Rizig M
and Salama M (2024), Metabolomic profiling
reveals altered phenylalanine metabolism in
Parkinson’s disease in an Egyptian cohort.
Front. Mol. Biosci. 11:1341950.
doi: 10.3389/fmolb.2024.1341950

COPYRIGHT

© 2024 Shebl, El-Jaafary, Saeed, Elkafrawy, El-
Sayed, Shamma, Elnemr, Mekky, Mohamed,
Kittaneh, El-Fawal, Rizig and Salama. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Molecular Biosciences frontiersin.org01

TYPE Original Research
PUBLISHED 07 March 2024
DOI 10.3389/fmolb.2024.1341950

https://www.frontiersin.org/articles/10.3389/fmolb.2024.1341950/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1341950/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1341950/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1341950/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2024.1341950&domain=pdf&date_stamp=2024-03-07
mailto:Mohamed-Salama@aucegypt.edu
mailto:Mohamed-Salama@aucegypt.edu
mailto:Mohamed.salama@gbhi.org
mailto:Mohamed.salama@gbhi.org
https://doi.org/10.3389/fmolb.2024.1341950
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2024.1341950


melatonin, and nicotinamide. Thus, we assume that these alterations could
contribute to the dopaminergic, adrenergic, and serotonergic
neurodegeneration that happen in the disease.
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Introduction

PD is a complex progressive neurodegenerative disorder and the
most common movement disorder globally. The cardinal signs of PD
involve motor symptoms such as tremors, bradykinesia/akinesia,
postural instability, and rigidity. Additionally, PD is usually
accompanied by non-motor symptoms such as autonomic nervous
system dysfunction (orthostatic hypotension and obstipation),
cognition impairment, mood disorders, and/or sleep problems
(rapid-eye- movement- REM, sleep behavior disorder, insomnia, or
daytime sleepiness) (Peball et al., 2020). Although, pathologically
characterized by the loss of the dopaminergic neurons in the
midbrain, PD pathology affects other sites that includes non-
dopaminergic neurons (Simon et al., 2020). For instance, Braak’s
hypothesis states that PD starts with a pathogenic entrance in the
olfactory bulb (OB), which stimulates the pathology of alpha-synuclein
(α-syn) in OB and dorsal motor nucleus of the vagus (DMV), after
which it invades the brain and cause the neurodegeneration in the
dopaminergic neurons in the SN (Borghammer et al., 2022).

What triggers the death of dopaminergic neurons, has been the
focus of several research activities. That is why the synthesis of
dopamine from its precursor, phenylalanine, have been widely
studied (Marchiosi et al., 2020). Typically, the first 2 steps in the
dopamine synthesis take place in the cytosol of catecholaminergic
neurons. After the conversion of phenylalanine to L-tyrosine via
PAH, tyrosine is, then, hydroxylated by tyrosine hydroxylase (TH)
to produce L-DOPA. BH4 (tetrahydrobiopterin) strongly regulates this
oxidation step as a cofactor, which is produced by guanosine
triphosphate (GTP) by GTP cyclohydrolase (GPTCH). Then,
aromatic amino acid decarboxylase (AAAD) or as commonly
known DOPA decarboxylase, decarboxylases DOPA to yield
dopamine (Meiser et al., 2013).

Phenylalanine is an essential amino acid that cannot be produced in
the body and must be supplemented in diet. It is integrated into
synthesizing many proteins, catecholamines, and melanin. One of its
leading roles is being the precursor of the amino acid Tyrosine and,
subsequently, L-dopa and the neurotransmitters, dopamine and
norepinephrine (Kohlmeier, 2003). Two main pathways have been
identified for phenylalanine’s kinetics in humans. The first one is for the
irreversible degradation of phenylalanine through its hydroxylation by
PAH, which is considered the rate-limiting step in dopamine synthesis,
to yield L-tyrosine. The second pathway is through the transamination
of phenylalanine to produce phenylpyruvate that is followed by several
metabolic phases which produce many metabolites such as
phenylacetate, phenyl lactate, and o-hydroxyphenylacetate (Kaufman,
1999). However, several studies found that phenylalanine can be
metabolized via 6 degradation pathways, including degradation by
L-phenylalanine ammonia lyase (PAL) through the
phenylpropanoids pathway (Oliphant and Allen-Vercoe, 2019;
Genome, 2023a). PAL metabolizes phenylalanine into 2 products:

trans-cinnamate and ammonia (Sarkissian et al., 1999). Trans-
cinnamate is a metabolite that exists in all living organisms, ranging
from bacteria to humans (Genome, 2023a; HMDB, 2023).

In phenylketonuria (PKU), a condition characterized by the
significant reduction in the activity of PAH and the accumulation of
phenylalanine, synthetic PAL pills were used to enhance the
metabolism of phenylalanine into trans-cinnamate (Sarkissian
et al., 1999). A recent animal study on rats suffering from PKU
showed that genetic transfer of PAH and PAL, both phenylalanine
and neurotransmitters were positively altered with significant
improvement in the animal behavior (Manek et al., 2021).

Ammonia, the by-product of phenylalanine metabolism into trans-
cinnamate via PAL, is considered a neurotoxic agent (Bobermin et al.,
2015). Ammonia has been shown to increase the oxidative stress in
neurons, which has been proven to increase neurodegeneration in PD
(Chang and Chen, 2020). Moreover, ammonia showed the ability to
inhibit the consumption of mitochondrial oxygen, which is considered
to be a risk factor for developing many neurodegenerative disorders
(Oliphant and Allen-Vercoe, 2019).

Identifying alterations at the level of metabolomes offers a better
understanding of disease process (Kapoore and Vaidyanathan, 2016).
Metabolomics has been studied several times in PD; for instance, one
study using 49 non-treated PD patients’ plasma yielded a strong
prediction of PD progression (LeWitt et al., 2017). Another non-
targeted metabolomics study on 39 preclinical PD patients study
showed alterations in 33 metabolites’ levels, including significant
reductions in the levels of the free fatty acids (FFAs), suggesting
alterations in FFAs metabolism, oxidative stress, and mitochondrial
dysfunction; these results were further validated by a targeted HPLC-
QqQ-Ms approach (Gonzalez-Riano et al., 2021). A recent study using
non-targeted metabolomics analysis on 30 PD patients revealed

FIGURE 1
Shows that summary of MCA theory highlighting the
interrelationship between effector and downstreamevents of increase
or decrease of metabolites as it shows how the concentration of an
activator, inhibitor, or effector can affect the expression/activity
of the following enzyme in the metabolic pathway, resulting in
decrease/increase of the concentration of the following metabolite in
a cascade manner.
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alterations in the levels of 30 metabolites, including the metabolism of
lipids and lipid-like molecules (Lan et al., 2023).

