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Abstract— The paper deals with an adaptive observer
methodology for estimating the parameters of an unknown
sinusoidal signal from a measurement perturbed by structured
and unstructured uncertainties. The proposed technique makes
it possible to handle measurement signals affected by structured
uncertainties like, for example, bias and drifts which are
typically present in applications. The stability of the estimator
with respect to bounded additive disturbances is addressed
by Input-to-State Stability arguments. The effectiveness of the
proposed technique is shown through numerical simulations
where comparisons with some recently proposed algorithms are
also provided.

I. INTRODUCTION

The problem of estimating the unknown parameters of a
sinusoidal signal from noisy measurements arises in many
engineering applications such as active noise cancellation,
vibration control (see [1] and the references therein) and
periodic disturbance rejection (see [2], [3], [4], [5], [6]). To
account for the disturbances affecting the measurements in
practical applications such as offsets in physical transducers
and A/D converters or drifts in sensing devices influenced
by temperature variations; recent research has focused on
the robust sinusoid estimation problem in presence of both
structured and unstructured uncertainties (see, for example,
[7], [8], [9], [10], [11] and [12] and the references cited
therein).

Among the techniques proposed in the literature for esti-
mating the Amplitude, the Frequency and the Phase (AFP)
of an unknown sinusoid from uncertain measurements, the
adaptive notch-filtering method is one of the most popular
approaches owing to its simple practical implementation. It
consists in filtering a signal with a very sharp notch whose
center frequency is adaptively adjusted (see [13], [14]).
Although the aforementioned method natively applies only
to unbiased sinusoids, an extension of the adaptive notch-
filtering scheme to the biased sinusoid estimation problem
has been proposed recently in [10].

Besides adaptive notch-filters, the Phase-Locked-Loop
(PLL) filter topology is another popular structure used for
developing nonlinear estimation methods capable to provide
robust estimates in a noisy environment (see [15], [16], [6],
[17] and [18]). A recent PLL-based method conceived to
retrieve the parameters of an unknown sinusoid from a biased
measurement can be found in [9]. An improved fourth-order
frequency estimator that can cope with bias has been also
proposed in [8]. By adopting an original switching strategy,
this algorithm is able to remove the effect of high-frequency
band noise and to provide accurate estimates.

Recent research efforts have been devoted to incorporate
the sinusoidal signal generator into an adaptive observer
model, such that the parameters of interest can be identified
via adaptation (see [19] and [20]). An extension of the
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method proposed in [20] capable to address the presence
of bias has been presented in [11].

In this context, the paper deals with a new methodology
which combines the AFP approach presented in [21] based
on suitable pre-filtering with the design of an adaptive
observer. The proposed technique allows to address the
AFP estimation problem when measurements are corrupted
by structured uncertainties modeled as finite-order time-
polynomial functions (for example bias and drifts) and
by unstructured bounded disturbances. A complete stability
analysis is carried out and extensive simulation trials are
provided in which the proposed AFP estimation algorithm
is compared with some recently proposed tools.

II. NOTATION AND BASIC DEFINITIONS

Let R, R≥0 and R>0 denote the real, the non-negative
real and the strict positive real sets of numbers, respectively.
Given a vector x ∈ Rn, we will denote as |x| the Eu-
clidean norm of x. Given a time-varying vector x(t) ∈ Rn,
t ∈ R≥0 we will denote as ‖x‖∞ the quantity ‖x‖∞ =
sup t≥0|x(t)|. Given a matrix A ∈ Rn×n, then ||A|| will
denote maxx∈Rn\0{|Ax|/|x|}.

The notions of functions of class K, class K∞, and class
KL are used to characterize stability properties. A function
α : R≥0 → R≥0 belongs to the class K if it is continuous,
strictly increasing and α(0) = 0. If, in addition lims→∞ =
∞ then it belongs to the class K∞. A continuous function
β : R≥0 × R≥0 → R≥0 belongs to the class KL if, for
any fixed t ∈ R≥0, the function β(·, t) is a K-function with
respect to the first argument and if, for any fixed s ∈ R≥0,
the function β(s, t) is monotonically decreasing with respect
to t and limt→∞ β(s, t) = 0. Given an i-times differentiable
vector of signals u(t) ∈ Rn,∀t ∈ R≥0, we denote by di

dti u(t)
the vector of i-th derivative signals.

