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Abstract— This paper presents a robust estimation method-
ology that is capable to identify the amplitudes, frequencies
and phases (AFP) of the components of a biased multi-
sinusoidal signal in presence of a bounded disturbance on the
measurement. The proposed method is based on an adaptive
observer, whose parameter adaptation law is equipped by an
excitation-based switching logic. The stability analysis proves
the existence of a tuning parameter set for which the estimator’s
dynamics is ISS with respect to bounded measurement noise.
The effectiveness of the algorithm is illustrated by simple
simulation examples.

I. INTRODUCTION

The problem of estimating the amplitude, frequency and
phase of a sinusoidal signal arises in a variety of practical
applications. In particular, the identification of frequency is
a fundamental issue receiving extensive research efforts in
many engineering fields such as power monitoring, vibration
control and periodic disturbance rejection. While the Fast
Fourier Transform (FFT) is usually preferred when discrete-
time samples are available over finite-length intervals under
the assumption that the frequency content is constant within
the said time-window, several other methods have been con-
ceived to track time-varying amplitude/frequencies. Among
them, it is worth to recall the adaptive notch-filtering method
(ANF) (see [1], [2]) and Phase-Locked-Loop (PLL) (see [3],
[4], [5] and [6]) for their simple practical implementation.
Nevertheless, the switching algorithm has to be reset if
the nominal frequency changes. Moreover, estimators that
incorporate multiple PLL-based techniques in parallel with
a decorrelator factor which endows the methods with the
ability to discriminate two nearby frequencies have been
conceived to realize detection of two arbitrary sinusoids
simultaneously (see [7], [8]).

Recently, increasing attention has been paid to the use of
the adaptive observers for the sinusoidal estimation problem
(see [9] and [10]). By means of an adaptive observer,
globally or semi-globally (in case of a noisy measure-
ment) convergence are readily obtained (see [11], [12],
[13]). The adaptive observer technique makes it possible
to achieve multi-sinusoidal estimation by expanding the
dynamic model with proper system transformation. However,
due to reparametrization, the estimated frequencies are usu-
ally not directly adapted. Instead, the parameter adaptation
laws regard a set of parameters related nonlinearly to the
frequency such as the coefficients of the characteristic poly-
nomial of the autonomous signal-generatror system (see [14],
[15], [16], [17], [18] and [19]). Among these methods, [15],
[17], [18] are capable to handle a biased multi-sinusoidal
signal, while [19] has been applied in a nonlinear plant
for disturbance cancellation. Apart from the aforementioned
adaptive observer-based technique, an asymptotically conver-
gent estimator for n-frequencies using contraction theory is
proposed in [20].
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Motivated by the adaptive observer proposed in [21] and
its extension to the single sinusoidal case [13], the presented
paper deals with a new methodology that is capable to
offer reliable estimates of amplitudes, frequencies, phases
and offset from a biased signal comprising n sinusoids. In
contrast with other methods that adapt the coefficients of
the characteristic polynomial, a direct adaptation law for
the squares of the frequencies is provided. The stability
analysis indicates that the robustness is guaranteed even if the
measurements are corrupted by unstructured bounded distur-
bances, which is likely to appear in real-world applications.
More specifically, once the tuning parameters are suitably
fixed, ISS property with respect to the additive measurement
noise is ensured.

The paper is organized as follows: the problem is for-
mulated in Section II. In Section III, the adaptive observer-
based estimator is proposed. Then, the stability analysis of
the presented technique is dealt with in Section IV. Finally,
simulation results showing the effectiveness of the algorithm
dealt with in the paper are given in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a biased multi-sinusoidal signal

y(t) = A0 +

n∑
i=1

Ai sin(ωit+ φi) (1)

where the amplitudes verify the inequality Ai ≥ 0, A0 is an
unknown constant bias, the frequencies parameters are strict-
positive and unique: ωi > 0, ωi 6= ωj for i 6= j and φi is
the unknown initial phase of each sinusoid.