The value of studying metabolomics is not only to identify
changes in levels of metabolites, but also, in studying pathways that
can be affected by the metabolic changes as per the Metabolic
Control Theory (MCA). MCA explains the meaning of elasticity
coefficients by elaborating how the concentration of one substrate,
product, or effector can affect the expression and the flow of the
entire pathway (Figure 1) (Moreno-Sánchez et al., 2008).

Adopting this pathways approach, the present metabolomic
study focused on the metabolism of phenylalanine through
L-phenylalanine ammonia lyase (PAL) and phenylalanine
hydroxylase (PAH), and their possible relationship with
L-tryptophan and its metabolites in PD patients, compared to
reference, non-PD, controls.

Materials and methods

Ethical aspects

Ethical approval was obtained from the responsible Institutional
Review Board/AUC-IRB (Ethics Approval # 2021-2022-058 and
2021-2022-203). Only subjects who provided written informed
consent were included in the study.

Patients recruitment

Twenty seven patients (55.8 ± 10.7 years old (s.d.); 19 males and
8 females) were recruited from Kasr El-Ainy Hospital and
Alexandria University Hospital, Egypt. Neurologists diagnosed
the patients according to the United Kingdom PD Society Brain
Bank criteria (Clarke et al., 2016). Patients with psychiatric illness,
usage of antipsychotics, endocrinal or metabolic disturbances such
as thyroid disturbances or diabetes, and/or other forms of
parkinsonism like multiple system atrophy (MSA) were excluded
from the study, noting that all the recruited patients were on
L-DOPA therapy.

Reference controls recruitment

Eighteen reference controls (52.3 ± 11.9 years old (s.d.); 12 males
and 6 females) were recruited by a neurologist. Reference controls
were recruited after signing a consent of approval, noting that any
volunteered individual with psychiatric illness, usage of
antipsychotics, endocrinal or metabolic disturbances such as
thyroid disturbances or diabetes, and/or other forms of
parkinsonism like MSA were excluded from the study.

High risk controls

Additional, 8 healthy controls who were assessed, initially, as
clinically non-PD-patients, started to show prodromal
manifestations during follow up visits. For that, we highlighted
this group as a high-risk control group.

Plasma collection and processing

1 mL of blood was collected by phlebotomy in a heparin blood-
collecting tube. The collection was done between 10 and 12 a.m. The
heparin tubes were centrifuged at 2000 g for 10 min; then, the
plasma was aspirated and transferred into 1.5 mL Eppendorf tubes,
and DMSO was added by volume ratio of 50 ul for each 1 mL
plasma. Finally, the plasma was stored in a −80 freezer until the
metabolomics analysis was performed.

Equipment

The analysis of the sample was performed using LC-ESI-MS/MS
with an ExionLC AC system for separation and SCIEX Triple Quad
5,500+ MS/MS system equipped with an electrospray ionization
(ESI) for detection.

Positive mode

Frozen plasma samples were thawed at room temperature,
vortexed and incubated for 10 min on ice. The samples were
then centrifuged at 10,000 × g for 10 min at 4°C. The
supernatant was transferred and filtered through 0.2 μm filter
syringe before injection (Xiao et al., 2012). The separation was
performed with a Ascentis® C18 Column (4.6 × 150 mm, 3 µm). The
mobile phases consisted of two eluents A: 0.1% formic acid; B:
acetonitrile (LC grade). The mobile phase gradient was programmed
as follows: 10% B at 0–1 min, 10%–90% B from 1–21 min, 90% B
from 21–25 min, 10% at 25.1, 10% from 25.1–28 min. The flow rate
was 0.7 mL/min, and the injection volume was 10 µL. For MS/MS
analysis, positive ionization mode was applied with a scan (EMS-
IDA-EPI) from 100 to 1000 DA for MS1 with the following
parameters: curtain gas: 25 psi; Ion-Spray voltage: 4,500; source
temperature: 500°C; ion source gas 1 & 2 were 45 psi and from
50 to 800 DA for MS2 with a de-clustering potential: 80; collision
energy: 35; collision energy spread: 20. Compounds’ identification
was performed using MS-DIAL software version 4.70 and
respect library.

Quality assurance

To ensure the precision of sample pretreatment and the accuracy
of the obtained data, the instrument was calibrated and tuned before
and after running the sequence of samples using MS calibration kits
From AB Sciex®. Regarding the blank sample, Milli-Q water was
initially treated with the same procedures and during data
processing using MS-Dial, the blank data was subtracted from all
the measured samples.

Statistical analysis

We started by curating the dataset for all metabolites. The
generated dataset developed based on using the height of the
metabolites’ signals. The analysis started by grouping the
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53 participants into clusters pretending that their clinical diagnosis
is unknown. This showed their ability in providing diagnosis based
on the height signals and not the clinical diagnosis.

To this end, we used the principal component analysis (PCA)
technique to reduce the dimension of the data, which was done by
reducing the number of variables of the data set, while preserving as
much information as possible. PCA analysis was performed using
the K-means (Everitt and Hothorn, 2011).

To successfully perform PCA analysis, we standardized the data.
The standardization was done using the function log2(1 + data).
This function reduces the scale of the variables while retaining
data � 0 as it is because log2(1 + 0) � 0. For visualization purposes,
PCA was carried out together with the Silhouette Visualizer with the
Silhouette Coefficient to quantify the goodness of clustering scheme
(Hastie et al., 2009).

