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Abstract—Human emotions contain both basic and compound
facial expressions. In many practical scenarios, it is difficult
to access all the compound expression categories at one time.
In this paper, we investigate comprehensive facial expression
recognition (FER) in the class-incremental learning paradigm,
where we define well-studied and easily-accessible basic expres-
sions as initial classes and learn new compound expressions
incrementally. To alleviate the stability-plasticity dilemma in
our incremental task, we propose a novel Relationship-Guided
Knowledge Transfer (RGKT) method for class-incremental FER.
Specifically, we develop a multi-region feature learning (MFL)
module to extract fine-grained features for capturing subtle
differences in expressions. Based on the MFL module, we further
design a basic expression-oriented knowledge transfer (BET)
module and a compound expression-oriented knowledge transfer
(CET) module, by effectively exploiting the relationship across
expressions. The BET module initializes the new compound
expression classifiers based on expression relevance between basic
and compound expressions, improving the plasticity of our model
to learn new classes. The CET module transfers expression-
generic knowledge learned from new compound expressions to
enrich the feature set of old expressions, facilitating the stability
of our model against forgetting old classes. Extensive experiments
on three facial expression databases show that our method
achieves superior performance in comparison with several state-
of-the-art methods.

Index Terms—Facial expression recognition, Class-incremental
learning, Knowledge transfer.

I. INTRODUCTION

FACIAL expression is one of the most natural non-verbal
signals to convey human emotions and intentions. It plays

a vital role in our daily communications and social interac-
tions. Over the past few decades, automatic facial expression
recognition (FER) has attracted considerable attention due
to its practical importance in a wide range of applications,
including human-computer interaction, driver monitoring, etc.
Benefiting from the recent progress of deep neural networks
(DNN), a variety of FER methods [1]–[5] have been developed
and achieved excellent performance under pose variations,
occlusion, and noisy labels. However, these methods generally
work only on basic expressions (including angry, disgusted,
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Fig. 1. An illustration of our RGKT method. The MFL module extracts
fine-grained features for capturing subtle differences in expressions. The
BET and CET modules exploit expression relevance and expression-generic

knowledge to improve the model plasticity and stability, respectively.

fearful, happy, sad, surprised, and neutral) according to Ekman
and Friesen’s study [6].

Recently, Du et al. [7] reveal that basic expressions cannot
comprehensively cover the diversity of human emotions and
they define 22 expression categories, which can be classi-
fied into two groups (i.e., basic expressions and compound
expressions). Compared with basic expressions, compound
expressions are more fine-grained and more difficult to be
annotated [8]. Later, the EmotioNet [9] and RAF-DB datasets
[2] are laboriously collected to involve compound expressions
in the wild under the professional instruction of psychology.
A few DNN-based methods [10], [11] have been proposed to
identify compound expressions.

Regrettably, in many practical scenarios, it is usually chal-
lenging to collect, annotate, and access the data containing var-
ious compound expression categories all at once, due to their
diversity as well as some temporary constraints on privacy
and device. Therefore, it is of great significance for an FER
model to be able to continuously adapt to the ever-changing
environment. Class-incremental learning (CIL), which aims to
learn new classes incrementally without forgetting old classes,
has emerged as a prominent learning paradigm. In this paper,
we study a new and practical setup for class-incremental
FER, where we define well-studied and easily-accessible basic
expressions as initial classes while learning new compound
expressions incrementally. Such a way greatly alleviates the
requirement for data of all compound expression categories
available at one time.

Due to memory limitations or data privacy, conventional
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DNN models tend to adjust the network to new tasks but forget
the previously learned knowledge (known as catastrophic
forgetting [12]). Hence, many efforts on CIL [13]–[19] have
been made to prevent catastrophic forgetting. They either
impose constraints on old classes or introduce extra modules to
accommodate new classes. However, these methods still suffer
from the stability-plasticity dilemma [20] which refers to the
trade-off between adapting to new concepts and preserving
the old knowledge. This dilemma is caused by serious data
imbalance between old and new classes (e.g., only a tiny set
of exemplars from old classes are allowed to be used during
incremental learning when the rehearsal strategy is used).

Different from the popular CIL tasks (such as general
natural image classification), our FER task involves both basic
and compound expressions, which exhibit great relevance
at the semantic level. As shown in Fig. 1, the ‘Happy’,
‘Surprised’, and ‘Happily Surprised’ expressions are closely
related. Moreover, different expressions share the generic
knowledge (intra-class intensity variations). Hence, we can
leverage such intimate relationship across expressions to per-
form expression recognition in the CIL paradigm.

To this end, we propose a Relationship-Guided Knowledge
Transfer (RGKT) method for class-incremental FER. The
architecture of RGKT consists of three main modules, includ-
ing a multi-region feature learning (MFL) module, a basic
expression-oriented knowledge transfer (BET) module, and
a compound expression-oriented knowledge transfer (CET)
module. An illustration of our method is given in Fig. 1.
Specifically, on the one hand, we design an MFL module to
learn fine-grained features for capturing subtle differences in
expressions. This is highly beneficial for knowledge transfer
across expressions. On the other hand, we develop the BET
and CET modules by exploiting expression relevance and
expression-generic knowledge, respectively. The BET module
initializes the new compound expression classifiers consider-
ing the relevance between basic and compound expressions.
The CET module transfers the expression-generic knowledge
of new compound expressions to enlarge the feature set of old
expressions. The design of the BET and CET modules greatly
alleviates data imbalance between old and new classes.

The main contributions of this paper are as follows:
• We propose a novel RGKT method for class-incremental

FER. By effectively transferring relationship-guided
knowledge across expressions based on fine-grained fea-
tures, we can incrementally identify new compound ex-
pressions without forgetting old expressions. To the best
of our knowledge, we are the first to classify both basic
and compound expressions in the CIL paradigm.

