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Abstract

The problem of estimating the parameters of biased and exponentially-damped multi-sinusoidal signals is addressed in this
paper by a finite-time identification scheme based on Volterra integral operators. These parameters are the amplitudes,
frequencies, initial phase angles, damping factors and the offset. The proposed strategy entails the design of a new kind of kernel
function that, compared to existing ones, allows for the identification of the initial conditions of the signal-generator system.
The worst-case behaviour of the proposed algorithm in the presence of bounded additive disturbances is fully characterized
by Input-to-State Stability arguments. Numerical examples including the comparisons with some existing tools are reported
to show the effectiveness of the proposed methodology.

1 Introduction

Exponentially Damped Sinusoidal (EDS) signals can be
observed in a wide range of natural phenomena, like the
propagation of acoustic waves and may as well charac-
terize the behaviour of artificial systems, occurring for
instance as a consequence of the complex interaction be-
tween power systems components. The parametric esti-
mation of EDS signals is crucial as the sinusoidal param-
eters describe the qualitative behaviour of the associated
system. For example, oscillations with time-varying am-
plitude in power systems might be the precursor of insta-
bilities due to equipment malfunctions or other faults.
In this context, precise and fast identification of these
oscillations has drawn considerable research activities.

The Prony’s method and its many variants represent
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the most traditional techniques, designed for estimating
frequency components of damped sinusoids in a com-
plex form [1,2]. However, these methods are sensitive
to the measurement noise. In this context, several high-
resolution alternatives have been proposed in the lit-
erature, such as the Yule-Walker algorithm [3], matrix
pencil methods [4] and algorithms based on the Hilbert
Transformation [5]. In the context of continuous-time
estimation, a wide variety of techniques have been pro-
posed to address the estimation problem of non-fading
sinusoidal signals with asymptotic stability (see, for ex-
ample, [6–10], and the references cited therein). Some
of these methods have also been extended to address
the EDS estimation problem, for example, the estima-
tors based on the internal model principle [13] and the
second-order generalized integrator [14]. A further im-
portant class of algorithms used in the context of EDS es-
timation is represented by the so-named algebraic iden-
tification methods. They are characterized by very rapid
detection of the parameters (non-asymptotic and finite-
time convergence), which is a crucial feature as the input
signal may gradually vanish due to the positive damp-
ing or the negative damping may lead an instability is-
sue [11,12]. Compared to the Prony’s methods, algebraic
methods based on differential algebra and operational
calculus are more robust against the measurement noise.
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As shown for the first time in [15], the Volterra integral
operator turns out to be an effective tool for developing
finite-time estimation algorithms. For example, the esti-
mation problem of a single non-fading sinusoidal signal
is addressed in [16]. Resorting to the Volterra integral
operator with suitably designed kernel functions, the
method can achieve finite-time convergence. In a more
recent work [17], the estimator proposed in [16] has been
extended to an enhanced algorithm that is able to es-
timate parameters of a biased and damped sinusoidal
signal.

Based on some preliminary results presented in [18], this
paper deals with a finite-time estimation scheme for es-
timating characteristics of multiple biased and damped
sinusoidal signals. With inspiration from the idea de-
vised in [15], the proposed methodology employs Volterra
operators with original kernel functions, named Bivari-
ate Linear Non-asymptotic Kernels (BL-NK). Compared
to the previous kernels proposed by the authors in [16]
and [17], the presented ones preserve the dependency on
the initial conditions. As such, the initial amplitudes and
the phases of the sinusoidal components can be deter-
mined in addition to the frequencies. The robustness of
the devisedmethod with respect to the bounded additive
measurement perturbation is characterized by Input-to-
State Stability (ISS) tools. Finally, the performance of
the proposed algorithm is evaluated by various simula-
tion examples including comparisons with some existing
deadbeat techniques.

This paper is organized as follows: the problem is formu-
lated in Section 2 with some basic definitions. In Section
3, the kernel-based estimation scheme is proposed. Sta-
bility and robustness analysis with respect to measure-
ment perturbations is carried out in Section 4. Exten-
sive simulation results are provided in Section 5, while
Section 6 draws some concluding remarks.

