
1

Sinusoidal Signal Estimation from a Noisy-Biased Measurement by an
Enhanced PLL with Generalized Error Filtering
Gilberto Pin, Masoud Karimi-Ghartemani, Boli Chen, and Thomas Parisini

Abstract— In this paper, an Enhanced Phase-Locked Loop
(EPLL) architecture is proposed to deal with the problem of
estimating the amplitude, the frequency and the phase of a
sinusoidal signal from a noisy measurement. The EPLL scheme
is chacterized by an error filter and a phase-feedforward term
that are embedded in the estimation algorithm for improved
noise rejection and transient performances. By designing the
error filter and by selecting the parameters of the PLL
according to the guidelines suggested by the stability proof,
the technique addressed in the paper allows to cope with the
presence of measurement bias while damping the effect of high-
frequency noise and harmonics. Simulation comparisons show
the effectiveness of the proposed estimation technique.

I. INTRODUCTION

The problem of estimating the Amplitude, the Frequency
and the Phase (AFP) of a sinusoidal signal or to reconstruct
a pure sinusoid from a noisy measurement is encountered in
many engineering fields including power conversion systems
(see, for example [1]), measurement and monitoring of
electrical systems (see [2]–[4]) and active noise and vibration
control (see, for instance [5]). Quite a large variety of
AFP approaches are already available in the systems and
control community that exploit concepts and tools such
as state-variable filtering [6], adaptive observers [7], [8],
adaptive notch filters [9] or Extended Kalman filters [10]. On
the other hand, in several application contexts of electrical
and electronic engineering, the Phase-Locked-Loop (PLL)
method and its many variants still remains the preferred
choice (see, for instance [11], [12], and the references cited
therein). The most important features that render PLL such a
widely used architecture are its robustness to environmental
and measurement noise, the ease of implementation in dig-
ital signal processing platforms and, referring to electrical
systems, the applicability to both single and three-phase
systems. However, the aforementioned methods based on the
PLL architecture can only deal with unbiased signals, while it
is commonly acknowledged that both structured perturbation
and unstructured noise are encountered in several practical
applications (see the very recent paper [13]). In this connec-
tion, several recent approaches have been devoted to design
robust AFP algorithms able to cope with bias and drift in
the measurement (see, for example, [14]–[18]).

Besides the previously-mentioned inability to deal with
biased signals, the conventional PLL also exhibits the well-
known double-frequency ripple phenomenon, which causes
undesired oscillations on the reconstructed signal. A mod-
ified PLL architecture conceived to solve this problem is
the Magnitude PLL (MPLL) described in [19]; this method
consists in providing the PLL of an outer adaptation loop
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which is in charge of estimating the amplitude of the
input signal. Another quite successful approach, which has
been conceived with particular focus on power and energy
applications, is the Enhanced PLL (EPLL) proposed in [1].
The stability of the EPLL dynamics has been studied in [20].
Extension of the EPLL to address the presence of a DC
component (i.e., measurement bias) is presented in [21] by
including an additional integrator in the EPLL. Finally, in
[22], multiple EPLL units are placed within one “esternal”
loop in order to estimate and reject harmonics and inter-
harmonics.

In the present work, we introduce an improvement over the
original EPLL scheme, consisting of an additional error filter
and a phase-feedforward term which is aimed at improving
the robustness (phase margin) and the transient performances
of the estimator. The proposed architecture is named the Gen-
eralized filtering EPLL (GEPLL). By properly selecting the
structure of the error filter, the biased AFP problem can be
addressed as special case. Depending on the transfer function
of the error filter, the impact of the phase-feedforward term
can be crucial to improve the transient dynamic performance.
The stability of the GEPLL is assessed by a two-time scales
averaging analysis, that also provides some useful tuning
guidelines for the gains of the GEPLL. Simulation results
also reporting some comparisons with other techniques show
the effectiveness of the proposed approach.