• We develop the BET and CET modules for power-
ful knowledge transfer. In particular, the CET module
leverages curriculum learning to learn expression-generic
knowledge and perform enhanced classification at the
early and later stages of incremental learning, respec-
tively. By tightly combining and jointly training these
modules end-to-end, we can largely mitigate the stability-
plasticity dilemma in our incremental task.

• Without bells and whistles, our method strikes a better
balance between old and new classes than several state-

of-the-art methods on facial expression databases.
The remainder of this paper is organized as follows. First,

we review the related work in Section II. Then, we elaborately
describe our proposed RGKT method in Section III. Next, we
perform experiments on three facial expression databases in
Section IV. Finally, we draw the conclusion in Section V.

II. RELATED WORK

In this section, we first introduce facial expression recogni-
tion in Section II-A. Then, we briefly review class-incremental
learning in Section II-B.

A. Facial Expression Recognition (FER)

Recent FER methods [2], [3], [5], [21], [22] either reduce
the influence of various disturbing factors (such as pose and
identity) or noisy labels in facial images, or extract discrim-
inative expression features. These methods mainly target the
classification of basic expressions (i.e., basic FER).

Du et al. [7] verify the diversity of expressions and de-
fine 22 expression categories (including basic expressions
and compound expressions), where compound expressions are
constructed by combinations of basic expressions. Note that
compound expression images are not simply the addition of
basic expression images. Instead, they involve complex facial
motions that differ from those in basic expression images.
These compound expressions are more fine-grained and show
subtle differences, which can make the FER task more chal-
lenging. Subsequently, a large-scale EmotioNet dataset [9] and
a real-world RAF-DB dataset [2] are collected with compound
expression data. Slimani et al. [11] propose a highway net-
work to classify compound expressions. Li et al. [10] learn
appearance and geometric representations for compound FER.
Compared with basic FER, research on compound FER is still
in its infancy.

Due to the ever-changing environment in real-world appli-
cations, annotating and accessing all compound expression
categories at one time can be struggling. Unlike existing
methods, we investigate comprehensive FER for both basic
and compound expressions in the CIL paradigm.

B. Class-Incremental Learning (CIL)

Existing CIL methods can be roughly divided into
regularization-based methods [23]–[25], distillation-based
methods [14], [15], [26], [27], and structure-based methods
[16], [18], [28]. Regularization-based methods first estimate
the importance of network parameters, and then prevent the
parameters important to the old model from large changes.
Distillation-based methods explicitly enforce the outputs of
the new model to be similar to those of the old model. iCaRL
[15] computes the distillation loss by using old exemplars
and PODNet [14] proposes a spatial-based distillation loss.
AFC [26] restricts the update of important features via the
distillation loss. Structure-based methods separately learn the
network parameters at the different stages to avoid undesirable
overlapping between old and new classes. DER [18] develops
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Fig. 2. Overview of our proposed RGKT method. RGKT consists of a backbone and three modules (an MFL module, a BET module, and a CET module).
The MFL module contains RAB and RMB. The CET module contains an expression-generic feature learning branch GB and an enhanced classification branch
CB . The features in the CET module contain two parts: the original features (i.e., the aggregated features from MFL) and the generated features. The original
features for old and new classes are used to learn expression-generic knowledge in GB . Based on this, the new features for old classes are generated in CB .
The difference between the two branches is that only the gradient from GB is used to update the expression-generic feature while CB takes advantage of the
expression-generic feature to enrich the features of old classes.

an effective channel-level mask-based pruning method. FOS-
TER [16] proposes a feature compression method to remove
the model redundancy.

The above CIL methods are usually designed for the general
natural image classification task. Unlike this task, our FER
task focuses on classifying various expressions, among which
the class-generic information is shared. Thus, we propose to
exploit the expression-generic knowledge learned from new
classes (with a relatively large amount of training data) and
transfer it to old classes, reducing catastrophic forgetting.

Recently, Zhu et al. [29] first investigate the FER task in the
CIL setting. They develop a center-expression-distilled loss to
extract features. However, they aim at basic FER and do not
explore the relationship between basic and compound expres-
sions. Thus, such a method is difficult to generalize to identify
hardly collected compound expressions. Different from this
method, we study CIL in a more practical setting, which covers
both basic and compound expressions. In particular, we select
well-studied and easily-accessible basic expressions as initial
classes and incrementally learn new compound expressions.

III. METHODOLOGY

In this section, we introduce our RGKT method for class-
incremental FER. First, we give the problem formulation in
Section III-A. Then, we provide the overview of RGKT in
Section III-B. Next, we introduce the key components (includ-
ing the MFL module, the BET module, and the CET module)
of RGKT in Sections III-C, III-D, and III-E, respectively.
Subsequently, we give the joint loss in Section III-F. Finally,
we summarize the overall training in Section III-G.

A. Problem Formulation

To establish a practical setting for class-incremental FER,
we define the classification of well-studied and easily-
accessible basic expressions as the initial task and identify
new compound expressions incrementally. Assume that we
have a sequence of N+1 training tasks, containing an initial
task and N incremental tasks. Accordingly, the training data
are represented as {D0, D1, · · · ,DN}, where D0 and Dn are
the initial training subset and the n-th incremental subset,
respectively. Note that the expression categories from different
subsets are disjoint.

Following the rehearsal strategy [15], we store a tiny subset
of exemplars from old classes as the memory and fix these
exemplars at each incremental task. For the n-th incremental
task, we use limited exemplars (denoted En) from old classes
and all the samples Dn from new classes to constitute the
training set. At each iteration of the training phase, one mini-
batch Bn = {(xn

i
, yn

i
)}b

i=1 is randomly sampled from the
training set, where xn

i
2 {En [ Dn} and yn

i
2 Yn denote

the i-th input image and its corresponding label, respectively;
Yn is the label set of old and new classes; b is the batch size.
During the testing phase, we evaluate the trained model on the
test data including both old and new classes seen so far.

