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Abstract— This paper presents a MIMO nonlinear adaptive
observer, which is characterized by a robust excitation-based
switching strategy. The proposed switching algorithm allows
to address the scenario of poor excitation, while a conser-
vative minimum duration of excitation interval for ensuring
a progressive improvement is determined. The robustness of
the devised method with respect to the bounded unstructured
perturbation is studied by a input-to-state stability analysis.
Simple simulation results show the effectiveness of the proposed
technique.

I. INTRODUCTION

The design of adaptive observers for uncertain nonlinear
systems has received increased attention in the past few
years.

Since the seminal paper [1], in which an adaptive observer
has been developed for SISO nonlinear systems that can be
transformed into an observable canonical form by a suitable
state-affine parametrization, several works have focused on
state transformations as the main tool to design stable state
observers. The adaptive observers of [2] and [3] employ
filtered state-space transformation to guarantee the asymp-
totic convergence of the state estimate under persistency of
excitation. According to [4] , the adaptive observers based
on filtered transforms guarantee bounded state and parameter
estimation error under persistency of excitation, but even
a small bounded disturbance may lead the parameters to
diverge indefinitely when the excitation level weakens. To
overcome this problem, a projection operator was introduced
to guarantee the boundedness of the parameter estimate.

Two major issues can be evidenced with regard to the
aforementioned adaptive observers. First, to guarantee the
convergence of the estimated parameters to the true values
in nominal conditions, the boundedness of the parameter
estimation error in presence of disturbances, the condition
of persistent excitation must be satisfied , which is not
realistic for many applications. Second, the system has to
be converted in the so called canonical observer-form. This
second issue is addressed in [5], that considers multiple-input
multiple-output (MIMO) nonlinear system with unmodelled
dynamics, nonlinear parametrization and external bounded
perturbations. The presence of unmodelled dynamics is
accounted in [5] by the introduction of bounding terms
that dominate the uncertainty. An alternative method used
to design observers for system that cannot be recast in
the canonical observer form by trivial state transformations
consists in augmenting the dynamics of the observer with
a filter, that takes as input the parameter-affine nonlinear
function (see e.g. [6], [7] and [8]). We refer in particular
to those systems in which the parameter-affine term does
not only depend on measurable inputs and outputs but also
on hidden (although observable) state variables (see e.g. [9],
[7]). The augmentation filter is used for instance in [10] to
design of an observer for linear time-varying MIMO systems.
More recently, this tool has been also employed to estimate
unknown parameters affecting both the state and the output
equations [11].
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In this framework, we propose an observer for a class
of nonlinear systems with state-affine linear parametrization
capable to address the presence of measurement disturbances
and transient loss of excitation by means of a suitably
designed switching strategy. Compared to traditional conver-
gence proofs of adaptive control and observers theory, that
rely on an integral-type persistency of excitation condition
(see, e.g. [12], [4], [13]), our methodology allows to check
the excitation level in real-time and to instantaneously take
suitable provisions to prevent the divergence of the state and
parameter estimates.

In our setup, the convergence of the parameters toward the
true values is guaranteed provided that the excitation phases
(each of finite duration) last more than a given time-length.
During the poorly excited phases, the parameter update law
is stopped and only the state estimation is carried out in a
specific kind of “dual-mode” adaptive observation.

II. PROBLEM FORMULATION WITH ASSUMPTIONS

Consider a MIMO nonlinear system having the following
linear-in-the-parameters structure{

ẋ(t) = Axx(t) + Gx(x(t), u(t))θ
∗ + fx(y(t), u(t))

y(t) = Cxx(t) + fy(y(t), u(t))
(1)

where the initial condition x(0) = x0 is unknown. Moreover
x(t) ∈ Rnx , u(t) ∈ Rnu , y(t) ∈ Rny denote the state,
input and output, respectively, fx(·, ·) : Rny × Rnu →
Rnx , fy(·, ·) : Rny × Rnu → Rny and Gx(·, ·) : Rnx ×
Rnu → Rnx×nθ are known functions, θ∗ is the unknown pa-
rameter vector assumed constant unless otherwise specified.

While the input of the system is accessible, the output
measurement is subjected to an additive bounded perturba-
tion:

y̆(t) = y(t) + dy(t) ,

where dy(t) is an additive measurement uncertainty bounded
by a constant d̄y > 0 : |dy(t)| ≤ d̄y,∀t ∈ R≥0.

Although system (1) presents a linear parameterization,
it includes most of the models considered in the literature
concerned with the design of adaptive observers ([7], [13],
[4]).

Let us introduce following assumptions on system (1).
Assumption 1: The pair (Ax,Cx) is known and fully

observable.
Assumption 2: A (possibly conservative) bound θ̄∗ on the

norm of the parameter vector is known, that is, there exists
θ̄∗ > 0 such that |θ∗| ≤ θ̄∗ .

As will be seen later on, the constraints considered in
Assumption 2 will be actively enforced by the estimation
scheme through an adaptation law based on derivative pro-
jection.

The following further assumption will also bee needed.
Assumption 3: The observed (true) state is bounded by

a compact set, i.e. x ∈ X where X ⊂ Rnx denotes a
hypersphere of radius x̄. Thus, |x(t)| ≤ x̄,∀t ∈ R.

Assumption 4: The elements of Gx(·) are locally Lips-
chitz continuous functions in their argument, with Lipschitz
constant γ̄:

||Gx(x
′, u)− Gx(x

′′, u)|| ≤ γ̄|x′ − x′′|, ∀x′, x′′ ∈ X



uniformly in u,∀u ∈ Rnu . Moreover

sup
u∈Rnu

||Gx(0, u)|| < +∞ .

