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Robust Sinusoid Identification with Structured and
Unstructured Measurement Uncertainties

Gilberto Pin, Boli Chen, Thomas Parisini, and Marc Bodson

Abstract—In this note a globally stable methodology is pro-
posed to estimate the frequency, phase, and amplitude of a
sinusoidal signal affected by additive structured and bounded
unstructured disturbances. The structured disturbances belong
to the class of time-polynomial signals incorporating bothbias
and drift phenomena. Stability and robustness results are given
by resorting to Input-to-State stability arguments. Simulation
comparative results show the effectiveness of the proposed
technique.

I. I NTRODUCTION

This note deals with the problem of estimating the am-
plitude, frequency and phase (AFP) of a sinusoidal signal
by processing a measurement signal corrupted by bias, drift
and bounded unstructured disturbances. The development of
algorithms which are capable of extracting in real-time the
parameters of a sinusoid from uncertain measurements turns
out to be a very active area of research and many important
papers can be found in the literature. Contributions can be
found with impact on specific application domains like health
monitoring, power quality assessment, vibration control,peri-
odic disturbance rejection, noise cancellation, etc..

The robustness properties in the presence of external mea-
surement perturbations (both structured and unstructured),
on one hand, and the estimation accuracy, on the other,
are the most important features of AFP algorithms towards
practical implementation. Beyond some well-known important
contributions (see, for example, [1], [2], [3], [4], and the
references cited therein), the robust AFP problem has recently
received renewed attention (see, for instance, the recent con-
tributions [5], [6], [7], [8] and [9]).

Many different approaches have been proposed in the liter-
ature to address the AFP problem that are based on Kalman
and Extended Kalman filtering, adaptive notch filtering, and
Phase-Locked-Loop (PLL) estimators (a literature review of
these methods is out of the scope of the present short note).
In this respect, it is worth noting that PLL nonlinear techniques
have been recently proposed to obtain robust estimates in
the presence of noise (see [10], [11], [12], [13] and the
references therein). However, the stability results available for
the PLL nonlinear AFP algorithms provide, in most cases,
only local stability guarantees, or, when averaging analysis is
used, global results are valid only for small adaptation gains
(see [14] and [15]). Moreover, PLL schemes typically require
unbiased sinusoidal signals to ensure the convergence of the
frequency estimates toward the true value. In order to remove
this limitation, the basic PLL algorithm has been suitably
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modified in [8] to provide globally convergent estimates in the
presence of bias. An alternative globally convergent nonlinear
AFP method for estimation of a biased sinusoid has been
proposed in [7]. In the latter approach, a switching strategy is
used to reduce the influence of high-frequency measurement
noise on the estimates.

The present note deals with a novel AFP method charac-
terized by stability guarantees in the presence of a large class
of structured perturbations parametrized in the family of time-
polynomial functions. The proposed AFP method is devised in
a continuous-time setting which is useful in terms of a possible
analog implementation in electronics and power engineering
application contexts. The structured measurement disturbances
have a practical interest because they may incorporate biasand
measurement drift up to any given order. Moreover, in the
spirit of the previous work by the authors on the estimation
of unbiased harmonic signals (see [16]), the robustness of
the method against bounded unstructured perturbations (noise
or additive exogenous signals having limited amplitude) is
characterized thanks to Input-to-State-Stability (ISS) analysis.
The ISS-Lyapunov tool is also used to assess the transient
performance of the frequency-estimator and the practical con-
vergence of the estimates toward a neighborhood of the true
values in presence of non-fading perturbations.