Consider the following dynamical system

ẋ = f(x,u) (1)

with x ∈ Rn, u ∈ Rm, f(0, 0) = 0 and f(x,u) locally
Lipschitz in Rn × Rm.

Definition 2.1 (ISS): The system (1) is ISS (Input-to-State
Stable) if there exist a KL-function β(·, ·) and a class K-
function such that, for any input u ∈ Rm and any initial
condition x0 ∈ Rn, the trajectory of the system verifies

|x(t)| ≤ β(|x0|, t) + γ(‖u‖∞) (2)
Definition 2.2 (ISS-Lyapunov Function): A function V :

Rn → R≥0 of class C1 is an ISS-Lyapunov function for
(1) if there exist three K∞-functions α(·), α(·), α(·) and a
K-function X (·) such that

α(|x|) ≤ V (x) ≤ α(|x|), ∀x ∈ Rn (3)

and

|x|≥X (|u|)⇒ ∂ V

∂x
f(x, u)≤−α(|x|), ∀x∈Rn, ∀u∈Rm

(4)



Theorem 2.1 ([22]): The system (1) is ISS if and only if
it admits an ISS-Lyapunov function. �

III. PROBLEM STATEMENT AND PRELIMINARIES

Our objective consists in estimating the amplitude, the
frequency and the phase of a sinusoidal signal

s(t) = A sin(ϑ(t)) t ∈ R≥0{
ϑ̇(t) = ω∗, t ∈ R≥0
ϑ0 = φ,

(5)

given the perturbed measurement:

ŷ(t) = s(t) +
nd∑
k=1

bkt
k−1 + d(t), t ∈ R≥0 (6)

where the term
∑nd

k=1 bkt
k−1 represents a time-polynomial

structured perturbation, with bk unknown for any k ∈
{1, . . . , nd}, and where d(t) is a bounded additive unstruc-
tured disturbance with ‖d‖∞ ≤ d, d ∈ R≥0. In the sequel,
we will refer to d(t) as measurement noise. We assume that
the frequency of the sinusoid is bounded by a constant ω̄,
known conservatively: ω∗ ≤ ω̄.

In order to cope with structured and unstructured uncer-
tainty without differentiation, we are going to extend the
pre-filtering strategy proposed in [21] (see also the GPI
observer approach [23] for a possible alternative way to
recover the time-derivatives). To this end, let us consider
the AFP problem for the noise-free signal

y(t) = s(t) +
nd∑
k=1

bkt
k−1, t ∈ R≥0. (7)

In such a simplified setting, the pre-filtering method consists
in computing nd auxiliary filtered signals x1(t), x2(t),. . .,
x1+nd

(t) obtained as follows{
ẋ1(t) = λ (βy(t)− x1(t)) , t ∈ R≥0

x1(0) = x10 .{
ẋk(t) = λ (βxk−1(t)− xk(t)) , t ∈ R≥0

xk(0) = xk0 .

for k ∈ {2, . . . , 1 + nd}, where λ ∈ R>0 is an arbitrary
positive constant and β ∈ (0, 1] is a damping coefficient.
Defining

x(t) , [x1(t), . . . , x1+nd
(t)]>,

a state-space realization of the filter producing the signal
x1+nd

(t) is{
ẋ = Aλ,βx(t) + bλ,β y(t), t ∈ R≥0

x(0) = x0,

x1+nd
(t) = c>x(t), t ∈ R≥0

(8)

with arbitrary initial conditions x0 ∈ R1+nd and where

Aλ,β =



−λ 0 · · · · · · 0

βλ −λ
. . .

...

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 βλ −λ


,

bλ,β = [ βλ 0 · · · 0 ]
>
,

c> = [ 0 · · · 0 1 ] .