We used Welch’s t-test to compare the means of heights of
signals obtained from each of the 427 metabolites of the recruited
groups. The cohort consisted of the 3 groups: 27 PD patients (P),
18 reference controls (C), 8 high-risk controls (HC). The three
groups were completely independent, and the data was unpaired.
Additionally, we observed that there were three significantly unequal
variances for each metabolite. These features were exactly the
assumptions of the Welch’s t-test, the standard test that is
usually used to test if two groups have the same mean or not
under these conditions (Derrick and White, 2016). The test was
performed on python (version 3.9) and applied on all possible
combinations from the three groups observed (P, C, and HC),
namely, (P, C), (C, HC) and (P, HC). The theory of Welch’s
t-test also requires that the three data sets be normality
distributed. This is a strong assumption that in practical
application is impossible to hold completely. However, we used
the Kolmogorov-Smirnov (KS) (Massey, 1951), Jarque-Bera (JB)
(Bera and Jarque, 1981), and Anderson-Darling (AD) (Anderson
and Darling, 1954) goodness of fit tests of normality.

KS rejected all sets to come from normal distribution, JB and AD
did not reject the normality of 116 metabolites from group (P),
280 from group (C), and 349 from group (HC), and 377 from group
(P), 222 from group (C), and 149 from group (HC), respectively.
Moreover, JB and AD were complementary to high extent. In fact, at
least one of the tests did not reject 422 (99%)metabolites from group
(P), 394 (92%) from group (C), and 399 (93%) from group (HC) to
be normally distributed. This demonstrates that the data is
reasonably normally distributed even with the small sample sizes
we have for each group.

To run the Welch’s t-test, we first introduced its theory in terms
of our data notation. Here, we give the notations of the pair (P, C),
and notations for the pairs (C, HC) and (P, HC) are the same. Let
�XP,i be the mean of the signals’ height for each metabolite i across
the P samples. Similarly, let �XC,i be the same but for the C samples
instead. For each, let nP and nC be the number of samples from P and
C samples, respectively. Further, let S2P,i and S2C,i be the variances of
the samples from P and C, respectively. Here we index i as i �
0, 1, . . . , 426 corresponding to the 427 metabolites. We used Δ �Xi �
�XP,i − �XC,i as a metric for the difference in the signals’ height for
eachmetabolite i, thus, because of independence, the variance of Δ �Xi

was S2Δ �Xi
� S2P,i

nP
+ S2C,i

nC
that was the denominator of the Welch’s t-test

statistic tWelch,i � Δ �Xi
SΔ �Xi

, which approximately had t-distribution with

]i ≈
S4Δ �Xi
di

degrees of freedom, where di � S4P,i
nP2(nP−1) +

S4C,i
nC2(nC−1) . The

Welch’s t-test was used to find the significantly different metabolite
signals between the two groups when the p-value p≤ 0.05, the
significance level of the test.

Multiple hypothesis correction

After applying Welch’s t-test and going through the hypothesis
testing framework, we ended the statistical part by performing
multiple hypothesis testing corrections. This step is usually done
for ensuring that the results obtaining frommultiple hypothesis tests
that were carried simultaneously were real significant findings and
not obtained by chance. In our study, we tested the significance of
427 metabolites; thus, it was crucial to perform this step. During
running the Welch’s test, we chose the significance level (α) = 0.05,
but, by the correction tests, we adjusted the α to reduce the number
of possible false discoveries. Here, we discuss the three most
common treatments: the Bonferroni (Aickin and Gensler, 1996),
Holm-Bonferroni (Aickin and Gensler, 1996), and
Benjamini–Hochberg Corrections (Benjamini, 2010).

Bonferroni Correction
In a series of N (number of metabolites) tests, if the significance

level of each test is set to α/N, or equivalently if the null hypothesis of
each test is rejected when α/N bounds the corresponding p-value.
This methodology guarantees that the probability of getting at least
one false significant result is less than α. The Bonferroni correction
applies to a series of tests that are not necessarily independent.
However, when the number of tests is large, the rejection criteria are
stringent, and this may lead to accepting many false null hypotheses
(Nakagawa, 2004). The significant metabolites are the ones found
significant after applying the Bonferroni Correction with α � 0.05
andN � 427, that is to reject at significance level α/N ≈ 1.17 × 10−4.

Holm-Bonferroni correction
The Holm-Bonferroni Correction makes adaptive adjustments

to the rejection criterion of each test by first ordering theN p-values
(Corresponding to the N tests) as p1 ≤p2 ≤/≤pN, starting with
j � 1, which corresponds to the minimum p-value, and reject the jth

null hypothesis if pj ≤ α
N−(j−1), proceeding to the next p-value

incrementing j by 1, and, finally, checking the inequality. We
stopped once the inequality did not hold, identifying this event at
step k, and did not reject k, k + 1, /, N. This correction also
guarantees that the probability of getting at least one false significant
result to be less than α (Giacalone et al., 2018).

Benjamini–Hochberg correction
The third correction test we performed was the

Benjamini–Hochberg Correction test. Unlike the first two
corrections, the Benjamini–Hochberg Correction guarantees that
the expected proportion of false discoveries among all discoveries
made is less than the significance level α. This expected proportion is
also called the false discovery rate. The test works as follows: Sort the
p-values p1 ≤p2 ≤/≤pN, then find the maximum j such that
pj ≤ j

N α, and reject all tests 1, 2,/, j. Unlike Bonferroni Correction,
Benjamini–Hochberg correction is a way to limit the large number
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of false positives without severely reducing the power
(Benjamini, 2010).

Results

In this study we had 53 plasma samples: 27 samples were
collected from PD patients, 18 from reference controls, and
8 from high-risk controls. We obtained 2,785 (74.5%) retention
time-exact mass pairs in each sample profile by LC-MS.

To find the suitable number of clusters, we plotted the principal
components (PCs) versus the explained variance ratio. This showed
that two components were sufficient to explain 75% of the variances
(Figure 2A), this was a necessary step to run the K-means clustering.
On the other hand, we generated K-means elbow graph, which
suggested that the best number of clusters should be between 2 and
5, but not more (Figure 2B).

Figure 3 shows the PCA results for several clustering schemes.
The best clustering schemes are of 2 clusters, green (C) and blue (P),
or 3 clusters, green (C), red (P), and blue (HC). Both 2-cluster and 3-
cluster clustering schemes achieved the highest Silhouette
Coefficient. For 4 and 5 clustering system, C is still clearly
presented in a separated cluster, which we have colored in green,
whereas, P and HC (in different colors) together were further
subclustered, showing that they have some subgroups with
common features. Figure 3 also demonstrates the high ability of
the height of the metabolites’ signals in clustering the groups C, HC
and P with high precision.