B. Overview

An overview of our RGKT method is illustrated in Fig. 2.
Given a batch of facial images from an incremental subset
and a few exemplars from old classes, we first feed them
into a backbone to extract preliminary feature maps. To cap-
ture subtle differences in compound expressions and promote
knowledge transfer at the incremental task, we develop an
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MFL module including a region attention block (RAB) and
a relational modeling block (RMB) to further extract fine-
grained features based on preliminary feature maps. RAB
exploits high-level semantic information and obtains multiple
attentive features. RMB updates these features by uncovering
the interconnections between them.

Based on the MFL module, we design two knowledge
transfer modules to alleviate the stability-plasticity dilemma by
effectively modeling the underlying relationship between facial
expressions. On the one hand, we introduce a BET module
to initialize the new class classifiers based on expression
relevance between basic and compound expressions. Hence,
our method can adapt to new classes quickly, enhancing the
model plasticity. On the other hand, we propose a CET module
to transfer the learnable expression-generic knowledge from
new classes with a relatively large amount of samples to old
classes (for which only a tiny set of exemplars are stored in
memory), generating new features of old classes. Such a way
enriches the feature set of old classes, mitigating the forgetting
of old classes and thus improving the model stability.

C. Multi-Region Feature Learning (MFL) Module

Region Attention Block (RAB). To encode fine-grained
appearance variations, we design RAB to extract multiple
attentive features from different facial regions with attention
masks. Technically, given the i-th input facial image xn

i
at

the n-th incremental task, the feature map extracted by the
backbone is denoted as Pi 2 RH

0⇥W
0⇥C

0
, where H

0, W
0,

and C
0 are the height, width, and channel number, respectively.

Based on Pi, we first generate T 2-dimensional masks as

Mt,i = Vt(Pi), t = 1, · · · , T, (1)

where Vt(·) denotes the mask generation operation (consisting
of a convolutional layer followed by a Sigmoid function) and
Mt,i 2 RH

0⇥W
0

represents the generated mask.
Then, we obtain T attentive convolutional feature maps

P
0

t,i
= S(Mt,i)⌦Pi, t = 1, · · · , T, (2)

where S(·) is a reshape function which resizes the input to the
same size as Pi and ⌦ is the element-wise product.

Finally, T attentive feature maps are fed into parallel global
max pooling (GMP) layers, and thus T attentive features
{f1,i, f2,i, · · · , fT,i}, where ft,i 2 RD and D represents the
dimension of each feature, are extracted for xn

i
.

To ensure that each mask can target a specific facial region
(e.g., when T=4, the first 3 masks focus on upper (eyes and
eyebrows), middle (nose), and lower facial regions (mouth),
while the last mask emphasizes the whole facial region), we
vertically divide each of the first T -1 masks into T -1 uniform
patches. In this paper, the division is done manually since
we expect the model can focus on meaningful facial regions.
Hence, we define the mask loss for the i-th image as

Lmask =
T�1X

t=1

(
X

(x,y)2M̄t,i

M̄t,i(x, y)�
X

(x,y)2Rt,t

M̄t,i(x, y)),

(3)

where M̄t,i(x, y) = Sigmoid(Mt,i(x, y)) � It,i) and It,i =
1/(h⇥ w)

P
(x,y)2Mt,i

Mt,i(x, y) indicate the t-th normalized
mask and the average value of Mt,i, respectively; h and w are
the height and width of the mask, respectively; Sigmoid(·) is
the sigmoid operation to normalize Mt,i; Rt,t represents the
t-th patch of the t-th normalized mask. Minimizing the mask
loss (which subtracts the values in Rt,t from the t-th mask)
enforces the responses of the mask out of Rt,t to be reduced
and thus highlights Rt,t (some generated masks are given in
Fig. 2).

Note that Ruan et al. [3] propose to extract a set of latent
features, which are learned by an unsupervised compactness
loss. In RAB, we explicitly associate each attentive feature
with a specific facial region by a mask loss, beneficial for
subsequent relational modeling and compound FER.
Relational Modeling Block (RMB). In RAB, multiple atten-
tive features are individually extracted for each facial image. In
other words, RAB does not consider the connections between
these features. In fact, each expression usually involves various
action units, which correspond to different facial regions.
Hence, we leverage RMB to explore the interconnections
between attentive features.

Specifically, we model the interconnections between fea-
tures as a graph, where each attentive feature is viewed as
a vertex. The similarity between two vertices fm,i and fn,i is
given as Sim(fm,i, fn,i) = fT

m,i
fn,i. Next, a K-nearest neighbor

(KNN) graph can be constructed, where two vertices are
connected by an edge, if the similarity between them is among
the K largest similarities of one vertex (K=2 in this paper).
The KNN graph is further fed into a graph convolutional
network (GCN) layer [30] to update the vertices. Finally, we
combine updated features into an aggregated feature, defined
as fi =

P
T

t=1f
0

t,i
(f

0

t,i
2 RD is the t-th updated feature for the

i -th image), which denotes the original expression feature.

D. Basic Expression-Oriented Knowledge Transfer (BET)

Module

Compound expressions can be viewed as a meaningful com-
bination of basic expressions [7]. For instance, the ‘Happily
Surprised’ expression can be considered as a combination
of ‘Happy’ and ‘Surprised’ expressions. Motivated by this,
instead of randomly initializing the classifier weights for new
classes (i.e., compound expressions), we can initialize them
by leveraging the well-trained weights obtained for basic
expressions according to expression relevance. In this way, the
intrinsic correlation between basic and compound expressions
is effectively incorporated into model training. As a result,
our model can obtain good initialization parameters and thus
quickly adapt to new classes.