In view of the proposed filter’s structure, it holds that

c>A k
λ,β bλ,β = 0, ∀k ∈ {0, . . . , nd − 1},

then, ẋ1+nd
(t), ẍ1+nd

(t),. . ., d1+nd

dt1+nd
x1+nd

(t) are all avail-
able.
ẋ1+nd

(t) = c>Aλ,βx(t),
...

dk

dtk
x1+nd

(t) = c>A k
λ,βx(t),

...
d1+nd

dt1+nd
x1+nd

(t) = c>And

λ,β (Aλ,βx(t) + bλ,βy(t)) .

(9)
Let us denote by Hk(s) the transfer function

Hk(s) =
λkβk

(λ+ s)k
, (10)

such that
L[xk](s) = Hk(s)L[y](s). (11)

At this point, noting that the Laplace transform of the
measured signal can be expressed as

L[y](s) = A
s sin(φ) + ω∗ cos(φ)

s2 + ω∗2
+

nd∑
k=1

bk(k − 1)!
1

sk
,

then, neglecting the initial conditions of the internal filter’s
states, we have that:

L[x1+nd
](s) = H1+nd

(s)A
s sin(φ) + ω∗ cos(φ)

s2 + ω∗2

+H1+nd
(s)

nd∑
k=1

bk(k − 1)!
1

sk
.

The transform of the nd−th derivative of x1+nd
writes

L
[
dndx1+nd

dtnd

]
(s) = H1+nd

(s)A
s sin(φ) + ω∗ cos(φ)

s2 + ω∗2
snd

+ H1+nd
(s)

nd∑
k=1

bk(k − 1)!snd−k

which, in the time-domain, leads to the following asymptotic
sinusoidal steady-state behavior:
dnd

dtnd
x1+nd

(t)
t→∞−−−→ dnd

dtnd
x̄1+nd

(t) = Az sin(ϑz(t)) (12)

where
Az = Aω∗nd |H1+nd

(jω∗)|,
ϑz(t) = ϑ(t) + ∠H1+nd

(jω∗) +
π

2
nd.

(13)

Consider the vector of auxiliary derivatives

z(t) =

(
z1(t)
z2(t)

)
,

 dnd

dtnd
x1+nd

(t)

d1+nd

dt1+nd
x1+nd

(t)


such that z(t) tends asymptotically to sinusoidal stationary



equilibrium as well

z1(t)
t→∞−−−→ z̄1(t) =

dnd

dtnd
x̄1+nd

(t) = Az sin(ϑz(t))

z2(t)
t→∞−−−→ z̄2(t) = Azω

∗ cos(ϑz(t))

For the sake of the further discussion, let us introduce the
matrix

Λ =

[
0 c>And

λ,β

c>And

λ,βbλ,β c>A 1+nd

λ,β

]
.

In view of (9), we have that the vector of auxiliary derivatives
z(t) can be expressed in compact form by

z(t) = Λ
[
y(t)> x(t)>

]>
. (14)

Now, it is worth to point out that there exists an initial
filter’s state x(0) = x̄0 which leads to a filtered state
trajectory x̄(t) whose projection on the z subspace ( z(t) =

Λ
[
y(t)> x̄(t)>

]>
) matches the stationary sinusoidal

behavior since the very beginning, that is:

x̄(t), t ∈ R≥0 : z(t) = Λ
[
y(t)> x̄(t)>

]>
, ∀t ∈ R≥0.

(15)
Although x̄0 is not known, it will be instrumental to study
the stability properties of the estimation system that will be
introducing in the next section.