Interestingly, in the 2-clustering scenario, we found that the
agreement between the clustering labels using the k-means
algorithm and the clinical diagnoses was 94% in C. This means
that the algorithm mistakenly reported only one participant from
the C group as P or HC, suggesting that the difference in the levels of
metabolites is a powerful tool in clustering the data in high
agreement with the clinical diagnosis.

Next, we introduced a comparison of the availability of the
427 metabolites in the three groups, P, H and C using the Welch’s
t-test. The results of Welch’s test showed that out of 425 detected
metabolites, 324 metabolites were found to have significantly

different levels in P compared to C (Supplementary Appendix
S1). We also found that the majority of the metabolites were
significantly higher in C than both P and HC, and few were
significantly higher in P or HC than C (summarized in Table 1).

A complete list of the p-values for 324 metabolites significantly
different levels among the recruited group can be found in
Supplementary Appendix S1 for the comparison of C vs. P.
Similarly, Supplementary Appendixs S2, S3 show the complete
lists of p-values of the 311 and 26 significantly different
metabolites for the comparison of C vs. HC, and P vs. HC,
respectively. Additionally, we categorized the rest of our findings
into 4 groups. Group 1 consists of the metabolites that their levels
showed significant alterations among the 3 recruited groups: C, P,
and HC, which had been further sub-grouped into 3 clusters as clear
from Table 2.

Multiple hypothesis correction

Bonferroni Correction confirmed that the levels of
155 metabolites were altered between C and P groups instead of
324 (Supplementary Appendix S1), 146 instead of 311 metabolites
between C vs. HC groups (Supplementary Appendix S2), and zero
instead of 26 metabolites between P and HC groups (Supplementary
Appendix S3). In contrast, Holm-Bonferroni confirmed that the
levels of 168 metabolites were altered between C and P groups
instead of 324 (Supplementary Appendix S1), 159 instead of
311 metabolites between C vs. HC groups (Supplementary
Appendix S2), and zero instead of 26 metabolites between P and
HC groups (Supplementary Appendix S3). On the other hand,
Benjamini–Hochberg Correction confirmed that the levels of
321 metabolites were altered between C and P groups instead of
324 (Supplementary Appendix S1), 298 instead of 311 metabolites
between C vs. HC groups (Supplementary Appendix S2), and zero
instead of 26 metabolites between P and T groups (Supplementary
Appendix S3). Tables 3, 4 show the significant difference in the
levels, fold changes and direction of the tackled metabolites
previously mentioned in Table 5 between P and C after the
Correction tests.

FIGURE 2
Shows (A) graph showing relationship between the number of PCs and the explained variance ratio, and (B) Elbow graph, which was used to
determine the best clustering scheme for the whole data that consists of the three groups, C, P and H.
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FIGURE 3
Shows PCA data visualization of 2, 3, 4, and 5 clustering schemes (A–D) together with quality clustering indicator, the Silhouette Visualizer with the
Silhouette Coefficient.
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Discussion

In this study, we employed LC-MS for comprehensive
metabolomic profiling of metabolites in the plasma of 27 idiopathic
PD patients, 18 reference controls, and 8 high-risk controls. Statistical
analysis was performed using multivariate and univariate analysis to
assess the significant differences between the recruited groups.
Multivariate analysis (PCA) perfectly stratified the recruited groups
in the 2-cluster system into reference controls and PDpatients/high-risk

controls. Interestingly, the 3-cluster system significantly discriminated
between reference controls and PD patients/high-risk controls, and, to a
lesser extent, between PD patients and high-risk controls. These results
prove that high-risk controls are significantly related to PD patients and
suggest that high-risk controls might represent an early stage across the
disease spectrum. The univariate analysis showed that out of the
screened 427 metabolites, 324 metabolites had significantly different
levels in the PD patients compared to the reference controls. Moreover,
when we carried out the 3 correction tests, the conclusion was to accept

FIGURE 4
The metabolic pathways for the identified metabolites. Compared to reference controls (C), the blue boxes show the metabolites that are
significantly lower in patients (P), while the orange box shows the metabolite that is significantly higher in patients. On the other hand, the yellow shaded
circles represent the metabolites that appear in patients only and not in controls, while the blue shaded metabolites are somemolecules that may have a
role in developing the clinical symptoms of PD according to literature. This pathway was derived from KEGG database.
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the preliminary generated results from Welch’s test as
Benjamini–Hochberg Correction almost confirmed all of them.
Although Benjamini–Hochberg Correction accepted the null
hypothesis regarding the altered metabolites between P and HC, we
also decided to accept the results from Welch’s test due to the small
sample size we used.

We focused on phenylalanine metabolism through PAH (tyrosine,
DA, and norepinephrine synthesis pathway), PAL (phenylpropanoid
pathway), tryptophan, and citrate cycle metabolic pathways. Our
findings support that there is a metabolic shift in the phenylalanine
metabolism in PD from tyrosine production into producing trans-
cinnamate instead. This alterationmay deprive the body of synthesizing
dopamine, norepinephrine and every other phenylalanine and tyrosine
metabolite. Additionally, it could influence every metabolic pathway

involving one of the alteredmetabolites. These findings were confirmed
by the several statistical tests we performed, Welch’s t-test and the
multiple hypothesis correction.

Trans-cinnamate and phenylalanine
metabolism

Significant lower intensities of phenylalanine, tyrosine, L-dopa,
rosmarinic acid (dopamine metabolite), norepinephrine, 3,4-
Dihydroxymandelate (norepinephrine metabolite) and 3-
hydroxyanthranilic acid were detected in P compared to C. On
the other hand, trans-cinnamate levels were higher in P than in C.
Given that phenylalanine is an essential amino acid (Kohlmeier,

FIGURE 5
Shows heatmap representing the metabolites of group 2.

TABLE 1 Shows the numbers of significantly different metabolites, which are explained as follows: 313 were significantly higher in C than P, and 11 were
significantly higher in P thanC. 307weremore significantly available in C thanHC, and 4were significantly higher inHC thanC. 4were significantly higher in
HC than P, and 22 were significantly higher in P than HC. Focusing on themetabolic pathways of dopamine, its precursors, and their metabolites, we found
significant differences in the levels of these metabolites between C and P (Figure 4) and between C and HC (except for L-tryptophan). However, no
significant differences in the levels of the same metabolites between P and HC were identified, except for nicotine (Table 5).