Finally, the functions fx(y(t), u(t)) and fy(y(t), u(t)) are
Lipschitz continuous with respect to the first argument:

||fx(y′, u)− fx(y
′′, u)|| ≤ f̄x|y′ − y′′|,∀y′, y′′ ∈ Rny

||fy(y′, u)− fy(y
′′, u)|| ≤ f̄y|y′ − y′′|, ∀y′, y′′ ∈ Rny

uniformly in u, ∀u ∈ Rnu .

It is worth noting that since x is confined to the bounded
set X , we are able to extend Gx(x, u) into a global Lipschitz
function by Lipschitz extension (see [7] and the references
therein). Define a saturation function σ : Rnx → X , we
immediately have Gx(σ(x), u) a global Lipschitz function
that coincides with Gx(x, u) on X . Thus, it is makes no
difference that we consider Gx(x, u) as a global Lipschitz
function for following deduction.

Furthermore, Assumption 3 is needed for the subsequent
stability analysis, but it is not used in the actual implementa-
tion of the observer. The conditions on Gx(·) and the bound
x̄ allow to establish the following further bound

∥Gx(x(t), u(t))∥ ≤ ¯̄γ, ∀t ∈ R ,

where ¯̄γ , γ̄x̄+ supu∈Rnu ||Gx(0nx×1, u)||.
Without loss of generality, let us consider the case

nθ > ny ≥ rank(C⊤
x Cx) ,

and let us “augment” the system by the following synthetic
output filter, driven by the noisy measurement vector:

˙̆ye(t) = Aey̆e(t) + Bey̆(t) (2)

where y̆e(t) ∈ Rne with arbitrary initial conditions y̆e0 . The
dimension ne satisfies

ne ≥ nθ − rank(C⊤
x Cx) .

For the sake of the forthcoming analysis, it is convenient to
split the extended filtered output vector in two components:

y̆e(t) = ye(t) + de(t)

where ye(t) is produced by a virtual filter driven by the un-
perturbed output:

ẏe(t) = Aeye(t) + Bey(t) (3)

with ye(0) = 0ne×1 and de(t) is produced by the virtual
disturbance filter

ḋe(t) = Aede(t) + Bedy(t) (4)

with de(0) = 0ne×1 . Matrices Ae and Be are chosen such
that Ae is Hurwitz and the pair (Ae,Be) is controllable.

In view of (1), (3) and (4), the overall augmented system
dynamics with the extended perturbed output measurement
equation can be written as follows:{

ż(t) = Azz(t) + Gz(z(t), u(t))θ
∗ + fz(η(t), u(t))

η(t) = Czz(t) + fη(η(t), u(t))
η̆(t) = η(t) + dη(t)

(5)
with z(0) = z0 and where we let

z(t) , [x⊤(t) x⊤
e (t)]

⊤, z0 , [x⊤
0 (t) y̆

⊤
e0 ]

⊤,

η(t) , [y⊤(t) y⊤e (t)]
⊤, η̆(t) , [y̆⊤(t) y̆⊤e (t)]

⊤,
dη(t) , [d⊤y (t) d

⊤
e (t)]

⊤,

Az ,
[ Ax 0nx×ne

BeCx Ae

]
, Cz ,

[
Cx 0ny×ne

0ne×nx Ine

]
.

Moreover, by letting

Tzx , [Inx 0nx×ne ], Tηy , [Iny 0ny×ne ],

we have defined:

Gz(z(t), u(t)) ,
[

Gx(Tzxz(t), u(t))
0ne×nθ

]
,

fz(η(t), u(t)) ,
[

fx(Tηyη(t), u(t))
Befy(Tηyη(t), u(t))

]
,

and
fη(η(t), u(t)) ,

[
fy(Tηyη(t), u(t))

0ne×1

]
.

Remark 2.1: A few observations are now in place.
1) If a state estimate ẑ(t) for the augmented system (5) is

available, then an estimate of the the state of the original
system (1) can be simply computed as

x̂(t) = Tzxẑ(t) .

2) There exist a constant d̄η such that

d̄η > 0 : |dη(t)| ≤ d̄η, ∀t ∈ R≥0 .

3) if Assumption 4 holds, Gz(·, ·) is also Lipschitz with
respect to the first argument, uniformly in the second
one, with the same Lipschitz constant γ̄ as Gx(·, ·).
Analogously, both fz(·, ·) and fη(·, ·) are Lipschitz
continuous, with Lipschitz constants: f̄z , f̄x+||Be||f̄y
and f̄η = f̄y , respectively.

Now, we introduce the structure of the adaptive observer,
consisting of the measured output filter (2) and the dynamic
components (6), (7) and (8) given in the following:
1) Augmented state estimator:

˙̂z(t) = (Az − LCz)ẑ(t) + L(η̆(t)− fη(η̆(t), u(t)))

+ Gz(ẑ(t), u(t))θ̂(t) + fz(η̆(t), u(t)) + Ξ(t)
˙̂
θ(t) (6)

with arbitrary initial conditions ẑ(0) = ẑ0 . The gain matrix
L is given by

L ,
[
Lx 0
0 0

]
where Lx is a suitable gain matrix such that Ax − LxCx is
Hurwitz (which is always possible thanks to Assumption 1).
2) Parameter-affine state-dependent matrix filter:

Ξ̇(t) = (Az − LCz)Ξ(t) + Gz(ẑ(t), u(t)) (7)

with Ξ(0) = 0nz×nθ
and where Ξ(t) ∈ Rnz×nθ is

an auxiliary time-varying matrix whose elements are ob-
tained by filtering the state-dependent parameter-affine ma-
trix Gz(ẑ(t), u(t)) .
3) Parameters’ adaptation law:

˙̂
θ(t) = Ψ(t)Proj

[
˙̂
θpre(t)

]
|θ̂|≤θ̄∗

(8)

with θ̂(0) = θ̂0 . Ψ(t) is a switching signal defined later on
and

˙̂
θpre(t) , −µ

(
Ξ⊤(t)Ξ(t) + ρ2I

)−1
Ξ⊤(t)Λ(Cz ẑ(t)

−η̆(t) + fη(η̆(t), u(t))),

where µ is a positive constant and Λ ∈ Rnz×(ne+ny) is a
suitable chosen constant matrix, such that1:

ΛCz ≥ 0 , rank (ΛCz) ≥ nθ .

