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Abstract— In this paper, a parallel pre-filtering scheme is
presented to address the problem of estimating the parameters
of a sinusoidal signal from biased and noisy measurements.
Extending some recent result on pre-filtering-based frequency
estimators, a parallel pre-filtering scheme is proposed to deal
with the unknown offset and bounded measurement pertur-
bations, which are typically present in several practical appli-
cations. A simple frequency estimator, having parallel second-
order pre-filters, is introduced. The behaviour of the proposed
algorithm with respect to bounded additive disturbances is
characterized by Input-to-State Stability arguments. Numerical
examples shows the effectiveness of the proposed technique.

I. INTRODUCTION

Methodologies for the on-line identification of a sinusoidal
signal from uncertain measurements are widely employed
in many engineering applications such as active noise can-
cellation, vibrations monitoring in mechanical system and
periodic disturbance rejection, to mention a few. A variety of
techniques has been presented in the literature for estimating
the unknown sinusoids in terms of estimating the amplitude,
the frequency and the phase (AFP). For a deeper insight on
the topic, the reader is referred to [1], [2], [3], [4], [5], [6],
[7], [8], [9], [10], and the references cited therein.

Recent research attention has devoted to the AFP es-
timation in presence of a constant bias, which occurs in
most practical applications, such as the offsets in physical
transducers and A/D converters. In [11], the estimation
problem of a biased sinusoidal signal is addressed by an
adaptive quasi-notch-filtering scheme, while a novel PLL-
based method can be found in [12], where the conventional
PLL algorithm is expanded by an additional adaptation
law for the offset term. The framework in [13] proposes
an improved fourth-order estimator with suitable filtering
technique to handle the presence of bias. By adopting a
hybrid switching scheme with respect to the adaptive gains,
the effect of high-frequency band noise is attenuated leading
to accurate estimates in steady state. Moreover, in [14], a
recursive method, relying on second-order generalized inte-
grators is presented to reconstruct the unbiased sinusoid from
a biased measurement. Another recursive frequency estimator
based on the modulating functions is introduced in [15], in
which the use of modulating functions allows to transform a
differential expression to annihilate the bias. Inspired by the
nonlinear estimator proposed in [16], a refined identifier is
introduced in [17] to cope with the structured “polynomial-
like” perturbations (including bias and drift phenomena as
special cases).
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Techniques based on adaptive observers have also been
proposed in recently literature. In this context, the frequency
of the periodic signal is often modelled as an unknown
parameter to be identified through an adaptive observer
algorithm (see, for instance, [18], [19], [20] and [21], and
the references cited therein). A notable feature of adaptive
observer schemes is the possibility of carrying out multi-
sinusoidal estimation by expanding the dynamic model with
a suitable system transformation (see, for example, [22], [23]
and [24]).

In [19] it has been shown that an adaptive observer method
can achieve good noise immunity by exploiting a pre-filtering
action. In [16] and [17] the authors have show that the
signals generated by suitable pre-filters can be directly used
to estimate the unknown frequency and the amplitude of
the measured noisy sinusoid. In order to further improve
the method presented in [17], the pre-filter was conceived
as a cascade of first-order low-pass (LP) filters, in this
work, we propose to use a parallel pre-filtering scheme in
which two LP filters with different pole locations are used
to generate auxiliary signals that are directly used to estimate
the parameters of the sinusoid. This enhanced structure
allows to simplify the adaptation law with respect to [17] and
[19], while maintaining the robustness properties with respect
to bounded measurement perturbations. Compared with the
interesting algorithms proposed in [13], [25], [26] and based
on a second-order pre-filter, the comparative simulations
reported in this paper show that the use of two parallel
pre-filters may lead to improved steady-state and transient
performances. As in the case of the seminal papers [13]
and [25], we characterize the behaviour of the estimator in
presence of a bounded additive measurement disturbance.
While in [20] and [26] a leakage correction term is added
to the adaptation law to prevent the parameter drift in
case of external perturbation, we prove that the proposed
method is inherently ISS with respect to the exogenous
disturbance. An important by-product of the ISS analysis is
a set of useful tuning guidelines, since the dissipation rate
and the ISS-asymptotic-gain are both expressed in terms of
the estimator’s parameters.