The signal y(t) is assumed to be generated by the following
observable autonomous marginally stable dynamical system:{

ẋ(t) = Axx(t) +
∑n
i=1 Aix(t)θ∗i

x(0) = x0

y(t) = Cxx(t)
(2)

with x(t) ∈ R(2n+1) and where x0 represents the unknown
initial condition which leads the output to match the sta-
tionary sinusoidal behavior since the very beginning, and
θ∗i = ai + Ωi with Ωi = ω2

i , ∀i ∈ {1, .., n}

Ax =



S1 02×2 · · · 02×2 0

02×2 S2
. . . 02×2 0

...
. . . . . . . . .

...

02×2
. . . . . . Sn 0

0 · · · · · · 0 0

 , C>x =


c1
c2
...
cn
1

 ,

and
Si =

[
0 1
ai 0

]
, ci = [ 1 0 ] ,

a1, a2 · · · an are non-zero constants can be selected arbi-
trarely with the only requirements to satisfy ai ∈ R, ai 6= aj
for i 6= j, and Ai is a matrix with (2i, 2i − 1)th entry −1



and 0 for the all the others, for instance:

A1 =

[
S0 02×(2n−1)

0(2n−1)×2 0(2n−1)×(2n−1)

]
,

A2 =

[
02×2 02×2 02×(2n−3)

02×2 S0 02×(2n−3)

0(2n−3)×2 0(2n−3)×2 0(2n−3)×(2n−3)

]
in which

S0 =

[
0 0
−1 0

]
In order consider the measurement uncertainty, let us

assume that y(t) is corrupted by an additive disturbance d(t),
bounded by a constant d̄ > 0 : |d(t)| < d̄, ∀t ∈ R≥0. Then,
the perturbed signal that is available from the measurement
can be written as

ŷ(t) = A0 +

n∑
i=1

Ai sin(ωit+ φi) + d(t) (3)

Thanks to (2), the signal ŷ(t) can be thought as generated
by the observable system{

ẋ(t) = Axx(t) + Gx(x(t))θ∗

x(0) = x0

ŷ(t) = Cxx(t) + d(t)
(4)

in which

Gx(x(t)) =



0 0 · · · 0

−x1 0
. . . 0

0 0
. . . 0

0 −x3
. . . 0

...
. . . . . .

...

0 0
. . . 0

0 0 · · · −x2n−1
0 0 · · · 0


,

and θ∗ denotes the true parameter vector [θ∗1 θ
∗
2 · · · θ∗n]

>.
Remark 2.1: The elements of Gx(·) are globally Lipschitz

continuous functions, that follows:

||Gx(x′)−Gx(x′′)|| ≤ |x′ − x′′|,∀x′, x′′ ∈ Rnx

Moreover, the true state x(t) is norm-bounded for any
initial condition, i.e. |x(t)| ≤ x̄, ∀t ∈ R. Both the Lipschitz
condition on Gx(·) and the bound x̄ allows to establish the
following further bound

‖Gx(x(t))‖ ≤ x̄, ∀t ∈ R ,

Now, assuming that the estimates x̂(t) and θ̂(t) are avail-
able, then the full AFP estimates are obtained by

Ω̂i = θ̂i − ai, ω̂i =

√
θ̂i − ai, (5)

Âi =

√(
Ω̂ix̂2

2i−1 + x̂2
2i

)
/Ω̂i, i = 1, 2, · · · , n, (6)

and

ϕ̂i = ∠ (x̂2i + jω̂i x̂2i−1) , i = 1, 2, · · · , n. (7)

In addition, the offset is evaluated directly by Â0 = x̂2n+1.
In order to proceed with the further analysis, the following

assumption is needed.

Assumption 1: The frequencies of the sinusoids are
bounded by a positive constant ω̄, such that ωi < ω̄, ∀i ∈
{1, · · · , n}.

According to assumption 1, there exists a known positive
constant θ̄∗, such that |θ∗| ≤ θ̄∗ . More specifically, in the
remaining parts of the paper we consider θ∗ ∈ Θ∗, where
Θ∗ ⊂ Rn is a hypersphere of radius θ̄∗. The constraint on
θ∗ is instrumental for proving the stability of the parameter
adaptation law introduced in the next section.