The significantly different metabolites among the 3 groups:P, R and HC

P C HC

313 P 4 P

11 C 4 C

22 HC 307 HC
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2003), and its conversion into tyrosine is an irreversible reaction
(Kaufman, 1999), our findings suggest a shift in the metabolic
reaction of phenylalanine via PAL to produce trans-cinnamate
instead of being metabolized via PAH and producing tyrosine
and, eventually, dopamine and noradrenaline.

This shift in the metabolic pathway could deprive the neurons of
dopamine and its metabolites like 3,4-dihydroxyphenylacetaldehyde
(DOPAL). A very recent study was done to test the effect of DOPAL
on α-syn-induced neurotoxicity, and they found that DOPAL
showed a significant effect on preventing α-syn aggregation and
induced neurotoxicity (Gallardo-Fernández et al., 2023). Moreover,
this shift in the phenylalanine metabolic pathway produces higher
amounts of ammonia which has been proven to be neurotoxic agent
(Oliphant and Allen-Vercoe, 2019; Chang and Chen, 2020). Several

studies have reported lower levels of phenylalanine and its
metabolite, beta-phenylethylamine, in PD patients than in
controls (Braham et al., 1969; Zhou et al., 1997; MIURA, 2000).
One of these studies measured the levels of phenylalanine and
tyrosine after oral phenylalanine and tyrosine tolerance test,
where PD patients exhibited lower levels of phenylalanine while
having normal tyrosine levels. This was not related to malabsorption
of phenylalanine (Braham et al., 1969). Our findings may support
this. Although phenylalanine and tryptophan are essential amino
acids, only phenylalanine showed to have significantly lower levels in
P than in C, while there were no significant differences in the levels
of tryptophan between the recruited groups. Additionally, another
study found that the tyrosine/phenylalanine ratio in PD patients is
lower than that in controls (Hirayama et al., 2016), this suggests that

TABLE 2 Represents the significant differences in the levels of the tackledmetabolites between the different recruited groups: C vs. P, P vs. HC, and C vs. HC.
This group is further divided into 3 clusters. Cluster 1 showsmetabolites that were higher in C than in HC than in P, while cluster 2 exhibits metabolites that
showed no significant differences between C and P but showed significant differences between those 2 latter recruited groups and HC. On the other hand,
cluster 3 shows metabolites that have been significantly higher in C than in P and in HC. Noting that (>) means significantly higher and (≈) means not
significantly different. Group 2 contains metabolites that were significantly unchanged either between C and HC or between HC and P but were
significantly altered between C and P (Figure 5). Group 3 contains metabolites with levels significantly higher in P than in C (Table 6), while group 4 contains
metabolites that were significantly presented in HC and/or P only (Table 7).

Cluster number Intensity level Metabolite C vs. P P vs. HC C vs. HC

p-values (%)

1 C > H > P 4-Methylsulfinylbutyl glucosinolate 0.57 3.7 3.18

4-Nonanolide 0.01 4.16 0.03

gamma-Glu-Cys 0.02 2.69 0.02

Histidine 0.01 4.65 0.04

2 C ≈ P > H 2-Methyllactic Acid 20.4 0.42 0.02

Calciferol 8.4 3.63 1.17

3 C > P > H (+-)-Jasmonic acid 1.4e−4 4.45 1.2e−4

1,16-Hexadecanediol 0.01 3.65 0.01

16-Hydroxyhexadecanoic acid 6.3e−6 2.63 5.49e−6

2′-Deoxyinosine 5′-monophosphate 3.13e−4 2.22 6.7e−5

beta-Nicotinamide mononucleotide 0.04 2.85 8.12e−4

Creatinine 1.0e−5 3.79 5.8e−6

Cytidine 0.04 1.6 0.04

Daphnetin 0.29 0.8 0.14

DL-Cystathionine 0.01 0.25 1.9e−3

Histamine 6.5e−6 2.55 2.8e−6

N-Palmitoyl-D-erythro-Sphingosine 0.15 3.03 4.7e−3

Nicotine 0.09 2.8 0.03

Phytol 0.04 4.53 0.01

Quercetin 0.1 0.27 0.04

Sorbitol 6-phosphate 0.84 0.52 0.75

Leupeptin hemisulfate salt 1.78 3.0 0.15

Sarsasapogenin 2.11 0.62 0.03
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the metabolic pathway of phenylalanine (through PAH) in PD may
shift to another one that does not end by tyrosine. Indeed, recently
PD patients showed lower activity in their PAH enzyme (Steventon
and Mitchell, 2018; Rawlings et al., 2019). All these studies support
our hypothesis that the metabolism of phenylalanine in PD patients
is altered via the following mechanisms: 1) reduction of PAH
activity, which results in metabolizing phenylalanine through the
PAL metabolic pathways, thus, reducing the production of tyrosine,
and, subsequently, dopamine and norepinephrine; 2) enhancing
PAL activity with the resultant increase in the production of trans-
cinnamate and ammonia.

On the other hand, AAAD is involved in the metabolism of several
of the assayed metabolites. For example, it metabolizes phenylalanine
into phenylethylamine, L-Dopa into DA, tryptophan into tryptamine,
and 5-hydroxytryptophan into serotonin (Figure 6) (Zhu et al., 1992;
Gücüyener et al., 2014); thus, any alteration in this enzyme’s levels may
impact the metabolism of these metabolites. As the regulation of any
enzyme is affected by the concentration and the availability of its
substrate (Aragón and Sols, 1991), the expression and/or activity of
AAADmay be altered in PD due to the deficiency of phenylalanine and
L-Dopa, which, may affect the metabolism of tryptophan and the
synthesis of serotonin and, its metabolites such asmelatonin.Moreover,

pyridoxamine and pyridoxal 5′-phosphate (PLP) are 2 interchangeable
forms of vitamin B6 in the human body (Oppici et al., 2015). PLP, the
active form of vitamin B6, is a cofactor for several B6-dependent (PLP-
dependent) enzymes involved in many vital cellular processes. One of
these enzymes is AAAD (Al Mughram et al., 2022).