2 Problem statement and preliminaries

Consider the following perturbed signal made up of a
finite number of damped sinusoids and a constant bias

y(t)=

n
∑

i=1

Aie
ρit sin (ωit+ φi)+A0 (1)

with known n ≥ 1 and 4n + 1 unknown parameters
including amplitudes Ai ∈ R>0, frequencies ωi ∈ R>0,
initial phase angles φi ∈ [0, 2π], damping factors ρi ∈ R

and the offset A0. Moreover, it is also assumed that the
frequencies verify the relationship ωi 6= ωj for i 6= j.

It is worth noting that (1) can be generated by the follow-

ing observable autonomous marginally-stable system:

{

ẇ(t) = Aww(t)

y(t) = c⊤ww(t)
(2)

where w(t) , [w0(t) . . . wr(t) . . . w2n(t)]
⊤ ∈ R2n+1,

and the initial condition

w2i−2(0) = Ai sinφi, w2i−1(0) = Aiωi cosφi,

w2n(0) = A0, ∀i ∈ {1, . . . , n}. (3)

The system matrices are given as follows

Aw =

















J1 0 0 · · · 0

0
. . .

. . .
. . . 0

...
. . . 0 Jn 0

0 · · · 0 0 0

















, c⊤w =















c1
...

cn

1















⊤

,

with

Ji =

[

ρi 1

−ω2
i ρi

]

, c⊤i =
[

1 0
]

.

The associated characteristic polynomial, having 2n
complex roots ρi ± jωi, i = 1, 2, . . . , n occurring in
complex-conjugate pairs and one root at zero, is given by

P (s) = s2n+1 + α2ns
2n + · · ·+ α2s

2 + α1s, (4)

where s is Laplace variable, (α1, α2, · · · , α2n) are the
coefficients of the characteristic polynomial, determined
by the unknown frequencies ωi and damping factors
ρi, i = 1, 2, · · · , n.

Being (2) observable, the state vectorw(t) admits a lin-
ear transformation of coordinates z(t) = Tw(t), such
that the signal generator of y(t) can be rewritten in an
observer canonical form. Let

z(t) , [z0(t) z1(t) . . . zr(t) . . . z2n(t)]
⊤ ∈ R

2n+1,

the canonical system evolving from the unknown initial
state z(0) = Tw(0), is given as follows:

{

ż(t) = Az z(t),

y(t) = c⊤z z(t), t ∈ R≥0,
(5)

where Az = TAwT
−1, c⊤z = c⊤wT

−1 are given by

Az =

















−α2n 1 0 · · · 0
... 0

. . .
. . . 0

−α1

...
. . .

. . . 1

0 0 · · · 0 0

















, c⊤z =















1

0
...

0















⊤

. (6)
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In the following, a deadbeat algorithm is introduced to
address the identification of the unknown system pa-
rameters αi and the initial conditions z(0). Thereby the
frequencies and damping factors are respectively deter-
mined as the imaginary and real parts of the zeros of
the characteristic polynomial P (s). The amplitudes and
initial phase shifts are estimated by (3) thanks to the
estimated frequencies and damping factors.

Some basic concepts concerning the Volterra integral are
recalled in the following for the reader’s convenience.
The reader is referred to [15,19] for a deeper insight on
this topic.

Letting x(t) ∈ R, ∀t ≥ 0 be an i-th order differen-
tiable signal, in this paper we denote by x(i) the i-th or-
der derivative signal. Moreover, given a kernel function
K(·, ·) in two variables, its i-th order partial derivative
with respect to the second argument will be denoted as
K(i)(t, τ), i ∈ Z≥0.

Consider a Volterra integral operator induced by the
kernel function K(·, ·)

[VKx] (t) ,

∫ t

0

K(t, τ)x(τ)dτ, t ∈ R≥0. (7)

For the sake of practical implementability, we use the
following dynamic system to compute the transformed
signal [VK x](t), for t ≥ 0:











ξ(1)(t) = K(t, t)x(t) +

∫ t

0

(

∂

∂t
K(t, τ)

)

x(τ)dτ

[VKx] (t) = ξ(t)

(8)
where ξ(0) = ξ(1)(0) = 0.