It is easy to show that the vector of stationary sinusoidal
derivatives z̄(t) satisfies the following differential equation{

ż(t) = Az̄(t) + Ω∗A1z̄(t)
z̄1(t) = Cz̄(t)

(16)

where Ω∗ = ω∗2, A =

(
0 1
0 0

)
, A1 =

(
0 0
−1 0

)
, and

C = ( 1 0 ).
Now, assuming that an estimate of the parameters of the
auxiliary signal x1+nd

(t) is available (Âz, ω̂, θ̂z), then, in
view of the pre-filter structure, the original parameters can
obtained by:

Â(t) =
Âz(t)

ω̂nd

(
1

|H1+nd
(jω̂)|

)
, (17)

ϑ̂(t) = ϑ̂z(t)− ∠H1+nd
(jω̂)− nd

π

2
. (18)

Moreover, considering that

|H1+nd
(ω̂)| =

(
λβ

(λ2 + ω̂2)
1
2

)1+nd

,

∠H1+nd
(jω̂) = (1 + nd) arctan

(
−ω̂
λ

)
we can rearrange (17) and (18) in the following form:

Â(t) =
Âz(t)

ω̂nd

(
(λ2 + ω̂2)

1
2

λβ

)1+nd

, (19)

ϑ̂(t) = ϑ̂z(t) + (1 + nd) arctan

(
ω̂

λ

)
− nd

π

2
. (20)

IV. THE ADAPTIVE OBSERVER

Now, we are going to address the original problem of
estimating the parameters of a sinusoid from measurements
corrupted simultaneously by both structured perturbations
and bounded noises.

Let us denote by x̂(t) the state vector of the following
filter, driven by the noisy signal ŷ(t) (see (6)) and evolving
from an arbitrary initial condition x̂0:{

˙̂x = Aλ,βx̂(t) + bλ,βŷ(t), t ∈ R≥0
x̂(0) = x̂0,

x̂1+nd
(t) = c>x̂(t), t ∈ R≥0,

(21)

and let ẑ(t) , [ ˆ̄z1(t), ˆ̄z2(t) ]> be the vector of the real
computable perturbed derivative signals obtained by:

ẑ(t) = Λ[ŷ(t)> x̂(t)>]>. (22)

By introducing the estimated state ẑ(t) and the estimated
squared-frequency Ω̂(t) = (ω̂(t))2, the following adaptive
observer is proposed:

˙̂z(t) = (A− LC)ẑ(t) + LCẑ(t) + A1ẑ(t)Ω̂(t)
−µξ(t)ξ(t)>(ẑ(t)− ẑ(t))

ξ̇(t) = (A− LC)ξ(t) + A1ẑ(t)
˙̂
Ω(t) = −µξ(t)>(ẑ(t)− ẑ(t))

(23)
where µ ∈ R≥0 is an arbitrary positive constant and L is
the observer gain, obtained by assigning the poles of the
observer such that (A− LC) < 0.

V. ISS PROPERTY OF THE ADAPTATION SCHEME

In order to characterize the stability properties of the
frequency estimation and adaptive observer system (21),
(22) and (23), let us first analyze the stability of the filter
dynamics. Introducing the error vector with respect to x̄(t) :
x̃(t) , x̂(t)− x̄(t), and considering that d(t) = ŷ(t)− y(t),
the dynamics of x̃(t) can be written as:{

˙̃x(t) = Aλ,βx̃(t) + bλ,β d(t), t ∈ R≥0

x̃(0) = x̂0 − x̄0.
(24)

Being Aλ,β Hurwitz, there exists a positive definite
matrix P that solves the linear Lyapunov’s equation:
PAλ,β + A>λ,βP = −I. Let W (x̃) , x̃>Px̃, then there exist
two positive scalars a1, a2 ∈ R>0 such that

a1|x̃|2 ≤W (x̃) ≤ a2|x̃|2 , ∀x̃ .
The derivative of W along the system’s state trajectory
satisfies the inequality
∂ W

∂x̃
(Aλ,βx̃ + bλ,βd) ≤ −|x̃|2 + 2 ‖P‖ |bλ,β | |d| |x̃|.

For any 0 < ε < 1, let

X (s) =
2 ‖P‖ |bλ,β |

1− ε
s

with s ∈ R≥0. It is easy to show that

|x̃| ≥ X (|d|) ⇒ ∂ W

∂x̃
(Aλ,βx̃ + bλ,βd) ≤ −|x̃|2,

and that the system is ISS with asymptotic gain

γx(s) = a1
−1a2 X (s).