1A feasible choice for Λ is Λ = C⊤
z .



The parameters’ derivative projection operator is defined as:

Proj
[
˙̂
θpre(t)

]
|θ̂|≤θ̄∗

,


nsp(θ̂⊤(t))

(
nsp
(
θ̂⊤(t)

))⊤ ˙̂
θpre(t),

if |θ̂| = θ̄∗ and θ̂⊤(t)
˙̂
θpre(t) > 0

˙̂
θpre(t), otherwise

in which nsp(·) denotes the null-space of a row vector.
The observer components (6) and (8) are equipped with a
binary signal Ψ(t): N≥0 → {0, 1}, in charge of activat-
ing/suppressing the parameter adaptation. The signal Ψ(t)
is generated by the following hysteretic switching dynamics:

Ψ(t) =

{
1, if min eig (Φ(Ξ(t))) ≥ 2δ̄
0, if min eig (Φ(Ξ(t))) < 2δ
Ψ(t−), if 2δ ≤ min eig (Φ(Ξ(t))) < 2δ̄

(9)

where

Φ(Ξ(t)) =
(
Ξ⊤(t)Ξ(t) + ρ2I

)−1
Ξ⊤(t)ΛCzΞ(t)

represents the excitation matrix. We point out that transitions
are driven by an excitation-detection logic. The transition
thresholds δ, δ̄ are fixed by the designer such that 0 < 2δ <
2δ̄ < 1. The introduction of an hysteresis is motivated by
the need to ensure that the time between transitions has a
minimum finite duration.

Remark 2.2: The condition rank (ΛCz) ≥ nθ ensures that
there exist (t,Ξ(t)) such that min eig (Φ(Ξ(t))) > 0.

Remark 2.3: Note that, instead of computing the eigenval-
ues, it is possible to reformulate the switching on the basis
of a simpler (though more conservative) criterion. Owing to
the fact that

X(t) , (Ξ⊤(t)Ξ(t) + ρ2I)−1Ξ⊤(t)ΛCzΞ(t) ≥ 0 ,

the following inequalities hold:

max eig(X(t)) ≤
∑

eig(X(t)) = tr(X(t))

and

min eig(X(t)) ≥
∏ eig(X(t))

(max eig(X(t)))nθ−1

= det(X(t))

(max eig(X(t)))nθ−1

≥ det(X(t))

tr(X(t)))nθ−1

If the above inequalities are used to generate Ψ(t) in (9)
some conservatism is introduced, as a smaller set of state
trajectories allows to reach the activation level.

III. STABILITY ANALYSIS

In order to address the stability of the adaptive observer,
let us define the augmented state-estimation error vector:

z̃(t) , ẑ(t)− z(t),

the parameter estimation error

θ̃(t) , θ̂(t)− θ∗,

and their linear time-varying combination

φ̃(t) , Ξ(t)θ̃(t)− z̃(t) .

As (Az − LCz) is Hurwitz, it follows that, for any positive
definite matrix Q, there exists a positive definite matrix P
which solves the Lyapunov Equation

(Az − LCz)
⊤P + P(Az − LCz) = −2Q . (10)

Let us introduce the candidate Lyapunov function

V (t) , 1

2

(
z̃⊤(t)Pz̃(t) + θ̃⊤(t)θ̃(t) + gφ̃⊤(t)Pφ̃(t)

)
(11)

where g is a positive constant.
In the following analysis, the excitation-based switching

scheme depicted in Fig. 1 will be exploited. More specif-
ically, let k0→1(t) denote a counter for the transitions to
excitation, described by the jump dynamics given below:

k0→1(t) =

{
k0→1(t

−) + 1, if Ψ(t−) = 0 and Ψ(t) = 1
k0→1(t

−), if Ψ(t−) = 1 and Ψ(t) = 0

with k0→1(0) = 0 . Analogously, let k1→0(t) be a counter
for the transition from excitation to dis-excitation

k1→0(t) =

{
k1→0(t

−) + 1, if Ψ(t−) = 1 and Ψ(t) = 0
k1→0(t

−), if Ψ(t−) = 0 and Ψ(t) = 1

with k1→0(0) = 1 . Moreover, let t0→1(k) and t1→0(k)
denote the transition time-instants:

t0→1(k) , inf(t ≥ 0 : k0→1(t) = k) ,
t1→0(k) , inf(t ≥ 0 : k1→0(t) = k) .

Without loss of generality and taking into account that the
system starts from zero-excitement, then

t0→1(k) > t1→0(k), ∀k ∈ N .

Hence, the integer k always identifies a two-phase time-
window made of a dis-excitation interval followed by an
active estimation interval (see Fig. 1).

Ψ(t) active
identification

active
identification

disexcitation
interval

(k − 1)-th window k-th window

disexcitation
interval

t1→0(k) t0→1(k)

0

1
a b

0

2δ
2δ

min eig
(
Φ(Ξ(t))

)

excitation-based transitions

Fig. 1. Scheme of the excitation-based switching scheme for en-
abling/disabling the parameter adaptation. The transitions to dis-excitation
(a) and to active identification phases (b) have been evidenced.