III. FILTERED-AUGMENTATION-BASED ADAPTIVE
OBSERVER

Now, we are going to introduce the adaptive observer that
is based on the model (4). In order to validate the estimation
scheme, ŷ(t) is augmented by the output of a synthetic filter
driven by the noisy measurement vector:

˙̂ye(t) = Aeŷe(t) + Beŷ(t) (8)

where Ae and Be are fixed by the designer such that Ae is
Hurwitz and the pair (Ae,Be) is controllable. ŷe(t) ∈ Rne

denotes the accessible state vector and with arbitrary initial
condition ŷe0 . According to [13], the dimension ne of the
augmented dynamics must verify ne ≥ n− 1.

For the sake of the forthcoming analysis, it is convenient to
split the expanded filtered output vector in two components:

ŷe(t) = ye(t) + de(t)

where ye(t) and de(t) are produced by two virtual filters
driven by the unperturbed output and by the measurement
disturbance respectively:

ẏe(t) = Aeye(t) + Bey(t) (9)

and
ḋe(t) = Aede(t) + Bed(t) (10)

Consequently, in view of (4), (9) and (10), the overall
augmented system dynamics with the extended perturbed
output measurement equation can be written as follows:{

ż(t) = Azz(t) + Gz(z(t))θ
∗

η(t) = Czz(t)
η̂(t) = η(t) + dη(t)

(11)

with z(0) = z0 ∈ Rnz , nz = 2n + 1 + ne, and
z(t) , [x>(t) x>e (t)]>, z0 , [x>0 (t) ŷ>e0 ]>, η̂(t) ,
[ŷ>(t) ŷ>e (t)]>, dη(t) , [d>(t) d>e (t)]>

Az ,
[

Ax 0(2n+1)×ne

BeCx Ae

]
,

Cz ,
[

Cx 01×ne

0ne×(2n+1) Ine

]
.

and
Gz(z(t)) ,

[
Gx(Tzxz(t))

0ne×n

]
,

with the transformation matrix given by Tzx ,
[I2n+1 0(2n+1)×ne

]. It is worth noting that Gz(z(t))
is also Lipschitz with the same Lipschitz constant as
Gx(x(t)), and norm-bounded by x̄. Moreover, the assumed
norm-bound d̄ on the output noise implies the existence of
d̄η such that d̄η > 0 : |dη(t)| ≤ d̄η,∀t ∈ R≥0 .

Now, we introduce the structure of the adaptive observer,
consisting of the measured output filter (8) and the dynamic
components (12), (13) and (14) described below:



1) Augmented state estimator:

˙̂z(t) = (Az−LCz)ẑ(t)+Lη̂(t)+Gz(ẑ(t))θ̂(t)+Ξ(t)
˙̂
θ(t)

(12)

with ẑ(0) = ẑ0 . The gain matrix L is given by

L ,

[
Lx 0
0 0

]
where Lx is a suitable gain matrix such that Ax − LxCx is
Hurwitz.
2) Parameter-affine state-dependent matrix filter:

Ξ̇(t) = (Az − LCz)Ξ(t) + Gz(ẑ(t)) (13)

with Ξ(0) = 0nz×n and where Ξ(t) ∈ Rnz×n is an
auxiliary time-varying matrix whose elements are driven by
the state-dependent parameter-affine matrix Gz(ẑ(t)) .
3) Parameters’ adaptation law:

Herein, an projection operator P is utilized to confine the
estimated parameter θ̂ to the predefined convex region Θ∗

˙̂
θ(t) = Ψ(t)P

[
˙̂
θpre(t)

]
|θ̂|≤θ̄∗

(14)

with θ̂(0) = θ̂0 set arbitrarily. Ψ(t) represents an on-off
switching signal that will be specified later on.