II. PROBLEM STATEMENT AND ESTIMATION ALGORITHM

In the following, given ani-times differentiable vector of
signalsu(t) ∈ R

n, ∀t ∈ R≥0, we denote byu(i) the vector
of the i-th order time-derivative signals. Consider the nominal
sinusoidal signal

s(t) = A cos[ϑ(t)] , where ϑ(1)(t) = ω∗ , t ∈ R≥0 (1)

with the initial conditionϑ(0) = ϑ0 . In this note, we address
the task of detecting the frequencyω∗ ∈ R>0, the phaseϑ(t) ∈
R, t ∈ R≥0 and the amplitudeA ∈ R>0 on the basis of the
perturbed measurement

ŷ(t) = y(t) + d(t) , with y(t) = s(t) +

nd
∑

k=1

bkt
k−1 , (2)

where, for a given positive and known integernd, the term
∑nd

k=1 bkt
k−1 represents a time-polynomial structured exoge-

nous measurement perturbation1, with bk unknown for any
k ∈ {1, . . . , nd}, and whered(t) ∈ L 1

∞ is a bounded additive
unstructured disturbance with‖d‖∞ ≤ d, d ∈ R≥0 (referred
to asmeasurement noisein the sequel).

1In several application domains structured disturbances are affecting the
measurements and are caused by the sensing device. For example, in the
context of micro-grids, bias/drift short-time phenomena arise due to power
electronics loads. Physical transducers and A/D converters are indeed often
affected by offsets, that correspond tond = 1. In electrical systems variable
offsets induced by power electronics are present. Indeed, several sensing
devices are influenced by temperature variations that causedrift phenomena
(nd = 2).
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The proposed AFP methodology exploits the state vari-
able filtering (SVF) tool to compute the unavailable time-
derivatives ofy(t) (see [17], [18]) that are needed to remove
the effect of structured perturbations from the AFP estimates
(see also [6]). Moreover, the use of the SVF technique will be
instrumental to design the adaptive estimator in Section III.

Let us consider a simplified setting in which no mea-
surement noise is present, that is, assume for now that
d(t) = 0, ∀t ≥ 0 in (2). The SVF paradigm is based on
the computation of auxiliary filtered signalsx1(t), x2(t),. . .,
xk(t),. . ., x3+nd

(t), obtained as follows:

x
(1)
1 (t) = λ [βy(t)− x1(t)]

x
(1)
k (t) = λ [βxk−1(t)− xk(t)] , k ∈ {2, . . . , 3 + nd}

(3)
with xk(0) = xk0

, k ∈ {1, . . . , 3 + nd} and where
λ, β ∈ R>0 are tunable design parameters. Lettingx(t) ,

[x1(t), . . . , x3+nd
(t)]⊤ , we consider the following state-space

realization of the filter yielding the signalx3+nd
(t):

x
(1)(t) = Aλ,βx(t) + bλ,β y(t) ,

x3+nd
(t) = c

⊤
x(t) ,

(4)

for any initial statex(0) = x0 ∈ R
3+nd and where

Aλ,β =

















−λ 0 · · · · · · 0

βλ −λ
. . .
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0
. . .
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. . .
. . .
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0 · · · 0 βλ −λ

















, bλ,β =









βλ
0
...
0









,

c
⊤ = [ 0 · · · 0 1 ] .

In view of the proposed filter’s structure, it follows that
c
⊤
A

k
λ,β bλ,β = 0, k ∈ {1, . . . , 1 + nd} . Then

x
(k)
3+nd

(t) = c
⊤
A

k
λ,βx(t), k ∈ {1, . . . , 2 + nd}

x
(3+nd)
3+nd

(t) = c
⊤
A

2+nd

λ,β (Aλ,βx(t) + bλ,βy(t)) .
(5)

The Laplace transform of the measured signal is given by

L [y](s) = A
s cos(ϑ0)− ω∗ sin(ϑ0)

s2 + ω∗2
+

nd
∑

k=1

bk
(k − 1)!

sk
.

Then, by neglecting the initial conditions of the internal filter’s
states (the effect of these initial conditions will be consid-
ered in the subsequent analysis) and by definingHk(s) ,

βkλk/(λ+ s)k , the Laplace transform of thend-th time-
derivative ofx3+nd

is

L [x
(nd)
3+nd

](s) = H3+nd
(s)A

s cos(ϑ0)− ω∗ sin(ϑ0)

s2 + ω∗2
snd

+ H3+nd
(s)

nd
∑

k=1

bk(k − 1)!snd−k

that gives, in the time-domain, the following asymptotic sinu-
soidal steady-state time-behaviourx (nd)

3+nd
(t) of x

(nd)
3+nd

(t) :

x
(nd)
3+nd

(t) = Az cos[ϑz(t)] , (6)

where

Az , Aω∗nd |H3+nd
(jω∗)|,

ϑz(t) , ϑ(t) + ∠H3+nd
(jω∗) +

π

2
nd . (7)

Consider the vector of auxiliary derivatives

z(t) = [ z0(t), z1(t), z2(t), z3(t) ]
⊤

,

[

x
(nd)
3+nd

(t),−x
(nd+1)
3+nd

(t),−x
(nd+2)
3+nd

(t), x
(nd+3)
3+nd

(t)
]⊤

.

(8)

The asymptotic result (6) implies thatz(t) tends asymptoti-
cally to a sinusoidal stationary equilibrium

z(t) = [ z0(t), z1(t), z2(t), z3(t) ]
⊤ ,

Az

[

cos[ϑz(t)], ω
∗ sin[ϑz(t)], ω

∗2 cos[ϑz(t)], ω
∗3 sin[ϑz(t)]

]⊤

.

(9)

Let us now assume that the auxiliary derivative vectorz(t)
has reached the stationary sinusoidal equilibrium regimez(t).
At any time instantt, the squared frequencyΩ∗ = ω∗2 can be
computed by the following two possible algebraic relations:

Ω∗ = z2(t)/z0(t), if t : ϑz(t) 6= π/2 + iπ or

Ω∗ = z3(t)/z1(t), if t : ϑz(t) 6= iπ, i ∈ Z .

As the actual phaseϑz(t) is not known, it is not possible to
choose a priori which of the two expression has to be used.
We propose to minimize the following mixed objective:

Ω∗ = arg min
Ω∈R>0

(Ωz0(t)− z2(t))
2
+ (Ωz1(t)− z3(t))

2

= [z0(t)z2(t) + z1(t)z3(t)]/{[z0(t)]2 + [z1(t)]
2} (10)

GivenΩ∗, to avoid the sign dichotomy in the determination of
ω∗, we use the positive-sign convention and pickω∗ =

√
Ω∗.

Note that the previous expression holds for anyt at the
sinusoidal equilibrium, due to the orthogonality ofz0(t) and
z1(t). Moreover, from (9) we obtainω∗2[z0(t)]

2 + [z1(t)]
2 =

A2
zω

∗2 which yields Az =
√

[Ω∗(z0(t))2 + (z1(t))2]/Ω∗

and ϑz(t) = ∠ [ω∗z0(t) + j z1(t)] . From (7), we finally get:

A =
Az

ω∗nd

[
√

λ2 + ω∗2/(βλ)
]3+nd

,

ϑ(t) = ϑz(t) + (3 + nd) atan (ω
∗/λ)− nd

π

2
. (11)

To sum up, the equilibrium trajectory of an AFP estimator in
the presence of structured perturbations has been addressed by
introducing auxiliary filtered signals and by solving a scalar
algebraic equation inΩ∗ thus obtaining frequencyω∗, as well
as amplitude and phase (see (11)).

III. I NPUT-TO-STATE STABLE FREQUENCYESTIMATION

In this section, the convergence of an adaptive estimator
to the above sinusoidal equilibrium trajectory is addressed
taking into account that during transient the stationary signals
z0(t), z1(t), z2(t), z3(t) are of course not available and that
noise may affect the measurements. Given

Λ ,













0 c
⊤
A

nd

λ,β

0 −c
⊤
A

1+nd

λ,β

0 −c
⊤
A

2+nd

λ,β

c
⊤
A

2+nd

λ,β bλ,β c
⊤
A

3+nd

λ,β













, (12)

the vector of auxiliary derivativesz(t) can be expressed in
compact form (see (5)) asz(t) = Λ[y(t) , x(t)]⊤ .

First, observe that there exists an (unknown) initial filter’s
statex(0) = x0 giving rise to a filtered state trajectoryx(t)
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whose projection on the subspace containingz(t) matches the
stationary sinusoidal behavior since the initial time-instant t =
0 , that is:

x(t), t ∈ R≥0 : z(t) = Λ [y(t) , x(t)]
⊤ ≡ z(t), ∀t ∈ R≥0.

(13)
Now, let us consider the measurement signalŷ(t) given by
(2). Moreover, let us denote bŷx(t) the state vector of the
filter evolving from an arbitrary initial statêx0 according to

x̂
(1)(t) = Aλ,βx̂(t)+bλ,β ŷ(t) , x̂3+nd

(t) = c
⊤
x̂(t) , (14)

and let ẑ(t) , [ ẑ0(t), ẑ1(t), ẑ2(t), ẑ3(t) ]
⊤ be the vector of

the computable perturbed derivative

ẑ(t) = Λ [ŷ(t) , x̂(t)]
⊤

. (15)

During the transient behavior and also because of the presence
of measurement noise, the orthogonality ofẑ0(t) and ẑ1(t)
cannot be guaranteed and, of course, in general,x̂0 6= x0.
Therefore, (10) cannot be directly used. Instead, we resortto a
singularity-free dynamic optimization scheme with guaranteed
asymptotic convergence properties. The following frequency
adaptation law using the perturbed auxiliary filtered signals is
thus proposed (µ ∈ R>0 is a suitable tunable parameter):

Ω(1) = −µ {[ẑ0ẑ2 + ẑ1ẑ3] [Ωẑ0 − ẑ2]ẑ0 + [(ẑ0)
2 + (ẑ1)

2]

× [Ωẑ1 − ẑ3]ẑ1} . (16)

To characterize the stability properties of the frequency es-
timation system (14), (15), and (16), let us first analyze the
stability of the filter dynamics. Introducing the error vector
with respect tox(t) (see (13))x̃(t) , x̂(t)−x(t) and defining
d(t) = ŷ(t)− y(t) , the dynamics of̃x(t) is

x̃
(1)(t) = Aλ,βx̃(t) + bλ,β d(t) , (17)

where x̃(0) = x̂0 − x0 . As the matrix Aλ,β is Hur-
witz, there exists a positive definite matrixP that solves
the linear Lyapunov’s equation:PAλ,β +A

⊤
λ,βP = −I. Let

W (x̃) , x̃
⊤
Px̃; then there exist two positive scalarsa1, a2 ∈

R>0 such that a1|x̃|2 ≤ W (x̃) ≤ a2|x̃|2 , ∀x̃ . The
derivative of W along the system’s state trajectory satis-

fies
∂W

∂x̃
(Aλ,βx̃+ bλ,βd) ≤ −|x̃|2 + 2 ‖P‖ |bλ,β | |d| |x̃| .

For any 0 < ǫ < 1, let X (s) ,
2 ‖P‖ |bλ,β |

1− ǫ
s . with

s ∈ R≥0. It is easy to show that|x̃| ≥ X (|d|) ⇒
∂W

∂x̃
(Aλ,βx̃+ bλ,βd) ≤ −|x̃|2, and that the system is ISS

with asymptotic gainγx(s) = a1
−1a2 X (s) . In view of the

just shown ISS property of the linear auxiliary filter (17), for
any arbitraryν ∈ R>0 and for any finite-norm initial error
x̃0, the error vector̃x(t) will enter in a closed ball of radius
γx(‖d‖∞) + ν ≤ γx(d) + ν in a finite timeT

x̃0,ν . In view
of (15), the vector̃z(t) , ẑ(t)− z(t) will enter in finite-time
Tδ = T

x̃0,ν (depending on initial conditions) in a closed ball
of radiusγz(d) + δ centered at the origin, with

δ = λν , γz(s) = λ (γx(s) + s), ∀s ∈ R≥0, (18)

whereλ = ‖Λ‖. Let us now write the adaptation law in terms
of z̃:

Ω(1) = −µ{[(z0 + z̃0)(z2 + z̃2) + (z1 + z̃1)(z3 + z̃3)]

× [Ω(z0+ z̃0)− (z2+ z̃2)](z0+ z̃0)+[(z0+ z̃0)
2+(z1+ z̃1)

2]

× [Ω(z1 + z̃1)− (z3 + z̃3)](z1 + z̃1)}

and hence, after a little algebra,

Ω(1) = −µ{[z0z2 + z1z3][Ωz0 − z2]z0 + [(z0)
2 + (z1)

2]

× [Ωz1 − z3]z1}+ µf̃z(t, z̃) + µf̃Ω(t, z̃)Ω (19)

where

f̃z(t, z̃) , −[(z0 + z̃0)(z2 + z̃2) + (z1+ z̃1)(z3 + z̃3)]

× [−(z2 + z̃2)] z̃0 + [(z0 + z̃0)
2 +(z1 + z̃1)

2] [−(z3 + z̃3)] z̃1
+ [z̃0z2 + z̃0z̃2 + z̃2z0 + z̃1z3 + z̃1z̃3

+ z̃3z1][−(z2 + z̃2)]z0 (20)

and

f̃Ω(t, z̃) , −[(z0+z̃0)(z2+z̃2)+(z1+z̃1)(z3+z̃3)] [z0 + z̃0] z̃0

+ [(z0 + z̃0)
2 + (z1 + z̃1)

2] [z1 + z̃1] z̃1
+ [z̃0z2 + z̃0z̃2 + z̃2z0 + z̃1z3 + z̃1z̃3 + z̃3z1] (z0 + z̃0) z0

+ [(2z0 + z̃0)z̃0 + (2z1 + z̃1)z̃1] [z1 + z̃1] z1. (21)

The adaptation law (16), rewritten in terms of the elements of
the disturbance-free vectorz(t) and of z̃(t), is described by
(19). Note that the functions̃fz(t, z̃) and f̃Ω(t, z̃) introduced
in (19) and defined in (20) and (21), verifỹfz(t, 0) =
0, f̃Ω(t, 0) = 0 for all t ∈ R≥0. Moreover, being the
vector z(t) bounded (this can be deduced from (8), since
the filtered derivativesx(nd)(t), . . . , x(nd+3)(t) are bounded
for time-polynomial structured uncertainties of ordernd) and
owing to the boundedness ofz0(t), . . . , z3(t), there exist two
K∞-functionsσz(·) andσΩ(·) such that

|f̃z(t, z̃(t))| ≤ σz(|z̃(t)|) , |f̃Ω(t, z̃(t))| ≤ σΩ(|z̃(t)|) .
(22)

Now, for a given a squared-frequency estimateΩ, let us
consider the following function ofΩ andz(t):

J(Ω, z(t)) ,
z0(t)z2(t) + z1(t)z3(t)

[z0(t)]2 + [z1(t)]2
[Ωz0(t)− z2(t)]

2

+ [Ωz1(t)− z3(t)]
2 . (23)

After some algebra, the function (23) can be rewritten as

J(Ω, t) = Ω∗A2
z (Ω− Ω∗)

2 (24)

which is a positive-definite function depending only on the
frequency-estimation error̃Ω , Ω−Ω∗. Now, with some abuse
of notation, lettingV (Ω̃) , J(Ω, z(t)) be a candidate ISS-
Lyapunov function for the estimation error’s dynamics, we
obtain

∂ V

∂Ω̃
Ω(1) = −2µ

[

(z0)
2 + (z1)

2
]

× [Ω∗(Ωz0 − z2)z0 + (Ωz1 − z3)z1]
2

+ 2µ(f̃z(t, z̃) + f̃Ω(t, z̃)Ω)[Ω
∗(Ωz0 − z2)z0 + (Ωz1 − z3)z1]

≤ −2µA6
z min{1,Ω∗}Ω∗2 (Ω− Ω∗)2

+ 2µA2
zΩ

∗ |Ω− Ω∗| (σz(|z̃|) + σΩ(|z̃|)Ω)
≤ −µ(α∗ − σ2(|z̃|))|Ω̃|2 + µσ1(|z̃|)|Ω̃| , (25)

where

α∗ , 2A6
z min{1,Ω∗}Ω∗2,

σ1(|z̃(t)|) , 2A2
zΩ

∗(σz(|z̃(t)|) + Ω∗σΩ(|z̃(t)|)),
σ2(|z̃(t)|) , 2A2

zΩ
∗ σΩ(|z̃(t)|) . (26)

Chris
Rectangle
should be [y(t)^{\top} , \bar{\bf x}(t)^{\top}]^{\top}

Chris
Rectangle
should be [\hat{y}(t)^{\top} , \hat{\bf x}(t)^{\top}]^{\top}
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The ISS stability properties of the frequency estimator are
characterized in the following result.

Theorem 3.1 (ISS of the adaptive frequency identifier):
Given the sinusoidal signals(t) generated by (1) and the
perturbed measurement model (2), the AFP estimation system
given by (14), (15) and (16) is ISS with respect to any
additive disturbance signald(t) ∈ L

1
∞ such that

‖d‖∞ < d < γ−1
z

(

σ−1
2 (α∗)

)

(27)

whereα∗ andσ2 are given by (26) andγz is given by (18).
Proof: Due to the ISS property of the auxiliary filter (see

(18)), for any positiveδ ∈ R>0 there exists a finite time-instant
Tδ such that|z̃(t)| ≤ γz(d) + δ, ∀t ≥ Tδ, which implies

σ2(|z̃(t)|) ≤ σ2(γz(d) + δ), ∀t ≥ Tδ. (28)

If the bound on disturbancesd verifies

α∗ − σ2(γz(d) + δ) > 0, (29)

for someδ ∈ R>0, then, for anyt > Tδ, the following bound
on the derivative ofV can be established

∂ V

∂Ω̃
Ω(1) ≤ −µ[α∗ − σ2(γz(d) + δ)]|Ω̃|2 + σ1(|z̃|)|Ω̃|

≤ −c |Ω̃|2 + µσ1(|z̃|)|Ω̃| , t ≥ Tδ (30)

where c , µ
[

α∗ − σ2(γz(d) + δ)
]

is a positive constant.
Finally, for any0 < ǫ < 1, let

XΩ(s) =
1

c(1 − ǫ)
µσ1(s) . (31)

It is easy to prove that

|Ω̃(t)| ≥ XΩ(|z̃(t)|) ⇒ ∂ V

∂Ω̃
Ω(1)(t) ≤ −c|Ω̃(t)|2, ∀t ≥ Tδ.

(32)
Considering that, for any finite initial conditionΩ0, the deriva-
tive Ω(1)(t) is bounded in the interval[0, Tδ], thenΩ(Tδ) is
finite andΩ̃(Tδ) is, in turn, finite. Hence, thanks to (30) and
(32), for any disturbance signald(t) bounded by (27),V is an
ISS-Lyapunov function for the frequency estimator dynamics
with respect to thẽz(t) input. The dynamics of̃z being
ISS with respect to the disturbanced(t), it follows that the
frequency estimation system is in turn ISS with respect tod(t),
that is, there exist aKL-functionβ(·, ·) and aK-functionγΩ(·)
such that|Ω̃(t)| ≤ β(Ω̃(Tδ), t−Tδ)+γΩ(‖d‖∞). In particular,
the asymptotic ISS gain is given byγΩ(s) = XΩ (γz(s)) , s ∈
[0, d) .

It is worth noting that the auxiliary filtered signals provided
by the pre-filtering components are combined nonlinearly to
obtain a dynamic adaptation law for the squared-frequency
which allows to conclude the ISS of the estimation system
with respect to additive measurement perturbations.

Remark 3.1 (Practical Stability and Accuracy):The ISS
stability analysis can be used to provide some tuning
guidelines for the parameters of the proposed AFP scheme.
The inequality (29) establishes a bound on the unstructured
perturbations that must be fulfilled to ensure practical
stability. While α∗ depends on the true signal’s parameters,
the function γz(·) can be shaped arbitrarily by tuning the
parameterλ of the pre-filter, thus allowing to weaken the
noise bound depending on the application. In this respect,
it is worth noting that the parameterµ has no effect on the
practical-stability noise bound. Conversely, assuming that the
practical stability condition (29) is met by a proper choice

of λ, then the adaptation parameterµ can be decreased to
reduce the asymptotic ISS gain (see (31)), which corresponds
to an increased frequency-estimation accuracy in case of
non-fading unstructured perturbations. Note that a smaller
µ also leads to a slower decrease of the estimation error in
the adaptation transient, due to a typical trade-off between
asymptotic accuracy and convergence speed. Finally, the
filter gain-parameterβ adds a useful degree of freedom in
designing the SVF.

Remark 3.2 (Bias due to digital implementation):From a
practical perspective, one of the issues that deserve investiga-
tion is the steady-state bias in the frequency estimate caused
by the digital implementation of the proposed continuous-
time AFP methodology. Without loss of generality and for
the sake of simplicity, let us address the simple case in which
no structured exogenous perturbation affects the measurement
equation (2) (this simpler case has been addressed in [16]).
Considering a Euler discretization with sampling-timeT ,
from the filter equations (3), we immediately getXk(z) =

(λβT )k

(z−1+λT )k
Y (z), k = 1, 2, 3 . After discretization and some

simple algebra, theZ-transforms of the auxiliary derivatives
z0, z1, z2 (see (8)) are given byZ0 = (λβT )3

(z−1+λT )3 Y (z) , Z1 =

−λ3β3T 2 z−1
(z−1+λT )3 Y (z) , Z2 = −λ3β3T (z−1)2

(z−1+λT )3 Y (z) ,

and Z3 = λ3β3 (z−1)3

(z−1+λT )3 Y (z) . Now, the squared frequency
after discretization is given (in the discrete-time domain) by
(see (10)) Ωdiscr , z0dz2d+z1dz3d

z2

0d
+z2

1d

, where z0d, z1d, z2d, z3d
denote the discrete-time sequences corresponding to the auxil-
iary derivatives. After some lengthy algebra, we getΩdiscr =

− (z−1)2

T 2 . Then, for a given frequencyω∗ the discrete-
time measurements arey(k) = A cos(ω∗Tk) which gives

Ωdiscr = −Re[(ejω
∗T )2]

T 2 = 2 cos(ω∗T )(1−cos(ω∗T ))
T 2 and hence

the steady-state value of the frequency after discretization is

ωdiscr =
√

2 cos(ω∗T )(1− cos(ω∗T ))/T . (33)

Using (33), the bias caused by the discretization of the
algorithm can be exactly eliminated.

IV. SIMULATION RESULTS

Let us first consider a sinusoidal signalv(t) = σ(t) +
5 sin[ω(t)t + π/4] + d(t) , where d(t) is a L 1

∞ random
noise with uniform distribution in the interval[−0.5, 0.5]. The
adaptation laws of the AFP technique are discretized by the
Euler forward method with sampling periodTs = 1× 10−3s.
Time-varying bias and frequency scenarios are considered,
namely: ω(t) = 3 , for 0 ≤ t < 15s and ω(t) = 5 , for
t ≥ 15s ; σ(t) = 1 , for 0 ≤ t < 25s and σ(t) = 3 , for
t ≥ 25s .

For the sake of comparison, the AFP algorithms presented
in [7] and [8] are considered. These two methods are compared
with the one proposed in the present note by considering the
same initial condition̂ω(0) = 1 for the three AFP algorithms
and by choosing the respective tuning parameters in such a
way that each algorithm shows the best performances for the
given scenario with a comparable initial transient behavior.
More specifically, for method [7], we setλ = 3, k = 1.2
whereas, for method [8], we setKs = 1, λ = 1, ωs = 2.7.
Finally, the parameters of the proposed algorithm are given
by λ = 2, β = 0.7, µ = 5.

It is worth noting from Fig. 1 that all the three AFP
estimators succeeded in tracking sudden changes of frequency
and bias in presence of noise. However, AFP method proposed
in [7] is a little more sensitive to a frequency changes
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Fig. 1. Time-behavior of the estimated frequency by using the proposed
AFP method (blue line) compared with the time behaviors of the estimated
frequency by the AFP methods [8] (red line) and [7] (green line), respectively.
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Fig. 2. Estimated sinusoidal signal by the proposed AFP method (blue line).
To appreciate the time-behavior of the estimated signal, the the biased noisy
input is depicted (red line), as well as the same signal without the time-varying
bias term (green line).

and requires quite a long response time to a bias variation.
Fig. 2 shows the time-behavior of the reconstructed sinusoidal
signal by the proposed AFP technique. As can be noticed,
the sinusoidal signal is estimated successfully even in the
presence of noise and time-varying true frequency and bias.
For the sake of completeness, in Fig. 3, the time-behaviors of
the estimated frequency concerning the previously considered
three AFP methods are shown in two cases in which higher
levels of noise affect the input. Note that the robustness of
AFP method [7] can be improved by exploiting the switching
procedure proposed by the authors consisting in adapting the
values of the tuning parameters so as to attenuate the effects
of the noise at the expense of increasing the transient modes
of behavior. Moreover, although method [8] is capable to
provide slightly better steady state behaviour, the proposed
AFP approach offers better transient behavior during bias and
frequency variations.

It is worth noting that a fundamental role is played by the
adaptation mechanism in terms of ensuring good transient per-
formance in the frequency estimate mode of behavior. In this
connection, in Fig. 5 we compare the behavior of the adaptive
algorithm with the unadapted technique in which the output
of the filter is directly fed into the estimate equation (10).As
expected, the transient performance in the unadapted case is
significantly worse.

Moreover, it is also important to notice that the tuning pa-
rametersλ andβ have a significant influence on the AFP per-
formances. To gain more insight into this important practical
aspect, let us refer to Fig. 4. As shown in Fig. 4, the productλβ
strongly influences the noise rejection performances: smaller
values ofλβ give rise to better noise rejection. Instead, for
a given value ofλβ, choosing smaller values ofβ leads to
better transient performances.

Let us now consider a different scenario: a sinusoidal signal
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Fig. 3. Time-behavior of the estimated frequency by using the proposed
AFP method (blue line) compared with the time behaviors of the estimated
frequency by the AFP methods [8] (red line) and [7] (green line), respectively.
a) d(t) random noise with uniform distribution in the interval[−5, 5]; b) d(t)
random noise with uniform distribution in the interval[−10, 10].
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Fig. 5. Comparison of the adaptive and unadaptive behaviorsof the frequency
estimate.

incorporating a time-polynomial structured perturbation(drift)
is considered, namelyv(t) = 5 sin[3t+π/4]+1+0.5t+d(t) ,
where d(t) is a random disturbance with the same charac-
teristics as in the previous example. The initial conditionis
ω̂(0) = 1 and the tuning parameters for the AFP proposed
method are now set asλ = 3, β = 0.5, µ = 10. The
results of the simulation are shown in Fig. 6, where the
successful detection of the frequency, amplitude and sinusoidal
components can be observed even in presence of noise and of
the drift term.

V. CONCLUDING REMARKS

In this note, a new algorithm is proposed for the robust
estimation of the frequency, the phase and the amplitude of
a sinusoidal signal, in presence of structured uncertaintyand
bounded additive disturbances. Constant measurement biasand
both linear and higher-order polynomial drift can be handled
by the proposed methodology. The convergence of the AFP
system is analyzed by a ISS analysis, that also provides
tuning guidelines for the parameters of the proposed estimation
algorithm, depending on the assumed noise level and on the
required asymptotic accuracy. Simulations have shown the
effectiveness of the estimation technique.
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Fig. 4. (a) Estimated frequencies without unstructured noise and (b) with random noised(t) uniformly distributed in the interval[−2.5, 2.5] using different
values ofλ andβ such thatλβ = 1.2. (c) and (d) Same as for (a) and (b) withλβ = 1.8.
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Fig. 6. Estimated sinusoidal signal by the proposed AFP method.
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