The following result is useful in dealing with the applica-
tion of Volterra operators to the derivatives of a signal.

Lemma 2.1 [15] For a given i ≥ 0, consider a signal
x(·) ∈ L2(R≥0) that admits an i-th weak derivative in
R≥0 and a kernel function K(·, ·) ∈ HS, admitting the
i-th derivative (in the conventional sense) with respect to
the second argument. Then, it holds that:

[

VKx(i)
]

(t) =

i−1
∑

j=0

(−1)i−j−1x(j)(t)K(i−j−1)(t, t)

+

i−1
∑

j=0

(−1)i−jx(j)(0)K(i−j−1)(t, 0) + (−1)i
[

VK(i) x
]

(t)

(9)

that is, the function
[

VKx(i)
]

(·) can be obtained by the

lower-order derivatives x(·), x(1)(·), . . . , x(i−1)(·). �

The properties of the Volterra operator VK depend sig-
nificantly on the characteristics of the kernel function,
which determine the application domain of the specific
operator [15,20]. In this work, we introduce a new fam-
ily of kernel functions, BL-NK, that allow estimating si-
multaneously the parameters of a linear system as well
as its initial state.

Definition 2.1 (BL-NK) If a function K(·, ·) ∈ HS
which is at least (i−1)-th order differentiable with respect
to the second argument, verifies the conditions

K(j)(t, t) = 0, K(j)(t, 0)>0, ∀t>0, (10)

∀j ∈{0, 1, . . . , i − 1}, then, it is called an i-th order Bi-
variate Linear Non-asymptotic Kernel.

The following instance of BL-NK (fulfilling (10)) will be
considered throughout the paper:

K(t, τ) = e−β(t−τ)
(

1− e−β(t−τ)
)N

(11)

with the parameter β ∈ R>0 set arbitrarily.

3 Finite-time amplitude, frequency and phase
estimation

For the sake of further discussion, it is worth to introduce
the differential-constraint model of (5):











y(2n+1)(t) =
2n
∑

i=1

−αiy
(i)(t), ∀t ∈ R≥0,

y(i)(0) = y
(i)
0 , i ∈ {0, . . . , 2n+ 1},

(12)

where y
(i)
0 , i ∈ {0, . . . , 2n + 1} represent the unknown

initial conditions. Notably, the state-variables of the ob-
server canonical realization (5) can be expressed as a
linear combination of the output derivatives:

zr(t)=y(r)(t) +
r−1
∑

j=0

α2n−r+j+1 y(j)(t), r∈{0, 1, · · · , 2n},

(13)

where we have used the convention
∑k

j=0{·}=0, ∀k < 0.

Assuming that K(·, ·) is an at least (2n+1)-th order Bi-
variate Causal kernel function satisfying condition (10),
thanks to Lemma 2.1, it is immediately to show that

[

VKy(i)
]

(t) =

i−1
∑

j=0

(−1)i−jy(j)(0)K(i−j−1)(t, 0)

+ (−1)i
[

VK(i) y
]

(t), (14)
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for all i ∈ {0, · · · , 2n + 1}. Therefore, by applying the
operator VK to both sides of (12), recall (14) it holds that

(−1)2n
[

VK(2n+1) y
]

(t) = −y(2n)(0)K(t, 0)

−
2n−1
∑

j=0

(−1)2n−jy(j)(0)K(2n−j)(t, 0)

+
2n
∑

i=1

αi

( i−1
∑

j=0

(−1)i−jy(j)(0)K(i−j−1)(t, 0)

+ (−1)i
[

VK(i) y
]

(t)

)

By applying (13) and after some cumbersome algebra,
we get

[

VK(2n+1) y
]

(t) =
2n−1
∑

i=0

αi(−1)i+1
[

VK(i+1) y
]

(t)

−

2n
∑

r=0

(−1)2n−rK(2n−r)(t, 0)zr(0)

which can be written in compact form

[

VK(2n+1)y
]

(t)=

2n−1
∑

i=0

αi(−1)i+1
[

VK(i+1) y
]

(t)+

2n
∑

r=0

γr(t)zr(0)

(15)
with γr(t) = K(2n−r)(t, 0)(−1)2n−r+1.

Noting that the right hand side of (15) is linear with
respect to the parameters αi and the initial state zr(0),
it can be recast in the following vector form

[VK(2n+1) y] (t) = ν(t)⊤θ (16)

where θ=[α1, α2, . . . , α2n, z0(0), z1(0), . . . , z2n(0)]
⊤∈R3n.

is an extended parameter vector that contains, besides
model parameters, also the initial conditions of output
derivatives, while the regressors vector ν(t) is given by

ν(t) =
[

− [VK(1)y](t), [VK(2)y](t), . . . , [VK(2n)y](t),

γ0(t), γ1(t), . . . , γ2n(t)
]⊤
.(17)

For the sake of the further discussion, it is worth to
point out that ν(t) is not only made up of known time-
dependent functions γ0(t), γ1(t), . . . , γ2n(t) but also of
signals obtained by processing y(t) through the Volterra
operators. Moreover, to solve (16), we also need to cal-
culate the signal [VK(2n+1) y] (t), which involves pro-
cessing the output by a further Volterra operator. In
the following lines we will show how these signals can
be obtained, deriving a state-space realization for the

Volterra-processing mechanism. To this end, let us in-
troduce a vector containing all the transformed signals:

za(t),
[

− [VK(1)y](t), [VK(2)y](t), . . . ,

[VK(2n)y](t),
[

VK(2n+1)y
]

(t)
]⊤

We will show that za(t) can be computed as the output
of an internally stable LTI system.

Consider a BL-NK in the form of (11) with N = 2n+2:

K(t, τ) = e−β(t−τ)
(

1− e−β(t−τ)
)2n+2

(18)

where β ∈ R>0 is chosen by the designers. The i-th
derivative of the designed kernel with respect to the sec-
ond argument can be expressed as:

K(i)(t, τ)=

2n+3
∑

j=1

e−jβtfi,j(τ), ∀i ∈ {1, 2, . . . , 2n+ 1}

(19)
where fi,j(τ) =

(

2n+2
j−1

)

(−1)j−1(jβ)iejβτ . are univariate

functions of τ . LetKi,j(t, τ) , e−jβtfi,j(τ), then we have

∂

∂t
Ki,j(t, τ) = −jβe−jβtfi,j(τ).

Moreover, by the linearity of the Volterra operator, it

follows that [VK(i) y] (t) =

2n+3
∑

j=1

[

VKi,j
y
]

(t).Defining the

internal state vector ξ(t) ∈ R(2n+1)×(2n+3)

ξ(t) , [ξ1,1(t), . . . , ξ1,2n+3, ξ2,1(t), . . . , ξ2n+1,2n+3]
⊤,

with ξi,j(t) , [VKi,j
y](t). Then, owing to (8), the aug-

mented signal vector za(t) can be computed by the fol-
lowing stable LTI system:

{

ξ(1)(t) = Gξξ(t) +Ey(t)

za(t) = Hξ(t)
(20)

with ξ(0) = 0 ∈ R(2n+1)(2n+3) and where Gξ is
a diagonal, time invariant and Hurwitz matrix, de-
fined by Gξ = blockdiag[G, . . . , G], with G =
diag(−β,−2β, . . . ,−(2n + 3)β), and H is defined by
H = blockdiag[1⊤, . . . , 1⊤], with 1⊤ denoting a row
vector of ones with 2n+ 3 elements. Finally, due to the
fact that the functions Ki,j(t, τ) evaluated for τ = t are
constants:

Ki,j(t, t) = λi,j , (−1)i+j

(

2n+ 2

j − 1

)

(jβ)i.
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E = [E⊤
1 , ...,E

⊤
2n+1]

⊤ is a constant vector given by:Ei =

[λi,1, λi,2, . . . , λi,2n+3]
⊤
. In view of (16), conventional

augmentation tools used in system’s identification can
be employed to form a well-posed algebraic system. Let
us multiple ν(t) on both sides of (16), leading to:

