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Estimation of Multi-Sinusoidal Signals: A Deadbeat Methodology
Boli Chen, Peng Li, Gilberto Pin and Thomas Parisini

Abstract— The problem of estimating the n unknown ampli-
tudes, frequencies and phases of the components of a multi-
sinusoidal signal is addressed in this paper. The proposed
methodology theoretically allows the exact identification of
the above unknown parameters within an arbitrarily small
finite time in the noise-free scenario. The measured signal is
processed by a bank of Volterra integral operators with a
suitably designed kernel, that yields a set of auxiliary signals
which are computable on-line by causal linear filters. These
auxiliary signals are in turn used to estimate the frequencies
in an adaptive fashion, while the amplitudes and the phases
estimates can be calculated by means of algebraic formulas.
The effectiveness of the estimation technique is evaluated
and compared with other existing finite-time estimators via
numerical simulations.

I. INTRODUCTION

The parametric estimation of a signal composed by a
given number of sinusoids is one of the fundamental issues
arising in several areas of engineering, such as, for instance,
vibration diagnostics and prognosis, power quality moni-
toring and periodic disturbance rejection. Several methods
are available in literature for the adaptive estimation of the
amplitude, frequency and phase (AFP) of a single sinusoid
(see, for example, [1], [2], [3], [4], [5], [6], and the refer-
ences cited therein), while the AFP problem for a multi-
sinusoidal signal has recently received renewed attention.
Besides the well-known Fast Fourier Transform (FFT), which
is far the most common tool used for harmonic extraction,
several algorithmic alternatives have been conceived, being
the Phase-Locked-Loop (PLL) and Adaptive Notch Filtering
(ANF) the most successful methods for their ease of im-
plementation. Although both PLL and ANF in their original
formulation only apply to single-sinusoidal signals, multiple
PLLs or ANFs can be combined to address the estimation
problem in the multi-sinusoidal scenario. In [7], n enhanced-
PLL (EPLL) units (see [8]) are deployed to extract the n
harmonics and inter-harmonics of a multi-sinusoidal signal.
Analogously, in [9] a bank of n ANF modules is used for the
same task, with the advantage of being less computationally
intensive than [7]. The problem becomes more challenging
in case of an input with two frequencies that are close
to each other. It has been shown in [10] that any two
nearby frequencies can be discriminated by a couple of PLLs
equipped with a “de-correlation” module. An alternative
solution is given in [11], where the estimates from two
identifiers are separated by enforcing a minimum frequency
interval. However, such methods with de-correlation are
hardly applicable for a number of sinusoids larger than two.

Another family of methodologies to track multiple fre-
quencies relies on adaptive observers. These techniques are
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interesting since global or semi-global stability is ensured in
most cases (see [12], [13], [14], [15] [16], [17], [18] and
[19]). In particular, [16] and [17] deal with direct adaptation
mechanisms for the squares of the frequencies with semi-
global stability guarantees.

Despite the large number of AFP techniques, relatively
few deadbeat AFP estimation techniques are available in the
literature. This type of estimators are needed in scenarios
where the estimates are required to converge in a neigh-
borhood of the true values within a predetermined finite
time, independently from the unknown initial conditions. A
deadbeat AFP estimation method is firstly addressed in [20]
based on the concept of algebraic derivatives. However, re-
initialization may be needed due to the presence of singulari-
ties. This issue has been tackled in [21] and [22] by recursive
least squares algorithms. In [23], the algebraic identification
approach is further extended to address the parameter esti-
mation of two sinusoidal signals. Moreover, a modulating
function-based approach is presented in [24], which allows
non-asymptotic frequency detection by processing the input
with truncated periodic functions. A new tool for finite-
time estimation has been recently proposed in [25], [26],
where Volterra operators with a suitably designed kernel
function allow to annihilate in finite-time the effect of the
unknown initial conditions on the estimate. Compared with
the algebraic identification method, the kernel-based one
features internal stability, thus not requiring periodic re-
initialization. Resorting to the said kernel-based design, a
novel finite-time frequency identifier is presented in [27],
where Volterra operators are paired with a robust sliding-
mode adaptation law.

The present paper presents a deadbeat AFP estimator
that employs Volterra operators with novel kernel functions.
Compared to the previous kernels proposed by the authors in
[26] and [27], yielding to Linear Time Varying (LTV) filters,
the new ones admit a linear time invariant (LTI) realization.
Moreover, the new kernel functions do not annihilate the
initial conditions, that instead take part to the estimation as
extended parameters, allowing for the retrieval of both the
amplitude and the phase of the sinusoidal components.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider the following multi-sinusoidal signal

y(t) =

n∑
i=1

Ai sin (ϑi(t)), ϑ̇i = ωi, ϑi(0) = φi , (1)

where Ai ∈ R>0 and ωi ∈ R>0 denote respectively the
unknown amplitudes and the angular frequencies, verifying
the inequality ωi > 0, ωi 6= ωj for i 6= j, while φi
denotes the initial phase of each sinusoid. As mentioned in
the Introduction, our objective consists in estimating Ai, ωi
and φi within an arbitrarily small finite time.

The signal (1) can be thought of as being generated
by the following observable autonomous marginally-stable



dynamical system:{
ẇ(t) = Aww(t)
y(t) = c>ww(t)

, (2)

where w(t), [w0(t) . . . wr(t) . . . w2n−1(t)]>∈R2n,

Aw ,


J1 0 · · · 0

0 J2
. . . 0

...
. . . . . .

...

