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Abstract—Recently, fluid antenna system (FAS) has emerged as
a potential candidate to deliver extra diversity and multiplexing
gains. This new technology can also be adopted to mitigate in-
terference namely, fluid antenna multiple access (FAMA). Unlike
existing schemes, the key concept of FAMA is to communicate at
a spatial moment where the interference is in deep fade. However,
FAMA treats interference as noise and it remains unclear whether
such a strategy is capacity-efficient. To address this question,
we leverage insights from information theory and introduce a
new Han-Kobayashi (HK)-FAMA scheme that considers rate
splitting, power splitting and joint decoding, to be a capacity
benchmark. Using this capacity benchmark, we then illustrate
that FAMA (alone without HK) can be near to being optimal
despite its simplicity. Besides, we employ a new performance
metric based on the generalized degree-of-freedom (gdof) to
explain the principle of FAMA.

Index Terms—6G, fluid antenna system, fluid antenna multiple
access, Han-Kobayashi scheme.

I. INTRODUCTION

Driven by various emerging use cases and applications, the
sixth-generation (6G) networks are expected to support numer-
ous requirements. Some of these expectations may include a
peak rate of 1 Tbps, a minimum latency of 0.1 ms, a reliability
of 99.9999% and massive connectivity of 107 devices/km2.
To meet these demands, it is necessary to explore new tech-
nology that can make a performance leap. In this regard, fluid
antenna system (FAS) has emerged as a potential candidate
for 6G to deliver extra diversity and multiplexing gains [1].

FAS represents any software-controllable fluidic, conduc-
tive, dielectric structure or radio-frequency (RF) pixels that
can change its shape and position to reconfigure the radiation
characteristics. The simplest setup consists of one RF-chain
and M preset locations (known as ports) that are distributed
in a given space. The radiating element can switch to the best
port to obtain the most desirable channel. Several prototypes
have also been developed in recent years [1], [2]. Motivated
by its flexibility and practicality, recent studies in [2]–[5] have
shown that FAS greatly improves the communication rate and
reliability over the traditional antenna system (TAS), in which
the antenna is fixed in position (e.g., M = 1).

With the unique ability to switch the antenna position finely
in space, FAS can also be used to mitigate interference.1 This

1Note that FAS can have few hundred or more ports within an area of λ2.
This offers a new method to mitigate interference which cannot be achieved
using antenna selection as it is impractical to have few hundreds of physical
antennas within the same amount of area.

stems from the idea that a receiver can find an opportunity
in the spatial domain to receive information while the in-
terference suffers from a deep fade. This scheme is referred
to as fluid antenna multiple access (FAMA) [6]. Compared
to existing techniques, FAMA offers a new possibility where
precoding at the transmitter and successive interference cancel-
lation at the receiver are not necessary. Moreover, FAMA can
be classified into fast FAMA and slow FAMA. In fast FAMA,
the receiver switches its port on a per-symbol basis while in
slow FAMA, the receiver switches its port when the channel
changes. This paper focuses on the latter. It is shown in [6]
that slow FAMA can serve up to a few receivers on the same
radio resource (e.g., frequency/time) while the interference can
be aggregated as one [1]. The analytical outage probability of
two-user slow FAMA was recently derived in [7].

Despite its potential, FAMA simply treats interference as
noise and it remains unclear whether this strategy is capacity-
efficient. To address this, we leverage insights from informa-
tion theory and observe that for a specific port, the multiple-
input single-output (MISO) broadcast channel in [7] can be
viewed as an interference channel (IC) since precoding is not
employed. In fact, rate splitting multiple access is inspired by
the reverse approach, i.e., viewing the IC as a MISO broadcast
channel [8]. To the best of our knowledge, the capacity of IC
is still unknown, even in the Gaussian case. Nevertheless, it is
widely known that the best achievable scheme in a two-user
Gaussian IC is the Han-Kobayashi (HK) scheme [9], [10].
Specifically, [9] showed that a simple HK scheme (without
time sharing or optimal power splitting) is capable of achieving
the capacity to within one bit. Nevertheless, the performance
of the HK scheme is extremely complicated since it includes
all the known strategies as its special cases [10]. Fortunately,
through decades of efforts [9]–[13], the performance of the
HK scheme in different regimes is now more understood.