II. A PARALLEL PRE-FILTERING SCHEME

Consider an unknown sinusoidal signal corrupted by a
norm-bounded time-varying disturbance d(t) : |d(t)| < d̄

y(t) = v(t) + d(t) (1)

in which

v(t) = a0 + a sin (ϑ(t)), ϑ̇(t) = ω∗, ϑ0 = φ (2)

where a0 represents a constant offset.
Let us denote by x̂k(t) = [x̂k,1(t) · · · x̂k,n(t)]

⊤ ∈
R

n , k ∈ {1, 2} the state vector of the following pair of



filters, driven by the noisy measurement y(t) and evolving
from arbitrary initial conditions:
{

˙̂xk(t) = Fkx̂k(t) + gky(t), ∀k = 1, 2, t ∈ R≥0

x̂k(0) = xk,
(3)

where Fk ∈ R
n×n, ∀k ∈ {1, 2} is given by
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and

gk = [ βkλk 0 · · · 0 ]
⊤
, ∀k ∈ {1, 2} .

The parameters λ1, λ2 ∈ R>0, with λ1 6= λ2 represent the
cut-off frequencies of the low-pass filters, while β1, β2 ∈
(0, 1] act as damping gains. The order n of the pre-filters
is selected by the designer depending on the complexity of
the frequency estimation algorithm and on the performance
requirements. First, we describe a simple adaptive scheme
characterized by n = 2. Then, we show that, at the cost
of increasing of the order of the pre-filter, the algorithm
can be modified to get enhanced transient and stationary
performances.

Now, let x̂(t) = [x̂1(t) x̂2(t)]
⊤ be the combined state

vector whose dynamics is described by
{

˙̂x(t) = Aλ,βx̂(t) + bλ,βy(t), t ∈ R≥0

x̂(0) = x,
(4)

where x = [x⊤
1 ,x

⊤
2 ]

⊤ and

Aλ,β =

[

F1 0
0 F2

]

, and bλ,β =

[

g1

g2

]

,

Let us analyze the behaviour of the filters in the noise-free
scenario, describing how the state vectors of the filter can
be used to obtain an estimate of the frequency of the biased
sinusoid v(t). To this end, we denote by xk(t), k ∈ {1, 2}
the virtual state vectors obeying the dynamics (3) driven by
the disturbance-free signal v(t) (not measurable) in place of
y(t). Moreover, let x(t) = [x1(t) x2(t)]

⊤ be the combined
virtual state vector.

In view of the realization of the two filters, we have

c⊤ F
q
k gk = 0, ∀q ∈ {0, . . . , n− 2}, (5)

where c = [ 0 · · · 0 1 ]
⊤. In view of (5), the derivatives

of the n-th state variables x1,n(t) and x2,n(t) of the two
filters can be expressed as:

dq

dtq
xk,n(t) = c⊤F

q
kxk(t), q ∈ {1, . . . , n− 1},

dn

dtn
xk,n(t) = c⊤Fn−1

k (Fkxk(t) + gkv(t)) .

Denoting by Gk,n(s), k ∈ {1, 2} the transfer functions of
the filters in the Laplace domain from the input signal to
the n-th state variables: L[xk,n](s) = Gk,n(s)L[v](s), k ∈

{1, 2}, we have that

Gk,n(s) =
λn
kβ

n
k

(s+ λk)n
.

Neglecting the initial conditions of the internal filter’s states,
the Laplace transform of the n-th state variables can be
expressed as:

L[xk,n](s) = Gk,n(s)a
s sin(φ) + ω∗ cos(φ)

s2 + ω∗2
+ Gk,n(s)

a0
s
.

and then the transform of the q-th derivative of xk,n is

L
[

dqxk,n

dtq

]

(s) = Gk,n(s)a
s sin(φ) + ω∗ cos(φ)

s2 + ω∗2
sq

+ Gk,n(s)a0s
q−1 .

Thus, it is readily seen that in the time-domain, the deriva-
tives dq

dtq xk,n(t), ∀1 ≤ q ≤ n own the asymptotic sinusoidal
steady-state behavior as t → ∞. For the sake of further
analysis, let us consider the stationary sinusoidal conditions

dq

dtq
xk,n(t) ≈ ak,q sinϑk,q(t), ∀t >> 0 k ∈ {1, 2} (6)

where

ak,q = aω∗q|Gk,n(jω
∗)|,

ϑk,q(t) = ϑ(t) + ∠Gk,n(jω
∗) +

π

2
q.