S(t) = R(t)θ (21)

where S(t) , ν(t)[VK(2n+1)y](t) ∈ R(4n+1), R(t) ,

ν(t)ν⊤(t) ∈ R
(4n+1)×(4n+1) . To avoid singularity of

the instantaneous auto-covariance matrix R(t), we ap-
ply to both sides of (21) a first order linear filterGf (s) =
1/(s+ g) with zero initial conditions. Then it holds that

L
−1{Gf (s)S(s)}(t) = L

−1{Gf (s)R(s)}(t)θ. (22)

Consider Sf (t) , L −1{Gf (s)S(s)}(t) and Rf(t) ,

L −1{Gf (s)R(s)}(t), it follows that

{

Ṡf (t) = −gSf(t) + S(t)

Ṙf(t) = −gRf(t) +R(t)
(23)

where Sf (0)=0∈R(4n+1), Rf (0)=0∈R(4n+1)×(4n+1).
It is clear that the filtering operator is equivalent of us-
ing Volterra operator with a kernel Gf (t, τ) = e−g(t−τ).

For the sake of further analysis, let us expand γr(t), r =
0, 1, . . . , 2n that is contained in the regressor ν(t):

γr(t) = (−1)2n−r+1
2n+3
∑

j=1

e−jβtf2n−r,j(0), (24)

where f2n−r,j(0) = (−1)j−1
(

2n+2
j−1

)

(jβ)2n−r,∀j ∈

{1, . . . , 2n+3}, r∈{0, . . . , 2n} are constants. Hence, let

Fr,j = (−1)2n−r+j

(

2n+ 2

j − 1

)

(jβ)2n−r, (25)

γr(t) can be represented as the sum of exponential func-

tions γr(t) =

2n+3
∑

j=1

e−jβtFr,j which decay to zero as

t → ∞. The following technical result characterizes a
specialized persistency of excitation (PE) on signal ν(t)
that is needed to prove the convergence of the devised
estimation algorithm.

Lemma 3.1 (Finite-time persistency of excitation)
Given the multi-EDS measurement y(t) (see (1)) and the
designed kernel (18), there exist some ǫ ∈ R>0, tǫ ∈ R>0

and T ∈ R>0 such that

∫ t

t−tǫ

ν(τ)ν⊤(τ)dτ ≥ ǫI, ∀t ∈ [tǫ, tǫ + T ]. (26)

Proof. In view of (17), we can split ν(t) into two vector
signals ν1(t) ∈ R2n and ν2(t) ∈ R2n+1, such that

L {ν1(t)} = G1(s)L {y(t)}, ν2(t) = G2ψ2(t).

where G1(s) =
[

κ1(s) κ2(s) · · · κ2n(s)
]⊤

∈ C
2n with

κi(s) ,
2n+3
∑

j=1

λi,j

s+ jβ
, i = 1, 2, . . . , 2n, and

ψ2(t) ,

[

e−βt e−2βt · · · e−(2n+3)βt
]⊤

,

G2 =















F0,1 F0,2 · · · F0,2n+3

F1,1 F1,2 · · · F1,2n+3

... ¨
. . .

...

F2n,1 F2n,2 · · · F2n,2n+3















∈R(2n+1)×(2n+3).

(27)
Since y(t) is a multi-EDS, it can be concluded that
y(t) is sufficiently rich of order 2n for t < +∞.
Thanks to the linear independence of the complex vec-
tors G1(jω1)), · · · ,G1(jωn)) on the complex space Cn,
ν1(t) is PE for all t ∈ [tǫ, tǫ + T ] ([21, Chapter 2]).

Moreover, for the signal ψ2(t) defined in (27), there
always exists a finite time interval [t, t] with t > t
over which the elements of ψ2(t) are linearly inde-
pendent functions [22]. It also implies that for any
t > t, there exists a constant ǫ2 ∈ R>0, such that
∫ t

t−t
ψ2(τ)ψ

⊤
2 (τ)dτ ≥ ǫ2I . Then, in view of (25), G2 is

full row rank of 2n+ 1. Hence, we have

∫ t

t−t

ν2(τ)ν
⊤
2 (τ)dτ =G2

∫ t

t−t

ψ2(τ)ψ
⊤
2 (τ)dτ G⊤

2 ≥g2
2
ǫ2I

(28)
where we denote by g

2
the minimum singular value of

G2. Note that the inequality (28) implies ν2(t) PE over
an interval [t, t].

By using the fact that the sinusoidal functions in ν1(t)
and the exponential functions in ν2(t) are linearly inde-
pendent, it can be concluded that ν(t) is also finite-time
PE and there always exist some ǫ ∈ R>0, tǫ ∈ R>0 and
T ∈ R>0, such that the finite-time PE condition (26)
holds, thus ending the proof.

Owing to (22) and (26), it is straightforward to show
that t ∈ [tǫ, tǫ + T ]

Rf (t) ≥

∫ t

t−tǫ

e−g(t−τ)ν(τ)ν⊤(τ)dτ (29)

≥ e−gtǫ

∫ t

t−tǫ

ν(τ)ν⊤(τ)dτ ≥ e−gtǫǫI,
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which in turn implies that, under the PE condition, the
filtered auto-covariancematrixRf (t) is invertible within
a non-empty time interval tǫ ≤ t ≤ tǫ + T . In this con-
nection, the unknown parameter vector θ can be esti-
mated by the following invertibility-conditioned estima-
tion law:

θ̂(t) =

{

θ(t−), min eig(Rf (t)) < σ,

Rf (t)
−1Sf (t), min eig(Rf (t)) ≥ σ,

(30)

where θ̂(0) = θ0 is a guessed parameter vector and σ is
an invertibility threshold set arbitrarily in the interval:

0 < σ ≤ ǫe−gtǫ (noise-free scenario).

It is worth noting that the algorithm switches-off the
adaptation automatically when no more excitation is de-
tected, freezing the estimates. The invertibility ofRf (t)
characterizes a sufficiently informative output signal at
time t. In view of (20), the parameter β determines
the eigenvalues of G that in turn determines the cut-off
frequency of the overall low-pass filtering structure. A
larger β results in poorer noise immunity, while a smaller
β may result in a less informative Rf (t) due to the ex-
cessive attenuation of y(t). To this end, the choice of β
can be made based on a priori information of the fre-
quencies contained in y(t), such as the upper bound of
all the frequency components. The tuning rules of β also
apply to g (see (23)) which plays the same role as β.

As soon as the invertibility condition is met, the esti-
mates of the coefficients αi, i ∈ {0, . . . , 2n− 1} and of
the initial states zr(0), r ∈ {0, . . . , 2n} are immediately
available. Then, in view of (4), the frequencies ω1, . . . , ωn

and the damping factors ρ1, . . . , ρn can be obtained re-
spectively from the imaginary and the real parts of the
roots of P (s).

From (3), using the initial states wi(0), obtained by
w(0) = T−1z(0) and the frequency ωi, it holds that

(ωiw2i−2(0))
2 + w2i−1(0)

2 = A2
iω

2
i , ∀i ∈ {1, 2, . . . , n}

which yields

Ai =
√

((ωiw2i−2(0))2 + w2i−1(0)2) /ω2
i . (31)

Finally, the phase is estimated by

φi = tan−1 (ωiw2i−2(0)/w2i−1(0)) , (32)

for all i ∈ {1, 2, . . . , n}. According to the definition in
(3), the offset is obtained directly by A0 = w2n(0).

4 Robustness analysis in presence of bounded
perturbations

In this section, we are going to analyze the robustness of
the proposed estimator in presence of a norm-bounded
additive measurement noise d(t) : |d(t)| ≤ d̄, ∀t > 0,
such that ŷ(t) = y(t) + d(t) . The following result char-
acterises the stability properties of the estimation algo-
rithm in the noisy scenario.