The goal of this paper is to understand the effectiveness of
FAMA in terms of achieving the capacity. Motivated by the
above-mentioned developments, we consider two transmitter-
receiver pairs in which each receiver is equipped with a 2D
surface fluid antenna. In this setting, we first introduce a new
HK-FAMA scheme that further considers rate splitting, power
splitting and joint decoding while also having the ability of
FAS to reconfigure the channel. We then maximize the sum-
rate of the HK-FAMA technique by jointly optimizing port
selection, power splitting and rate splitting. Our results show



Figure 1. A schematic of HK-FAMA with two transmitter-receiver pairs.

that FAMA can be near to being optimal. Furthermore, we use
a new performance metric to reveal the principle of FAMA.

II. SYSTEM MODEL

As shown in Fig. 1, we consider two pairs of transmitter and
receiver. Each transmitter sends information to its respective
receiver but it interferes with the other receiver. Each transmit-
ter is equipped with a traditional antenna while each receiver is
equipped with a 2D surface fluid antenna which consists of Mr

preset locations (known as ports) that are uniformly distributed
in an area of Wr where r ∈ {1, 2}. Specifically, we consider
a grid structure where Mr

i ports are uniformly distributed
along a linear space of length λW r

i , where i ∈ {1, 2} and
λ is the wavelength of the carrier frequency. Thus, we have
Mr = Mr

1 ×Mr
2 and Wr = W r

1 ×W r
2 . Unlike a traditional

antenna, the radiating element can switch its location among
these Mr ports to flexibly adjust the received signal strength.
If the radiating element is always fixed at a specific port, it is
then equivalent to a traditional antenna.

We refer to each port as the (mr
1,m

r
2)-th port. Further-

more, we introduce an arbitrary one-to-one function so that
f (mr

1,m
r
2) = kr and f−1 (kr) = (mr

1,m
r
2) where kr ∈

{1, . . . ,Mr}, for mr
1 ∈ {1, . . . ,Mr

1 } and mr
2 ∈ {1, . . . ,Mr

2 }.
In a 3D environment with rich scattering, the spatial correla-
tion between the kr-th port and ℓr-th port is given by [5]

Jr
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2π

√(
|mr

1−m̃r
1|
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1

)2
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(
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2

)2
 ,

(1)
where j0 (·) denotes the spherical Bessel function of the first
kind, f (m̃r

1, m̃
r
2) = ℓr and f−1 (ℓr) = (m̃r

1, m̃
r
2) with ℓr ∈

{1, . . . ,Mr}, m̃r
1 ∈ {1, . . . ,Mr

1 } and m̃r
2 ∈ {1, . . . ,Mr

2 }. The
spatial correlation matrix Jr is expressed as

Jr =
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...

...
...

. . .
...
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Using eigenvalue decomposition, Jr can be decomposed into
Jr = U rΛrU

H
r where U r =

[
ur
1,u

r
2, . . . ,u

r
Mr

]
and Λr =

diag
(
λr
1, λ

r
2, . . . , λ

r
Mr

)
. More concisely, the column vector ur

l

is the l-th eigenvector of Jr and λr
l is the corresponding

eigenvalue of ur
l . According to [4], the complex channel from

transmitter t to receiver r can be modelled as

htr = σtrU r

√
Λrg =

[
h1
tr h2

tr · · · hMr
tr

]T
, (3)

where t ∈ {1, 2}, σ2
tr denotes the large-scale fading between

transmitter t and receiver r, g denotes a circularly symmetric
complex Gaussian vector with independent and identically
distributed (i.i.d.) entries such that each entry has a zero mean
and unit variance and (·)T is the transpose operator. For ease
of expositions, we denote t′ and r′ as the complement of t
and r, respectively. If r = 1, then r′ = 2 and vice versa.

Furthermore, we introduce a new HK-FAMA scheme which
is useful for evaluating the performance of different schemes.
In HK-FAMA, the receiver’s information signal is split into
two parts: public message and private message. For public
messages, a common codebook is employed while for private
messages different codebooks are employed. The information
signal of receiver r can be expressed as [8]

xr =
√

1− γtx
c
r +

√
γtx

p
r , (4)

where xc
r is the public message of receiver r and xp

r is the pri-
vate message of receiver r such that E[|xc

r|
2
] = E[|xp

r |
2
] = 1.