II. THE AFP PROBLEM AND THE GEPLL

Consider a sinusoidal signal y∗(t), generated by the fol-
lowing oscillatory dynamic system:{

ϑ̇∗(t) = ω∗,
y∗(t) = A∗ sin(ϑ∗(t))

, t ∈ R≥0 (1)

with ϑ∗(0) = ϑ∗0 and where A∗, ω∗, and ϑ∗0 denote the
amplitude, the angular frequency, and the initial phase,
respectively. While the pure sinusoidal signal y∗ is not
directly measurable, the following perturbed signal is instead
available for performing the AFP estimation:

y(t) = y∗(t) + y0 + η(t), (2)

where y0 ∈ R denotes the unknown bias, η(t) denotes a
high-frequency noise, i.e., a signal whose spectral density in
the band (0, ω∗) is negligible. The sum of bias and noise
will be denoted by

p(t) ≜ y0 + η(t)

and represents the total measurement perturbation signal.
A block diagram of the proposed GEPLL architecture

is shown in Fig. 1.The main idea underlying the proposed
GEPLL technique consists in embedding in the EPLL struc-
ture (see [1]) a linear filter in order to cancel the unknown
bias and to dampen the high-frequency perturbations; at the
same time, it compensates the phase-shift introduced by the
above filter by a phase-feedforward term which enters the
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Fig. 1. Detailed scheme of the GEPLL. Compared to the EPLL scheme it
contains the customizable error filter Gf (s) and the phase-feedforward δ.

loop through the synchronizing and quadrature signals of
the PLL.

In analogy with the EPLL architecture, the GEPLL is fed
by the error signal

e(t) = y(t)− u(t) = y∗ + p(t)− u(t)

between the measurement y(t) and the estimated (extracted)
sinusoid u(t) = A(t) sin (ϑ(t)), where ϑ(t) is the estimated
phase angle and A(t) the estimated amplitude. The GEPLL
uses a linear time-invariant (LTI) filter to attenuate the effect
of the perturbation p(t) on e(t). The filtered error ef (t) is
defined as the output of the following filter:{

ẋ(t) = Afx(t) + bf e(t),

ef (t) = c⊤f x(t) + df e(t)
, t ∈ R≥0 (3)

where x(0) = x0. In (3), x(t) ∈ Rn is the state vector of
the filter; Af is an n × n matrix; bf and cf are n × 1
vectors; and df is a scalar. The order of the filter (3) and the
matrices describing its dynamics can be chosen arbitrarily by
the designer according to the specifications. By now, we only
make the mild assumptions that (3) is reachable, observable
and that Af is Hurwitz. In the Laplace domain, the filter (3)
can be described by the stable transfer function:

Gf (s) = c⊤f (sI−Af )
−1bf + df . (4)

The amplitude, frequency and phase-angle dynamics of the
GEPLL are described by Ȧ(t) = µA d(t) ef (t)

∆̇ω(t) = µω q(t) ef (t)
ϑ̇(t) = ω0 +∆ω(t) + µϑ q(t) ef (t)

, t ∈ R≥0 , (5)

with A(0) = A0, ϑ(0) = ϑ0, ∆ω(0) = 0 and where
∆ω(t) represents the frequency correction generated by the
algorithm with respect to the nominal frequency ω0, such
that the estimated frequency is given by ω(t) = ∆ω(t)+ω0.
The terms

d(t)=sin(ϑ(t)+ δ) ; q(t)=cos(ϑ(t)+ δ) ; (6)

are called respectively the direct and the quadrature synchro-
nizing signals, while δ=∠Gf (iω0) is the phase of the filter
at the nominal frequency. The constants µA, µϑ, µω ∈ R>0

in (5) are tuning gains to be set according to the stability
analysis that will be carried out in the sequel.

The phase-feedforward parameter δ ∈ R in (6) (not present

in EPLL scheme) accounts for the phase shift introduced by
the filter (3) at the nominal frequency ω0. This term can
have significant impact on the transient response and on the
stability properties of the estimator.