In the next section, the ISS stability properties of the
proposed adaptive estimation scheme will be addressed. To
this end, two intermediate results are provided in which we
show that the derivative of the candidate Lyapunov function
can be suitably bounded from above in both modes of
behaviour (dis-excitation and excitation).

More precisely, we first establish an upper bound of
the Lyapunov-function time-derivative for an arbitrary time-
window k with poor excitation, in which Ψ(t) = 0, ∀t ∈[
t1→0(k), t0→1(k)

)
. Subsequently, the time-behaviour of

the Lyapunov function in a k-th time window in which
Ψ(t) = 1, ∀t ∈

[
t0→1(k), t1→0(k + 1)

)
will be character-

ized.



Lemma 3.1 (Dis-excitation phase): Assume that

Ψ(t) = 0, ∀t ∈ R≥0 .

Then under assumption 1-3, the time-derivative V̇ of the
candidate Lyapunov function V given in (11) for the adaptive
observer and parametric estimator given by (2), (6), (7) and
(8) verifies the inequality

V̇ (t) ≤ β0

(
L0V (t1→0(k)) + σ0(|dη(t)|)− V (t)

)
for suitable positive scalars β0 and L0, and for a suitable
function σ0. �

Proof: As Ψ(t) = 0, ∀t ∈
[
t1→0(k), t0→1(k)

)
, we have

˙̃
θ(t) = 0nθ×1∀t ∈

[
t1→0(k), t0→1(k)

)
and hence θ̃(t) = θ̃

(
t1→0(k)

)
. In this phase, z̃(t) evolves

according to the differential equation
˙̃z(t) = (Az − LCz)ẑ(t)

+L
(
η(t) + dη(t)− fη(η̆(t), η(t), u(t))

)
+Gz(ẑ(t), u(t))θ̂(t)− Azz(t)− Gz(z(t), u(t))θ

∗

+fz(η̆(t), u(t))− fz(η(t), u(t))

After some algebra, we obtain

˙̃z(t) = (Az−LCz)z̃(t)+Ldη(t)+G̃z(ẑ(t), z(t), u(t))θ̃(t)

+ Gz(z(t), u(t))θ̃(t) + G̃z(ẑ(t), z(t), u(t))θ
∗

+ f̃z(η̆(t), η(t), u(t))− Lf̃η(η̆(t), η(t), u(t))
where

G̃z(ẑ(t), z(t), u(t)) , Gz(ẑ(t), u(t))− Gz(z(t), u(t))
f̃z(η̆(t), η(t), u(t)) , fz(η̆(t), u(t))− fz(η(t), u(t))
f̃η(η̆(t), η(t), u(t)) , fη(η̆(t), u(t))− fη(η(t), u(t))

Analogously, φ̃(t) evolves according to

˙̃φ(t) = Ξ̇(t)θ̃(t) + Ξ(t)
˙̃
θ(t)− ˙̃z(t)

= (Az − LCz)Ξ(t)θ̃(t) + Gz(ẑ(t), u(t))θ̃(t)
−(Az − LCz)z̃(t)− Gz(ẑ(t), u(t))θ̃(t)
−G̃z(ẑ(t), z(t), u(t))θ

∗ − f̃z(η̆(t), η(t), u(t))
+Lf̃η(η̆(t), η(t), u(t))− Ldη(t)

and hence
˙̃φ(t) = (Az − LCz)φ̃(t)− G̃z(ẑ(t), z(t), u(t))θ

∗

−f̃z(η̆(t), η(t), u(t))
+Lf̃η(η̆(t), η(t), u(t))− Ldη(t)

Now, we let:

l̄ , ∥L∥ , q , min eig(Q) .

and
p̄ , max eig(P) (12)

The time-derivative of the Lyapunov function is given by:

V̇ (t) =
1

2

(
z̃⊤(t)P ˙̃z(t) + ( ˙̃z)⊤(t)Pz̃(t)

)
+

g
2

(
φ̃⊤(t)P ˙̃φ(t) + ( ˙̃φ)⊤(t)Pφ̃(t)

)
In view of the inequality |θ̃(t)| < 2θ̄∗ and after some algebra

V̇ (t) can be bounded as follows:

V̇ (t) ≤ −
q − 3p̄γ̄θ̄∗

2
|z̃(t)|2 + p̄¯̄γ|z̃(t)||θ̃(t1→0(k))|

−
q − 3p̄γ̄θ̄∗

2
|z̃(t)|2 + p̄(l̄ + f̄z + l̄f̄η)|z̃(t)||dη(t)|

−
gq
2
|φ̃(t)|2 + gp̄γ̄θ̄∗|z̃(t)||φ̃(t)| −

gq
2
|φ̃(t)|2

+gp̄(l̄ + f̄z + l̄f̄η)|φ̃(t)||dη(t)| .
By completing squares, we obtain the following upper bound
for V̇ (t):

V̇ (t) ≤ −
(q − 3p̄γ̄θ̄∗

2
− g

q

(
p̄γ̄θ̄∗

)2)|z̃(t)|2
−

gq
2
|φ̃(t)|2 + p̄2 ¯̄γ2

q − 3p̄γ̄θ̄∗
|θ̃(t1→0(k))|2

+
( p̄2(l̄ + f̄z + l̄f̄η

)2
q − 3p̄γ̄θ̄∗

+
g
q
p̄2
(
l̄ + f̄z + l̄f̄η

)2)|dη(t)|2
By observing that

|θ̃(t1→0(k))|2 ≤ 2V (t1→0(k)) ,

we get:

V̇ (t) ≤ −
(q − 3p̄γ̄θ̄∗

2
− g

q

(
p̄γ̄θ̄∗

)2)|z̃(t)|2 − gq
2
|φ̃(t)|2

−1

2
|θ̃(t)|2 + 2

( p̄2 ¯̄γ2

q − 3p̄γ̄θ̄∗
+

1

2

)
V (t1→0(k))

+
( p̄2(l̄ + f̄z + l̄f̄η

)2
q − 3p̄γ̄θ̄∗

+
g
q
p̄2
(
l̄ + f̄z + l̄f̄η

)2)|dη(t)|2
and hence, after some algebra, it follows that

V̇ (t) ≤ β0

(
L0V (t1→0(k)) + σ0(|dη(t)|)− V (t)

)
where

β0 , 2min

{
q − 3p̄γ̄θ̄∗

2
− g

q

(
p̄γ̄θ̄∗

)2
,

gq
2
,
1

2

}
,

L0 , 2

β0

{
p̄2 ¯̄γ2

q − 3p̄γ̄θ̄∗
+

1

2

}
,

and

σ0(s) ,
1

β0

(
p̄2
(
l̄ + f̄z + l̄f̄η

)2
q − 3p̄γ̄θ̄∗

+
g
q
p̄2
(
l̄ + f̄z + l̄f̄η

)2)
s2,

∀s ∈ R≥0 .

Hence, for β0 > 0 (which is possible through a suitable
design, as will be shown later on in the paper), the proof is
concluded.

It is worth noting in the above proof that, without adap-
tation, in presence of parameter mismatch, the Lyapunov
function is not guaranteed to converge toward zero. However,
for β0 > 0, it admits a bound that depends on the noise level
and on the initial value of the Lyapunov function itself.

Now, consider the active identification phase of the k-th
time-window, in which Ψ(t) = 1, ∀t ∈

[
t0→1(k), t1→0(k +

1)
)
.

Lemma 3.2 (Excitation phase): Assume that

Ψ(t) = 1, ∀t ∈ R≥0 .

Then under assumption 1-3, the time-derivative V̇ of the



candidate Lyapunov function V given in (11) for the adaptive
observer and parametric estimator given by (2), (6), (7) and
(8) verifies the inequality

V̇ (t) ≤ −β1

[
V (t)− σ1(d̄η)

]
,

for a suitable positive scalar β1 and for a suitable function
σ1, with respect to any bounded additive measurement per-
turbation dη(t) ≤ d̄η. �

θ̄∗

θ∗
θ̂(t)

Proj
˙̂
θpre(t)

˙̂
θ(t)

θ̃(t)

b
a

Fig. 2. 2D pictorial representation of the projection-based adaptation. When
|θ̂(t)| = θ

∗
and ˙̂

θpre(t) = θ∗ points out of the feasible region, then
the derivative of the parameter vector is obtained by projecting ˙̂

θpre(t)
to the tangential hyperplane. To visually compare the values of the scalar
products −θ̃⊤

˙̂
θpre(t) and −θ̃⊤

˙̂
θ(t), consider the projected vectors (a) and

(b) respectively.

Proof: The state estimation vector evolves according
to the differential equation
˙̃z(t) = (Az − LCz)z̃(t) + Ldη(t)

+G̃z(ẑ(t), z(t), u(t))θ̃(t) + Gz(z(t), u(t))θ̃(t)
+G̃z(ẑ(t), z(t), u(t))θ

∗ + f̃z(η̆(t), η(t), u(t))

−Lf̃η(η̆(t), η(t), u(t)) + Ξ(t)
˙̂
θ(t)

Moreover
˙̃
θ(t) = Proj

{
−µ(Ξ⊤(t)Ξ(t) + ρ2I)−1Ξ⊤(t)Λ

×(Cz ẑ(t)− η̆(t) + fη(η̆(t), u(t)))}|θ̂|≤θ̄∗

Hence, after some algebra, we get
˙̃
θ(t) = Proj

{
−µ(Ξ⊤(t)Ξ(t) + ρ2I)−1Ξ⊤(t)

×ΛCzΞ(t)θ̃(t)
+µ(Ξ⊤(t)Ξ(t) + ρ2I)−1Ξ⊤(t)
×Λ
(
dη(t)− f̃η(η̆(t), η(t), u(t))

)
+µ(Ξ⊤(t)Ξ(t) + ρ2I)−1Ξ⊤(t)
×ΛCzφ̃(t)}|θ̂|≤θ̄∗

To analyze the influence of the derivative projection on
the parameters’ estimates, consider now the vectors depicted
in Fig. 2. Owing to the convexity of the admissible set, we
can bound the scalar product −θ̃⊤(t)

˙̃
θ(t) as follows:

−θ̃⊤(t)
˙̃
θ(t) = −θ̃⊤(t)Proj

{
˙̂
θpre(t)

}
|θ̂|≤θ̄∗

≥ −θ̃⊤(t)
˙̂
θpre(t)

and hence

θ̃⊤(t)
˙̃
θ(t) ≤

− µθ̃⊤(t)(Ξ⊤(t)Ξ(t) + ρ2I)−1Ξ⊤(t)ΛCzΞ(t)θ̃(t)

+ µθ̃⊤(t)(Ξ⊤(t)Ξ(t) + ρ2I)−1Ξ⊤(t)Λ

×
(
dη(t)− f̃η(η̆(t), η(t), u(t))

)
+ µθ̃⊤(t)(Ξ⊤(t)Ξ(t) + ρ2I)−1Ξ⊤(t)ΛCzφ̃(t) .