Since our PD cohort is on treatment (mixture of L-Dopa/
Carbidopa), they were expected to have lower levels of PLP as it
is the binding target for Carbidopa (Bertoldi, 2014). Our results
showed that the levels of pyridoxamine were significantly higher in
PD patients than in reference control. In comparison, the levels of
PLP were significantly lower in PD patients than in reference
controls. These findings may suggest that the conversion, itself,
of the inactive form of vit. B6, pyridoxamine, to the active form, PLP,
is lower in PD patients than in reference controls, which may further
decrease the activity of AAAD and impact its downstreammetabolic
pathway in the patients. Our findings showed that there were no
significant difference in the levels of pyridoxamine between HC and
P or between HC and C, which may suggest that the conversion
reaction from the inactive to the active form is affected by the
transformation from being C to HC and, thus, P. Interestingly, PLP
is a cofactor for 300 enzymes, including mitochondrial enzymes and
many other enzymes involved in the metabolism of several

TABLE 3 Shows whether each of the altered metabolites exhibited significant difference between P and C after running the Correction tests: Bonferroni
Correction, Holm-Bonferroni, and Benjamini–Hochberg Correction.

Metabolite C vs. P
p-value (%)

Bonferroni
correction

Holm-
bonferroni

Benjamini–hochberg
correction

3,4-Dihydroxymandelate 0.66 Not Sig Not Sig Sig

3-Hydroxyanthranilic Acid 7.6e−4 Sig Sig Sig

Glucose 6-Phosphate 0.74 Not Sig Not Sig Sig

L-Dopa (3,4-Dihydroxy-L-Phenylalanine) 8.1e−5 Sig Sig Sig

L-Phenylalanine 1.4e−4 Sig Sig Sig

L-Aspartic Acid 3.5e−5 Sig Sig Sig

L-Glutamine 7.5e−3 Not Sig Not Sig Sig

L-Tryptophan 16.16 Not Sig Not Sig Not Sig

Melatonin 4.4e−5 Sig Sig Sig

NADH 0.1 Not Sig Not Sig Sig

Nicotinamide 0.45 Not Sig Not Sig Sig

Nicotine 0.09 Not Sig Not Sig Sig

Nicotinic Acid 5.2e−4 Sig Sig Sig

Norepinephrine (Noradrenaline) 0.005 Sig Sig Sig

Pyridoxal 5-Phosphate 0.23 Not Sig Not Sig Sig

Pyridoxamine (higher in P than in C) 0.01 Not Sig Sig Sig

Rosmarinic Acid 0.41 Not Sig Not Sig Sig

Trans-Cinnamate (higher in P and H than
in C)

0.01 Sig Sig Sig

Tryptamine (3-(2-Aminoethyl)Indole) 2.79 Not Sig Not Sig Sig

Tyrosine 9.3e−4 Sig Sig Sig
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metabolites of our targeted metabolic pathway (Pyridoxal in Homo
Sapiens in UniProtKB Search (328) UniProt, 2023).

Moreover, the appearance of some phenylpropanoids’
metabolites such as 7-hydroxy-4-methylcoumarin (methylated
metabolite of 7-hydroxycoumarin) and Sinapyl-aldehyde in P
only and not in C may support the switch in metabolic pathways
of phenylalanine in PD patients.

A study done on 92 idiopathic PD patients and 65 normal
controls, detected coumaric acid, the precursor of 7-
hydroxycoumarin, in PD patients, which confirms our findings
(Shao et al., 2021). Recently, it was shown that synthetic 7-
hydroxy-4-methylcoumarin stimulates tyrosinase, an enzyme
that converts tyrosine to L-dopa (Kim et al., 2023). We believe
that this metabolite appeared in patients due to the shifting of the
reaction towards trans-cinnamate instead of tyrosine, with the
resulting positive biochemical feedback mechanisms on
tyrosinase in an attempt to activate the tyrosinase and
produce L-dopa in patients (Cinquin and Demongeot, 2002;
Kleppe et al., 2021).

In addition, we detected significantly lower levels of 3-
hydroxyanthranilic acid, a metabolite of anthranilate, in PD
patients than in reference controls. As annotated by the KEGG
database, anthranilate is a metabolite that links phenylalanine to
tryptophan metabolism. This finding was confirmed by previous
study that found a significant alteration of the samemetabolite in PD
patients compared to controls (Shao et al., 2021).

Tyrosine metabolism

As described in the previous section, the shift in phenylalanine
metabolism, decreasing tyrosine level will lower its metabolites,
namely, L-dopa, DA, norepinephrine, thyroxine, and melanin
(Rzepka et al., 2016; Dratman and Martin, 2020; Genome, 2023c;
Lopez and Mohiuddin, 2023).

We detected lower levels of dopamine and norepinephrine in P
than in C, confirming that the tyrosine levels were deficient due to
the reduction in phenylalanine metabolism into tyrosine.
Furthermore, we found that norepinephrine levels were lower in
P than in C which is aligned to previous research (Eldrup et al.,
2009; Delaville et al., 2011). It is suggested that the reduced levels of
norepinephrine in PD may be responsible for various features of
autonomic impairments. According to Braak’s theory, an initial
loss of the adrenergic neurons occurs before the degeneration of
the dopaminergic ones (Espay et al., 2014). However, our findings
may suggest that the autonomic signs may have appeared in PD’s
prodromal phase as an initial sign of the phenylalanine metabolic
disorder that occurs in PD patients, producing lower levels of
norepinephrine.

Tyrosine is also the precursor of Thyroid hormone which
plays a vital role in regulating cellular metabolism, modulating
neurotransmission and supporting neurodevelopment (Charoenngam
et al., 2022). The DA-thyroxine relationship is very complicated. In
addition to sharing the same precursor, dopamine has a regulatory

TABLE 4 Shows the fold change and its direction for each significantly altered metabolite between C and P.