Furthermore, we have γt ∈ [0, 1] ,∀t. Note that the public
messages can be decoded by both of the receivers (i.e., r
and r′) while the private message can only be decoded by
the intended receiver (i.e., r). Without loss of generality, we
assume that the average transmit power at transmitter t is Pt,
and γ̄t = (1− γt) and γt are the fraction of powers allocated
to the public and private messages, respectively.

Unlike traditional antenna, the radiating element of the
receiver r can switch its location among the Mr ports. Thus,
the received signal of receiver r at the kr-th port is expressed
as

ykr
r = hkr

tr xr + hkr

t′rxr′ + zkr
r , (5)

where zkr
r is the additive white Gaussian noise of receiver r

at the kr-th port with zero mean and variance of Nr. Suppose
that the radiating element of the receiver r is switched to the
kr-th port and the power allocated to the private message of
receiver r is γrPr,∀r (i.e., t = r), then the rates of the public
message and private message of receiver r are Rc

r and Rp
r ,

respectively. Hence, the achievable rate of receiver r is given
by

RHKF
r = Rc

r +Rp
r . (6)

For brevity, no time sharing is considered in this paper. For
a fixed k = [k1, k2]

T and γ = [γ1, γ2]
T , the rate pairs of

HK-FAMA must satisfy the following constraints [13]:
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If kr,∀r is fixed, then the HK-FAMA scheme is equivalent to
the traditional HK scheme.

III. MAXIMUM SUM-RATE OF HK-FAMA
We aim to maximize the sum-rate of HK-FAMA via joint

optimization of port selection, power splitting and rate split-
ting. The optimization problem is formulated as

max
k∈K,λ∈Γ
RHKF∈R

RHKF
1 +RHKF

2 , (8)

where K = {[k1, k2]T |kr ∈ {1, . . . ,Mr},∀r}, Γ =
{[γ1, γ2]T |γ1, γ2 ∈ [0, 1]} and R is the set of achievable rate
pairs RHKF =

[
RHKF

1 , RHKF
2

]T
that satisfies (7). Since the

constraints in (7) are non-convex with respect to γ and K is
a non-convex set, (8) is a non-convex optimization problem.

To solve this globally, we divide the optimization problem
into three hierarchical subproblems: optimal port problem,
optimal power splitting problem and optimal rate splitting
problem. Specifically, given a fixed k and γ, the sum-rate of
HK-FAMA can be maximized via the following optimization
problem:

max
RHKF∈R

RHKF
1 +RHKF

2 . (9)

Interestingly, (9) is a linear optimization problem because the
right hand sides of (7) are constants if k and γ are given and
thus the solution can be easily obtained. Let us denote the
global optimal value of (9) as R∗

HKF (k,γ). Given a fixed k,
we can obtain the optimal power splitting by solving

max
γ∈Γ

R∗
HKF (k,γ) , (10)

which is a very challenging optimization problem. Neverthe-
less, the global optimal value to this optimization problem,
which is denoted as R∗

HKF (k), can be found in very compli-
cated expressions through a collection of works [10]–[12].

By analyzing their expressions, we further classify the
interference level into 16 regimes in order to obtain the optimal
value and the optimal power splitting of (10) in a single closed-
form expression.2 The complete solutions are summarized in
Table I where we have defined as
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2Different from [10], we derive the complete solutions here which include
strong and mixed interference levels. Moreover, this paper presents new
conditions for weak interference level as the ones in [10] are inaccurate.
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SUMMARY OF THE SOLUTIONS TO (10)

Interference level Conditions R∗
HKF (k)

(
γ∗
1 , γ

∗
2

)
Very strong

∣∣∣hk1
21

∣∣∣2∣∣∣hk2
22

∣∣∣2 ≥ N1
N2

+
P1

∣∣∣hk1
11

∣∣∣2
N2

,

∣∣∣hk2
12

∣∣∣2∣∣∣hk1
11

∣∣∣2 ≥ N2
N1

+
P2

∣∣∣hk2
22

∣∣∣2
N1

, C0 (0, 0)

Mixedly strong I

∣∣∣hk1
21

∣∣∣2∣∣∣hk2
22

∣∣∣2 ≥ N1
N2

+
P1

∣∣∣hk1
11

∣∣∣2
N2

, N2
N1

+
P2

∣∣∣hk2
22

∣∣∣2
N1

≥
∣∣∣hk2

12

∣∣∣2∣∣∣hk1
11

∣∣∣2 ≥ N2
N1

C1 (0, 0)