III. AVERAGING STABILITY ANALYSIS OF THE GEPLL

The following constraints are introduced to simplify the
stability analysis of the GEPLL:

1) Admissible frequency interval:

ω(t) ∈ [ωmin, ωmax],with 0 < ωmin ≤ ωmax,

which can be accomplished simply by clipping the
frequency correction variable ∆ω(t) within the interval
[ωmin − ω0, ωmax − ω0], where ωmin, and ωmax are
a-priori known bounds on the true frequency of the
sinusoid;

2) Amplitude positivity: A(t) ≥ 0.
Let gf (t) denote the impulse response of Gf (s). Then:

ef (t) = gf (t)⊛ e(t) (7)

where ⊛ denotes the standard convolution operator in the
time-domain. Introducing the phase reconstruction error
ϑ̃(t) ≜ ϑ(t)− ϑ∗(t), the amplitude error Ã(t) ≜ A(t)−A∗

and the frequency estimation error ω̃(t) ≜ ω(t) − ω∗ =
ω0 +∆ω(t)− ω∗, the tracking error e(t) is given by

e(t) = −Ã(t) sin
(
ϑ(t)

)
−A∗ cos

(
ϑ(t)

)
sin

(
ϑ̃(t)

)
+A∗ sin

(
ϑ(t)

) [
cos

(
ϑ̃(t)

)
− 1

]
+ p(t).

(8)

By substituting (8) in (7) and (5) and by expanding the
synchronizing signals (6), the error dynamics becomes

˙̃A(t)= µA

{
sin
(
ϑ∗(t)+ϑ̃(t)

)
cos(δ)+cos

(
ϑ∗(t)+ϑ̃(t)

)
sin(δ)

}
×(

gf (t)⊛
{
−Ã(t) sin

(
ϑ∗(t) + ϑ̃(t)

)
−A∗cos

(
ϑ∗(t)+ϑ̃(t)

)
sin
(
ϑ̃(t)
)

+A∗sin
(
ϑ∗(t)+ϑ̃(t)

)[
cos
(
ϑ̃(t)

)
−1
]
+p(t)

})
,

(9)

˙̃ω(t)= µω

{
cos
(
ϑ∗(t)+ϑ̃(t)

)
cos(δ)− sin

(
ϑ∗ (t)+ϑ̃(t)

)
sin(δ)

}
×(

gf (t)⊛
{
−Ã(t) sin

(
ϑ∗(t) + ϑ̃(t)

)
−A∗cos

(
ϑ∗(t)+ϑ̃(t)

)
sin
(
ϑ̃(t)
)

+A∗sin
(
ϑ∗(t)+ϑ̃(t)

)[
cos
(
ϑ̃(t)

)
−1
]
+p(t)

})
,

(10)
˙̃
ϑ(t) =

µϑ
µω

˙̃ω(t) + ω̃(t) , (11)

where (11) has been recast in terms of the derivatives of
the other state variables for the sake of brevity. Now, let us
introduce an additional auxiliary state variable v́ (t) obtained
by filtering the frequency error v̇́ (t) = −µv v́ (t) + ω̃(t) ,
where µv > 0 is a constant parameter. Then, defining
ψ̃(t) ≜ ϑ̃(t)− v́ (t), the time-derivative of ϑ̃(t) results in

˙̃
ψ(t) =

µϑ
µω

˙̃ω(t) + µv v́ (t) .

Substituting ϑ̃ → ψ̃ + v́ in (9)-(11), letting µA = ϵλA,
µω = ϵλω , µϑ = ϵλϑ, λv = µv/ϵ for some ϵ ∈ R>0, and
dropping, again for the sake of the brevity, the dependence
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of the error variables and v́ on time, we obtain the following
autonomous nonlinear dynamical system:

˙̃A= ϵf Á(t, Ã, ω̃, ψ̃, v́ )
˙̃ω = ϵf ώ(t, Ã, ω̃, ψ̃, v́ )
˙̃
ψ = ϵf ψ́(t, Ã, ω̃, ψ̃, v́ )

v̇́ = −µv v́ + ω̃

(12)