Specifically, we calculate the prototypes (each prototype
refers to the mean of one category) for a newly coming
compound expression and its relevant basic expressions. Then,
we obtain the similarities between compound and basic expres-
sions via Sim(·, ·). Thus, we initialize the classifier weights for
a new compound expression as

Wnew

p
=

LX

l=1

(Sim(kp,ql)W
basic

l
), (4)
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where Wnew

p
and Wbasic

l
denote the weights of the cosine

classifiers for the p-th new compound expression and the
l-th basic expression, respectively; Sim(kp,ql) denotes the
similarity between the prototype kp (corresponding to the
p-th compound expression at the incremental task) and the
prototype ql (corresponding to the l-th basic expression at the
initial task); L is the number of relevant basic expressions
(L=2) w.r.t. the p-th new compound expression.

E. Compound Expression-Oriented Knowledge Transfer

(CET) Module

Due to a strict memory budget, only a small set of exemplars
from old classes can be stored in memory, leading to extreme
data imbalance between old and new classes. Although the
knowledge distillation technique [31] is often leveraged to
learn old classes using very limited exemplars, the trained
model inevitably tends to have a strong bias towards exem-
plars without well preserving the whole knowledge of old
classes. In our FER task, considering the high similarities
between expressions, where different expressions share the
generic knowledge (intra-class intensity variations) caused by
similar facial motions. That is, the variations in different facial
regions (i.e., AUs in FACS) are similar for these expressions.
Therefore, we can enrich the feature set of old classes by
transferring the expression-generic knowledge (shared among
all the expressions) learned from new classes (having a rela-
tively large amount of training data) to old classes, avoiding
relying only on the distillation of limited knowledge from the
exemplars of old classes.

Based on the above observations, we develop a CET mod-
ule, which contains an expression-generic feature learning
branch GB and an enhanced classification branch CB , to
effectively learn expression-generic features from new classes
and use these features to augment the feature set of old classes.
The detailed architecture of the CET module is given in Fig. 2.

Both branches consist of an expression-generic feature
learning block (including a set of learnable expression-generic
features), an orthogonal constellation block (generating new
expression features), and a cosine classifier [32], where the
expression-generic feature learning block is shared by two
branches. For GB , we expect that the expression-generic
features can be learned to capture rich intra-class variations
from new classes since new classes are dominant for learning
the generic knowledge. This makes the classifier tend to fit
a large number of new class samples, and thus facilitates the
transfer of compound expression-oriented knowledge to old
expressions. Meanwhile, for CB , we enrich the feature set of
old classes based on the expression-generic features learned
from new classes. This can alleviate the influence of data
imbalance between old and new classes. As a result, old class
classifiers are able to learn more diversity to offset the impact
of small memory. During the testing phase, only CB is used
to classify both old and new classes.
Orthogonal Constellation Block (OCB). Recently, Yang et

al. [33] jointly train local and global features in an orthog-
onal fusion to perform image retrieval. Inspired by this, we
develop OCB to remove the components (that are overlapped

with expression-generic features) from the original expression
feature and extract expression-specific features. Both the two
branches share the same OCB. In this way, we can generate
a set of compact features.

Mathematically, we first calculate a set of projections
{p1,i, · · · ,pM,i} based on the original expression fea-
ture fi and a set of learnable expression-generic features
{f1,generic, · · · , fM,generic}, that is,

pm,i =
fi · fm,generic

||fm,generic||22
fm,generic,m = 1, · · · ,M, (5)

where fi · fm,generic represents the dot product operation and
||fm,generic||22 is the squared L2 norm of fm,generic; M is
the number of learned features. These projections indicate
the components that are overlapped with expression-generic
features in the original expression feature.

Then, we can obtain the orthogonal components of the
original expression feature, which represent the expression-
specific features for one expression category. That is,

om,i = fi � pm,i,m = 1, · · · ,M. (6)

To ensure that the orthogonal components accurately encode
the class-specific information, we leverage a center loss to
penalize the distances between orthogonal components and
their corresponding prototype for the i-th image

Lcenter =
MX

m=1

||om,i � c||22, (7)

where c denotes the prototype of the expression category that
xn

i
belongs to.

Finally, we concatenate the expression-generic features and
the expression-specific features, and obtain a set of generated
expression features for old and new classes.
Classification Losses. Given a mini-batch Bn, we generate a
number of expression features. Suppose that fg comes from
the generated expression features for old and new classes in
GB , while fc comes from the generated expression features
for old classes and the original expression features for both
old and new classes in CB . The classification losses of two
branches can be formulated as

Lg = �
X

j2Yn

[j=yg ]log(✓g(fg)), (8)

Lc = �
X

j2Yn

[j=yc]log(✓c(fc)), (9)

where Lg and Lc are the losses for the expression-generic
feature learning branch and the enhanced classification branch,
respectively; ✓g and ✓c are two cosine classifiers; yg and yc
are the expression labels which fg and fc respectively belong
to. When j = yg or j = yc, the function [j=yg ] or [j=yc] is
equal to 1; otherwise its value is 0.

Note that only the gradient from Lg is used to learn
expression-generic features during back-propagation. Such a
manner ensures that expression-generic features are mainly
learned from new classes, whose training samples are much
more than the exemplars of old classes.
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Curriculum Learning. To fully exploit the unique roles of
the two branches, we expect that at the early learning stage,
the network can focus on capturing the expression-generic
knowledge from new classes to enrich the feature set of old
classes. Meanwhile, at the later learning stage, the network can
gradually excel in the classification of old and new classes.
To achieve this, we leverage curriculum learning to balance
the two branches by an adaptive weight. In this way, the two
branches are trained to benefit each other to boost the final
performance.