(7)

III. ORDER 2 + 2 FREQUENCY ESTIMATOR

In the noise-free scenario, let us fix the dimension of each
pre-filter to n = 2, and enforce β1 = β2 = β, then consider
the auxiliary signals z1(t) = x1,2(t) − x2,2(t) and z2(t) =
ẍ1,2(t)− ẍ2,2(t), which tend asymptotically to a sinusoidal
stationary equilibrium:

z1(t)
t→∞−−−→ z̄1(t) = a1 sin(ϑ1(t))− a2 sin(ϑ2(t))

z2(t)
t→∞−−−→ z̄2(t) = −Ω∗z̄1(t)

(8)

where Ω∗ = ω∗2 denotes the true unknown squared-
frequency ,

ak = a |Gk,2(jω
∗)|,

ϑk(t) = ϑ(t) + ∠Gk,2(jω
∗), k ∈ {1, 2}, (9)

and

Gk,2(s) =
β2λ2

k

s2 + 2λks+ λ2
k

.

In view of (8), it is worth noting that z̄1(t) is a single sinu-
soidal signal with amplitude az1 , which will be instrumental
for the stability analysis in the upcoming section. After some
algebra, we obtain

az1 =
√

ζ21 + ζ22 (10)

in which

ζ1 = a1 cos∠G1,2(jω
∗)− a2 cos∠G2,2(jω

∗)
ζ2 = a1 sin∠G1,2(jω

∗)− a2 sin∠G2,2(jω
∗)

Moreover, z̄1(t), z̄2(t) defined in (8) satisfy Ω∗z̄1(t) +
z̄2(t) = 0 Accordingly, a recursive algorithm based on the
gradient method is proposed:

˙̂
Ω(t) = −µ1z̄1(t)

(

Ω̂(t)z̄1(t) + z̄2(t)
)

(11)



where µ1 > 0 is the adaptation gain. In practice, due to the
presence of noise and to the initial transient of the filter,
the stationary sinusoids z̄1(t) and z̄2(t) are not available.
Hence, a modified-realizable adaptation law is proposed in
the following section.

IV. STABILITY ANALYSIS OF THE ADAPTIVE SCHEME

The following realizable adaptation law, exploiting the
available perturbed auxiliary signals ẑ1(t), ẑ2(t), is pro-
posed:

˙̂
Ω(t) = −µ1ẑ1(t)

(

Ω̂(t)ẑ1(t) + ẑ2(t)
)

. (12)

For simplicity, let us consider the combined vector ẑ(t) =
[ẑ1(t) ẑ2(t)]

⊤ that can be expressed in a compact form as

ẑ(t) = Λ1

[

y(t)⊤ x̂1(t)
⊤ x̂2(t)

⊤
]⊤

, (13)

with

Λ1 =

[

0 c⊤ −c⊤

c⊤(F1g1 − F2g2) c⊤F2
1 −c⊤F2

2

]

.

In order to address the stability of the estimator, note that
there exists an (unknown) initial filter’s state x(0) = x0

giving rise to a filtered state trajectory x(t) whose projection
on the subspace containing z(t) matches the stationary
sinusoidal behavior since the very beginning, when driven
by the unperturbed sinusoid v(t). Specifically:

x(t) : Λ1

[

v(t)⊤, x(t)⊤
]⊤

= z(t) ,

[

z1(t)
z2(t)

]

, ∀t ∈ R≥0.

(14)
The dynamics of the error vector x̃(t) = x̂(t) − x̄(t) is
governed by

{

˙̃x(t) = Aλ,βx̃(t) + bλ,β d(t), t ∈ R≥0

x̃(0) = x̂0 − x̄0.
(15)

Since Aλ,β is Hurwitz, it is easy to prove that the error
dynamics ISS with respect to d̄. Denote by γx(s) the
corresponding ISS asymptotic gain. Hence, for any arbitrary
ν ∈ R>0 and for any finite-norm initial error x̃0, the error
vector x̃(t) enters in a closed ball of radius γx(d̄) + ν in
finite time.

Furthermore, let ẑ(t) = [ẑ1(t) ẑ2(t)]
⊤ and z̃(t) = ẑ(t) −

z̄(t) denote the perturbed auxiliary signals and the corre-
sponding error dynamics. The ISS of x̃(t) implies that z̃(t)
is ISS and the trajectory enters in a closed ball of radius
γz(d̄) + δ centered at the origin in finite-time:

γz(s) = λ̄1(γx(s) + s), ∀s ∈ R≥0, δ = λ̄1ν (16)

where λ̄1 = ||Λ1||.
Defining the frequency estimation error Ω̃(t) , Ω̂(t)−Ω∗,

and applying the identity z̄2(t) = −Ω∗z̄1(t), let us rewrite
(12) in terms of error signals

˙̃Ω(t) = −µ1

(

z̄1(t) + z̃1(t)
)

×
(

Ω̂(t)(z̄1(t) + z̃1(t))− Ω∗z̄1(t) + z̃2(t)
)

= −µ1Ω̃z̄1(t)
2 + µ1Ω̃f1(t, z̃) + µ1f2(t, z̃)

(17)
where

f1(t, z̃) = −2z̄1(t)z̃1(t)− z̃1(t)
2

f2(t, z̃) = Ω∗(f1(t, z̃) + z̃1(t)z̄1(t))− (z̄1(t) + z̃1(t))z̃2(t).

Note that the functions f1(t, z̃) and f2(t, z̃) verify
f1(t, 0) = 0, f2(t, 0) = 0 for all t ∈ R≥0. Moreover, owing
to the boundedness of z(t), there exist two K∞-functions
σ1(·) and σ2(·) such that

|f1(t, z̃)| ≤ σ1(|z̃|) , |f2(t, z̃)| ≤ σ2(|z̃|) . (18)

In the following, we use a conservative assumption that
σ2(s), ∀s ∈ R≥0 is such that the ratio σ2(s)/σ1(s) is, in
turn, a K-function.

Theorem 4.1 (ISS of the adaptive frequency identifier):
Given the sinusoidal signal v(t) and the perturbed
measurement model (1), if the bound on the measurement
disturbance d verifies the inequality:

||d||∞ < d̄ < γ−1
z

(

σ−1
1

(

ω∗κa2z1 ln ((1 − κ∆)/κ)

2µ1πκa2z1 − 4ω∗ ln (1/κ)

))

(19)
where az1 is given by (10), κ : κ ∈ (0, 1) is chosen
arbitrarily, κ∆ ∈ R>0 such that 1 − κ∆ > κ and µ1 is
chosen large enough to verify the two inequalities

ω∗ ln (1/κ)/(µ1κa
2
z1) < π/2 (20)

and

cos2
(

ω∗ ln (1/κ)

µ1κa2z1

)

−κ ≥ ω∗κ ln ((1 − κ∆)/κ)

2µ1πκa2z1 − 4ω∗ ln (1/κ)
(21)

then the frequency estimation system given by the two filters
(4) with n = 2 and by (12) and (13) is ISS with respect to
d(t).

Proof: Consider the following candidate Lyapunov

function V (Ω̃) =
1

2
Ω̃2. In view of (17) and (18), the time-

derivative of V (t) along the system’s trajectory subsumes the
following inequality:

∂V

∂Ω̃

˙̂
Ω(t) = Ω̃(t) ˙̃Ω(t)

≤ −µ1

(

z̄1(t)
2 − σ1(|z̃(t)|)

)

Ω̃(t)2

+µ1σ2(|z̃(t)|)|Ω̃(t)|
(22)

Note that in inequality (22) the stationary sinusoidal signal
z1(t) appears explicitly. At this point, under the assumption
of d̄ given by (19), then the period of the squared sinusoid
z21(t) can be partitioned in three intervals: P2, in which it
holds that

(

z̄1(t)
2 − σ1(γz(d̄) + δ)

)

> κa2z1 and P1, P3, in
which this inequality is not guaranteed. In the following, we
will denote by t0, t1 and t2 the transition instants between
the aforementioned modes of behavior, as described in Fig.1.
In this respect, we have that if the interval P2 lasts for more
than a specified T ǫ, then the discrete-time Lyapunov function
obtained by sampling the continuous-time Lyapunov function
at the end of the two phases is a discrete-ISS Lyapunov
function. During P2, for a time interval of length Tǫ we
have:

V̇ (t) ≤ −µ1κa
2
z1Ω̃(t)

2 + µ1σ2(|z̃(t)|)|Ω̃(t)| (23)