where

f Á(t, Ã, ω̃, ψ̃, v́ ) ≜ λA
{
sin(ϑ∗)κ1 + cos(ϑ∗)κ2

}
× gf (t)⊛

{
p(t)+ sin(ϑ∗)κ3 + cos(ϑ∗)κ4

}
,

f ώ
(
t, Ã, ω̃, ψ̃, v́

)
≜ λω

{
cos(ϑ∗)κ1 − sin(ϑ∗)κ2

}
× gf (t)⊛

{
p(t)+ sin(ϑ∗)κ3 + cos(ϑ∗)κ4

}
,

f ψ́
(
t, Ã, ω̃, ψ̃, v́

)
≜ λϑ
λω

˙̃ω

ϵ
+ λv v́

with

κ1 ≜ cos
(
ψ̃+v́

)
cos(δ)−sin

(
ψ̃+v́

)
sin(δ),

κ2 ≜ cos
(
ψ̃+v́

)
sin(δ) +sin

(
ψ̃+v́

)
cos(δ),

κ3 ≜ −Ãcos
(
ψ̃+v́

)
+A∗sin

(
ψ̃+v́

)
sin

(
ψ̃+v́

)
+A∗cos

(
ψ̃+v́

)
cos

(
ψ̃+v́

)
−A∗cos

(
ψ̃+v́

)
,

κ4 ≜ −Ãsin
(
ψ̃+v́

)
−A∗cos

(
ψ̃+v́

)
sin

(
ψ̃+v́

)
+A∗sin

(
ψ̃+v́

)
cos

(
ψ̃+v́

)
−A∗sin

(
ψ̃+v́

)
.

System (12) can be recast into a mixed-time scale form (see
[23]) by introducing the slow-state x ≜ [Ã, ω̃, ψ̃]⊤. Thus:{

ẋ = ϵ f́ (t,x, v́ )

v̇́ = −µv v́ + h (x)
(13)

where v́ is the fast-state, h : R3 → R is a linear function
h(x) = [0 1 0]x = ω̃ and f́ : R× R3 × R → R3 is given by

f́ (t,x, v́ ) ≜

 f Á(t, Ã, ω̃, ψ̃, v́ )
f ώ(t, Ã, ω̃, ψ̃, v́ )
f ψ́(t, Ã, ω̃, ψ̃, v́ )

 .
We proceed by determining the averaged system associated
to (13). First, we compute the integral functions v(t,x) :
R× R3 → R and f(t,x) : R× R3 → R3 as follows:

v(t,x) ≜
∫ t

0

e−µv(t−τ)h (x) dτ, (14)

with x ∈ R3 taken as a constant in the integration and
f(t,x) = f́ (τ,x, v(τ,x)). The averaged-slow transition
function is given by

fav(x) ≜ lim
T→∞

1

T

∫ T

0

f(τ,x) dτ.

The averages for the following scalar function components

f (t,x) =

 fA
(
t, A, ω, ψ

)
fω

(
t, A, ω, ψ

)
fψ

(
t, A, ω, ψ

)
 ,

can be computed based on the fact that (14) yields

v(t,x) = µv
−1 ω (1−e−µvt) (15)

Moreover, if the filter is properly selected to cancel asymp-
totically the bias and to attenuate the high-frequency noise
by low-pass filtering, then we can use the following approx-
imation1 to simplify the analysis

lim
T→∞

1

T

∫ T

0

w(t)
(
gf (t)⊛ p(t)

)
dt ≈ 0, (16)

where w(t) is any integrable function such that
limT→∞

1
T

∫ T
0
|w(t)|dt < ∞. The overall averaged

vector function can be written as

fav(x) =

 fA av(A,ω, ψ)
fω av(A,ω, ψ)
fψ av(A,ω, ψ)

 . (17)

with the single components given by

fAav
(
A,ω, ψ

)
=
λA
2

[
Gf∗

R
(κ̄1κ̄3+κ̄2κ̄4) +Gf∗

I
(κ̄2κ̄3 − κ̄1κ̄4)

]
(18)

fωav
(
A,ω, ψ

)
=
λω
2

[
Gf∗

R
(κ̄1κ̄4 − κ̄2κ̄3)+Gf∗

I
(κ̄1κ̄3 + κ̄2κ̄4)

]
(19)

fψav
(
A,ω, ψ

)
=
λϑ
λω
fωav

(
A,ω, ψ

)
+
ω

ϵ
. (20)

in which we have used the notation Gf∗
R
= Re (Gf (i ω

∗)),
Gf∗

I
= Im (Gf (i ω

∗)), and we defined

κ̄1 ≜ cos
(
ψ+

ω

µv

)
cos(δ)−sin

(
ψ+

ω

µv

)
sin(δ)

κ̄2 ≜ cos
(
ψ+

ω

µv

)
sin(δ) +sin

(
ψ+

ω

µv

)
cos(δ)

κ̄3 ≜ −Acos
(
ψ+

ω

µv

)
+A∗sin

(
ψ+

ω

µv

)
sin

(
ψ+

ω

µv

)
+A∗cos

(
ψ+

ω

µv

)
cos

(
ψ+

ω

µv

)
−A∗cos

(
ψ+

ω

µv

)
κ̄4 ≜ −Asin

(
ψ+

ω

µv

)
−A∗cos

(
ψ+

ω

µv

)
sin

(
ψ+

ω

µv

)
+A∗sin

(
ψ+

ω

µv

)
cos

(
ψ+

ω

µv

)
−A∗sin

(
ψ+

ω

µv

)
Resorting to the Mixed Time-Scales Averaging Theorem
(see [23, Chapter 4]), the stability of an equilibrium point
of the error system (13) can be inferred from that of the
autonomous-averaged slow system

ẋ = ϵ fav(x). (21)

Theorem 3.1 (Averaging Stability Theorem): If the aver-
aged system (21) is locally exponentially stable in x = 0,
then the error system is in turn locally exponentially stable
in the zero-error equilibrium point (Ã, ω̃, θ̃) = (0, 0, 0), for
ϵ sufficiently small. □

Proof: The present stability result follows from the
direct application of the Mixed-Time-Scales Averaging The-
orem reported in [23, Chapter 4] to the error system. Indeed
one can observe that Points i)-v) correspond to Assumptions

1The average (16) is exact in presence of DC-bias if the filter Gf (s)
has a zero at s = 0, in absence of high-frequency noise. Conversely, in
presence of high-frequency noise or when the signal is corrupted by higher-
order harmonics besides the fundamental, the approximation neglects some
residual contribution, whose magnitude depends on the attenuation of the
filter at the frequency of the disturbance.
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B1-B5 in Section 4.4.1 while Property vi) corresponds
to Assumption B6 in Section 4.4.2 of [23]. In this case,
however, only local stability at the zero equilibrium point
can be inferred from the stability of the averaged system.

Now, we need to determine the values of the adaptation
gains µA, µω, µϑ for which the averaged system is locally
exponentially stable. The linearized-averaged system around
the equilibrium x = 0 gives

ẋ = MA,ω,ψ x , (22)

where MA,ω,ψ is the Jacobian of fav at the equilibrium. This
matrix is calculated as

MA,ω,ψ =


−µAM1

λA
λv
M2A

∗ µAM2A
∗

−µωM2 −λω
λv
M1A

∗ −µωM1A
∗

−µϑM2 1− λϑ
λv
M1A

∗ −µϑM1A
∗


(23)

where M1 ≜
[
Gf∗

R
cos(δ)+Gf∗

I
sin(δ)

]
/2 and

M2 ≜
[
Gf∗

I
cos(δ)−Gf∗

R
sin(δ)

]
/2. Let ω0 be an “a

priori” estimate of ω∗, such that ω0 ∈ [ωmin, ωmax]. We
show that the choice of the phase-feedforward term

δ = ∠Gf (i ω0) (24)

ensures the local stability of the averaged system. Defining
the phase compensation error as δ̃ ≜ δ − ∠Gf (i ω∗), we
obtain

Gf∗
R
cos(δ) +Gf∗

I
sin(δ) = |G(i ω∗)| cos(δ̃),

Gf∗
I
cos(δ)−Gf∗

R
sin(δ) = − |G(i ω∗)| sin(δ̃). (25)

In view of (25) and recalling that µv = ϵλv does not impact
the GEPLL equations, by letting λv >> max{λA, λω, λϑ},
(23) takes on the simpler form:

MA,ω,ψ =

1

2


−µA|Gf (i ω∗)|cos(δ̃) 0 −µA|Gf (i ω∗)|A∗ sin(δ̃)

µω|Gf (i ω∗)| sin(δ̃) 0 −µω|Gf (i ω∗)|A∗ cos(δ̃)

µϑ|Gf (i ω∗)| sin(δ̃) 1 −µϑ|Gf (i ω∗)|A∗ cos(δ̃)

,
(26)

that, remarkably, depends on the phase compensation error
δ̃. In nominal conditions (that is, for a known frequency
ω0 ≡ ω∗) in view of (24) the phase compensation error is
null (ω0 = ω∗) ⇒ (δ̃ = 0). In this scenario, the dynamic
behavior of the amplitude error is decoupled from that of
the frequency and phase errors, as a result of the substitution
δ̃ = 0 in (26), the eigenvalues of MA,ω,ϑ|δ̃=0 have negative
real part if µA, µϑ, µω > 0, which is therefore a sufficient
condition for local asymptotic exponential stability in the
nominal case. In the more general situation of unknown
frequency, it is of primary importance to characterize the
robustness of the scheme in presence of a non-null phase
compensation error (δ̃ ̸= 0) and obtain the range of ad-
missible adaptation gains guaranteeing local stability. Such
analysis can be carried out by checking the signs of the
Routh array induced by the characteristic polynomial of the
linearized averaged system. The characteristic polynomial

r(s) of the matrix MA,ω,ψ in (26) is given by

r(s)= s3 +
|Gf (i ω∗)| cos(δ̃)

2
(µA+A

∗µϑ) s
2

+
A∗|Gf (i ω∗)|

4

(
µωcos(δ̃)+µAµϑ|Gf (i ω∗)|

)
s

+
A∗ |Gf (i ω∗)|2

8
µAµω .

Assume that the phase error is bounded in a closed interval2

δ̃ ∈ [−δ, δ], with δ ≥ 0.

According to the Routh-Hurwitz criterion, r(s) is Hurwitz
iff the following inequality is verified

cos(δ̃)
[
|Gf (i ω∗)|µAµϑ (µA+A∗µϑ)+A

∗µωµϑ cos(δ̃)
]

−µωµA
(
1−

(
cos(δ̃)

)2
)
> 0,

and considering that

cos(δ̃)
[
|Gf (i ω∗)|µAµϑ (µA+A∗µϑ)+A

∗µωµϑ cos(δ̃)
]

> cos(δ̃) |Gf (i ω∗)|µA2µϑ, ∀A∗ ≥ 0,

then we immediately determine a sufficient condition to
render MA,ω,ψ a Hurwitz matrix:

cos(δ̃) |Gf (i ω∗)|µAµϑ − µω

(
1−

(
cos(δ̃)

)2)
>0.

Hence, it is possible to enforce MA,ω,ψ < 0 for any possible
A∗ > 0 by picking the frequency adaptation parameter such
that

0 < µω <
|Gf (i ω∗)|µϑµA cos(δ̃)

1−
(
cos(δ̃)

)2 , ∀δ̃ : |δ̃| ≤ δ. (27)

The upper limit in (27) becomes positive unbounded for
δ → 0; that is, when the phase compensation error is null,
the GEPLL remains stable even with a very large frequency
adaptation gain µω . However, the condition δ → 0 is unlikely
to be verified in practice, due to the uncertainty in the
frequency of the measured signal. When an upper bound
δ : 0 ≤ δ < π/2 on the norm of the phase-compensation
error can be established:

|δ̃| ≤ δ <
π

2
, (28)

then the constraint (27) reduces to

0 < µω <
|Gf (i ω∗)|µϑµA cos(δ)

1−
(
cos(δ)

)2 , (29)

for which a solution always exists, assuming that the chosen
filter Gf (s) does not have zeroes in the admissible frequency
range.

The following final remarks are now in place.