Metabolite C vs. P p-value (%) Fold change Direction of change

3,4-Dihydroxymandelate 0.66 12.17 Higher in C

3-Hydroxyanthranilic Acid 7.6e−4 6.44 Higher in C

Glucose 6-Phosphate 0.74 13.9 Higher in C

L-Dopa (3,4-Dihydroxy-L-Phenylalanine) 8.1e−5 165.33 Higher in C

L-Phenylalanine 1.4e−4 9.38 Higher in C

L-Aspartic Acid 3.5e−5 6.28 Higher in C

L-Glutamine 7.5e−3 25.8 Higher in C

L-Tryptophan 16.16 Not Sig Not Sig

Melatonin 4.4e−5 8.63 Higher in C

NADH 0.1 7.08 Higher in C

Nicotinamide 0.45 2.04 Higher in C

Nicotine 0.09 3.37 Higher in C

Nicotinic Acid 5.2e−4 7.83 Higher in C

Norepinephrine (Noradrenaline) 0.005 6.93 Higher in C

Pyridoxal 5-Phosphate 0.23 43.08 Higher in C

Pyridoxamine (higher in P than in C) 0.01 1.63 Higher in P

Rosmarinic Acid 0.41 2.26 Higher in C

Trans-Cinnamate (higher in P and H than in C) 0.01 1.68 Higher in P

Tryptamine (3-(2-Aminoethyl)Indole) 2.79 7.61 Higher in C

Tyrosine 9.3e−4 10.93 Higher in C
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role in thyroxine expression. Dopamine upregulates the expression
of TRH (thyrotropin-releasing hormone) and downregulates TSH
(thyroxine-stimulating hormone) (Mohammadi et al., 2021).
Changes in the levels of thyroid hormone is reflected on
modulating the dopaminergic receptors and their sensitivity
(Crocker and Cameron, 1988). A recent meta-analysis study,
revealed that there is a significant correlation between thyroid
dysfunction, hypothyroidism and hyperthyroidism, and the risk of

developing PD (Charoenngam et al., 2022). Based on our findings
supporting the shift in phenylalanine metabolism towards trans-
cinnamate production instead of tyrosine in PD, we assume that
the lower levels of tyrosine in P lead to the production of lower levels
of thyroxine, resulting in developing hypothyroidism. Since we had
excluded any participant with a history of thyroid dysfunction
disorder or on thyroid hormone replacement therapy and given
that thyroxine regulates glucose metabolism (Mendez and Ortiz,
2021), we assessed the levels of glucose-6-phosphate between P
and C. Our results showed that P have significantly lower levels of
this metabolite, confirming our hypothesis that the shift in
phenylalanine metabolism that led to a decrease in the levels of
tyrosine has an impact on thyroxine level and its physiological

TABLE 5 Represents the significant differences (p-value%) in the levels of the tackled metabolites between the different recruited groups: C vs. P, P vs. HC,
and C vs. HC. The yellow shaded cells shows insignificant difference, while the orange cells representsmetabolites that were significantly higher in P than in
C; however, the rest of the metabolites were significantly higher in C than in P.

Metabolite C vs. P p-value (%) P vs. HC p-value (%) C vs. HC p-value (%)

3,4-Dihydroxymandelate 0.66 56.76 0.73

3-Hydroxyanthranilic Acid 7.6e−4 93.21 7.1e−4

Glucose 6-Phosphate 0.74 94.17 0.76

L-Dopa (3,4-Dihydroxy-L-Phenylalanine) 8.1e−5 46.23 7.9e−5

L-Phenylalanine 1.4e−4 16.63 1.0e−4

L-Aspartic Acid 3.5e−5 36.52 1.7e−5

L-Glutamine 7.5e−3 7.0 0.01

L-Tryptophan 16.16 39.3 16.75

Melatonin 4.4e−5 33.12 0.23

NADH 0.1 82.45 0.21

Nicotinamide 0.45 75.2 1.19

Nicotine 0.09 2.8 0.03

Nicotinic Acid 5.2e−4 91.47 4.3e−4

Norepinephrine (Noradrenaline) 0.005 79.59 0.01

Pyridoxal 5-Phosphate 0.23 73.6 0.23

Pyridoxamine (higher in P than in C) 0.01 6.54 12

Rosmarinic Acid 0.41 40.03 6.86

Trans-Cinnamate (higher in P and H than in C) 0.01 57.99 3.56

Tryptamine (3-(2-Aminoethyl)Indole) 2.79 64.21 2.43

Tyrosine 9.3e−4 24.32 4.7e−4

TABLE 6 Represents the metabolites of group 3, which were significantly
higher in P than in C.

Metabolite C vs. P p-value (%)

Guanosine 2.13

INDOLE 2.42

L-beta-Homoproline 0.99

L-beta-homotryptophan-HCl 1.1e−3

Pyridoxamine 0.01

trans-Cinnamate 0.01

trans-Zeatin 2.25

TABLE 7 Represents the metabolites of group 4, which were significantly
available in H and/or in P.

Metabolite P HC

Anserine Only available in Patients

7-Hydroxy-4-Methylcoumarin

Sinapyl aldehyde Available in both patients and high-risk
controls

GAMMA-TERPINENE
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functions as a consequence. This finding may also explain the fatigue
that most PD patients have reported (Lin et al., 2021).

Tyrosine and L-DOPA are considered bioregulators for
melanogenesis and other cellular functions (Slominski et al., 2012)
which are proven to be affected in PD patients who suffer from selective
neurodegeneration of neuromelanin-containing neurons, particularly,
the substantia nigra dopaminergic neurons (Carballo-Carbajal et al.,
2019). Additionally, several studies reported that individuals with lighter
pigmentation or cutaneous malignant melanoma have a significantly
higher incidence of PD (Krainc et al., 2023).

Tryptophan metabolism

Although we did not find significant differences in the levels of
tryptophan between PD patients and reference controls, our results
showed significantly lower levels of tryptamine (3-(2-aminoethyl)
indole), which is one of the primary metabolites of tryptophan and
the precursor of both serotonin and melatonin, in PD patients
(Genome, 2023b). This may confirm that the absorption of
amino acids such as tryptophan is normal, unlike its metabolism.

In the present study, melatonin levels were significantly lower in P
compared to controls, which may be linked to sleep disorders in PD.
Several previous studies support our findings. For instance, one study
done by scientists from Cambridge University on 12 PD patients and
12 controls found that melatonin levels were not only deficient in PD
patients compared to controls but also accompanied by hypothalamic
volume loss (Breen et al., 2016). In, another study that was done on
20 PD patients and 15 controls to measure the melatonin levels at 30-
min intervals for 24 h and correlate these measurements to the sleep
quality (Pittsburgh Sleep Quality Index) and daytime sleepiness
(Epworth Sleepiness Scale), found a significant reduction in the
melatonin levels in PD patients compared to controls (Videnovic
et al., 2014).