˙̂
θpre(t) ,

− µ
(
Ξ>(t)Ξ(t) + ρ2I

)−1
Ξ>(t)C>z (Cz ẑ(t)− η̂(t))

where µ is a positive constant, and ρ ∈ R is another constant
fixed by the designer. The parameters’ derivative projection
operator is defined as:

P
[

˙̂
θpre(t)

]
|θ̂|≤θ̄∗

,


nsp(θ̂>(t))

(
nsp
(
θ̂>(t)

))> ˙̂
θpre(t),

if |θ̂| = θ̄∗ and θ̂>(t)
˙̂
θpre(t) > 0

˙̂
θpre(t), otherwise

in which nsp(·) denotes the null-space of a row vector. In a
compact form, the parameter adaptation law can be expressed
as

˙̂
θ(t) = Ψ(t)

[
˙̂
θpre(t)− I(θ)

θ̂(t)θ̂>(t)

θ̄∗2
˙̂
θpre(t)

]
where I(θ) denote the indicator function given by

I(θ) ,

{
1, if |θ̂(t)| = θ̄∗ and θ̂>(t)

˙̂
θpre(t) > 0

0, otherwise

The activation/suppression of the parameter adaptation is
determined by the binary switching signal Ψ(t), which
possesses the following hysteretic property:

Ψ(t) =

 1, if min eig (Φ(Ξ(t))) ≥ 2δ̄
0, if min eig (Φ(Ξ(t))) < 2δ
Ψ(t−), if 2δ ≤ min eig (Φ(Ξ(t))) < 2δ̄

(15)
where

Φ(Ξ(t)) =
(
Ξ>(t)Ξ(t) + ρ2I

)−1
Ξ>(t)C>z CzΞ(t)

represents the excitation matrix. The transition thresholds δ,
δ̄ are fixed by the designer such that 0 < 2δ < 2δ̄ < 1.

The introduction of the hysteresis is inspired by the need to
ensure a minimum finite duration between transitions.

IV. STABILITY ANALYSIS

A. Excitation Phase

Consider an arbitrary active identification phase, in which
Ψ(t) = 1 and Φ(Ξ(t)) ≥ 2δ. In order to address the stability
of the adaptive observer, let us define the augmented state-
estimation error vector: z̃(t) , ẑ(t) − z(t), the parameter
estimation error θ̃(t) , θ̂(t) − θ∗, and their linear time-
varying combination ϕ̃(t) , Ξ(t)θ̃(t)−z̃(t) . Then, the state-
estimation error evolves according to the differential equation

˙̃z(t) = (Az − LCz)z̃(t) + Ldη(t) + Gz(z̃(t))θ̃(t)

+Gz(z(t))θ̃(t) + Gz(z̃(t))θ
∗ + Ξ(t)

˙̂
θ(t)

(16)
where Gz(z̃(t)) , Gz(ẑ(t)) − Gz(z(t)). Meanwhile, the
dynamic of the auxiliary variable ϕ̃(t) evolves according to

˙̃ϕ(t) = (Az − LCz)ϕ̃(t)− Ldη(t)−Gz(z̃(t))θ
∗

(17)
The upcoming analysis is carried out in order to demonstrate
benefit of using the derivative projection on the parameters’
estimates. To this end, in the following lines we will only
focus on the scenario that the projection operator is activated,
since ˙̂

θ(t) =
˙̂
θpre(t) for all the other conditions. For

convenience, let us assume that θ̂(t)θ̂>(t)

θ̄∗2
˙̂
θpre(t) = σ(t)θ̂(t),

where σ(t) is a variable depending on ˙̂
θpre(t). Owing to the

fact that Iθ = 1 and |θ̂(t)| = θ̄∗, we have that

θ̃>(t)
˙̃
θ(t) = θ̃>(t)

[
˙̂
θpre(t)− σθ̂(t)

]
= θ̃>(t)

˙̂
θpre(t)−

[〈
θ̂>(t), σθ̂(t)

〉
−
〈
θ∗>, σθ̂(t)

〉]
in which 〈·, ·〉 denotes the inner product. In virtue of〈

θ̂>(t), σθ̂(t)
〉

= σθ̄∗2 ≥ σθ̄∗|θ∗| cosφθ =
〈
θ∗>, σθ̂(t)

〉
we can finally bound the scalar product θ̃>(t)

˙̃
θ(t) by:

θ̃>(t)
˙̃
θ(t) ≤ θ̃>(t)

˙̂
θpre(t)

where ˙̂
θpre(t) is expanded as follows:

˙̂
θpre(t) = −µ

(
Ξ>(t)Ξ(t) + ρ2I

)−1
Ξ>(t)C>z CzΞ(t)θ̃(t)