By letting c̄ , ∥Cz∥ and λ̄ , ∥Λ∥, the time-derivative of
the Lyapunov function can be bounded as follows:

V̇ (t) ≤ −q|z̃(t)|2 − gq|φ̃(t)|2 − µδ|θ̃(t)|2

+ p̄(l̄ + f̄z + l̄f̄η)|z̃(t)||dη(t)|+ p̄γ̄|z̃(t)|2|θ̃(t)|
+ p̄¯̄γ|z̃(t)||θ̃(t)|+ p̄γ̄θ̄∗|z̃(t)|2 + µp̄c̄λ̄|z̃(t)|2

+ µp̄λ̄(1 + f̄η)|z̃(t)||dη(t)|+ µ
λ̄(1 + f̄η)

2ρ
|θ̃(t)||dη(t)|

+ µ
c̄λ̄

2ρ
|θ̃(t)||φ̃(t)|+ gp̄(l̄ + f̄z + l̄f̄η)|φ̃(t)||dη(t)|

+ gp̄γ̄θ̄∗|z̃(t)||φ̃(t)| ,
and thus, after some algebra, we obtain

V̇ (t) ≤ −(q−µp̄c̄λ̄−3p̄γ̄θ̄∗)|z̃(t)|2−gq|φ̃(t)|2−µδ|θ̃(t)|2

+ p̄
(
l̄ + f̄z + l̄f̄η + µλ̄(1 + f̄η)

)
|z̃(t)||dη(t)|

+ µ
c̄λ̄

2ρ
|θ̃(t)||φ̃(t)|+ gp̄γ̄θ̄∗|z̃(t)||φ̃(t)|+ p̄¯̄γ|z̃(t)||θ̃(t)|

+µ
λ̄(1 + f̄η)

2ρ
|θ̃(t)||dη(t)|+gp̄(l̄+ f̄z+ l̄f̄η)|φ̃(t)||dη(t)| .

By re-arranging the above inequality to put in evidence the
square monomial and the binomial terms, we have:

V̇ (t) ≤ −(q − µp̄c̄λ̄− 3p̄γ̄θ̄∗)|z̃(t)|2
+p̄
(
l̄ + f̄z + l̄f̄η + µλ̄(1 + f̄η)

)
|z̃(t)||dη(t)|

−
gq
2
|φ̃(t)|2 + gp̄γ̄θ̄∗|z̃(t)||φ̃(t)|

−
gq
2
|φ̃(t)|2 + gp̄(l̄ + f̄z + l̄f̄η)|φ̃(t)||dη(t)|

−µδ

3
|θ̃(t)|2 + p̄¯̄γ|z̃(t)||θ̃(t)|

−µδ

3
|θ̃(t)|2 + µ

λ̄(1 + f̄η)

2ρ
|θ̃(t)||dη(t)|

−µδ

3
|θ̃(t)|2 + µ

c̄λ̄

2ρ
|θ̃(t)||φ̃(t)| .

Now, we complete the squares, getting to

V̇ (t) ≤ −
(q − µp̄c̄λ̄− 3p̄γ̄θ̄∗)

2
|z̃(t)|2

+
p̄2
(
l̄ + f̄z + l̄f̄η + µλ̄(1 + f̄η)

)2
2(q + µp̄c̄λ̄− 3p̄γ̄θ̄∗)

|dη(t)|2

−
gq
2
|φ̃(t)|2 + g

q
(p̄γ̄θ̄∗)2|z̃(t)|2 − µδ

2
|θ̃(t)|2

+
g
q
p̄2(l̄ + f̄z + l̄f̄η)

2|dη(t)|2 +
3(p̄¯̄γ)2

2µδ
|z̃(t)|2

+

3

(
µ
λ̄(1 + f̄η)

2ρ

)2

2µδ
|dη(t)|2 +

3

(
µ
c̄λ̄

2ρ

)2

2µδ
|φ̃(t)|2



and hence

V̇ (t) ≤ −

[
(q − µp̄c̄λ̄− 3p̄γ̄θ̄∗)

2
− g

q
(p̄γ̄θ̄∗)2

−3(p̄¯̄γ)2

2µδ

]
|z̃(t)|2

−µδ

2
|θ̃(t)|2 − (

gq
2

− 3µc̄2λ̄2

8ρ2δ
)|φ̃(t)|2

+

[
p̄2
(
l̄ + f̄z + l̄f̄η + µλ̄(1 + f̄η)

)2
2(q + µp̄c̄λ̄− 3p̄γ̄θ̄∗)

+
3µ
(
λ̄(1 + f̄η)

)2
8ρ2δ

+
g
q
p̄2(l̄ + f̄z + l̄f̄η)

2

]
|dη(t)|2

Summing up, for the case Ψ(t) = 1 (excitation), the
following inequality can be established:

V̇ (t) ≤ −β1

[
V (t)− σ1(d̄η)

]
,

where

β1 ,

2min

{
(q − µp̄c̄λ̄− 3p̄γ̄θ̄∗)

2
− g

q
(p̄γ̄θ̄∗)2 − 3(p̄¯̄γ)2

2µδ
,

µδ

2
,

gq
2

− 3µc̄2λ̄2

8ρ2δ

}
(13)

and (for β1 > 0)

σ1(s) ,
1

β1

[
p̄2
(
l̄ + f̄z + l̄f̄η + µλ̄(1 + f̄η)

)2
2(q + µp̄c̄λ̄− 3p̄γ̄θ̄∗)

+
3µ
(
λ̄(1 + f̄η)

)2
8ρ2δ

+
g
q
p̄2(l̄ + f̄z + l̄f̄η)

2

]
s2 .

∀s ∈ R≥0

Hence, for β1 > 0 (which is possible through a suitable
design, as will be shown later on in the paper), the proof is
concluded.