Remark 3.1 (Phase compensation bound): Choosing the
phase-feedforward δ according to (24), we can rewrite the
phase compensation error as

δ̃ = ∠Gf (i ω0)− ∠Gf (i ω∗). (30)

2If the filter Gf (s) is chosen as minimum-phase one and the admissible
frequency range is bounded in a compact set, then a conservative bound δ
can be computed by (31).
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Given an admissible frequency range [ωmin, ωmax], we can
determine the worst-case phase compensation error:

δ = max
ω∈[ωmin,ωmax]

∠Gf (i ω)− min
ω∈[ωmin,ωmax]

∠Gf (i ω), (31)

that depends on the specific filter Gf (s) chosen by the de-
signer and on the width of the admissible frequency interval
[ωmin, ωmax]. When the uncertainty on the frequency is large
(ωmin << ωmax), then the last inequality in (28) may not be
fulfilled by high-order error filters, and it can be necessary
to decrease the filter order to fulfill this condition. Indeed, a
first order filter allows to satisfy (28) for an arbitrarily large
range of admissible frequencies. For instance, the simplest
form of a realizable bias-cancelling filter is

Gfs =
s

s+ µ0
(32)

with µ0 ∈ R>0 arbitrary. The phase-shift introduced by
this simple filter at the frequency of the input sinusoid is
∠Gf (iω∗) ∈ (0, π/2), for any finite frequency ω∗ > 0.
It follows that by any choice of the phase-feedforward
parameter δ in the interval (0, π/2), the phase compensation
error verifies |δ̃| < π/2, regardless of the extension of
the admissible frequency range. A further filter that can be
exploited in case of a large frequency uncertainty is:

Gf (s) =
s

s+ µ0

ωc
s+ ωc

, (33)

that increases the ability of the GEPLL to attenuate high
frequency harmonics and noise. Here, ωc ∈ R>0 is the cut-
off frequency of the additional low-pass filter. The phase-
shift introduced by this second-order filter is ∠Gf (iω∗) ∈
(−π/2, π/2) for any finite frequency ω∗ > 0. By choosing
a null phase-feedforward parameter (δ = 0) then the worst-
case phase compensation error verifies |δ̃| < π/2, regardless
of the extension of the admissible frequency range.

Remark 3.2 (Design Guidelines): The first design step
consists in choosing the error filter Gf (s) depending on the
characteristics of the measurement perturbation, for example
to cancel the bias or to attenuate high-frequency noise and
harmonics. Relying on some “a priori” informations on the
signal such as the nominal frequency ω0 and a first guess
estimate of its amplitude, the designer may choose the pa-
rameters µA, µω and µϑ in order to assign the nominal poles
of the linearized error dynamics (by imposing the eigenvalues
of the matrix MA,ω,ψ). Then, given some reasonable bounds
on the frequency of the signal (ωmin, ωmax) one should
check, by inspection, if condition (28) is verified, with δ
computed as in (31). If this condition is not verified, one can
iterate the above steps by re-designing the filter. As described
in Remark 3.1, reducing the order of the filter improves the
robustness of the estimator; moreover, condition (28) can
be always verified by a first order filter or by a second
order filter having the form of (33) with a suitable phase-
feedforward. Finally, the gain µω has to be tuned, compared
to the nominal design value, in order to fulfill inequality
(29). In other terms, in presence of large uncertainty on the
frequency of the input sinusoid, the stability of the GEPLL
is obtained at the price of decreasing the convergence rate
of the frequency estimation dynamics.

IV. COMPARATIVE NUMERICAL EXAMPLES

Example 1. (Error filter design and phase-feedforward for
bias removal and attenuation of higher-order harmonics) In
this example, three different filter and phase-feedforward de-
signs are considered for comparison: GEPLL1 uses the sim-