+µ
(
Ξ>(t)Ξ(t) + ρ2I

)−1
Ξ>(t)C>z dη(t)

+µ
(
Ξ>(t)Ξ(t) + ρ2I

)−1
Ξ>(t)C>z Czϕ̃(t)

(18)
Theorem 4.1 (ISS of the dynamic estimator): If assump-

tion 1 and the excitation condition hold, then given the
sinusoidal signal y(t) defined in (1) and the perturbed
measurement (3), there exist suitable choices of µ and ρ such
that the adaptive observer-based estimator given by (8), (12),
(13) and (14) is ISS with respect to any bounded disturbance
dη and in turn ISS with respect to bounded measurement
disturbance |d(t)| ≤ d̄.

Proof: Since (Az − LCz) is Hurwitz, for any positive
definite matrix Q, there exist a positive definite matrix P that
solves the linear Lyapunov equation

(Az − LCz)>P + P(Az − LCz) = −2Q .



Now, let us introduce the candidate Lyapunov function

V (t) ,
1

2

(
z̃>(t)Pz̃(t) + θ̃>(t)θ̃(t) + gϕ̃>(t)Pϕ̃(t)

)
(19)

where g is a positive constant. By letting:

c̄ , ‖Cz‖, l̄ , ‖L‖, q , min eig(Q), p̄ , max eig(P)

The time-derivative of the Lyapunov function can be bounded
as follows:

V̇ (t) ≤ −q|z̃(t)|2−gq|ϕ̃(t)|2−µδ|θ̃(t)|2 + p̄l̄|z̃(t)||dη(t)|
+ p̄|z̃(t)|2|θ̃(t)|+ p̄x̄|z̃(t)||θ̃(t)|+ p̄θ̄∗|z̃(t)|2

+ µp̄c̄2|z̃(t)|2 + µp̄c̄|z̃(t)||dη(t)|+ µ
c̄

2ρ
|θ̃(t)||dη(t)|

+ µ
c̄2

2ρ
|θ̃(t)||ϕ̃(t)|+ gp̄l̄|ϕ̃(t)||dη(t)|+ gp̄θ̄∗|z̃(t)||ϕ̃(t)|,

thus, after some algebra and by re-arranging the above
inequality to put in evidence the square monomial and the
binomial terms, we have:

V̇ (t) ≤ −(q−µp̄c̄2−3p̄θ̄∗)|z̃(t)|2 + p̄
(
l̄+µc̄

)
|z̃(t)||dη(t)|

−
gq
2
|ϕ̃(t)|2 + gp̄θ̄∗|z̃(t)||ϕ̃(t)| −

gq
2
|ϕ̃(t)|2

+ gp̄l̄|ϕ̃(t)||dη(t)| − µδ

3
|θ̃(t)|2 + p̄x̄|z̃(t)||θ̃(t)|

−µδ
3
|θ̃(t)|2+µ

c̄

2ρ
|θ̃(t)||dη(t)|−µδ

3
|θ̃(t)|2+µ

c̄2

2ρ
|θ̃(t)||ϕ̃(t)| .

Now, we complete the squares, getting to

V̇ (t) ≤

−

[
(q − µp̄c̄2 − 3p̄θ̄∗)

2
− g
q
p̄2
(
θ̄∗
)2 − 3(p̄x̄)2

2µδ

]
|z̃(t)|2

− µδ

2
|θ̃(t)|2 − (

gq
2
− 3µc̄4

8ρ2δ
)|ϕ̃(t)|2

+

[
p̄2
(
l̄ + µc̄

)2
2(q + µp̄c̄2 − 3p̄θ̄∗)

+
3µc̄2

8ρ2δ
+

g
q
p̄2 l̄2

]
|dη(t)|2

Finally, the following inequality can be established:

V̇ (t) ≤ −β1

[
V (t)− σ1(d̄η)

]
,

where

β1 ,

2 min

{
(q − µp̄c̄2 − 3p̄θ̄∗)

2
− g
q
p̄2
(
θ̄∗
)2 − 3(p̄x̄)2

2µδ
,

µδ

2
,

gq
2
− 3µc̄4

8ρ2δ

}
(20)

and

σ1(s) ,
1

β1

[
p̄2
(
l̄ + µc̄

)2
2(q + µp̄c̄2 − 3p̄θ̄∗)

+
3µc̄2

8ρ2δ
+

g
q
p̄2 l̄2

]
s2 .