The bounds on the derivative of the Lyapunov function
in the two phases of dis-excitation and excitation (assuming
that these phases go on indefinitely) have been proven by
claiming the existence of a design procedure that guarantees
that a positive value of β0 in Lemma 3.1 and of β1 in
Lemma 3.2 can be constructed, respectively. As β1 > 0
implies β0 > 0 (L0 > 0 as well), we are now only
proceeding to analyze the conditions making β1 strictly
positive. More specifically, we prove the existence of a
parameter set which ensures the monotonic decrease of the
Lyapunov function for any prescribed value of the excitation
threshold δ.

First, we set the excitation threshold δ and the Q matrix
arbitrarily, determining q. Then, letting

p̄ ≥ µ, (14)

we determine a sufficiently small value of µ such that the
first term in (13) is positive:

(q − µ2c̄λ̄− 3µγ̄θ̄∗)

2
− µ2 g

q
(γ̄θ̄∗)2 − µ

3¯̄γ2

2δ
> 0 .

Being the Lyapunov parameter g > 0 arbitrary, let us fix
g = 1 for simplicity. Now, we can always determine a
sufficiently small value of µ such that the inequality holds
true. Next, we compute the output-injection gain L in order

to let inequality (14) hold true (this task can be achieved
by suitably allocating the poles of Az − LCz , such that the
solution P of (10), whose eigenvalues are bounded by (12),
allows to fulfill (14)). Finally, to render β1 strict-positive, we
choose a regularization parameter ρ such that

gq
2

− 3µc̄2λ̄2

8ρ2δ
> 0 .

Remark 3.1: Note that low values of p̄, that enforce the
positiveness of β1, correspond to high-gain output injections
through L. This may result in high values of l̄ . As a conse-
quence, also σ1, that is, the worst-case sensitivity to bounded
noises, is increased. Two possible ways to reduce the noise
sensitivity are: to increase the regularization parameter ρ and
to increase the threshold δ. The latter however, reduces the
estimator switch-on times and should be avoided if possible.

Remark 3.2: The semi-global attribute, referred to the
stability of the observer, arises from the assumption that the
observed system state is bounded by a constant x̄. However,
for any finite x̄ arbitrarily large, there exists a suitable choice
for the design parameters which allows to enforce the ISS
property.

IV. ROBUSTNESS UNDER ALTERNATE EXCITATION AND
ACTIVE IDENTIFICATION PHASES

By linking the available Lyapunov bounds established in
the previous section in correspondence to the transitions,
we can study the worst-case behaviour of the system under
alternate switching. It is also possible to determine the
sufficient conditions (namely, a minimum time-duration of
the active identification phases) that guarantee the asymptotic
ISS property of the discrete dynamics induced by sampling
the adaptive observer in correspondence of the transitions.
This important result is given in the following theorem.

Theorem 4.1: Under the same assumptions of Lemma 3.1
and 3.2, consider the adaptive observer (2), (6), (7), (8)
equipped with the excitation level-based switching strategy
defined in (9). Moreover, assume that any excitation phase
∆Te lasts longer than β−1

1 ln(L0). Then, the discrete dynam-
ics induced by sampling the adaptive observer in correspon-
dence of the switching transitions has the asymptotic ISS
property. �

Proof: By the Gronwall-Bellman Lemma, the value of
the Lyapunov function within the dis-excitation intervals can
be bounded as follows:
V (t) ≤ V (t1→0(k)) +

(
1− e−β0(t−t1→0(k))

)
×
(
L0V (t1→0(k)) + σ0(d̄η)− V (t1→0(k))

)
∀t ∈ [t1→0(k), t0→1(k)), ∀k ∈ Z ≥ 1

Instead, during the excitation phases, the Lyapunov function
can be bounded as
V (t) ≤ V (t0→1(k)) +

(
1− e−β1(t−t0→1(k))

)
×
(
σ1(d̄η)− V (t0→1(k))

)
∀t ∈ [t0→1(k), t1→0(k + 1)), ∀k ∈ Z ≥ 1

In order to link the two modes of behaviour, let us denote
by Vk = V (t1→0(k)) the value of the Lyapunov function
sampled at the k-th transition to dis-excitement, occurring at
time t1→0(k) (or equivalently, at the end of the (k − 1)-th
active identification phase).

Due to the poor excitation during the interval
[t1→0(k), t0→1(k)), at the transition time t0→1(k) we
can establish the (conservative) bound

V (t0→1(k)) ≤ L0Vk + σ0(d̄η) .

Such a bound holds for any duration the disexcitation phase.
For any subsequent active identification time t = t0→1(k)+



∆t with ∆t < t1→0(k+1)− t0→1(k), we get the inequality:

V (t) ≤ V (t0→1(k)) +
(
1− e−β1(t−t0→1(k))

)
×
(
σ1(d̄η)− V (t0→1(k))

)
= σ1(d̄η)− e−β1(t−t0→1(k))σ1(d̄η)

+e−β1(t−t0→1(k))V (t0→1(k))
≤ σ1(d̄η)− e−β1(t−t0→1(k))σ1(d̄η)

+e−β1(t−t0→1(k))
(
σ0(d̄η) + L0Vk

)
= σ1(d̄η) + e−β1∆t

(
σ0(d̄η)− σ1(d̄η) + L0Vk

)
Now, let us arbitrarily set ω̄ < 1 and set ∆Te =
−β−1

1 ln
(
L−1
0 ω̄

)
. If the active identification phase is long

enough to verify the inequality t1→0(k + 1) − t0→1(k) >
∆Te, then we can guarantee the following difference bound
on the discrete (sampled) Lyapunov function sequence:

Vk+1 ≤ σ1(d̄η) +
ω̄

L0

(
σ0(d̄η)− σ1(d̄η)

)
+ ω̄Vk

which can be rearranged in the following compact form:

Vk+1 − Vk ≤ −(1− ω̄)Vk + σ(d̄η)

where σ(s) = σ1(s) + ω̄L−1
0 (σ0(s)− σ1(s)) , ∀s ≥ 0.

