- 1. Department of Chemical Engineering, The Sargent Centre for Process Systems Engineering, Torrington Place, WC1E 7JE
- 2. Department of Neuroscience, Physiology and Pharmacology, Medical Sciences Building, Gower Street, WC1E 6BT

Developing and testing a theoretical framework for airway surface liquid homeostasis

<u>Omar Hamed^{1,2}</u>, Guy W.J. Moss², & Vivek Dua¹

Sargent Centre for Process Systems Engineering

Background

- Airway epithelium is covered by a thin airway surface liquid (ASL)
 - ASL depth integral to function
 - ~10 µm in trachea
 - ~0.1 µm in alveoli

Airflow in/out

Motivation

ASL dysregulation associated with airway diseases

Cystic fibrosis (CF)

Cystic fibrosis is a lethal genetic disorder

- 1 in 25 Europeans are carriers of the disease
- Caused by loss-of function mutations in CFTR anion channel
- Reduced anion conductance \rightarrow ASL dehydration \rightarrow Chronic infection

Contents

- Fluid/ion transport in airway epithelia
- Modelling to understand CF airway epithelial characteristics
- Airway epithelial cell types
- A framework for multicellular modelling of airway epithelia

Fluid/ion transport in airway epithelia

- Fluid and ion transport controlled by:
 - Ion channels
 - Transporters
 - Tight junctions
- Computational modelling can aid analysis of complex processes

Fluid/ion transport in airway epithelia

- Fluid and ion transport controlled by:
 - Ion channels
 - Transporters
 - Tight junctions
- Computational modelling can aid analysis of complex processes

BUT... almost all models treat airway epithelium as single, idealised cell!

Modelling to understand CF airway epithelial characteristics

O'Donoghue D.L., Dua V., Moss G.W.J., Vergani P. *Increased apical Na+ permeability in cystic fibrosis is supported by a quantitative model of epithelial ion transport*. J Physiol. 2013 doi: 10.1113/jphysiol.2013.253955

Modelling fluid/ion transport in airway epithelia

- Epithelium modelled as its equivalent electrical circuit
- Three ionic species modelled
 - Na+, CI-, K+
- Channel currents described by GHK flux
- Existing literature models used for Na-K pump and NKCC
- Water transport occurs via osmosis

A multicellular framework for modelling airway epithelia

Pulmonary ionocytes and the multicellular airway epithelium

Secretory-absorptive theory of fluid/ion transport in airway epithelia

- Typical airway fluid/ion transport models are bidirectional
- Classical epithelial transport is unidirectional
 - Small intestine: secretion by crypt cells and absorption by villous cells

A framework for multicellular modelling of airway epithelia

• Based on the equivalent electrical circuit and fluid/ion fluxes

A secretory-absorptive model of fluid/ion transport in airway epithelia

What can the secretory-absorptive model tell us?

- Can a multicellular model provide stable and realistic outputs?
 - Steady-state AND dynamic
- Under what conditions does the model approximate a single-cell model?
- Can model cells feasibly maintain distinct conditions from their neighbours?

Secretory-absorptive model outputs: Low cell-cell resistance

Variable	Initial Guess	Composition 1		Composition 2		Composition 3		Composition 4	
		Cell 1	Cell 2						
<i>Η_i</i> (μm)	Fixed		19.8	10.0	10.0	10.0	10.0	10.0	10.0
$[Na^+]_i$ (mM)	26.0								
$[Cl^{-}]_{i}$ (mM)	57.2								
$[K^{+}]_{i}$ (mM)	116.9								
V_m^{ap} (mV)	-16.6								
V_m^{ba} (mV)	-31.0								
V_t (mV)	-14.4							16.0	
H _{ASL} (μm)	Fixed							1.0	
$[Na^+]_{ASL}$ (mM)	Fixed							80.0	
$[Cl^{-}]_{ASL}$ (mM)	Fixed	86.0						-	
$[K^+]_{ASL}$ (mM)	<i>Fixed</i> /Variable	18.0		25.1		2010		20.7	

Table 1: Steady state estimations run for four different literature ASL compositions for a two-cell model with **low** cell-cell lateral resistance. Model data displayed is the average value predicted by the model for ~1000 estimations with randomly generated parameter start points.

Secretory-absorptive model outputs: High cell-cell resistance

Variabla	Initial Cuasa	Compo	sition 1	Composition 2		
variable	Initial Guess	Cell 1	Cell 2	Cell 1	Cell 2	
<i>Η_i</i> (μm)	Fixed	10.0	10.8	10.8	10.0	
$[Na^+]_i$ (mM)	26.0					
$[Cl^{-}]_{i}$ (mM)	57.2			10.1	40.0	
$[K^+]_i$ (mM)	116.9	10.0			101.0	
V_m^{ap} (mV)	-16.6	- 10.9		- 19.0		
V_m^{ba} (mV)	-31.0	-00.4				
V_t (mV)	-14.4	-12.8				
H _{ASL} (μm)	Fixed	1.8				
$[Na^+]_{ASL}$ (mM)	Fixed	100.0				
$[Cl^{-}]_{ASL}$ (mM)	Fixed	60.0				
$[K^+]_{ASL}$ (mM)	<i>Fixed</i> /Variable	28.7		20.7		

Table 2: Steady state estimations run for two different literature ASL compositions for a two-cell model with high cell-cell lateral resistance.