In view of the ISS property of the linear auxiliary filter (24),
for any arbitrary ν ∈ R>0 and for any finite-norm initial
error x̃0, the error vector x̃(t) will enter in a closed ball of
radius γx(‖d‖∞)+ν ≤ γx(d)+ν in finite time Tx̃0,ν . Thanks
to (22), the vector z̃(t) , ẑ(t)−z(t) will enter in finite-time
Tδ = Tx̃0,ν (for the sake of simplifying the notation, we
have dropped the dependence of the reach-time Tδ on initial



conditions) in a closed ball of radius γz(d̄) + δ centered at
the origin, with

δ= λ̄ν, γz(s)= λ̄ (γx(s) + s),∀s ∈ R≥0, (25)

where λ = ||Λ||.
In view of (23), we have the expression of error dynamic

as follows by defining some instrumental error variables:
z̃(t) = ẑ(t)−z̄(t), Ω̃(t) = Ω̂(t)−Ω∗, ψ(t) = z̃(t)−ξ(t)Ω̃(t)

˙̃z(t) = (A− LC)z̃(t) + (LC + Ω∗A1)z̃(t)
+Ω̃(t)A1ẑ(t)− ξ(t)µξ(t)>(ẑ(t)− ẑ(t))

(26)
˙̃Ω(t) = −µξ(t)>ξ(t)Ω̃(t) + µξ(t)>

(
z̃(t)− ψ(t)

)
(27)

and

ψ̇(t) = (A− LC)ψ(t) + (LC + Ω∗A1)z̃(t) (28)

In order to prove the convergence of the estimation error,
the following assumption is needed.

Assumption 1: The solution ξ(t) of ξ̇(t) = (A −
LC)ξ(t) + A1 ˆ̄z(t) is persistently exciting in the sense that
there exist

∑2
k=1 g

2
kA

2
z sin2(ϑz + φGk

) > ε > 0 such that

ξ(t)>ξ(t) > ε, ∀t > 0. (29)

In a further Remark 5.1, we will discuss how the poles of
the observer can be chosen to guarantee that the excitation
condition (29) is always verified in nominal conditions, for
a sinusoid with non-zero amplitude.

Theorem 5.1 (ISS of the adaptive observer system): If
assumption 1 holds, then given the sinusoidal signal s(t)
generated by (5) and the perturbed measurement model (6),
the adaptive observer as well as the frequency estimator
given by (21), (22) and (23) are ISS with respect to any
bounded additive measurement perturbation |d(t)| ≤ d. �

Proof: Let us introduce a Lyapunov function
Vψ = ψ(t)>Qψ(t), where Q is a positive defi-
nite matrix that solves the linear Lyapunov’s equation:
Q(A− LC) + (A− LC)>Q = −I. In view of the ψ(t)
dynamics (28), the derivative of the Lyapunov function
verifies the inequality
∂ Vψ
∂ψ

ψ̇(t) ≤ −|ψ(t)|2 + 2||Q|| ||LC + Ω∗A1|| |z̃(t)| |ψ(t)|.
(30)

Hence, Vψ is an ISS-Lyapunov function for error dynamic
ψ(t) with respect to the ˜̄z(t). Moreover, the dynamics of
˜̄z(t) is ISS with respect to disturbance d(t), so that Vψ is,
in turn, ISS with respect to d(t). Now let VΩ̃ = 1

2 Ω̃(t)2

be a candidate ISS-Lyapunov function for the frequency-
estimation subsystem. Then the derivative of VΩ̃ verifies the
inequality
∂ VΩ̃

∂Ω̃

˙̃Ω(t) ≤ −µ|ξ(t)|2|Ω̃(t)|2 + µ|ξ(t)||z̃(t)− ψ(t)| |Ω̃(t)|
(31)

In view of (31), assumption 1, and considering that |ξ(t)| is
bounded (it is immediate to show that the dynamics of ξ(t)
is ISS with respect to the bounded input ẑ), we have that
Ω̃(t) ISS with respect to ψ(t) and z̃(t), which are all proven
to be ISS with respect to the disturbance d(t).

Finally, the identity z̃(t) = ψ(t) + ξ(t)Ω̃(t), z̃(t) and
the boundedness of |ξ(t)|together imply that also the state-
estimation error z̃(t) is ISS with respect to d(t).

Remark 5.1 (Observer Poles and Excitation): We remark
that a central assumption for establishing the ISS property of
the estimation error dynamics is that the excitation condition
(29) is verified for any t > 0. We will show that this
requirement can be fulfilled, in nominal conditions, by choos-
ing accurately the observer poles. The dynamic equation of
ξ(t), in absence of noise and in stationary conditions can be
written as follows

ξ̇(t) = (A− LC)ξ(t) + Bξ z̄1(t)

where Bξ = ( 0 −1 )
>. Then, in Laplace domain

ξk(s) = Gk(s)z̄1(s), k ∈ {1, 2}
in which Gk(s) = e>i (sI − A + LC)−1Bξ and ei denote
the i-th unit vector.

Assume that the poles of A−LC are assigned to (p1, p2),
which are either both on the negative real axis or complex
conjugate with strictly negative real part. For the complex
conjugate poles having the format p1, p2 = a ± jb with
a ∈ R<0, b ∈ R, it holds that:

L =

(
−(p1 + p2)

p1p2

)
, A− LC =

(
p1 + p2 1
−p1p2 0

)
.

In the following lines, we will show that, by choosing the
observer poles such that

a2 > b2, a ∈ R<0, b ∈ R, (32)

then the excitation condition (29) is verified, in nominal
conditions, by any sinusoid of non-zero amplitude. Being
z̄1(t) sinusoidal with frequency ω, ξk(t) is sinusoidal as well.
Now, defining p , p1 + p2 and q , p1p2, by simple algebra
we obtain

G1(s) = − 1

s2 − ps+ q
, G2(s) = − s− p

s2 − ps+ q
,

and

φG1
= arctan

pω

q − ω2
, φG2

= arctan
p2ω − qω + ω3

pq
.

Owing to the structure of G1 and G2, the following inequal-
ity holds

ξ>(t)ξ(t) ≥
2∑
k=1

g2
kA

2
z sin2(ϑz + φGk

),

where gk = |Gk(jω̄)| and φGk
represents the phase shift of

Gk(s) at the frequency of the sinusoid. In the following we
will show, by contradiction, that φG1

(ω) 6= φG2
(ω), ∀ω ∈ R.

Let us make the hypothesis that there exists ω > 0, such that
φG1

= φG2
. The hypothesis is validated if and only if

p

q − ω2
=
p2 − q + ω2

pq
,

which can be rearranged as

ω4 + (p2 − 2q)ω2 + q2 = 0. (33)

In view of (32), equation (33) does not admit positive roots
in the variable ω (since p2− 2q = p2

1 + p2
2 > 0 and q2 > 0).

Therefore, we can conclude that φG1 6= φG2 , ∀ω > 0.
Finally, due to the phase separation property, the following

inequality is verified for all t > 0:

ξ>(t)ξ(t) ≥
2∑
k=1

g2
kA

2
z sin2(ϑz + φGk

) > 0.
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Fig. 1. Estimated frequency obtained by using the proposed AFP method (blue) compared with the frequency estimates provided by the AFP methods
[9] (red line) and [8] (green)

It is worth to point out that, in case the amplitude of the
sinusoid is small compared to disturbances, this condition
may not be guaranteed for all t > 0. In order to ensure
the stability of the adaptive observer, a robust (conservative)
provision consists in setting µ = 0, that is in disabling the
adaptation, whenever poor excitation is detected.

Remark 5.2: In practical applications, the performance of
the technique is indeed affected by the choice of sampling
time. There exist estimation bias caused by discretization,
and it increases as sampling time increases. Nevertheless,
the discretization error can be compensated by proper calcu-
lation, that will not be clarified here.

VI. SIMULATION RESULTS

In this section, the proposed AFP technique is simulated
and compared with two recent AFP algorithms presented in
[8] and [9].