0
. . . . . . Jn

 , cw ,


c1
c2
...
cn

 ,

Ji ,

[
0 1
−ω2

i 0

]
, c>i , [ 1 0 ] ,

and with initial conditions

w2i−2(0) = Ai sinφi, w2i−1(0) = Aiωi cosφi,

∀i ∈ {1, . . . , n}. (3)

The associated characteristic polynomial, having purely
imaginary roots occurring in complex-conjugate pairs, is
given by

P (s) =

n∏
i=1

(s2 + ωi
2)

= s2n + αn−1s
2n−2 + · · ·+ α1s

2 + α0 ,

(4)

where s is Laplace variable, (α0, α1, · · · , αn−1) are the co-
efficients of the characteristic polynomial, simply determined
by the unknown frequencies ωi, i = 1, 2, · · · , n.

Being (2) observable, the state vector w(t) admits a linear
transformation of coordinates z(t) = Tw(t) with T is
defined later in (7), such that the signal generator of y(t)
can be rewritten in an observer canonical form. Consider

z(t) , [z0(t) z1(t) . . . zr(t) . . . z2n−1(t)]> ∈ R2n,

the canonical system evolving from the unknown initial state
z(0) = Tw(0), is given as follows:{

ż(t) = Az z(t),
y(t) = c>z z(t), t ∈ R≥0 (5)

where Az = TAwT
−1, c>z = c>wT

−1 are given by

Az =


a2n−1 1 0 · · · 0

a2n−2 0 1
. . . 0

...
...

. . . . . .
...

a1 0 0 · · · 1
a0 0 0 · · · 0

 , cz =


1
0
...
0

 .
(6)

with a2i+1 = 0 and a2i = −αi, ∀i = {0, 1, · · · , n−1}. The
transformation matrix T is determined by:

T = MO (7)

where O is the observability matrix of (2) and M is a
triangular matrix with respect to a1, a2, · · · , an−1

M =



1 0 0 · · · 0

−a2n−1 1 0
. . .

...
...

...
. . . . . . 0

−a2 −a3 · · · 1 0

−a1 −a2 · · · −a2n−1 1

 .

In the following, a deadbeat algorithm is introduced to
address the identification of the unknown system parameters
αi and the initial conditions z(0). Thereby the frequency are
computed as the zeros of the characteristic polynomial P (s),
while the amplitudes and phases are determined by inverting
(3) with the current frequency estimates.

Letting x(t) ∈ R, ∀t ≥ 0 be an i-th order differentiable
signal, in this paper we denote by x(1) the i-th order
derivative signal. Moreover, given a kernel function K(·, ·)
in two variables, its i-th order derivative with respect to the
second argument will be denoted as K(i)(t, τ), i ∈ Z≥0.

Consider a Volterra integral operator (see [26] for a
detailed review on the subject) with respect to a kernel
function K(·, ·)

[VKx] (t) ,
∫ t

0

K(t, τ)x(τ)dτ, t ∈ R≥0 . (8)

For the sake of practical implementability, it is worth to point
out that the transformed signal [VK x](t), for t ≥ 0, can be
obtained as the output of a dynamic system described by the
following scalar integro-differential equation: ξ(1)(t) = K(t, t)x(t) +

∫ t

0

(
∂

∂t
K(t, τ)

)
x(τ)dτ

[VKx] (t) = ξ(t)
(9)

where ξ(0) =
∫ 0

0
K(0, τ)x(τ) dτ and ξ(1)(0) = 0.

The following result is useful in dealing with the applica-
tion of Volterra operators to the derivatives of a signal.

Lemma 2.1: [26] For a given i ≥ 0, consider a signal
x(·) ∈ L2(R≥0) that admits a i-th weak derivative in R≥0
and a kernel function K(·, ·) ∈ HS , admitting the i-th
derivative (in the conventional sense) with respect to the
second argument. Then, it holds that:[
VKx

(i)
]
(t) =

i−1∑
j=0

(−1)i−j−1x(j)(t)K(i−j−1)(t, t)

+

i−1∑
j=0

(−1)i−jx(j)(0)K(i−j−1)(t, 0) + (−1)i
[
VK(i) x

]
(t)

(10)

that is, the function
[
VKx

(i)
]

(·) is non-anticipative
with respect to the lower-order derivatives x(·),
x(1)(·), . . . , x(i−1)(·). �

The properties of the Volterra operator depend signifi-
cantly on the shape of the kernel function. In this connection,
we define a class of kernel functions that plays an important
role in this framework.

Definition 2.1: If a kernel K(·, ·) ∈ HS which is at least
(i − 1)-th order differentiable with respect to the second
argument, verifies the condition

K(j)(t, t) = 0, ∀j ∈ {0, 1, . . . , i− 1} (11)

then, it is called an i-th order Bivariate (strict) Causal Kernel
(BC-K).

Here, we introduce a BC-K that fulfills (11):

K(t, τ) = e−β(t−τ)
(

1− e−β(t−τ)
)N

(12)

with the parameter β ∈ R>0. Indeed, the condition (11) up
to the N -th order is met by the factor

(
1− e−β(t−τ)

)N
.
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III. FINITE-TIME AMPLITUDE, FREQUENCY AND PHASE
ESTIMATION

For the sake of further discussion, it is worth to introduce
the differential-constraint model of (5):y

(2n)(t) =
2n−1∑
i=0

aiy
(i)(t), ∀t∈R≥0,

y(2i)(0) = y
(2i)
0 , i ∈ {0, . . . , n− 1}

(13)

where y
(i)
0 , i ∈ {0, . . . , 2n − 1} represent the unknown

initial conditions on hidden output derivatives. