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Abstract—In this note a globally stable methodology is pro- modified in [8] to provide globally convergent estimatestie t
) J p
posed to estimate the frequency, phase, and amplitude of apresence of bias. An alternative globally convergent meai
sinusoidal signal affected by additive structured and bouded AEp method for estimation of a biased sinusoid has been
unstructured disturbances. The structured disturbances lelong : P
to the class of time-polynomial signals incorporating bothbias proposed in [7]. In the latter approach, a switching straieg
and drift phenomena. Stability and robustness results are igen Used to reduce the influence of high-frequency measurement
by resorting to Input-to-State stability arguments. Simulation noise on the estimates.
comparative results show the effectiveness of the proposed The present note deals with a novel AFP method charac-
technique. terized by stability guarantees in the presence of a lamgscl
of structured perturbations parametrized in the familyimiet
I. INTRODUCTION polynomial functions. The proposed AFP method is devised in
Thi te deals with th bl f estimating th a continuous-time setting which is useful in terms of a gassi
_his note deals with the problem of estimating the amy, 544 jmplementation in electronics and power engingerin
plitude, frequency and phase (AFP) of a sinusoidal signgljication contexts. The structured measurement dishoes
by processing a measurement signal corrupted by bias, dfiltue 5 nractical interest because they may incorporatehihs
and bounded unstructured disturbances. The development o rement drift up to any given order. Moreover, in the
algorithms which are capable of extracting in real-time e, o the previous work by the authors on the estimation
parameters of a sinusoid from uncertain measurements tufaS . niased harmonic signals (see [16]), the robustness of
out to be a \E)eryf aCt'(‘j’e. art%a cl"; reiearchcan?_ga:py mportgqé method against bounded unstructured perturbatiorise(no
papers can be tound In the literaturé. Lontributions can BE 5qqitive exogenous signals having limited amplitude) is
found with impact on specific application domains like healty, ;- terized thanks to Input-to-State-Stability (ISBlgsis.
mdqnl'(tjqutngbpower quatI]ty assessment, \I/llt)t(atlontconmetl— The 1SS-Lyapunov tool is also used to assess the transient
odic disturbance rejection, noise cancellation, etc.. ; :
The robustness Sroperties in the presence of external mge[formance of the frequency-estimator and the practioal c
. gence of the estimates toward a neighborhood of the true
surement perturbations (both structured and unstructur lues in presence of non-fading perturbations
on one hand, and the estimation accuracy, on the other, '
are the most important features of AFP algorithms towards
practical implementation. Beyond some well-known impoftta || progLEM STATEMENT AND ESTIMATION ALGORITHM
contributions (see, for example, [1], [2], [3], [4], and the _ _ _ _ _
references cited therein), the robust AFP problem has tigcen In the following, given ani-times differentiable vector of
received renewed attention (see, for instance, the reamt csignalsu(t) € RVt € R>o, we denote byu® the vector
tributions [5], [6], [7], [8] and [9]). of the i-th order time-derivative signals. Consider the nominal
Many different approaches have been proposed in the litsirusoidal signal
ature to address the AFP problem that are based on Kalma 1 .
and Extended Kalman filtering, adaptive notch filtering, and® t) = Acos[d(t)], where ¥M(1)=w", teRs (1)
Phase-Locked-Loop (PLL) estimators (a literature revidw @ith the initial condition?(0) = ;. In this note, we address
these methods is out of the scope of the present short notag task of detecting the frequency € R, the phase(t) e

In this respect, it is worth noting that PLL nonlineartedues R ¢ ¢ R-, and the amplituded € R~ on the basis of the
have been recently proposed to obtain robust estimatespiétturbed measurement
the presence of noise (see [10], [11], [12], [13] and the

references therein). However, the stability results awdd for N . b1
the PLL nonlinear AFP algorithms provide, in most cases, y(t) = y(t) +d(t), with y(t) = s(t) + Zbkt , @)
only local stability guarantees, or, when averaging ansligs k=1

used, global results are valid only for small adaptatiomgaiwhere, for a given positive and known integey, the term
(see [14] and [15]). Moreover, PLL schemes typically requiry ", b;t*~! represents a time-polynomial structured exoge-
unbiased sinusoidal signals to ensure the convergenceeof tlous measurement perturbatipmvith b, unknown for any
frequency estimates toward the true value. In order to remawv € {1,...,n4}, and wherei(t) € .Z. is a bounded additive
this limitation, the basic PLL algorithm has been suitablynstructured disturbance withi||__ < d, d € R, (referred

to asmeasurement noise the sequel). B
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The proposed AFP methodology exploits the state vaGonsider the vector of auxiliary derivatives
able filtering (SVF) tool to compute the unavailable time-
derivatives ofy(t) (see [17], [18]) that are needed to remove z(t) = [20(t), 21 (), z2(t), z3(t) ] T
the effect of structured perturbations from the AFP estasat

(see also [6]). Moreover, the use of the SVF technique will be=

instrumental to design the adaptive estimator in Sectibn I

Let us consider a simplified setting in which no me
surement noise is present, that is, assume for now
d(t) = 0,Vt > 0 in (2). The SVF paradigm is based o
the computation of auxiliary filtered signals (¢), z2(t),. .
2k (t),. .., x34n,(t), obtained as follows:

71 (0) = MBy(t) — (1)

o () = A[Baia () — (1),
with 24 (0) Tre, k€ {1,...,3 + ng} and where
A\, B € Ry are tunable design parameters. Lettingt) =

[1(t), ..., T34n, ()], we consider the following state-spac
realization of the filter yielding the signals,,, (¢):

x(D(t) = Axpx(t) + bagy(t),

kE{Q,...,3+TLd}

Eyn (1) = € x(1) @
for any initial statex(0) = xo € R3*"« and where

-2 0 0

BA —A : 4
Axs=1| o ;o bas=1 . |,

5 oy 0

0 0 BA —\
c'=[0 0 1]

In view of the proposed filter's structure, it follows that

CTA)]\C’ﬁb,\ﬁ:O, ke{l,...,14+n4}. Then

o (1) = cTAf gx(1), k € {1,...,2+ ng}

PO (0) = T A (Ay x(t) + b ay(0)

The Laplace transform of the measured signal is given by
) N~y (k1)
+ ; bx, o .

Then, by neglecting the initial conditions of the internteéfi's
states (the effect of these initial conditions will be cahsi
ered in the subsequent analysis) and by definfifig(s) =
BEAR /(A + s5)k, the Laplace transform of they-th time-
derivative ofzs, ., is

®)

scos(g) — w* sin(do
s2 + w*?

Zlyl(s) = A

scos(g) — w* sin(vy)

52 + w*?

nqg
+ Hainy(s) D bk — 1)lsme*
k=1

L1 1(5) = Hapng(5)A

that gives, in the time-domain, the following asymptoticusi
soidal steady-state time—behaviomfjﬁf}d () of 2" (#):

3+ng
T4 (1) = A, cos[9. (1)), (6)
where
Az & Aw™ [Hypn, (jw')],
92(t) 2 0(t) + LHz, (") + 2ng. (7)

2

n

(na)

(na+1)
l‘3+”d

(na+2)
_m3+nd

34+ng (ﬁ) m(nd+d)

(*), (1), —@ am]
(®)

ol

t;ﬁ e asymptotic result (6) implies thatt¢) tends asymptoti-

cally to a sinusoidal stationary equilibrium

Z(t) = [Zo(t), 71(8), Z2(t), Z3(t) | T 2
A, [cos[ﬁz(t)], w* sin[). ()], w*? cos[t (t)], w*® sin[0), (¢)]
)

Let us now assume that the auxiliary derivative vect()
has reached the stationary sinusoidal equilibrium regitage
At any time instant, the squared frequensy* = w*? can be

T

%omputed by the following two possible algebraic relations

Q" =Z3(t)/Zo(t), if t : 9,(¢t) #7/2+4ir or
O =7z3(t)/Z1(t), ift: 9,(t) #im, i €Z.
As the actual phasé.(t) is not known, it is not possible to

choose a priori which of the two expression has to be used.
We propose to minimize the following mixed objective:

0" =arg min (QZ(t) - Z2(1))” + (QZ1(1) - Z3(t)”
= [Fo(t)22(t) + 21()Zs(1)] /{2 (1) + ZL(1)]*}  (10)

GivenQ*, to avoid the sign dichotomy in the determination of
w*, we use the positive-sign convention and pick= v/Q*.
Note that the previous expression holds for anyt the
sinusoidal equilibrium, due to the orthogonality @f(¢) and
Z1(t). Moreover, from (9) we obtainu*2[zo(t)]2 + [z1()]2 =
A2w*? which yields A, = /[Q*(Zo(t))? + (Z1(1))2]/Q*
and 9,(t) = £[w*Zo(t) + jZ1(¢)] . From (7), we finally get:

[ A2 w2 /(B)\)} T

9.(t) + (3 + ng) atan (wW*/X) — ndg . (1Y)

- (w*Nd

0(t)

To sum up, the equilibrium trajectory of an AFP estimator in
the presence of structured perturbations has been addiegse
introducing auxiliary filtered signals and by solving a scal
algebraic equation if2* thus obtaining frequenay*, as well

as amplitude and phase (see (11)).

IIl. | NPUT-TO-STATE STABLE FREQUENCY ESTIMATION

In this section, the convergence of an adaptive estimator
to the above sinusoidal equilibrium trajectory is addrdsse
taking into account that during transient the stationagyais
Zo(t),Zz1(t), Z2(t), Z5(t) are of course not available and that
noise may affect the measurements. Given

0 cTAYY
Al 0 —cTA "
- T A 2+n4 ’ (12)
0 —c AA-B
CTAizndb)\ﬁ CTA}?End

the vector of auxiliary derivativeg(¢) can be expressed in
compact form (see (5)) as(t) = Afy(t), x(¢)]".

First, observe that there exists an (unknown) initial fiter
statex(0) = X giving rise to a filtered state trajectomy(t)



whose projection on the subspace containifig matches the and hence, after a little algebra,
stationary sinusoidal behavior since the initial timetams ¢t =
0, that is: QW = —p{[20%2 + 7175] (%0 — Z2JZ0 + [(20)® + (21)°)]

%(t),t € Rsg : 2(t) = Ay(t), X(8)] [2Z(t), ¥t € Rxo. x [z — 2]z} + pfa(,2) + pnfa(t,2)Q (19)

. . . (13) where

Now, let us consider the measurement sighgl given by

(2). Moreover, let us denote by(t) the state vector of the 7 (¢.2) 2 —[(Zy + Z0)(Z2 + 22) + (Z1+ £1)(Z3 + 33)]

filter evolving from an arbitrary initial stat&, according to - N2, = 22 -
X [=(Z2 + 22)] 20 + [(Zo + 20)" + (Z1 + 21)7] [ (=3 + 23)] 21

)A((l)(t) = A)\,ﬁ}t(t) + b/\,B:’Q(t) ) :%SJrnd (t) - CT)A((t) , (14) + [5052 + ZpZo + Zoz0 + 2123 + Z123
and letz(t) £ [20(t), 21(t), 22(t), 23(t)]T be the vector of + Zsz][-(Z2 + 22)]20  (20)
the computable perturbed derivative and
2(t) = N [g(t), %(t)] " 15 Fo e e s
h Z( )b h [y( )7 :( |>] b f th ( ) fQ(t,Z) = 7[(ZO+ZO)(Z2+22>+(Z1+21)(ZS+23)] [Z() + Z()] 20
During the transient behavior and also because of the presen T
of measurement noise, the orthogonality Zft) and 2, (t) o +~[(NZO +~ZO) + Ezi * Zf) N] 71 * 2l L
cannot be guaranteed and, of course, in gendmal# X,. T 2072 + Z0%2 + 2220 + 2173 + 2153 + Z321] (20 + Z0) 20
Therefore, (10) cannot be directly used. Instead, we résart + (220 + 20)20 + (221 + 21) 21 [21 + Z21] 21 (22)

singularity-free dynamic optimization scheme with guaeaa
asymptotic convergence properties. The following freqyen
adaptation law using the perturbed auxiliary filtered sigis
thus proposedy( € R+ is a suitable tunable parameter):

The adaptation law (16), rewritten in terms of the elemeifits o
the disturbance-free vectai(t) and ofz(t), is described by
(19). Note that the functiong. (¢,z) and fq(t,z) introduced
in (19) and defined in (20) and (21), verify.(¢,0) =
QW = — {2020 + £123] [Q20 — %2)%0 + [(20)2 + (21)2] 0, fa(t,0) = 0 for all ¢ € Rso. Moreover, being the
5 215 vector z(t) bounded (this can be deduced from (8), since
x [Q%1 — 23)21}. (16) 8 L ) )
_ 3 . the filtered derivativese("4)(t),...,z("¢+3)(®) are bounded
To characterize the stability properties of the frequensy €for time-polynomial structured uncertainties of ordes) and
timation system (14), (15), and (16), let us first analyze thfwing to the boundedness B (t), ..., Z3(t), there exist two
stability of the filter dynamics. Introducing the error vect 1 -functionso.(-) andoq(-) such that
with respect ta(t) (see (13))x(t) = %(t)—x(t) and defining

d(t) = §(t) — y(t), the dynamics o&k(t) is |2t 2())] < o-(12()]), [ falt,2(1))] < oa(|z(t)]) 22)
W (t) = Ay x(t) + brgd(t), (17) Now, for a given a squared-frequency estimate let us
where %(0) = %o — X. As the matrix Ay s is Hur- consider the following function of2 andz(t):

witz, there exists a positive definite matrR that solves Z0(£)Z2 () + Z1 (£)Za(t
the linear Lyapunov's equatioPA, s + A} ;P = —1. Let J(Q,zZ(t) = Zng% - ;((gﬁz( )
W (%) £ x"Px; then there exist two positive scalars, a; € 0 '

[QZo(t) — Z2(t))?

_ — 2
R.o such that ai[%]? < W(X) < af%[?, Vx. The +[Qz:(t) = Z3(1)]” . (23)
de”"gt"/‘{/e of W along the system’s state trajectory satisafter some algebra, the function (23) can be rewritten as
. ~ ~ 2 ~
fies 0% (Axpx +bypd) < —[x]" + 2P| [bx gl [d] x]. J(Q,t) = A2 (Q — Q7)? (24)

2 [|P] |b . L " - . .
For any0 < ¢ < 1, let X(s) = MS with  which is a positive-definite function depending only on the

s € Rsg. It is easy to show that[x| >€X(|d|) _,  frequency-estimation errét = Q—Q*. Now, with some abuse
ow 1o - ) of notation, lettingV (Q2) = J(£,%(t)) be a candidate 1SS-
% (AxsX + by pd) < —[x[7, and that the system is ISSLyapunov function for the estimation error's dynamics, we
with asymptotic gainy,(s) = a; tas X(s). In view of the obtain

just shown ISS property of the linear auxiliary filter (179rf gy,

any arbitraryr € R- and for any finite-norm initial error —=QW = —24 [(Z0)? + (21)?]

Xo, the error vectoi(t) will enter in a closed ball of radius e I,
Y (ld]| ) + v < 7v.(d) + v in a finite time Ty, .. In view x [Q"(Qz0 — Z2)Z0 + (021 — Z3)71]

of (15), the vectoi(t) £ z(t) — z(t) will enter in finite-time  + 2u(f> (¢, 2) + fa(t, 2)Q)[Q* (QZ0 — Z2)Z0 + (0Z1 — Z3)71]
Ts = Tk,,» (depending on initial conditions) in a closed ball < _ 6 - LO*2 (O OF\2
of radius~,(d) + ¢ centered at the origin, with N zufz mm{i’ﬂ }Q~ (@ Q~)

+ 2p AT [Q — O (0= (|2]) + 0a(]2])2)

< —p(a* — o2(12)IQU? + por([2)10 . (25)

§=M, 7.(8) =X(7(s) +35),Vs € Ry, (18)
where) = ||A||. Let us now write the adaptation law in terms, nere
of z:
* A 6 . * *2
O = —u{[(Fo + 20) (22 + 22) + (21 + 21)(Z5 + 23)] ‘T Q%Z;mn{ébziggsz s AN + Voo (la(t
x [QU(Zo+20) — (Z2+ 22)](Zo + 20) + [(Zo + 20)* + (21 + £1) ] (20 = 24 (i‘Z(|Z(A>|) +2 *UQ(|Z~( ),
X [QZ1 + 5) — (33 + 2)] (1 + 21)} o2 (|2(t)]) = 245Q% oa(|2(2)]) . (26)
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The ISS stability properties of the frequency estimator acé )\, then the adaptation parametercan be decreased to
characterized in the following result. reduce the asymptotic ISS gain (see (31)), which correspond
Theorem 3.1 (ISS of the adaptive frequency identifier): to an increased frequency-estimation accuracy in case of
Given the sinusoidal signad(t) generated by (1) and thenon-fading unstructured perturbations. Note _that_ a snnalle_
perturbed measurement model (2), the AFP estimation systgn@lso leads to a slower decrease of the estimation error in
given by (14), (15) and (16) is ISS with respect to anthe adaptation transient, due to a typical trade-off betwee

additive disturbance signal(t) € .# such that asymptotic accuracy and convergence speed. Finally, the
_ . filter gain-parametes adds a useful degree of freedom in
ldll o <d <" (05 (a")) (27)  designing the SVF. o _
wherea* anda, are given by (26) and., is given by (18). Remark 3.2 (Bias due to digital implementatioffyom a

ractical perspective, one of the issues that deservetigaes

Proof: Due to the ISS property of the auxiliary filter (Seﬁ?on is the steady-state bias in the frequency estimat Us

(18)), for any positive) € R~ there exists a finite time-instan

= = P by the digital implementation of the proposed continuous-
T such thatjz(t)| < 7.(d) + 6, Vt > T5, which implies time AFP methodology. Without loss of generality and for
o2(|z(t)]) < o2(72(d) +6), YVt > Ts. (28) the sake of simplicity, let us address the simple case inlwhic
) - no structured exogenous perturbation affects the measumtem
If the bound on disturbancesverifies equation (2) (this simpler case has been addressed in [16]).
a* — o3(v.(d) + 8) > 0, (29) Considering a Euler discretization with sampling-tirig

_ from the filter equations (3), we immediately g&f;(z) =
k
for someé € R+, then, for anyt > Ty, the following bound _ (A\s87) Y(2), k = 1,2,3. After discretization and some

ivati i (z—14+2T)F » St
on the derivative of” can be established simple algebra, the-transforms of the au>3<|llary derivatives
_ - - ; _ _ 8T —
%Q(l) < —pla* — o3(7.(d) + 5)]|Q|2 Ho1(12))]9| 20, 21, 22 (see (8)) are given by, = MY(Z), 7 =
~ ~ _)\3 3T2 z—1 Y , To — _)\3 3T (Z71)2 v ,
< —cl0f 4 por(EDQ. 127y @) T it 2 i
A . - . y and Z; = X*3* 153755 Y () . Now, the squared frequency
where ¢ £ 1 [a* —03(v:(d) +0)] is a positive constant. after discretization is given (in the discrete-time dorydig
Finally, for any0 < e < 1, let (see (10)) Quiser 2 W where 204, 214, 22d; 23d
Xo(s) = 1 1(s) 31) denote the discrete-time sequences corresponding to ¥ile au
R e(l — E)M ne iary dez)rivatives. After some lengthy algebra, we §&fisc; =
It is easy to prove that f(ZT_—i) . Then, for a given frequency” the discrete-
9V time measurements arg(k) = Acos(w*Tk) which gives
A ~ jw* T2 * *
Q)] > Xa(2(t)]) = —=QW(t) < —c|QO)?, VE>Ts.  Quiger = —2eller 11— 2eoslw D) costw™ ) gng hence
o0 (32) the steady-state value of the frequency after discretiaat
Considering that, for any finite initial conditidiy, the deriva- Waiser = /2 cos(w*T) (1 — cos(w*T))/T . (33)

tive Q) (¢) is bounded in the intervaD, T;], thenQ(Ty) is _ _ T

finite and)(7) is, in turn, finite. Hence, thanks to (30) andJSing (33), the bias caused by the discretization of the
(32), for any disturbance signdl(t) bounded by (27)V is an algorithm can be exactly eliminated.

ISS-Lyapunov function for the frequency estimator dynamic

with respect to thez(t) input. The dynamics ok being V. SIMULATION RESULTS

ISS with respect to the disturbandgl), it follows that the | ot ys first consider a sinusoidal signalt) = o(t) +
frequency estimation system is in turn ISS with resped(t9, 5sinfw(t)t + 7/4] + d(t), where d(t) is a .2 random
that is, there exist &£-function (-, -) and akC-functionya(-) - nojse with uniform distribution in the intervak-0.5, 0.5]. The
such thafQ(¢)| < B(UT5),t—Ts) +7e(lld] ). In particular, adaptation laws of the AFP technique are discretized by the
the asymptotic ISS gain is given by, (s) = Xo (7:(s)), s €  Euler forward method with sampling peridd = 1 x 10~3s.
[0,d). Time-varying bias and frequency scenarios are considered,
B namely: w(t) = 3, for 0 < t < 15s and w(t) = 5, for

It is worth noting that the auxiliary filtered signals progl ¢ > 15s; o(t) = 1, for 0 < ¢ < 25s and o(t) = 3, for
by the pre-filtering components are combined nonlinearly to> 25s.
obtain a dynamic adaptation law for the squared-frequencyFor the sake of comparison, the AFP algorithms presented
which allows to conclude the ISS of the estimation systein [7] and [8] are considered. These two methods are compared
with respect to additive measurement perturbations. with the one proposed in the present note by considering the

Remark 3.1 (Practical Stability and AccuracyJhe ISS same initial conditionv(0) = 1 for the three AFP algorithms
stability analysis can be used to provide some tunirand by choosing the respective tuning parameters in such a
guidelines for the parameters of the proposed AFP schemay that each algorithm shows the best performances for the
The inequality (29) establishes a bound on the unstructurgilen scenario with a comparable initial transient behavio
perturbations that must be fulfiled to ensure practicéliore specifically, for method [7], we set = 3,k = 1.2
stability. While o* depends on the true signal's parametersshereas, for method [8], we sét, = 1,\ = 1,ws = 2.7.
the function~,(-) can be shaped arbitrarily by tuning theFinally, the parameters of the proposed algorithm are given
parameter\ of the pre-filter, thus allowing to weaken theby A =2,8=0.7, 1 = 5.
noise bound depending on the application. In this respect|t is worth noting from Fig. 1 that all the three AFP
it is worth noting that the parameter has no effect on the estimators succeeded in tracking sudden changes of freguen
practical-stability noise bound. Conversely, assumirag the and bias in presence of noise. However, AFP method proposed
practical stability condition (29) is met by a proper choicen [7] is a little more sensitive to a frequency changes
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Estimated frequencies from a biased and noisy input signal Estimated frequencies from a biased and noisy input: noise u.d. in [-5.5]
T T T T T T

T T
AFP method [7] AFP method [7]
AFP method [8] AFP method [8]
Proposed AFP method 5 Proposed AFP method

Frequency [rad/s]

I . . . I .
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Time [s]

Estimated frequencies from a biased and noisy input: noise u.d. in [~10,10]

AFP method [7]
AFP method [8]

Fig. 1. Time-behavior of the estimated frequency by using phoposed s
AFP method (blue line) compared with the time behaviors ef ¢istimated
frequency by the AFP methods [8] (red line) and [7] (greer)limespectively.

Estimated sinusoid 1
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\ HH ‘M‘“ Fig. 3. Time-behavior of the estimated frequency by using phoposed
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‘ \ U\H‘
r \ AFP method (blue line) compared with the time behaviors ef ¢stimated
BEEE ' RRARR

Frequency [rad/s]

Sinusoidal signal reconstruction

Unbiased input
Biased input

input and estimated signals

frequency by the AFP methods [8] (red line) and [7] (greer)limespectively.
1 a) d(t) random noise with uniform distribution in the intenvat5, 5]; b) d(t)
random noise with uniform distribution in the intervigt 10, 10].

& A b o m s o =

Fig. 2. Estimated sinusoidal signal by the proposed AFP atkthlue line).

To appreciate the time-behavior of the estimated signaltitle biased noisy
input is depicted (red line), as well as the same signal witltfee time-varying

bias term (green line).

and requires quite a long response time to a bias variation.
Fig. 2 shows the time-behavior of the reconstructed simladoi
signal by the proposed AFP technique. As can be noticed,
the sinusoidal signal is estimated successfully even in the
presence of noise and time-varying true frequency and bias.
For the_ sake of completeness, 'n_ Fig. 3, the t_'me'behav'brsl'—@g. 5. Comparison of the adaptive and unadaptive behawgfdte frequency
the estimated frequency concerning the previously consibe estimate.

three AFP methods are shown in two cases in which higher

levels of noise affect the input. Note that the robustness of

AFP method [7] can be improved by exploiting the switching, .,rnorating a time-polynomial structured perturbatdrift)
procedure proposed by the authors consisting in adaptiag considered, namely(t) = 5sin[3t + /4] +1+0.5¢ +d(t)
values of the tuning parameters so as to attenuate the effegt . d(t) is a random disturbance with the same charac-
of the noise at the expense of increasing the transient mo

: ! tics as in the previous example. The initial conditisn
of behavior. Moreover, although method [8] is capable 59(0) — 1 and the Euning parame?ers for the AFP proposed

provide slightly better steady state behaviour, the p“.aposmethod are now set a8 — 3.8 = 05.4 — 10. The
AFP approach offers better transient behavior during bis a,oqits of the simulation are ’sﬁown in ’,é?g_ 6, where the

frequency variations. successful detection of the frequency, amplitude and sidas

It is worth noting that a fundamental role is played by thg;5onents can be observed even in presence of noise and of
adaptation mechanism in terms of ensuring good transient P qrift term.

formance in the frequency estimate mode of behavior. In this

connection, in Fig. 5 we compare the behavior of the adaptive

algorithm with the unadapted technique in which the output V. CONCLUDING REMARKS

of the filter is directly fed into the estimate equation (183.

expected, the transient performance in the unadapted sase in this note, a new algorithm is proposed for the robust

significantly worse. estimation of the frequency, the phase and the amplitude of
Moreover, it is also important to notice that the tuning paa sinusoidal signal, in presence of structured uncertainty

rameters\ and s have a significant influence on the AFP perbounded additive disturbances. Constant measuremerditias

formances. To gain more insight into this important pradticboth linear and higher-order polynomial drift can be haddle

aspect, let us refer to Fig. 4. As shown in Fig. 4, the prodgct by the proposed methodology. The convergence of the AFP

strongly influences the noise rejection performances: Ismalsystem is analyzed by a ISS analysis, that also provides

values of \3 give rise to better noise rejection. Instead, fotuning guidelines for the parameters of the proposed etstima

a given value ofAg3, choosing smaller values ¢f leads to algorithm, depending on the assumed noise level and on the

better transient performances. required asymptotic accuracy. Simulations have shown the
Let us now consider a different scenario: a sinusoidal sigreffectiveness of the estimation technique.
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Fig. 6. Estimated sinusoidal signal by the proposed AFP atkth
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