Mixedly strong II N1
N2

+
P1

∣∣∣hk1
11

∣∣∣2
N2

≥
∣∣∣hk1

21

∣∣∣2∣∣∣hk2
22

∣∣∣2 ≥ N2
N1

,

∣∣∣hk2
12

∣∣∣2∣∣∣hk1
11

∣∣∣2 ≥ N2
N1

+
P2

∣∣∣hk2
22

∣∣∣2
N1

C2 (0, 0)

Newly strong I N1
N2

+
P1

∣∣∣hk1
11

∣∣∣2
N2

≥
∣∣∣hk1

21

∣∣∣2∣∣∣hk2
22

∣∣∣2 ≥ N1
N2

, N2
N1

+
P2

∣∣∣hk2
22

∣∣∣2
N1

≥
∣∣∣hk2

12

∣∣∣2∣∣∣hk1
11

∣∣∣2 ≥ N2
N1

,
P1

(∣∣∣hk1
11

∣∣∣2N2−
∣∣∣hk2

12

∣∣∣2N1

)
P2

(∣∣∣hk2
22

∣∣∣2N1−
∣∣∣hk1

21

∣∣∣2N2

) ≥ 1 C1 (0, 0)

Newly strong II N1
N2

+
P1

∣∣∣hk1
11

∣∣∣2
N2

≥
∣∣∣hk1

21

∣∣∣2∣∣∣hk2
22

∣∣∣2 ≥ N1
N2

, N2
N1

+
P2

∣∣∣hk2
22

∣∣∣2
N1

≥
∣∣∣hk2

12

∣∣∣2∣∣∣hk1
11

∣∣∣2 ≥ N2
N1

,
P1

(∣∣∣hk1
11

∣∣∣2N2−
∣∣∣hk2

12

∣∣∣2N1

)
P2

(∣∣∣hk2
22

∣∣∣2N1−
∣∣∣hk1

21

∣∣∣2N2

) < 1 C2 (0, 0)

Strongly mixed I

∣∣∣hk1
21

∣∣∣2∣∣∣hk2
22

∣∣∣2 >
N1+P1

∣∣∣hk1
11

∣∣∣2
N2+P1

∣∣∣hk2
12

∣∣∣2 , N2
N1

>

∣∣∣hk2
12

∣∣∣2∣∣∣hk1
11

∣∣∣2 ≥ 0 C3 (1, 0)

Strongly mixed II N1
N2

>

∣∣∣hk1
21

∣∣∣2∣∣∣hk2
22

∣∣∣2 ≥ 0,

∣∣∣hk2
12

∣∣∣2∣∣∣hk1
11

∣∣∣2 >
N2+P2

∣∣∣hk2
22

∣∣∣2
N1+P2

∣∣∣hk1
21

∣∣∣2 C4 (0, 1)

Weakly mixed I
N1+P1

∣∣∣hk1
11

∣∣∣2
N2+P1

∣∣∣hk2
12

∣∣∣2 ≥
∣∣∣hk1

21

∣∣∣2∣∣∣hk2
22

∣∣∣2 ≥ N1
N2

, N2
N1

>

∣∣∣hk2
12

∣∣∣2∣∣∣hk1
11

∣∣∣2 ≥ 0 C2 (1, 0)

Weakly mixed II N1
N2

>

∣∣∣hk1
21

∣∣∣2∣∣∣hk2
22

∣∣∣2 ≥ 0,
N2+P2

∣∣∣hk2
22

∣∣∣2
N1+P2

∣∣∣hk1
21

∣∣∣2 ≥
∣∣∣hk2

12

∣∣∣2∣∣∣hk1
11

∣∣∣2 ≥ N2
N1

C1 (0, 1)

Somewhat weak I N1
N2

>

∣∣∣hk1
21

∣∣∣2∣∣∣hk2
22

∣∣∣2 > N1

N2+P1

∣∣∣hk2
12

∣∣∣2 , N2

N1+P2

∣∣∣hk1
21

∣∣∣2 ≥
∣∣∣hk2

12

∣∣∣2∣∣∣hk1
11

∣∣∣2 C2 (1, 0)

Somewhat weak II N1

N2+P1

∣∣∣hk2
12

∣∣∣2 ≥
∣∣∣hk1

21

∣∣∣2∣∣∣hk2
22

∣∣∣2 , N2
N1

>

∣∣∣hk2
12

∣∣∣2∣∣∣hk1
11

∣∣∣2 > N2

N1+P2

∣∣∣hk1
21

∣∣∣2 C1 (0, 1)