Theorem 4.1 Given the sinusoidal signal y(t) and the
perturbed measurement ŷ(t), verifying the PE assump-
tion formalized in Lemma 3.1, then the estimation error

θ̃(t) = θ̂(t) − θ is ISS with respect to any disturbance
signal d(t) ∈ L1

∞. �

Proof. In view of (20), performing the substitution of

y(t) with ŷ(t), we get ξ̂(1)(t) = Gξξ̂(t) + Eŷ(t). where

ξ̂(t) denotes the noisy signal in the presence d(t). Defin-

ing the error variable ξ̃(t) = ξ̂(t)− ξ(t), whose dynamic
is

ξ̃(1)(t) = Gξξ̃(t) +Ed(t). (33)

Thanks to the fact that the matrix Gξ is Hurwitz, dy-
namic (33) is ISS with respect to d(t). Each component

in the vector ξ̃(t) verifies the inequalities depending on
the index:

∣

∣

∣
ξ̃i,j(t)

∣

∣

∣
≤

1− e−jβt

jβ
λi,j d̄ ≤

(

2n+ 2

j − 1

)

(jβ)i−1d̄ ,
¯̃
ξi,j

(34)
where i ∈ {1, . . . , 2n+ 1}, j ∈ {1, . . . , 2n+ 3}. Thanks
to the linearity of the Voterra operator, we have

| [VK(i)d] (t)| , |[VK(i) ŷ](t)− [VK(i)y](t)| ≤

2n+3
∑

j=1

¯̃
ξi,j

for all i∈ {1, . . . , 2n + 1}. Then, the error signal of the

regressors vector in (16) ν̃(t) , ν̂(t)− ν(t) follows that

|ν̃(t)| ≤
2n
∑

i=1

|[VK(i)d] (t)| =
2n
∑

i=1

2n+3
∑

j=1

¯̃ξi,j (35)

Therefore, the error-matrices S̃(t),Ŝ(t)−S(t) and

R̃(t),R̂(t)−R(t) induced by the noise are expressed as:

S̃(t) = ν̂(t)[VK(2n+1) ŷ](t) − ν(t)[VK(2n+1)y](t)

≤ ν̃(t)

2n+3
∑

j=1

ξ2n+1,j(t)+ν̃(t)

2n+3
∑

j=1

¯̃
ξ2n+1,j+ν(t)

2n+3
∑

j=1

¯̃
ξ2n+1,j ,

R̃(t) = ν̂(t)ν̂
⊤

(t)− ν(t)ν
⊤

(t)

= ν̃(t)ν⊤(t) + ν(t)ν̃⊤(t) + ν̃(t)ν̃⊤(t)
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which, due to the boundedness of unperturbed signals
ξ(t) and ν(t), are ISS with respect to ν̃(t) and in turn to
d(t) (see (34) and (35)). Eventually, the error variables
of the filtered signals are bounded by

|S̃f (t)|, |Ŝf (t)− Sf (t)| =

∫ t

0

e−g(t−τ)|S̃(τ)|dτ ≤
1

g
|S̃| ,

|R̃f (t)|, |R̂f (t)−Rf (t)|=

∫ t

0

e−g(t−τ)|R̃(τ)|dτ ≤
1

g
|R̃|,

which implies that |S̃f (t)| and |R̃f (t)| are ISS bounded
with respect to d(t).

In view of (30), in the presence of noise, it may happen
either that the invertibility is not attained, thus leav-
ing the estimate frozen at the preceding value, or for
some instants the estimator is active. These two phases
are separated by the user-specified invertibility thresh-
old σ. We will show that in the latter case the mismatch
between the estimate and the true parameter value is
bounded and depends on the noise amplitude.

Under Lemma 3.1, in a noisy environment it holds that

|θ̃| =
∣

∣

∣
R̂f (t)

−1Ŝf (t)−Rf (t)
−1Sf (t)

∣

∣

∣

≤ |R̂f (t)
−1|

∣

∣

∣
Ŝf (t)− R̂f (t)Rf (t)

−1Sf (t)
∣

∣

∣

≤ σ−1
(

|S̃f (t)|+ |R̃f (t)||θ|
)

Hence, |θ̃| is ISS with respect to d(t).