ple bias-cancelling filter (32) with Gf (s) = s
s+100 ; GEPLL2

uses the two-poles filter (33) with Gf (s) =
s

s+100
300
s+300

with no phase-feedforward, while GEPLL3 uses the same
filter of GEPLL2 with δ = −0.64 rad. The PLL gains are
µA = µϑ = 300 and µω = 15 · 103. Figure 2 shows the
numerical results including the phase angle estimation errors
obtained by the above three GEPLLs. The input signal is a
noisy sinusoid affected by two high-frequency harmonics:
10% of harmonic 5 and 10% of harmonic 7. In particular,
the fundamental component starts from a pure sine wave with
unitary amplitude and 60Hz frequency. At time t = 0.1 s the
following changes apply to the input signal: the amplitude
jumps to 1.2, the phase jumps from 0 to 90 deg, the frequency
increases to 60.4 Hz. Clearly, GEPLL2 and GEPLL3 provide
much smoother estimate of the phase angle in the steady
state because they involve an attenuation of the harmonics;
moreover, GEPLL3 exhibits a much faster transient response
than GEPLL2 thanks to the phase-feedforward. The same
observation also applies to the frequency and amplitude
estimates.
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Fig. 2. The top diagram shows the phase angle estimation errors obtained
by three GEPLL structures with a perturbed input signal exhibiting a step-
wise change in fequency, amplitude and bias at time t = 0.1s (Example 1):
GEPLL1 (Gf = s

s+100
), GEPLL2 (Gf (s) = s

s+100
300
s+300

and δ = 0),
GEPLL3 (Gf (s) = s

s+100
300
s+300

and δ = −0.64).

Example 2. (Comparison with recent techniques in presence
of unstructured-bounded noise) In this example, the proposed
method equipped by a prefilter Gf (s) =

s
s+100

300
s+300 is

compared with two recent AFP techniques proposed in [17]
and [24] respectively. All the methods are discretized by the
Euler method with identical sampling period 10µs.

Consider a measured signal y(t) affected by an unstruc-
tured disturbance, which is a norm-bounded time-varying
signal:

ŷ(t) = y0(t)+A
∗(t) sin(

∫
2πf∗(τ)dτ+ϕ∗(t))+η(t), (34)

with η(t) denotes the bounded uncertainty with uniform dis-
tribution in the interval [−0.25, 0.25]. The other parameters
start from f∗(0) = 60Hz, A∗(0) = 1, y0(0) = ϕ∗(0) =
0, and jump to f∗(t) = 60.4Hz, A∗(t) = 1.2, y0(t) =
−0.1, ϕ∗(t) = π

2 at time t = 0.3s. At time t = 1.4s, a
further step-wise variation of the parameters occurs: f∗(t) =
59.5Hz, A∗(t) = 0.9, y0(t) = 0.2, ϕ∗(t) = −π

4 .
All the methods are initialized with the same initial



6

condition ω̂(0) = 1. Method [17] is tuned with: Ks = 1, λ =
30, ωs = 60, Q0 = (1/λ)I, while method [24] is tuned
with: λ = 60, β = 0.6, µ = 0.3. The tuning parameters of
the proposed GEPLL are fixed by: µA = µϑ = 300, µω =
15000, δ = −0.64.
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Fig. 3. Time-behavior of the estimated frequency by using the proposed
GEPLL (blue line) compared with the time behaviors of the estimated
frequency by the AFP methods [17] (green line) and [24] (red line).
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Fig. 4. Time-behavior of the reconstructed sine wave by using the proposed
AFP methods (blue line) compared with the time behaviors of the estimated
frequency by the AFP methods [17] (black line) and [24] (red line).

According to the results given in Fig.3, all the methods are
capable to deal with the step-wise parametric changes, and
to asymptotically recover the original sine wave in presence
of high-frequency disturbances. However, the GEPLL shows
a much faster transient behavior (with comparable steady
state performance) than the other two approaches. As a
consequence, Fig. 4 enhances the significantly improved
synchronization with respect to the pure sinusoid yielded by
the proposed GEPLL, whereas methods [17] and [24] slightly
suffer from the parametric variations.

V. CONCLUDING REMARKS

In the paper, an enhanced phase-locked loop algorithm
with generalized error filtering has been presented. This

technique allows to estimate the parameters of a sinu-
soidal signal in presence of biased measurements and high-
frequency perturbations, while maintaining the immediacy
of implementation that characterizes the PLL architecture
and maintaining transient response swiftness, as well. A
stability analysis has been carried out to determine the
effect of the tuning parameters on the convergence behavior
of the proposed algorithm. The steady-state and transient
improvements over existing EPLL and bias-cancelling EPLL
schemes are shown by comparative numerical examples.
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