∀s ∈ R≥0

Hence, the proof is concluded, iff

β1 > 0 (21)

In view of (21), all the components involved in (20) should
be positive, wherein µδ

2 > 0 can be immediately verified by
choosing a positive µ. Now, we set the excitation threshold
δ and the Q matrix arbitrarily, determining q. Then, letting
p̄ ≤ µ, we determine a sufficient condition to ensure the
positiveness of the first term in (20):

(q − µ2c̄2 − 3µθ̄∗)

2
− µ2 g

q

(
θ̄∗
)2 − µ3x̄2

2δ
> 0 .

Being the Lyapunov parameter g > 0 arbitrary, let us
fix g = 1 for simplicity. At this point, we can always
determine a sufficiently small value of µ for which the
inequality holds true. Next, by suitably allocating the poles,
we compute the output-injection gain L that realizes the
needed p̄. Finally, to render β1 strict-positive, we choose a
regularization parameter ρ such that

gq
2
− 3µc̄4

8ρ2δ
> 0 .

Remark 4.1: To avoid the increase of the worst-case sen-
sitivity to bounded noises, instead of using a low value of
p̄ that leads high-gain output injection through L, and high
values of l̄ and σ1 correspondingly, we can set p̄ = µ and
increase the regularization parameter ρ.

B. Dis-Excitation Phase
Lemma 4.1 (Boundedness in dis-excitation phase): [21]

WhenΨ(t) = 0, the Lyapunov function admits a bound that
depends on the noise level and on the initial value of the
Lyapunov function itself before switching off:

V̇ (t) ≤ β0

(
L0V (t−) + σ0(|dη(t)|)− V (t)

)
where

β0 , 2 min

{
q − 3p̄θ̄∗

2
− g
q

(
p̄θ̄∗
)2
,

gq
2
,

1

2

}
,

L0 ,
2

β0

{
p̄2x̄2

q − 3p̄θ̄∗
+

1

2

}
,

and

σ0(s) ,
1

β0

(
p̄2 l̄2

q − 3p̄θ̄∗
+

g
q
p̄2 l̄2

)
s2,∀s ∈ R≥0 .

Proof: The present lemma can be proven by following
the same line of reasoning adopted for the case Ψ(t) = 1.

C. Robustness Under Alternate Switching
At this stage, the stability of the adaptive observer under

alternate switching is characterized by linking the results
obtained for the two excitation phases.

Theorem 4.2: [21] Under the same assumptions of the-
orem 4.1, consider the adaptive observer (8), (12), (13),
(14) equipped with the excitation-based switching strategy
defined in (15). Then, the discrete dynamics induced by
sampling the adaptive observer in correspondence of the
switching transitions has the asymptotic ISS property if the
excitation phases last longer than β−1 ln(L0). Letting k
denote a counter for the active identification phases, and Vk
the value of the Lyapunov function (19) at then at the end of
the k-th phase, then the following bound can be established

Vk < e−β1∆k
(
σ0(d̄η)− σ1(d̄η) + L0Vk−1

)
+ σ1(d̄η),



where ∆k is the duration of the k-th phase.
The complete proof is omitted and can be found in [21].

In view of Theorem 4.2, if an infinite number of active
identification phases occurs asymptotically (k →∞), or if a
single excitation phase lasts indefinitely, then the estimation
error in the inter-sampling times converges to a region whose
radius depends only on the assumed disturbance bound.

V. ILLUSTRATIVE EXAMPLES

In the following section, the devised method is compared
with the adaptive-observer-based method presented in [16]
which offers estimated frequency and amplitude simultane-
ously. The dynamic estimators are discretized by forward-
Euler method with fixed sampling period Ts = 1 × 10−4s.
All the measured inputs are affected by a bounded noise
denoted by d(t) which is subject to uniform distribution in
the interval [−0.25, 0.25].