Potential of multicellular modelling

Single-cell models capable of biologically feasible outputs

• Not an accurate representation of epithelium and limited applications for investigation

Multicellular modelling provides a way to...

- Analyse cell type-specific contributions to ASL regulation
- Investigate how to influence ASL hydration in CF by targeting specific cells
 - e.g., targeting CFTR across all cell types might not be beneficial

Proof-of-concept, secretory-absorptive model

Realistic outputs despite "extreme" modelling scenario

Summary

ASL dysregulation associated with diseases

Modelling airway epithelia can aid analysis of complex ASL regulation

Airway epithelia are not homogenous

Developed a multicellular modelling framework for airway epithelia

Multicellular models can highlight cell type-specific regulatory roles to understand bioelectric properties and suggest therapeutic strategies for ASL rehydration

Thank you for listening!

Acknowledgments:

- Professor Vivek Dua
- Dr. Guy W.J. Moss
- Dr. David C.H. Benton
- Dr. Paola Vergani
- Dr. Arthur Mitchell
- Maria-Cristina Ardelean
- Saidi Li
- Zeyu Chen

Bibliography

- Zajac, M., et al., Airway Surface Liquid pH Regulation in Airway Epithelium Current Understandings and Gaps in Knowledge. Int J Mol Sci, 2021. 22(7).
- Guo, J., et al., Worldwide rates of diagnosis and effective treatment for cystic fibrosis. Journal of Cystic Fibrosis, 2022. 21(3)
- O'Donoghue, D.L., et al., Increased apical Na+ permeability in cystic fibrosis is supported by a quantitative model of epithelial ion transport. J Physiol, 2013. 591(15): p. 3681-92.
- Shamsuddin, A.K. and P.M. Quinton, Surface fluid absorption and secretion in small airways. J Physiol, 2012. 590(15): p. 3561-74.
- Ivanova, R., et al., A Nanosensor Toolbox for Rapid, Label-Free Measurement of Airway Surface Liquid and Epithelial Cell Function. ACS Applied Materials & Interfaces, 2019. 11(9): p. 8731-8739.
- Lei, L., et al., CFTR-rich ionocytes mediate chloride absorption across airway epithelia. The Journal of Clinical Investigation, 2023. 133(20).

Supplementary Slides

Single cell ionic model outputs

Variabla	Initial Guess	ASL Composition						
variable		Joris	Jayaraman	Song	Knowles			
<i>H_i</i> (μm)	Fixed	10.0	35.0	10.0	10.0			
$[Na^+]_i$ (mM)	26.0							
$[Cl^{-}]_{i}$ (mM)	57.2				67.2			
$[K^{+}]_{i}$ (mM)	116.9				100.0			
V_m^{ap} (mV)	-16.6				-16.3			
V_m^{ba} (mV)	-31.0				-01.0			
V_t (mV)	-14.4				-16.0			
<i>H</i> _l (μm)	Fixed				1.0			
$[Na^+]_l$ (mM)	Fixed				40.0			
$[Cl^{-}]_{l}$ (mM)	Fixed				-			
$[K^+]_l$ (mM)	Fixed/Variable	2010	20.0	2010	21.7			

Table 3: Steady state estimations run for four different literature ASL compositions for single cell model. Model data displayed is the average value predicted by the model for ~1000 estimations with randomly generated parameter start points.

Recent successes in CF therapeutics but...

- In recent years, CFTR correctors and potentiators have significantly improved quality of life in CF patients
 - e.g., elexacaftor/tezacaftor/ivacaftor
- Yet, these do not fully restore CFTR function!
- Patients with certain CF mutations are ineligible for treatments

UCL

K⁺ channel stimulation as a supplement to CF therapeutics

- Existing CF therapies seek to modify N and P_o
- Alternatively, amplify the effects of the drug by increasing driving force
- Several K⁺ channel activators have passed phase I/II clinical trials

UCL

A nanosensor approach to multi-property evaluation of CF therapies

Culture human bronchial epithelia from healthy and CFdonors at air-liquid-interface conditions

Apply drugs to basolateral medium of CF cells

Nanosensor probes mounted on a scanning ionconductance microscope (SICM)

Evaluate key epithelial properties

A nanosensor approach to multi-property evaluation of CF therapies

Ivanova R., Benton D.C.H., Munye M.M., Rangseesorranan S., Hart S.L., Moss G.W.J., *A Nanosensor Toolbox for Rapid, Label-Free Measurement of Airway Surface Liquid and Epithelial Cell Function*. ACS Applied Materials & Interfaces, 2019. 11(9): p. 8731-8739.

A nanosensor approach to multi-property evaluation of CF therapies

The surface can be detected

when the probe is at ~1ri

Measurement of key ASL properties