Now, we complete the squares, getting to

V̇ (t) ≤ −µ1

κa2z1
2

Ω̃(t)2 +
µ1

2κa2z1
σ2(|z̃(t)|)2

≤ −µ1

κa2z1
2

(V (t)− σe(d̄))

(24)



Time [s]

M
ag

ni
tu

de

 

 

t
2t

0 t
f

t
1

κ a
z1
2

0
P

2 P
3

P
1

σ
1
(γ(d)+δ)

z
1
(t)

z
1
(t)2

Fig. 1. An example plot of the excitation signal z2
1
(t) (blue line) induced

by the stationary sinusoidal signal z1(t) with amplitude az1 (dotted red
line), as well as two horizontal thresholds σ1(γz(d̄) + δ) (dotted green
line) and σ1(γz(d̄) + δ) + κa2

z1
(green line)

with σe(d̄) = (κ2a4z1)
−1σ2(|z̃(t)|)2. Analogously, during P1

and P3, for a time Td, with Td = π
2ω∗

− Tǫ

2 , we obtain a

upper bound for V̇ (t) by letting σd(d̄) =
σ2(|z̃(t)|)

2

8σ1(|z̃(t)|)2

V̇ (t) ≤ 2µ1σ1(|z̃(t)|)
(

V (t) + σd(d̄)
)

(25)

Applying the Gronwall-Bellman Lemma to (24), the value
of the Lyapunov function during P2 can be bounded as
follows:

V (t) ≤ V (t1) + (1− e−µ1κa
2

z1
(t−t1)/2)

×(σe(d̄)− V (t1))

= e−µ1κa
2

z1
(t−t1)/2V (t1) + σe(d̄)

×(1− e−µ1κa
2

z1
(t−t1)/2), ∀t ∈ [t1, t2)

(26)

Following the same step as above, we obtain the further
bound of V (t) in dis-excited intervals P1 and P3:

V (t) ≤ V (tp)e
2µ1σ1(|z̃(t)|)(t−tp)

+ (e2µ1σ1(|z̃(t)|)(t−tp) − 1)σd(d̄),

∀t ∈ [t0, t1), if p = 0 or ∀t ∈ [t2, t0 +
π

ω∗
), if p = 2

(27)

Due to the poor excitation during P1 and P3, at the end of
these intervals we can establish a conservative bound

V (te) ≤ e2µ1σ1(|z̃(t)|)Td
(

V (tp) + σd(d̄)
)

te = t1, if p = 0 or te = t0 +
π

ω∗
, if p = 2 (28)

Then, in view of (26), we get the inequality:

V (t2) ≤ e−µ1κa
2

z1
Tǫ/2

[

e2µ1σ1(|z̃(t)|)Td
(

V (t0) + σd(d̄)
)

]

+ σe(d̄)(1 − e−µ1κa
2

z1
Tǫ/2) (29)

Finally, defining Vk , V
(

t0 + k π
ω∗

)

, and considering that
t0 is arbitrary within the set t0 ∈ {t : z21(t) = 0},
from inequalities (28) and (29), we can readily derive the

following indexed expression

Vk+1 ≤ e4µ1σ1(|z̃(t)|)Td−µ1κa
2

z1
Tǫ/2Vk

+ σe(d̄)(1− e−µ1κa
2

z1
Tǫ/2)e2µ1σ1(|z̃(t)|)Td

+ (e4µ1σ1(|z̃(t)|)Td−µ1κa
2

z1
Tǫ/2 + e2µ1σ1(|z̃(t)|)Td)σd(d̄)

(30)

In the following lines, we will show that, a minimum time-
duration of phase P2 denoted by T ǫ is ensured as long as
the bound of d̄ is verified. In view of (19), we have that

σ1(γz(d̄) + δ) <
ω∗κa2z1 ln ((1− κ∆)/κ)

2µ1πκa2z1 − 4ω∗ ln (1/κ)

=
ln ((1− κ∆)/κ)

4µ1(π/2ω∗ − ln (1/κ)/µ1κa2z1)
(31)

Then, in view of (21), there exists a positive constant T d that
bounds the length of the dis-excitation interval (Td ≤ T d) :

T d , min
{

t ≤ π

ω∗
:

z̄1(t0 + t)2 ≥ a2z1 cos
2

(

ω∗ ln (1/κ)