Note that the estimated frequency ω̂i(t), i = 1, 2, · · · in
the presence of d(t) may be 0 at some t > 0, which re-
sults in a singularity issue in the amplitude and phase
estimation (see (31) and (32)). A conservative provi-
sion is that to clip the frequency estimates by enforcing
ω̂i(t) = ωmin, where ωmin is the lower bound of the input
frequencies obtained based on the a priori information.

5 Simulation Results

5.1 Identification of two EDS signals

Consider the following signal

y2(t) = 6e−0.5t sin(5t+
π

2
) + 2e−0.7t sin(2t+

π

3
) + 1.

The parameters of the kernel-based estimator are chosen
as β = 1, g = 3, σ = 1 × 10−8. For benchmarking
purposes, the solutions are compared with the algebraic
estimator developed in [11], which only estimates the
damping factors and the frequencies of a two-EDS signal.

To make a fair comparison, both methods are initialized
with the same guesses and are tuned to show similar
convergence speed in the noise-free environment, which
is verified in Figs. 1. As it can be noticed, both methods
succeed in identifying the frequencies and the damping
ratios with similar convergence speed in this scenario.
With the same tuning parameters, we compare their be-
havior in the presence of a disturbance, which is assumed
uniformly distributed within [−0.2, 0.2]. It can be seen
from and Fig. 2 that the algebraic method is more sen-
sitive to the noise and is prone to diverge as the SNR
decreases. In contrast, the proposed method shows an
enhanced noise immunity as its estimates remain accu-
rate in this case. In addition, the proposed method also
offers precise estimates of amplitudes and initial phase
angles, which are not identified by the algebraic para-
metric algorithm.

0 2 4 6 8 10
0

2

4

6

0 2 4 6 8 10
-1

-0.5

0

Fig. 1. Parameter estimation of two EDS signals in the
noise-free scenario.

5.2 Identification of three EDS signals

In this example, we consider a more challenging scenario
where the following measured signal is considered with
two nearby frequencies:

y3(t) =

3
∑

i=1

Aie
ρit sin (ωit+ φi) + 2

where A1 = 6, A2 = 4, A3 = 9, ρ1 = −0.5, ρ2 =
−0.7, ρ3 = −0.8, ω1 = 5 rad/s, ω2 = 3 rad/s, ω3 = 3.3
rad/s, φ1 = π

2 , φ2 = π
3 , φ1 = π

4 . The estimator is tuned

with: β = 1, g = 4 and σ = 1.2 × 10−9. In the noise-
free scenario (shown by the blue lines in Fig. 3), the two
nearby frequencies (ω2 and ω3) are precisely discrimi-
nated, while the other sinusoidal parameters are accu-
rately identified as well. Moreover, the estimated param-
eters when themeasurement is perturbed by a zero-mean
white noise with variance 1 × 10−3 are also depicted in
Fig. 3. Despite some degradation in the accuracy of the
estimates, the boundedness of all the signals in the sim-
ulation confirms the theoretical result about robustness
of the algorithm in facing measurement perturbations.
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0 2 4 6 8 10
0

5

0 2 4 6 8 10
-1

-0.5

0

0 2 4 6 8 10
0

5

0 2 4 6 8 10
0

2

Fig. 2. Parameter estimation of two EDS signals in the noisy
scenario.

4 5 6 7 8 9
0

5

True Estimated (Noise-free) Estimated (Noisy)

4 5 6 7 8 9
-1

-0.5

0

4 5 6 7 8 9
0

5

10

4 5 6 7 8 9
0

1

2

Fig. 3. Parameter estimation of three EDS signals with near-
by-frequencies.

6 Conclusion

In this paper, the problem of parametric identification
of a damped multi-sinusoidal signal has been addressed.
A deadbeat estimator is designed to estimate the am-
plitudes, frequencies and initial phase angles, damping

factors and the constant bias exactly within a very short
time interval. The Volterra integral operator character-
ized by a class of specialized kernel functions plays a
key role in this framework. The proposed estimation
scheme is constructed by the signals produced by this
linear operator, that is implemented as an internal stable
LTI system. Analytical results show that the presented
methodology enjoys ISS stability properties with respect
to bounded measurement perturbations. The proposed
method has been thoroughly evaluated and compared
with other published results by numerical examples.
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