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Background

« Airway epithelium is covered by a thin airway surface liguid (ASL)

« ASL depth integral to function
¢ ~10 um in trachea
¢ ~Ol lJ.m |n a|VeO|I Airflow in/out
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Bloodstream



Motivation

« ASL dysregulation associated with airway diseases

Cystic
fibrosis

Pulmonary
oedema

Effect:
ASL flooding
_J

Conducting Effect: ASL
alrways dehydration

Respiratory
alrways




Cystic fibrosis (CF)

 Cystic fibrosis Is a lethal genetic disorder
« 1 in 25 Europeans are carriers of the disease
« Caused by loss-of function mutations in CFTR anion channel
« Reduced anion conductance — ASL dehydration — Chronic infection
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Fluid/ion transport in airway epithelia

 Fluid and ion transport controlled by:
* lon channels
* Transporters
 Tight junctions

« Computational modelling can aid
analysis of complex processes

Airway Surface Liquid

Cell Type | Cell Type | Cell Type Il

Nl b bl

Interstitial Fluid




Fluid/ion transport in airway epithelia

H,0 Luminal Compartment

 Fluid and ion transport controlled by: L 4H ~ 4 Keler

Cl- K* Na* H,0
* lon channels //—
* Transporters ~_J T T T

J

 Tight junctions Cellular Compartment
« Computational modelling can aid 111 el
analysis of complex processes wee e H o 1 K HHZO _/

H‘zro Na+J |! |_2C|l 1 l |-2|<+ l Na*

Serosal Compartment

BUT... almost all models treat airway epithelium as single, idealised cell!



Modelling to understand CF airway
epithelial characteristics
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Modelling fluid/ion transport in airway
epithelia

H,0 Luminal Compartment

 Epithelium modelled as its equivalent ! N I . olor

electrical circuit F cr K+ Na* H,0

» Three ionic species modelled B I

 Na*, CI, K*
Cellular Compartment

« Channel currents described by GHK flux 2o
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A multicellular
framework for modelling
alrway epithelia



Pulmonary ionocytes and the multicellular

alrway epithelium
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Secretory-absorptive theory of fluid/ion

transport Iin airway epithelia

e
%

Blue = Secretory Red = Absorptive

Image from Shamsuddin and Quinton (2012)
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* Typical airway fluid/ion transport
models are bidirectional

 Classical epithelial transport is
unidirectional

« Small intestine: secretion by crypt
cells and absorption by villous cells
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A framework for multicellular modelling of
alrway epithelia

« Based on the equivalent electrical circuit and fluid/ion fluxes
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A secretory-absorptive model of fluid/ion
transport in airway epithelia
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What can the secretory
tell us?

« Can a multicellular model provide
stable and realistic outputs?

» Steady-state AND dynamic

 Under what conditions does the model
approximate a single-cell model?

« Can model cells feasibly maintain
distinct conditions from their
neighbours?
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Secretory-absorptive model outputs:
Low cell-cell resistance

Composition 1 | Composition 2 | Composition 3 | Composition 4
Celll1 | Cell2 | Celll | Cell2 | Cell1 | Cell2 | Celll | Cell 2

Variable Initial Guess

H; (um) Fixed
[Na "], (mM) 26.0
[Cl ], (mM) 57.2
[K 7], (mM) 116.9

VP (mV) -16.6
yba (mv) -31.0

V, (mV) -14.4
H g (Um) Fixed

[Na '],,, (MM) Fixed
[Cl ],5; (MM) Fixed
K +]ASL (mM) | Fixed/Variable

Table 1: Steady state estimations run for four different literature ASL compositions for a two-cell model with low cell-cell lateral resistance.
Model data displayed is the average value predicted by the model for ~1000 estimations with randomly generated parameter start points.




Secretory-absorptive model outputs:
High cell-cell resistance

: . Composition 1 Composition 2
Variable Initial Guess Cell 1 Cell 2 Cell 1 Cell 2
H; (um) Fixed

[Na "], (mM) 26.0 I . W [N TN
[CL ], (mM) 57.2 L e L |
[K "1, (mM) 116.9 | i
VP (mV) -16.6 : !
V2 (mV) 31.0 ¥ T ]
V., (mV) -14.4
H s (Um) Fixed
[Na "],,, (MM) Fixed
[C] ;]ASL (mM) . Fixed.
[K "],5; (mM) | Fixed/Variable

Table 2: Steady state estimations run for two different literature ASL compositions for a two-cell model with high cell-cell lateral resistance.




Potential of multicellular modelling

Single-cell models capable of biologically feasible outputs

« Not an accurate representation of epithelium and limited applications for investigation

Multicellular modelling provides a way to...

» Analyse cell type-specific contributions to ASL regulation

* Investigate how to influence ASL hydration in CF by targeting specific cells
* e.g., targeting CFTR across all cell types might not be beneficial

Proof-of-concept, secretory-absorptive model

« Realistic outputs despite “extreme” modelling scenario



Summary

ASL dysregulation associated with diseases
Modelling airway epithelia can aid analysis of complex ASL regulation
Airway epithelia are not homogenous

Developed a multicellular modelling framework for airway epithelia

Multicellular models can highlight cell type-specific regulatory roles to understand
bioelectric properties and suggest therapeutic strategies for ASL rehydration
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Supplementary Slides



Single cell ionic model outputs

: .. ASL Composition
Variable Initial Guess :
Joris Jayaraman Song Knowles
H; (um) Fixed
[Na '], (mM) 26.0
[Cl ], (mM) 57.2
[K 7], (mM) 116.9
v, (mV) -16.6
ybe (mv) -31.0
V., (mV) -14.4
H, (um) Fixed
[Na 7], (mM) Fixed
[Cl ], (mM) Fixed
[K '], (mM) | Fixed/Variable

Table 3: Steady state estimations run for four different literature ASL compositions for single cell model. Model data displayed

Is the average value predicted by the model for ~1000 estimations with randomly generated parameter start points.
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Recent successes in CF therapeutics
but...

* In recent years, CFTR correctors
and potentiators have significantly
iImproved quality of life in CF patients

 e.g., elexacaftor/tezacaftor/ivacaftor

* Yet, these do not fully restore CFTR
function!

e Patients with certain CF mutations
are ineligible for treatments
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K* channel stimulation as a supplement to
CF therapeutics

Number of
channels Driving force

|

lon- = %/NPO (Eap — Egn-

Single channel
conductance

Channel open
probability

» Existing CF therapies seek to modify N and P
 Alternatively, amplify the effects of the drug by increasing driving force
« Several K* channel activators have passed phase I/ll clinical trials



A nanosensor approach to multi-property
evaluation of CF therapies

Culture human bronchial epithelia from healthy and CF-
donors at air-liquid-interface conditions

Apply drugs to basolateral medium of CF cells

Nanosensor probes mounted on a scanning ion-
conductance microscope (SICM)

Evaluate key epithelial properties




A nanosensor approach to multi-property

evaluation of CF therapies

SICM Control

lvanova R., Benton D.C.H., Munye M.M.,
Rangseesorranan S., Hart S.L., Moss G.W.J.,
A Nanosensor Toolbox for Rapid, Label-

Free Measurement of Airway Surface Liquid Nanopipette
and Epithelial Cell Function. ACS Applied A
Materials & Interfaces, 2019. 11(9): p. 8731- \ I
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A nanosensor approach to multi-property
evaluation of CF therapies

!
AR
l

Approach Curve

Normalised Current

Distance (r;)

The surface can be detected
when the probe is at ~1ri



Measurement of
key ASL properties
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SICM Control
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