The loss of the CET module is defined as

Lcet = ↵Lg + (1� ↵)Lc . (10)

Here the adaptive weight ↵ is calculated by 1� (T/Tmax)
� ,

(we set � = 2 as [34]), where T and Tmax are the current
epoch and the total number of epochs in the training phase,
respectively; that is, the value of ↵ gradually decreases with
the increasing epochs.

F. Joint Loss

Based on the above formulation, the joint loss is given as

Ljoint = �1Lmask + �2Lcenter + �3Lcet, (11)

where �1, �2, and �3 are the balance weights.

G. Overall Training

We summarize the overall training of our method at the n-th
incremental task in Algorithm 1.

IV. EXPERIMENTS

In this section, we first introduce the databases in Section
IV-A. Then, we present the implementation details of our
method in Section IV-B. Next, we conduct ablation studies
in Section IV-C and give some visualization results in Section
IV-D. Finally, we compare our method with state-of-the-art
methods in Section IV-E.

A. Databases

RAF-DB [2] contains diverse real-world images collected
from the Internet, which are manually crowd-sourced anno-
tated and reliable estimation. It includes seven basic expres-
sions with 15,339 images (12,271 training images and 3,068
test images) and eleven compound expressions with 3,954
images (3,162 training images and 792 test images). CFEE
[7] is collected from 230 human subjects and it contains seven
basic expressions (with 1,610 images) and fifteen compound
expressions (with 3,450 images). EmotioNet [9] is a large-
scale in-the-wild database collected from the Internet. We
use the second track of the EmotioNet Challenge. It provides
2,478 images with six basic expressions and ten compound ex-
pressions. Note that some popular facial expression databases
(such as AffectNet [35]) cannot be used for evaluation since
they involve only basic expressions.

Algorithm 1 The overall training of our method at the n-th
incremental task
Input: The n-th incremental subset Dn; the old class exem-
plars En; the total training epochs Tmax;
Output: The updated model M;

1: Initialize the new compound expression classifiers via
Eq. (4) based on the BET module;

2: for each t = 1 to Tmax do
3: for each mini-batch in {Dn [ En} do
4: Obtain the orignal expression features {f i

new
[ f j

old
}

of new and old classes based on the MFL module
and calculate the mask loss via Eq. (3);

5: Obtain the generated expression features {f 0i
new
[

f 0j
old

} of new and old classes based on the CET
module and calculate the center loss via Eq. (7);

6: Calculate the adaptive weight ↵ 1� (T/Tmax)
2;

7: for each feature from {f 0i
new
[ f 0j

old
} do

8: Calculate the classification loss of GB via Eq. (8);
9: end for

10: for each feature from {f i
new
[ f j

old
[ f 0j

old
} do

11: Calculate the classification loss of CB via Eq. (9);
12: end for
13: Calculate the joint loss via Eq. (11) ;
14: Update the model M by stochastic gradient descent

(SGD);
15: end for
16: end for

B. Implementation Details

For all the experiments, we first align and crop facial images
to the size of 256⇥ 256, and then resize them to 224⇥ 224.
All the results are obtained based on PyCIL [36] (a python
toolbox for CIL) under the same settings. We adopt ResNet-
18 [37] as the backbone, and train the whole network using
stochastic gradient descent (SGD) [38] with an initial learning
rate of 0.01 at the initial task and 0.001 at the incremental task,
where we use CosineAnnealingLR [39] as a scheduler. All the
tasks are trained for 40 epochs with a batch size of 32. The
number of exemplars for each old class is set to 20.

Following the common settings of CIL in [15], we first train
our method on basic expression data as the initial task. Then,
we fix the number of incremental classes (compound expres-
sions) to C=3 or C=5 at the incremental tasks. The number
of attentive features T is set to 4. The number of expression-
generic features M is set to 10. The balance weights �1, �2,
and �3 are empirically set to 0.01, 0.01, and 1.00, respectively.
During the testing phase, we evaluate our method on the
classes (including both old and new expressions) ever seen
so far. We report the average accuracy as well as the standard
deviation, as done in [18].

C. Ablation Studies

The details of several variants of our RGKT method are
shown in Table I. The results obtained by different variants of
RGKT on RAF-DB are given in Table II. ResNet-18 with a
cosine classifier is used as our baseline method.
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TABLE I
THE DETAILS OF SOME VARIANTS OF OUR RGKT METHOD. ‘OCB’ AND

‘CL’ INDICATE ‘ORTHOGONAL CONSTELLATION BLOCK’ AND
‘CURRICULUM LEARNING’, RESPECTIVELY. † INDICATES THE BRANCH IS

TRAINED WITH THE SAME NUMBER OF FEATURES FOR OLD AND NEW
CLASSES IN EACH BATCH (BY MULTIPLE COPIES OF EXEMPLARS FOR OLD

CLASSES).

Methods Branch Type OCB CL
Baseline+MFL+CET (G) Expression-Generic Feature Learning Branch 8 8

Baseline+MFL+CET (C) Enhanced Classification Branch† 8 8

Baseline+MFL+CET (T) Two Branches 8 8

Baseline+MFL+CET (TO) Two Branches 4 8

Baseline+MFL+CET Two Branches 4 4

Influence of the MFL Module. From Table II, compared
with Baseline, Baseline+MFL (RAB), which extracts multiple
attentive features, obtains much higher accuracy for C=3
and C=5. Hence, it is vital to extract fine-grained features
by considering the influence of different facial regions. By
jointly combining RAB and RMB in MFL, Baseline+MFL
(RAB+RMB) achieves better results than Baseline+MFL
(RAB). This shows the importance of RMB, which models the
interconnections between attentive features via a graph. More-
over, by adding the MFL module into Baseline+CET, Base-
line+MFL+CET achieves 2.11% and 3.41% improvements in
terms of average accuracy for C=3 and C=5, respectively.
These results validate that fine-grained features can greatly
facilitate knowledge transfer during incremental learning.
Influence of the CET Module. From Table II, Base-
line+MFL+CET (T) obtains much higher accuracy (6.41%
and 5.86% improvements for C=3 and C=5, respectively)
than Baseline+MFL+CET (G), showing that the two branches
can benefit each other to boost the performance. Note that
Baseline+MFL+CET (G) gets better performance than Base-
line+MFL by transferring the expression-generic knowledge.
However, Baseline+MFL+CET (G) only focuses on captur-
ing intra-class variations while ignoring the classification
of fine-grained expressions. Baseline+MFL+CET (C) simply
increases the number of old classes by multiple copies of ex-
emplars. Such a way does not fully exploit the knowledge from
new classes. By applying OCB, Baseline+MFL+CET (TO)
outperforms Baseline+MFL+CET (T). This is because OCB
removes overlapped components in the original expression
features and generates compact features. Baseline+MFL+CET
gives higher accuracy than Baseline+MFL+CET (TO) since
curriculum learning is employed to balance the trade-off
between the two branches. The above results validate the
necessity of each key component in the CET module.

We also evaluate the influence of the number of expression-
generic features M in the CET module on the final perfor-
mance. The results are given in Fig. 3. Our method obtains the
best results when M is set to 10. When the value of M is too
large, there exists redundant information between expression-
generic features. Meanwhile, when the value of M is too
small, the expression-generic features cannot be effectively
learned from new classes.
Influence of the BET Module. Compared with Base-
line+MFL+CET which randomly initializes the new class

TABLE II
ABLATION STUDIES FOR DIFFERENT VARIANTS OF OUR METHOD WITH

THE NUMBERS OF INCREMENTAL CLASSES C=3 AND C=5 ON RAF-DB.
‘AVG±STD’ DENOTES THE AVERAGE ACCURACY (%) AND THE STANDARD
DEVIATION OVER THE TRAINING TASKS. THE BEST RESULTS ARE MARKED

IN BOLD.

Methods
Avg±std

C=3 C=5
Baseline 44.12±1.15 45.13±0.69

Baseline+MFL (RAB) 50.95±0.99 50.86±1.66

Baseline+MFL (RAB+RMB) 51.41±0.79 51.30±1.51

Baseline+CET 66.72±1.18 66.72±0.57

Baseline+MFL+CET (G) 62.00±1.40 63.15±1.40

Baseline+MFL+CET (C) 63.50±1.49 63.70±1.01

Baseline+MFL+CET (T) 68.41±1.52 69.01±0.93

Baseline+MFL+CET (TO) 68.43±0.72 69.68±1.07

Baseline+MFL+CET 68.83±0.90 70.13±0.96

Baseline+MFL+CET+BET 70.34±0.96 71.91±0.43

M
M
M
M

Fig. 3. Ablation studies for the number of expression-generic features M
on RAF-DB. We report the test accuracy w.r.t. the number of classes during
the whole incremental learning process.

classifiers, Baseline+MFL+CET+BET achieves 1.51% and
1.78% accuracy improvements for C=3 and C=5, respectively.
Thus, the BET module enables our model to obtain good
initialization parameters, achieving better results.
Influence of the Number of Incremental Classes. We also
conduct an ablation study to show the influence of the number
of incremental classes (denoted as C) on RAF-DB. As shown
in Fig. 4, we can see that our method significantly outperforms

Fig. 4. Ablation studies for the influence of the number of incremental
classes on RAF-DB.
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TABLE III
ABLATION STUDIES FOR DIFFERENT VALUES OF � FOR THE ADAPTIVE

WEIGHT CALCULATION ↵ OF INCREMENTAL CLASSES C=3 AND C=5 ON
RAF-DB. ‘AVG±STD’ DENOTES THE AVERAGE ACCURACY (%) AND THE

STANDARD DEVIATION OVER THE TRAINING TASKS. THE BEST RESULTS
ARE MARKED IN BOLD.

� ↵
Avg±std

C=3 C=5
- 0.5 68.43±0.72 69.68±1.07

1 1� (T/Tmax) 69.62±1.22 70.01±0.56

1.5 1� (T/Tmax)
1.5 69.77±1.47 70.14±0.58

2 1� (T/Tmax)
2 70.34±0.96 71.91±0.43

2.5 1� (T/Tmax)
2.5 69.83±1.18 70.14±1.09

the Baseline method. The different values of C show different
influences on the final performance. Both Baseline and our
method get the worst performance when C=1 while getting the
best performance when C=6. When the number of incremental
classes becomes small, the performance drop of our model
is more evident since the samples in new classes can be
insufficient to learn shared generic knowledge. Note that in
practical applications, it is usually easy to collect 2 or 3
classes for each incremental task. Therefore, considering the
practicality of our setting, we set C=3 (when the incremental
number is small) and C=5 (when the incremental number is
large) to evaluate the performance of the CIL FER task.
Influence of the Adaptive Weight Calculation. We evaluate
different values of � (� =1, � =1.5, � =2, and � =2.5) for the
adaptive weight calculation. Table III shows the influence of
different values of �, where the fixed weight (↵ = 0.5) is also
used for a comparison. We can see all the variants that adopt
adaptive weights perform better than the method without using
adaptive weights, since curriculum learning can encourage the
model to pay different attention to two branches at different
learning stages. For the adaptive weight calculation, when the
value of � is 2, our method can achieve the best result.
Influence of the Number of Attentive Features. As shown
in Fig. 5, we can see that our proposed method obtains the
best performance when the number of attentive features (T ) is
set to 4. When the value of T is set to 4, such a division can
effectively describe the meaningful components of the human
face (i.e., upper, middle, and lower facial regions). On one
hand, when a small number of attentive features are used,
the key regions may not be located accurately and thus may
ignore the important information. On the other hand, when
a large number of attentive features are used, there exists
redundancy among these features and the model cannot extract
informative knowledge for learning. Therefore, we set the
number of attentive features to 4.
Influence of the Parameters. We evaluate the performance
of our method with the different values of �1, �2, and �3 in
Eq. (11). The results are given in Table IV. Specifically, we
first fix �2 = 0.01 and �3 = 1, and set the value of �1 from
0.001 to 1. Experimental results are shown in Table IV(a).
We can observe that our method obtains the top performance
when the value of �1 is set to 0.01. Then, Table IV(b) shows
the results obtained by our method, when the values of �1

Fig. 5. Ablation studies for the different numbers of attentive features on
the RAF-DB (C=3) databases.

Fig. 6. Feature visualization of the original and generated features of
old expressions (the upper panel) as well as the original features of new
expressions (the lower panel) by using t-SNE [40] on RAF-DB.

Fig. 7. Visualization of similarities between expressions on RAF-DB.
The similarities between compound expressions and basic expressions at
two different incremental tasks are computed. On each panel, the vertical
axis represents the compound expressions at one incremental task while the
horizontal axis represents the basic expressions.

and �3 are set to 0.01 and 1, respectively, and the value of
�2 varies from 0.001 to 1. When the value of �2 is set to
0.01, our method achieves the best results. Finally, we fix �1

= 0.01 and �2 = 0.01, and the range of �3 is from 0.01 to
1. As shown in Table IV(c), our method achieves outstanding
performance when �3 =1. Therefore, our method obtains the
best performance when the values of both �1 and �2 are set
to 0.01 and the value of �3 is set to 1.
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TABLE IV
ABLATION STUDIES FOR THE DIFFERENT VALUES OF (A) �1 , (B) �2 , AND (C) �3 WITH THE DIFFERENT NUMBERS OF INCREMENTAL CLASSES C=3 AND
C=5 ON RAF-DB. WE REPORT THE AVERAGE ACCURACY (%) AND THE STANDARD DEVIATION OVER THE TRAINING TASKS. THE BEST RESULTS ARE

MARKED IN BOLD.

�1 C=3 C=5

0.001 69.82±1.44 70.25±1.48
0.01 70.34±0.96 71.91±0.43
0.1 69.45±1.33 70.16±1.41
1 69.18±1.29 69.99±1.81

(a) Influence of �1

�2 C=3 C=5

0.001 69.10±0.85 69.85±1.27
0.01 70.34±0.96 71.91±0.43
0.1 69.47±2.38 69.73±0.74
1 54.40±2.54 55.20±2.18

(b) Influence of �2

�3 C=3 C=5

0.01 63.87±3.84 66.30±1.29
0.1 67.11±0.93 67.17±1.52
1 70.34±0.96 71.91±0.43

(c) Influence of �3

(a) Predicted Label

Tr
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Tr
ue
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(b) Predicted Label

(c) Predicted Label (d) Predicted Label
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Fig. 8. Visualization of confusion matrices obtained by (a) Baseline, (b)
FOSTER, (c) SCN, and (d) our RGKT method at the last incremental task
on CFEE. The vertical axis represents the true label while the horizontal axis
represents the predicted label.

(a) RAF-DB (b) CFEE

Fig. 9. Visualization of expression features on the (a) RAF-DB and (b)
CFEE. We randomly select three basic expressions and compound expressions
from different incremental tasks. The upper row and the lower row of panels
show the feature distributions obtained by the Baseline method and our
method, respectively.

D. Visualization

Visualization of Original and Generated Features. Fig. 6
gives feature visualization of the original and generated fea-
tures of old expressions as well as the original features of
new expressions at one incremental task. We can see that the
generated features accurately encode the expression-generic
knowledge learned from new classes and can greatly enrich
the representations of old classes. Hence, we are able to
significantly alleviate the forgetting of old classes.
Visualization of Similarities Between Expressions. In Fig. 7,
we visualize the similarities between basic expressions and
compound expressions on RAF-DB. The more similar the
compound expressions and basic expressions are, the darker
the colors are. In Fig. 7, the compound expressions ‘SadSur’,
‘SadFear’, ‘FearSur’, ‘SadDis’, ‘AngSur’, and ‘DisSur’ repre-
sent ‘Sadly Surprised’, ‘Sadly Fearful’, ‘Fearfully Surprised’,
‘Sadly Disgusted’, ‘Angrily Surprised’, and ‘Disgustedly Sur-
prised’, respectively. We can see that a compound expression
has higher similarities with its relevant basic expressions than
with other basic expressions.
Visualization of Confusion Matrices. Fig. 8 visualizes the
confusion matrices obtained by different methods at the last
incremental task on CFEE (C=5). We can observe that the
Baseline method has a strong bias towards new classes and
forgets the previously learned knowledge. SCN is also prone
to overfit new classes, since the model may relabel the samples
of old classes to new classes. FOSTER is prone to fit old
classes, and thus its plasticity is not as good as its stability.
Among all the competing methods, our method strikes a better
balance between old and new classes.
Visualization of Expression Features. In Fig. 9, we visualize
the extracted expression features of test data by t-SNE on
RAF-DB (C=3) and CFEE (C=3). Compared with the features
obtained by Baseline, the features obtained by our method give
a better feature distribution (i.e., the intra-class compactness
is enhanced while inter-class separability is enlarged). This
shows our method can effectively learn discriminative features
for identifying different expressions.