Example 1: Consider the following sum-of-sinusoids sig-
nal, perturbed by additive noise

ŷ(t) = 2 sin 3t+ sin 2t+ d(t)

For the sake of observer design, let Ae = −2, Be = 1, while
the observer poles are placed at [−0.4,−0.5,−0.8,−1]. The
other tuning parameters are: µ = 10, ρ = 1, a1 = 0, a2 =
−1, δ = 1 × 10−6, δ = 5 × 10−7. The parameters for the
other methods are chosen such that the response time of
the frequency estimate is similar to the one provided by the
method discussed in this paper. To this end, for method [16],
we set γ = 1200, γ1 = 0.01, γ2 = 0.005, l1 = 10, l2 = 50
and the coefficients λi are chosen: λ0 = 4, λ1 = 6, λ2 =
6, λ3 = 4.
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Fig. 1. Time-behavior of the estimated frequencies by using the proposed
AFP method (blue line) compared with the time behaviors of the estimated
frequencies by the AFP method [16] (red dotted line)
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Fig. 2. Time-behavior of the estimated amplitudes by using the proposed
AFP method (blue line) compared with the time behaviors of the estimated
amplitudes by the AFP methods [16] (red dotted line)

It is worth noting from Fig.1 and 2 that both the estimators
succeeded in detecting the frequencies and amplitudes in
presence of bounded disturbance. However, the proposed
method is more accurate in presence of additive noise and
show a smoother transient behavior.

Example 2: Consider now a measurement signal com-
posed of three sinusoids

ŷ(t) = 2 sin 5t+ sin 4t+ 3 sin 3t+ d(t)

The parameters of the synthetic filter are fixed as follows

Ae =

[
−2 0
2 −2

]
Be =

[
1
0

]
Then, let us set a1 = 0, a2 = −1, a3 = −3, µ = 60, ρ =
0.5, δ = 1 × 10−7, δ = 5 × 10−8 respectively and place
the poles at [−0.2,−0.4,−0.5,−0.6,−0.8,−10]. The initial
values of the state variables of the observer have been all set
to zero, while the parameter vector has been initialized to
θ̂(0) = [12 10 15]>. As shown in Fig.3 and 4, all the three
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Fig. 3. Estimated frequencies obtained by using the proposed method
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Fig. 4. Estimated amplitudes obtained by using the proposed method

frequencies are identified individually, at the same time the
true amplitudes are also successfully captured.

Example 3: In order to evaluate the performance of the
method in presence of measurement bias, the following
signal is considered in the present example

ŷ(t) = 1 + 4 sin 3t+ 2 sin 2t+ d(t)

The parameters of the proposed method are chosen as fol-
lows: Ae = −2, Be = 1, a1 = −2, a2 = −1, µ = 50, ρ =
0.2, δ = 1 × 10−6, δ = 5 × 10−7 and the poles’ location
[−0.2,−0.4,−0.5,−2,−10]. In Fig. 5, the behaviour of the
excitation level and of the switching signal Ψ(t) are shown
to enhance the fact that the proposed methodology allows
to check in real-time the excitation level thus allowing to
possibly stop the parameter-updating in case of low-exciting



signals. The estimates are reported in Fig.6 and 7, where it
can be observed that all the parameters including the offset
are successfully estimated.
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Fig. 5. Behaviour of the excitation level and of the switching signal Ψ(t)
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Fig. 6. Estimated frequencies obtained by using the proposed method
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Fig. 7. Estimated amplitudes (red, blue) and bias (green) obtained by using
the proposed method

VI. CONCLUSIONS

In this paper, the problem of estimating the unknown fre-
quencies of a biased signal consisting of multiple sinusoids is
addressed. To solve this task, an AFP estimator based on the
filter augmented adaptive observer is presented. Compared to
other methods that estimate the characteristic polynomial of
the signal-generator system, the proposed algorithm allows
for the direct adaptation of the squared-frequencies of the

components. The proposed estimator is proven to be ISS
with respect to the bounded disturbance by incorporating a
switching criterion that freezes the estimates in case of poor
excitement. The tuning rules of the adaptation parameters
of the estimator are obtained analytically as a result of
the ISS based analysis. The numerical simulation examples
justify the applicability of the given estimator for on-line
identification of unknown frequencies.
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