A. Identification of a biased sinusoidal signal

The first evaluation deals with estimating the sinusoidal
signal from the following biased and noisy measurement
corrupt by high-order harmonic and random noise :

ŷ(t) = 1 + 5 sin(ω(t)t+ π/4) + d(t),

with a step-wise frequency change at time t = 15:

ω(t) =

{
3, 0 ≤ t < 15,
5, 15 ≤ t < 35,
4, t ≥ 35;

where d(t) is a composite disturbance of bounded random
noise with uniform distribution in the interval [−0.5, 0.5] and
a high-order harmonic denoted by 0.5 sin 15t. The proposed
AFP algorithm has been discretized in time by a forward-
Euler method with sampling period Ts = 0.001s. It is worth
noting that filter parameters λ, β are selected for pre-filtering
with attenuation to the auxiliary signals subject to low-order
filtering. µ is directly relating to the convergence speed of
Ω̂, which is also affected by the poles’ location. Roughly
speaking, larger poles lead to a slow frequency adaptation
but smoother estimates; the opposite for smaller poles.

For comparison, the parameters for all methods are chosen
to ensure the estimated frequencies have similar response-
time at the beginning. Then the stationary behaviour and the
response to a step-wise frequency variation will be compared.
All the adaptation parameters are shown below.

Algorithms Tuning Parameters

Proposed λ = 2, β = 0.7, µ = 5, p1 = −4, p2 = −6

[9] Ks = 1, λ = 1, ωs = 2.5

[8] λ = 3, k = 1

With the identical initial condition ω̂(0) = 1, the sim-
ulation results are depicted in Figs. 1 and 2. According
to Fig.1, all the three methods succeeded in tracking the
sudden frequency change, yet the proposed method reveals
relatively better robustness property than [8]. Note that the
robustness of AFP method [8] can be improved by activating
the equipped noise attenuation action of adaptively reducing
the tuning parameters at the expense of longer transients
for the next frequencies. Moreover, the proposed estimator
is capable to provide nearly monotonic responses during
transient periods.

Fig.2 shows the time-behavior of the reconstructed si-
nusoidal signal by the proposed AFP technique. As can
be noticed, the sinusoidal signal is estimated successfully
despite the presence of noise and a step-wise change in the
frequency.

Remark 6.1: In the case that a harmonic disturbance ex-
ists, there is a new equilibrium point that appears in the
system. It is not difficult to notice that attraction region
of each equilibrium point is proportional to its amplitude.
Thus harmonic with sufficient small magnitude will be
considered as the noise, such that reliable estimates still can
be guaranteed.
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Fig. 2. Estimated sinusoidal signal by the proposed AFP method (blue).
Both the pure sinusoidal signal to be estimated (green) and the biased noisy
measurement (red) are shown.

B. Identification of a drifted sinusoidal signal
Let us consider a measured signal affected by time-

polynomial structured perturbation:

ŷ(t) = 5 sin(3t+ π/4) + 1 + 0.5t+ d(t) ,

where d(t) is a random noise with the same characteristics
as in the previous example. The tuning coefficients are set:
λ = 2.5, β = 0.6 and µ = 10, while the selected poles and
initial condition are the same as given in previous example.

The results of the simulation are shown in Figs. 3 and 4,
which show that the proposed technique is able to detect the
sinusoidal signal even in presence of bounded noise and of
an unknown drift term.
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Fig. 3. Top figure: estimated frequency. Bottom figure: estimated amplitude
of the sinusoid. Proposed AFP method (blue line) and the AFP method (red
line). Apparently, the estimates convergence after 7s.

VII. CONCLUSIONS

In the this paper, the problem of sinusoid identification
from uncertain measurements has been addressed. The pro-
posed technique is based on the combination of a suitably
designed adaptive observer with some recently proposed
pre-filtering algorithms, while the dynamic order of the
estimator is equal to 6 + nd. The stability properties have
been established and comparisons with existing techniques
have been provided showing the effectiveness of the pro-
posed algorithm. Future research efforts will be devoted to
the extension of the methodology to the case of multiple-
frequencies estimation and to a larger class of structured
measurement uncertainties.
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Fig. 4. Estimated sinusoidal signal by the proposed AFP method.
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