E. Comparison with State-of-the-Art Methods

Table V shows the performance comparisons between our
method and state-of-the-art methods (including CIL methods
[14]–[16], [26], [41] and a representative FER method [5])
with the different numbers of incremental classes on RAF-DB,
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TABLE V
PERFORMANCE COMPARISONS (THE AVERAGE ACCURACY (%) AND THE STANDARD DEVIATION OVER THE INCREMENTAL TASKS) BETWEEN OUR
PROPOSED METHOD AND SEVERAL STATE-OF-THE-ART METHODS WITH THE DIFFERENT NUMBERS OF INCREMENTAL CLASSES C=3 AND C=5 ON

CFEE, RAF-DB, AND EMOTIONET. THE BEST RESULTS ARE MARKED IN BOLD.

Methods Params FLOPs
CFEE RAF-DB EmotioNet

C=3 C=5 C=3 C=5 C=3 C=5
iCaRL [15] 11.18M 1.82G 67.39±1.25 68.27±1.64 63.33±0.79 63.96±0.22 59.48±0.44 61.40±0.77

PODNet [14] 11.18M 1.82G 63.82±1.85 66.31±1.55 58.36±1.20 61.02±0.92 56.11±0.57 59.73±1.32

COIL [41] 11.18M 1.82G 56.35±1.26 58.25±0.47 47.73±2.65 48.34±1.13 52.85±2.21 56.38±1.62

AFC [26] 11.18M 1.82G 65.54±1.75 66.81±1.49 68.59±1.11 66.96±0.47 59.79±1.50 61.75±0.91

FOSTER [16] 22.35M 3.65G 62.12±1.60 62.39±1.17 69.11±0.58 70.04±0.27 60.90±2.06 62.85±0.40

MEMO [42] 44.75M 3.47G 66.01±2.28 67.95±1.97 63.22±1.47 62.49±0.72 57.87±1.85 58.73±0.93

SCN [5] 11.18M 1.82G 46.62±0.23 53.73±1.29 43.34±2.53 40.34±1.45 50.21±1.84 55.40±1.43

Baseline 11.18M 1.82G 59.51±1.59 60.91±1.29 44.12±1.15 45.13±0.69 53.92±0.92 55.91±3.03

RGKT (Ours) 11.28M 1.84G 68.44±2.56 68.87±1.99 70.34±0.96 71.91±0.43 61.66±1.13 63.27 ±0.67

CFEE, and EmotioNet. Moreover, we visualize the comparison
results on RAF-DB in Fig. 10. Note that existing compound
FER methods [10], [11] do not release their source codes or
models. Thus, they are not taken for performance comparisons.

The Baseline method can adapt to new classes but it cannot
remember the learned knowledge well. FOSTER gives good
performance on old expressions but obtains low accuracy on
new expressions. iCaRL, PODNet, and AFC explore different
distillation strategies, where iCaRL leverages a distillation
loss via old exemplars while PODNet and AFC utilize the
distillation loss to prevent the model from forgetting impor-
tant information of old classes. Both COIL and our method
leverage knowledge transfer. However, their differences are
significant in terms of motivation and methodology. COIL
develops a semantic mapping to transfer old classifiers to new
classes with the optimal transport and transfer new classifiers
to old classes symmetrically. In contrast, we initialize the
new classifiers based on the expression relevance between
new compound expressions and basic expressions (involving a
relatively small amount of computation burden). Meanwhile,
we alleviate the imbalance between old and new classes
by exploiting expression-specific knowledge. Note that the
semantic mapping in COIL does not fit FER CIL very well.
For the FER method, SCN achieves good accuracy on the
classification of basic expressions but fails to identify old
expressions in the incremental tasks. Although the distillation
loss and exemplars from old classes are used to train SCN, it
still suffers from catastrophic forgetting since the bias towards
new classes makes the model easily relabel new classes.

Existing methods ignore the importance of the relationship
across expressions in the class-incremental FER. In con-
trast, our RGKT method explores this relationship from two
perspectives (i.e., compound expression-oriented knowledge
and basic expression-oriented knowledge). In such a way,
RGKT initializes the new class classifiers based on expression
relevance between compound and basic expressions. Mean-
while, it learns expression-generic knowledge and transfers
this knowledge into old classes. This effectively avoids the
limited information of old exemplars. Among all the compet-
ing methods, RGKT achieves the best performance in terms of
average accuracy on three databases and is comparable in both

Fig. 10. Test accuracy for (a) C=3 and (b) C=5 w.r.t. the number of classes
obtained by different methods on RAF-DB.

the number of parameters and FLOPs. Specifically, RGKT
obtains the highest accuracy of 68.44% (68.87%) on the in-the-
lab CFEE database, 70.34% (71.91%), and 61.66% (63.27%)
on the in-the-wild RAF-DB and EmotioNet databases, respec-
tively, when the number of incremental classes is C=3 (5). In
general, RGKT can effectively balance the trade-off between
old and new expressions. Although our method performs the
best among the competing methods on three databases, the
number of expression-generic features is fixed, which may
limit the plasticity of new classes.

V. CONCLUSION AND FUTURE WORK

In this paper, we study a novel and practical setting for
class-incremental FER, where we take well-studied and easily-
accessible basic expressions as initial classes and identify new
compound expressions incrementally. By effectively exploiting
the intrinsic relationship across expressions, we design an
RGKT method (consisting of an MFL module, a BET module,
and a CET module) specifically suited for this setting. The
MFL module captures subtle distinctions in expressions. This
not only improves the discriminative ability of our model
to classify various expressions, but also facilitates accurate
knowledge transfer for the incremental task. The BET and
CET modules largely alleviate the stability-plasticity dilemma
by transferring expression-related knowledge, thereby adapting
to new classes and relieving the forgetting of old classes.
Extensive experiments demonstrate the superior performance
of our method against several state-of-the-art methods.
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Currently, we leverage the rehearsal strategy to store a tiny
set of exemplars of old classes. In future work, we will further
study non-exemplar class-incremental FER by exploring the
relationship between expressions and the distribution informa-
tion of old classes during incremental learning.
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