We can conclude that Vk is a discrete ISS Lyapunov
function for the sampled sequence, with samples taken at the
end of the excitation phases assumed always to last longer
than β−1

1 ln(L0).
In order to analyze the inter-sampling behaviour, for any

time t , let k(t) denote the index of the current time-window:
k(t) = k : t ∈

[
t1→0(k), t1→0(k + 1)

)
. Between two

samples, the Lyapunov function can be bounded as follows:

V (t) ≤ max
t∈
[
t1→0(k(t)),t0→1(k(t))

) {Vk(t)

+
(
1− e−β0(t−t1→0(k(t)))

) (
L0Vk(t) + σ0(d̄η)− Vk(t)

)}
+ max

t∈
[
t0→1(k(t)),t1→0(k(t)+1)

) {σ1(d̄η)

−e−β1(t−t0→1(k(t)))
(
σ1(d̄η)− σ0(d̄η)− L0Vk(t)

)}
thus leading to

V (t) ≤ max
∆t1∈R≥0{
Vk(t) +

(
1− e−β0∆t1

) (
L0Vk(t) + σ0(d̄η)− Vk(t)

)}
+ max

∆t2∈R≥0

{
σ1(d̄η)− e−β1∆t2

(
σ1(d̄η)− σ0(d̄η)− L0Vk(t)

)}
≤
[
(1 + L0)Vk(t) + σ0(d̄η)

]
+
[
σ1(d̄η) + σ0(d̄η) + L0Vk(t)

]
= (1 + 2L0)Vk(t) + σ1(d̄η) + 2σ0(d̄η)

(15)
If we let k(t) −−−→

t→∞
∞ (i.e., an infinite number of active

identification phases occurs asymptotically), then the estima-
tion errors in the inter-sampling times converge to a region
whose radius depends only on the assumed disturbance
bound.2

V. SIMULATION RESULTS

Consider{
ẋ1(t) = 2x2 + θ∗1 sinx2

ẋ2(t) = −4x1 − 8x2 + θ∗2x
3
1 + u(t)

y(t) = x1(t) + dy(t)
(16)

with θ∗1 = −1, θ∗2 = −2. dy(t) denotes a bounded mea-
surement noise with uniform distribution in the interval

2Note that this reasoning leads also allows to recover the ISS result for a
single excitation phase lasting indefinitely, since it can be thought as made
up of an infinite number of excitation phases of finite duration separated by
dis-excitation phases of arbitrarily short length

[−0.05, 0.05]. The external input is given by u(t) = 1 +
α(t) sin t, t ≥ 0, where α(t) = 1, t ∈ [0, 10), α(t) =
20, t ∈ [10, 70), and α(t) = 1, t ∈ [70, 100). In view of
(5), the choice Ae = −1, Be = 1 leads to augment (16) as{

ż(t) = Azz(t) + Gz(z(t), u(t))θ
∗ +Bzu(t)

η̆(t) = Czz(t) + dη(t)
(17)

with z(0) = z0 and where

Az =

[
0 2 0
−4 −8 0
1 0 −1

]
,Bz =

[
0
1
0

]
,Cz =

[
1 0 0
0 0 1

]
Moreover

Gz(z(t), u(t)) =

[
sinx2 0
0 x3

1
0 0

]
, L =

[ −4 0
13.5 0
0 0

]
,

where L denotes the observer gain matrix that can be
constructed using the gain matrix Lx which, in turn, can
be easily calculated by placing the eigenvalues at (−1, −3).

The tuning parameters are: ρ = 0.5, µ = 15, δ =
0.075, δ = 0.05, Λ = C⊤

z . In the mean time, the initial
values are ẑ(0) = [0, 0, 0]⊤, θ̂1(0) = 0.3, θ̂2(0) = 0.
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Fig. 3. Behaviour of the input signal u(t) and the output signal y(t).
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Fig. 4. Behaviour of the excitation level and of the switching signal Ψ(t).

Fig. 3 show the input u(t) and output y(t), respectively,
while the switching signal Ψ(t) and the excitation level
min eig(Φ(Ξ(t))) are plotted in Fig. 4, in which on-off
switching level signal based on the detected excitation can be
observed. In Fig.5 we compare the estimated parameters of
both algorithms with and without switching strategy. Thanks
to the switching algorithm, the estimates improve progres-
sively and reach the true values after a finite number of
active identification intervals. In the meantime, the estimated
parameters are ‘frozen’ at the previous estimates in poorly
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Fig. 5. Estimated parameters θ̂1 and θ̂2 with switching algorithm (solid line) and without switching algorithm (dashed line)
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Fig. 6. Norm of state estimation errors x̃1 and x̃2 with switching algorithm (solid line) and without switching algorithm (dashed line)

excited conditions; conversely, the estimates diverge in the
dis-excitation phase when the switching criterion is not used.

Finally, Fig. 6 shows that the state estimation errors are
bounded, which is consistent with Theorem 4.1 (see (15) in
the proof showing the boundedness of the Lyapunov function
for the inter-sampling behaviour).

VI. CONCLUDING REMARKS

A MIMO adaptive observer for uncertain linearly-
parametrized nonlinear systems has been proposed. The
adaptive observer is equipped with a robust excitation-based
switching strategy allowing to address poor excitation sce-
narios. The robustness of the proposed algorithm is shown
and an ISS stability analysis is provided. The early simula-
tion results show promising performances of the proposed
technique.

Future research efforts will be devoted to extend the
class of parametrized uncertain systems dealt with in this
paper and to apply the algorithm to some specific estimation
contexts like, for example, the estimation of a finite number
of frequencies of multiple sinusoidal signals even in presence
of bounded additive disturbances.
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