Barely weak I
N1
N2

>

∣∣∣hk1
21

∣∣∣2∣∣∣hk2
22

∣∣∣2 > N1

N2+P1

∣∣∣hk2
12

∣∣∣2 , N2
N1

>

∣∣∣hk2
12

∣∣∣2∣∣∣hk1
11

∣∣∣2 > N2

N1+P2

∣∣∣hk1
21

∣∣∣2 ,
P1

(∣∣∣hk1
11

∣∣∣2N2−
∣∣∣hk2

12

∣∣∣2N1

)
≥P2

(∣∣∣hk2
22

∣∣∣2N1−
∣∣∣hk1

21

∣∣∣2N2

)
, f(λ̃1,λ̃2)≤1, f(λ̂1,λ̂2)≤1

C2 (1, 0)

Barely weak II
N1
N2

>

∣∣∣hk1
21

∣∣∣2∣∣∣hk2
22

∣∣∣2 > N1

N2+P1

∣∣∣hk2
12

∣∣∣2 , N2
N1

>

∣∣∣hk2
12

∣∣∣2∣∣∣hk1
11

∣∣∣2 > N2

N1+P2

∣∣∣hk1
21

∣∣∣2 ,
P1

(∣∣∣hk1
11

∣∣∣2N2−
∣∣∣hk2

12

∣∣∣2N1

)
<P2

(∣∣∣hk2
22

∣∣∣2N1−
∣∣∣hk1

21

∣∣∣2N2

)
, c>f(λ̃1,λ̃2), c>f(λ̂1,λ̂2)

C1 (0, 1)

Barely weak III N1
N2

>

∣∣∣hk1
21

∣∣∣2∣∣∣hk2
22

∣∣∣2 > N1

N2+P1

∣∣∣hk2
12

∣∣∣2 , N2
N1

>

∣∣∣hk2
12

∣∣∣2∣∣∣hk1
11

∣∣∣2 > N2

N1+P2

∣∣∣hk1
21

∣∣∣2 , λ̃2<λ̂2 or f(λ̂1,λ̂2)<f(λ̃1,λ̃2) C5 (λ̃1,λ̃2)

Barely weak IV N1
N2

>

∣∣∣hk1
21

∣∣∣2∣∣∣hk2
22

∣∣∣2 > N1

N2+P1

∣∣∣hk2
12

∣∣∣2 , N2
N1

>

∣∣∣hk2
12

∣∣∣2∣∣∣hk1
11

∣∣∣2 > N2

N1+P2

∣∣∣hk1
21

∣∣∣2 , λ̃2≥λ̂2, f(λ̂1,λ̂2)≥f(λ̃1,λ̃2), C6 (λ̂1,λ̂2)

Very weak N1

N2+P1

∣∣∣hk2
12

∣∣∣2 ≥
∣∣∣hk1

21

∣∣∣2∣∣∣hk2
22

∣∣∣2 , N2

N1+P2

∣∣∣hk1
21

∣∣∣2 ≥
∣∣∣hk2

12

∣∣∣2∣∣∣hk1
11

∣∣∣2 C7 (1, 1)

and

n =
P1

(∣∣∣hk1
11

∣∣∣2N2−
∣∣∣hk2

12

∣∣∣2N1

)
−P2

(∣∣∣hk2
22

∣∣∣2N1−
∣∣∣hk1

21

∣∣∣2N2

)
P1

(∣∣∣hk1
11

∣∣∣2N2−
∣∣∣hk2

12

∣∣∣2N1+P2

(∣∣∣hk2
22

∣∣∣2∣∣∣hk1
11

∣∣∣2−∣∣∣hk1
21

∣∣∣2∣∣∣hk2
12

∣∣∣2)) .

In addition,

λ̃1 =

∣∣∣hk1
21

∣∣∣2(P1

∣∣∣hk2
12

∣∣∣2+N2

)
−
∣∣∣hk2

22

∣∣∣2N1

P1

∣∣∣hk1
11

∣∣∣2∣∣∣hk2
22

∣∣∣2 ,

λ̃2 =

∣∣∣hk2
12

∣∣∣2(P2

∣∣∣hk1
21

∣∣∣2+N1

)
−
∣∣∣hk1

11

∣∣∣2N2

P2

∣∣∣hk1
11

∣∣∣2∣∣∣hk2
22

∣∣∣2 .