Although we did not assess the levels of quinolinate, we assessed
the levels of NADH, another form of NAD + which is a tryptophan

metabolite. We found lower levels of NADH, nicotinamide, nicotinic
acid (quinolinate metabolites, and the precursors and metabolites of
NAD+ and NADP+) in P than in C. This reduction in NAD levels
may have a role in the neurotoxicity in PD. These findings are aligned
with previous research; for example, one study found that NAD levels
were significantly lower in the muscles of 30 PD patients compared to
age-matched controls (Mischley et al., 2023), while a clinical trial
phase I study tested the effect of oral administration of nicotinamide
riboside (NR) in 30 PD patients, and found that NR increases the
levels of NAD, stimulates the transcriptional upregulation of the
processes related to mitochondrial, lysosomal, and proteasomal
activities in skeletal muscles and blood cells, and decrease the
inflammatory cytokines (Brakedal et al., 2022). Another study
found that NR increased NAD, which led to not only ameliorating
the mitochondrial functions in induced pluripotent stem cells isolated
from PD patients but also preventing age-related dopaminergic
neuronal loss and motor deficits in fly models of GBA-PD
(Schöndorf et al., 2018).

The previous findings were also reflected on significantly
lower levels of nicotine and 6-hydroxynicotinic acid, nicotinic
acid metabolites, in P than in C. Since these latter metabolites are
substrates of citrate cycle, we investigated the levels of citrate
cycle’s non-essential amino acids metabolites such as
L-glutamine and L-aspartic acid. We found that these amino
acids were lower in P than in C, aligning with MCA theory and
our hypothesis that all the discussed metabolites are acting in a
connected network, representing PD as a complex metabolic
disorder that could be triggered by the initial shift in the
phenylalanine metabolism into trans-cinnamate instead
of tyrosine.

Categorization of metabolites

We categorized some of the detected metabolites into 4 groups.
The first group had been subcategorized into 3 clusters. The first

FIGURE 6
Shows a zoom-in into the phenylalanine metabolism through PAH and PAL enzymes, exhibiting the main metabolic enzymes involved in this
pathway. It also illustrates how AAAD is involved not only phenylalanine and L-Dopa metabolism, but also in tryptophan metabolism and
serotonin synthesis.
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cluster contains metabolites that were significantly decreasing in the
order C > HC > P. In this cluster, the high-risk group significantly
acts as a transition state between the C and P. The second cluster
consists of metabolites that showed no significant difference
between C and P; however, both groups showed significantly
higher levels of these metabolites than HC. Cluster 2 contains
only 2 metabolites, which are 2-methyl lactic acid and calciferol.
2-Methyl lactic acid is a methylated metabolite of lactic acid. Finally,
the third cluster in group 1 contains metabolites that were
significantly higher in C than in both P and HC, and they were
significantly lower in HC than in P.

Group 2 is composed of metabolites that showed no significant
differences either between C and HC or between HC and P; however,
there is a significant difference between P and C. In this group of
metabolites, the HC seems to look like a transition between C and P,
especially since one of these metabolites is rosmarinic acid, a
dopamine metabolite. The levels of rosmarinic acid showed a
gradual decrease from C, HC, to P. Moreover, guanosine, another
metabolite in group 2, found to be gradually elevated in order C <
HC < P; conversely, its metabolite, guanosine 5′-triphosphate sodium
salt (GTP metabolite) was gradually decreasing in the opposite order,
which means that guanosine was metabolized into GTP in C higher
than in HC (not significantly) than in P (significantly compared to
reference controls).

Group 3 shows metabolites that were significantly higher in P
than in C, including trans-cinnamate, pyridoxamine, and guanosine.
In addition, this group also included indole, which is one of
tryptophan metabolites (Genome, 2023b). Finally, group 4 contains
two metabolites, 7-hydroxy-4-methylcoumarin and anserine, that
appeared only in P. Anserine is a dipeptide containing beta-
alanine and 3-methylhistidine, a more metabolically stable
derivative of carnosine, which is a protein building block that is
found in high concentrations in the brain, muscles, and
gastrointestinal tissues of humans and all vertebrates (Kwiatkowski
et al., 2018; Jukić et al., 2021); this may justify why P showed
significantly lower levels of carnosine, beta-alanine, and histidine
than reference controls did. Several studies found that the
administration of carnosine and anserine provides neuroprotection
against neuronal injury (Kaneko et al., 2017). Additionally, group
4 includes 2 metabolites that appeared in both P and HC only and not
in C. One of them is gamma-terpinene, a lipid secondary metabolite
that is usually produced as a defensive or signaling molecule, and in
some cases, they are produced due to incomplete metabolism (Silva
et al., 2012; Ahmed et al., 2013; Raman et al., 2013). Moreover, there is
a number of studies reported altered lipid metabolism in PD (Alecu
and Bennett, 2019). Some studies found that gamma-terpinene
possesses anti-inflammatory activity and proved that it can
modulate acute inflammatory response in mice (Ramalho et al.,
2015). The second metabolite that was available in both P and HC
but not in C is sinapyl aldehyde. It is another metabolite from the
same phenylalanine metabolism via the phenylpropanoid pathway.

Conclusion

In our study, we have introduced the switch in phenylalanine
metabolism as potential contributor to PD pathogenesis. Based on our
findings, we hypothesize that the switch between PAH to PAL

phenylalanine metabolic pathways, produces higher amounts of
trans-cinnamate instead of the proper amount of tyrosine. As a
result, there is a severe decrease in the production of dopamine and
significant alterations in the metabolism of several interconnected
metabolites such as norepinephrine, thyroxine, and melanin. Being
connected to phenylalanine metabolism, tryptophan and citrate cycle
metabolism have also been affected. These alterations were reflected on
the levels of their metabolites such as serotonin, melatonin,
nicotinamide (NAD precursor), and some non-essential amino acids
such as L-alanine, L-glutamine (L-glutamate and GABA precursor),
and L-aspartate. Based on the literature, most of these altered
metabolites have been associated with several signs and symptoms
of PD. Thus, we assume that this metabolic shift may be the initiator of
the dopaminergic, adrenergic, and serotonergic neurodegeneration in
PD as a complex metabolic disorder.
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