µ1κa2z1

)}

Owing to the fact that z̄1(t0 +T d) = a2z1 sin
2(ω∗(t0+T d)),

then T d can be computed as the minimum positive solution
of the equation:

a2z1 sin
2
(

ω∗T d

)

= a2z1 cos
2

(

ω∗ ln (1/κ)

µ1κa2z1

)

In view of (20),

T d =
π

2ω∗
− ln (1/κ)

µ1κa2z1

Hence,
Tǫ ≥ π

ω∗
− 2T d

≥ 2 ln (1/κ)

µ1κa2z1
= T ǫ

Combining T d and (31), we also have that

e4µ1σ1(|z̃(t)|)Td < e4µ1σ1(|z̃(t)|)Td <
(1− κ∆)

κ

Next, we will prove that the discrete-time system emerging
from sampling the Lyapunov function at the transition time
instants is ISS with respect to the measurement disturbance.
Since t2 − t1 = Tǫ ≥ 2 ln (1/κ)

µ1κa2
z1

, picking an ǫ ∈ R>0

such that 1 − κ∆ < ǫ < 1, then we can guarantee
the following difference bound on the discrete (sampled)
Lyapunov function sequence:

Vk+1 ≤ ǫVk + σe(d̄)(1 − κ)
1√
κ

+ (1 +
1√
κ
)σd(d̄)

which leads to the following compact form:

Vk+1 − Vk ≤ −(1− ǫ)Vk + σ(d̄)

where the function σ(·) is K-function defined as

σ(s) = σe(s)(1− κ)
1√
κ
+ (1 +

1√
κ
)σd(s), ∀s ∈ R≥0



Now, we can conclude that the discrete dynamics induced by
sampling the frequency estimator in correspondence of the
transitions is Input-to-State stable (ISS).

Finally, we will recover the ISS for the continuous-time
system by using the continuity of V (t) and the boundedness
of its time-derivative in the inter-sampling. Thanks to the
periodicity of the excitation signal z̄1(t), let us denote by
t0(k), t1(k), t2(k) the transition time-instants of the k-th
period of z̄1(t), and k(t) the index of the current period:
k(t) = k : t ∈

[

t0(k), t0(k+1)
)

. Between two samples, the
Lyapunov function can be bounded by,

V (t) ≤ 1√
κ

[

V (t0) + σd(d̄)
]

+
[√

κ
(

V (t0) + σd(d̄)
)

+ σe(d̄)
]

+

[

V (t0) +
1√
κ
σe(d̄) + (1 +

1√
κ
)σd(d̄)

]

=
1 +

√
κ+ κ√
κ

Vk(t)+(1+
1√
κ
)σe(d̄)+(2+

2√
κ
)σd(d̄)

(32)

Since k(t) −−−→
t→∞

∞ (i.e., an infinite number of excited
phases with length Tǫ occurs asymptotically), the estimation
error in the inter-sampling times converges to a region whose
radius depends only on the assumed disturbance bound.

V. AMPLITUDE AND PHASE ESTIMATION

At this stage, in view of (7) and using the estimated
frequency ω̂ of the input sinusoid obtained with the method
described in the previous section, the amplitude and phase
(ak,q, ϑk,q) of the auxiliary derivatives can be recovered by

âk,q(t) =

√

√

√

√

(

Ω̂

(

dq

dtq
xk,n(t)

)2

+

(

dq+1

dtq+1
xk,n(t)

)2
)

/Ω̂

ϑ̂k,q(t) = ∠
dq+1

dtq+1
xk,n(t) + jω̂

dq

dtq
xk,n(t), ∀n ≥ q + 1

(33)
Owing to the asymptotic sinusoidal behavior of the filtered
signals (see (6) and (7)), we finally get:

â(t) =
âk,q
ω̂q

[

√

λ2
k + ω̂2/(βkλk)

]n

ϑ̂(t) = ϑ̂k,1 + n arctan(ω̂/λk)−
π

2
q

(34)

To achieve smoother magnitude estimate, the direct for-
mulas for the amplitude described in (33) and (34) can be
amended by an adaptive mechanism:

˙̂ak,q(t) = −ρω̂(t) [ω̂(t)âk,q(t)

−

√

√

√

√

(

Ω̂(t)

(

dq

dtq
xk,n(t)

)2

+

(

dq+1

dtq+1
xk,n(t)

)2
)



 (35)

and

˙̂a(t) = −ρω̂q

(

â(t)ω̂q − âk,q

[

√

λ2
k + ω̂2/(βkλk)

]n)

(36)
in which ρ ∈ R>0 is the tuning gain fixed by the designers.

VI. NUMERICAL RESULTS

In this section, the behavior of the proposed method is
analyzed and compared with three recent AFP techniques
proposed in [12], [14] and [25] respectively. The algorithms
considered in this section have been tuned to have approx-
imately the same response time when fed by a unitary
amplitude-sinusoid of frequency 1/(2π) and initialized with
zero initial conditions (indeed, the initial transient of the
frequency-estimates shown in Fig.2 puts in evidence that
the considered methods share approximately the same rise-
time). The comparison is carried out for the case of a biased
sinusoidal signal with both frequency and offset steps.

Let us consider a sinusoidal measurement that is corrupted
by a bounded disturbance:

ŷ(t) = σ(t) + 3 sin(ω(t) t+ π/4) + d(t), (37)

where d(t) is a random noise with uniform distribution in
the interval [-0.5, 0.5], ω(t) = 4, ∀t ∈ [0, 10), ω(t) =
8, ∀t ∈ [10, 35), ω(t) = 2, ∀t ∈ [35, 50) and σ(t) =
1, ∀t ∈ [0, 20), σ(t) = 3, ∀t ∈ [20, 50). All the methods are
initialized with the same initial condition ω̂(0) = 1. Method
[12] is tuned with: µ0 = 1.5, µ1 = 3, µ2 = 3, µ3 = 0.8,
while method [14] is tuned with: Ks = 1, λ1 = 1, ωs =
4, Q0 = (1/λ)I. For method [25], we set γ0 = λ2

0 =
8, γ1 = 6, k = 0.18. Finally, the tuning parameters of the
proposed method are selected by: λ1 = 9, λ2 = 2, β1 =
β2 = 0.6, µ1 = 4. The simulation results are given in Fig.2.
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Fig. 2. Time-behavior of the estimated frequency by using the proposed
AFP method (blue line) compared with the time behaviors of the estimated
frequency by the AFP methods [14] (black line), [12] (green line) and [25]
(cyan line).

All the methods are capable to track the initial frequency
satisfactorily with the similar response time. However, the
PLL method [12] suffers from worse transient for new
frequencies, especially for the final frequency which is 75%
less than the intermediate one. The AFP method [14] is more
sensitive to a bias change, however, it performs the best
noise attenuation at the cost of slow reaction to a significant
frequency change. Thanks to the parallel structure of the pre-
filtering scheme, the proposed method can handle consider-
able frequency variations with relatively faster response time
and comparable robustness against noise. In the meantime,
in comparison with the single pre-filter-based method [25]
(note that the switching dynamic consists in this algorithm is
switched off in order to consider the time-varying frequency),
the proposed method that relies on two parallel pre-filters
improves the steady state behavior significantly without a
significant loss in the transient performance.
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Fig. 3. Estimated sinusoidal signal by the proposed AFP method (blue
line). To appreciate the time-behavior of the estimated signal, the biased
noisy input is depicted (red line), as well as the same signal without the
time-varying bias term (green line).

The sinusoidal signal reconstructed by the proposed
method with ρ = 0.2 is depicted in 3, in which the unbiased
signal is recovered successfully in a smooth manner even in
the presence of noise.

The importance of the proposed amplitude adaptation
scheme (35)-(36) emerges clear by examining the amplitude
estimates. According to Fig.4, in which we compare the
behavior of the adaptive algorithm with the direct formula
in (33)-(34), both the transient and stationary performance is
indeed improved by the recursive algorithm.
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Fig. 4. Comparison of the behaviors in terms of amplitude estimation
of the proposed AFP method with adaptive amplitude estimation algorithm
(35)-(36) (blue line) and direct formula (33)-(34) (red line).

VII. CONCLUSIONS

In this paper, a novel parallel pre-filtering scheme has been
proposed to be embedded in a sinusoid estimator to address
unknown off-sets in the measurements and guaranteeing, at
the same time, robustness against measurement noise. ISS
stability has been proven and extensive simulation results
have been reported showing the effectiveness of the proposed
technique.

Future research efforts will be devoted to extend the
proposed method to the case of multi-sinusoidal estimation.
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