Given the closed-form solutions to (10), (8) is now reduced
to

max
k∈K

R∗
HKF (k) . (11)

This problem can be solved by searching the optimal ports over
M1M2 possible combinations. Note that the global optimality
of the solutions is guaranteed by hierarchical structure. Since
the ports in FAS provide additional opportunity to improve the
maximum sum-rate, the performance of HK-FAMA is at least
as good as that of the HK scheme.

IV. PERFORMANCE EVALUATION

In this section, we discuss FAMA and other benchmarking
schemes. In addition, we introduce a new performance metric
that is useful for explaining the principle of FAMA.

A. FAMA and Other Benchmarking Schemes
Compared to HK-FAMA and HK, FAMA is a much simpler

scheme since no power splitting, rate splitting and joint de-
coding/successive interference cancellation are required. More



precisely, FAMA treats interference as noise and is a special
case of HK-FAMA with (γ1, γ2) = (1, 1). Nevertheless, the
optimal port of FAMA might be different from that of HK-
FAMA. In FAMA, each receiver r selects the port with the
highest signal-to-interference plus noise ratio (SINR) [6], i.e.,

k⋆r = argmax
kr∈{1,...,Mr}

{
|hkr

rr |2Pr

|hkr
r′r|

2
Pr′+Nr

}
, (12)

and thus the maximum sum-rate is

R∗
F = log

1 +

∣∣∣∣hk⋆
1

11

∣∣∣∣2P1∣∣∣∣hk⋆
1

21

∣∣∣∣2P2+N1

+ log

1 +

∣∣∣∣hk⋆
2

22

∣∣∣∣2P2∣∣∣∣hk⋆
2

12

∣∣∣∣2P1+N2

.

(13)
If kr,∀r is fixed, FAMA is then equivalent to the traditional
treating interference as noise (TIN) scheme.

In addition, we consider the traditional orthogonalization
(ORTHO) scheme where kr,∀r is fixed and half of the degree
of freedom is given to each receiver. The maximum sum-rate
of ORTHO is given by

R∗
O = 1

2 log

(
1 +

∣∣∣hk1
11

∣∣∣2P1

N1
2

)
+ 1

2 log

(
1 +

∣∣∣hk2
22

∣∣∣2P2

N2
2

)
. (14)

B. Generalized Degree of Freedom
To reveal the principle of FAMA, we extend the concept of

generalized degree of freedom (gdof) in symmetric channel [9]
to non-symmetric reconfigurable channel for FAS with finite
signal-to-noise ratio (SNR).3 Specifically, the gdof of a scheme
is defined as

gdof ≜
Rsys (k)

C∗ , (15)

where Rsys (k) is the maximum sum-rate of a scheme and

C∗ = max
k∈K

log
(
1 +

P1

∣∣∣hk1
11

∣∣∣2
N1

)
+ log

(
1 +

P2

∣∣∣hk2
22

∣∣∣2
N2

)
. The

gdof can be interpreted as the ratio of the maximum sum-
rate of a scheme to the maximum possible sum-rate without
interference. Therefore, if Rsys (k) = C∗, we can say that the
interference has no effect on the receivers and thus the overall
links have full degree of freedom. In contrast, if Rsys (k) = 0,
the interference has significant effect on the receivers such that
no communication is possible and thus the overall links have
zero degree of freedom. Furthermore, let us define

α ≜
log (a SNR2)

log (SNR1)
, (16)

and
β ≜

log (bSNR1)

log (SNR2)
, (17)

where a =
|hkr

21 |2N2

|hkr
22 |2N1

, b =
|hkr

12 |2N1

|hkr
11 |2N2

, SNR1 =
P1|hkr

11 |2
N1

and

SNR2 =
P2|hkr

22 |2
N2

. Heuristically, we can interpret α and β as
the ratio of interference-to-noise ratio to SNR, in decibels. If
α = β, we have symmetric channel. If α or β ≥ 0, the system
is operating in the interference-limited regime. Otherwise, it
is operating in the noise-limited regime.

3A finite SNR is considered here because reconfigurable channel is only
useful when SNR is not asymptotically high.
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Figure 2. The maximum sum-rate over different values of Mr .

V. SIMULATION RESULTS

In this section, we present the simulation results to evaluate
the performance of different schemes as well as to reveal the
underlying principle of FAMA. For brevity, we consider the
setting where P1 = P2 = P , N1 = N2 = N0, M1 = M2,
Mr

1 = 2Mr
2 , W1 = W2 and W r

1 = 2W r
2 . Unless stated

otherwise, we set P = 30 dBm, N0 = 0 dBm, σt,r = 1,
Mr = Mr

1 ×Mr
2 = 20× 10, Wr = W r

1 ×W r
2 = 2λ× 1λ. In

the HK, TIN and ORTHO schemes, we assume that kr = 1.
Firstly, we compare the maximum sum-rate over different

values of Mr where we fix Mr
2 = 10. As confirmed in Fig. 2,

HK-FAMA has the highest sum-rate because it can select the
best channel and employ the best strategy in each reconfigured
channel. Interestingly, the sum-rate of FAMA approaches to
that of HK-FAMA as Mr increases. This suggests that treating
interference as noise is near-optimal if there is a sufficient
number of ports. Nevertheless, when Mr is small, the channel
cannot be greatly reconfigured. Therefore, the sum-rates of
HK and ORTHO can be higher than that of FAMA as treating
interference as noise is a suboptimal strategy. Furthermore,
TIN has the worst performance because the channel cannot
be reconfigured and its strategy is far from optimal.

Next in Fig. 3, we compare the maximum sum-rate over
different values of Wr. Here, we fix W r

2 = 1λ. Similarly, HK-
FAMA has the highest sum-rate and the sum-rate of FAMA
again approaches to that of HK-FAMA as Wr increases. In
contrast to the above, the performance of FAMA outperforms
HK, TIN and ORTHO since Mr is sufficiently large here. If
we increase Mr from 20 × 10 to 30 × 10, the sum-rates of
HK-FAMA and FAMA shift upward and their gap reduces.

Fig. 4 shows the distributions of α and β over 300 indepen-
dent realizations to explain the principle of FAMA. Here, we
plot the maximum gdof that can be achieved by any schemes
as a contour.4 This contour can be used as a reference to under-

4This can be done using HK with a deterministic channel. Specifically, we
assume that |h1,1|2 = |h2,2|2 = 1 and vary α and β accordingly.
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Figure 3. The maximum sum-rate over different values of Wr .

stand the relation between the distributions and performance
of the schemes. Note that HK, TIN and ORTHO have the same
α and β since kr is fixed. Nevertheless, they have different
gdof. Thus, it is important to study their average gdof. The
average gdof of HK-FAMA, FAMA, HK, TIN and ORTHO
are 0.65, 0.64, 0.46, 0.13 and 0.43, respectively.

In Fig. 4, we can observe that TAS is unable to reconfigure
the channel. Therefore, the distributions of HK/TIN/ORTHO
depend entirely on the given realizations. Based on their
average gdof, we deduce that it is important for TAS to use
HK to obtain higher gdof but ORTHO is pretty sufficient. In
contrast, HK-FAMA and FAMA have the ability to reconfigure
the channel (e.g., they can adjust the values of α and β). In
principle, if Mr and Wr are sufficiently large, both of these
schemes tend to make the values of α and β small to obtain
a higher gdof. Nevertheless, in some realizations, HK-FAMA
might choose larger α and β to avoid low gdof (e.g., dark blue
zone). Those are the moments where FAMA is not efficient.
Otherwise, treating interference as noise in FAMA is optimal.
If Mr and Wr are increased, it is easier for their distributions
to overlap and operate towards the noise-limited regime.

VI. CONCLUSION

This paper considered two transmitter-receiver pairs where
each receiver was equipped with a 2D surface fluid antenna.
To study whether treating interference as noise in FAMA
is an efficient strategy in this setting, we introduced a new
benchmarking scheme, namely HK-FAMA. We maximized the
sum-rate of HK-FAMA via joint optimal port selection, power
splitting and rate splitting. Compared to HK-FAMA and other
benchmarking schemes, we showed that FAMA can be near to
being optimal as the channel can be reconfigured towards the
noise-limited regime where high gdof can be obtained. Thus,
complicated schemes are not always necessary as treating
interference as noise in FAMA is sufficient. Nevertheless, to
facilitate such channel reconfiguration, Mr and Wr must be
sufficiently large.

Figure 4. Distributions of of α and β for different schemes.
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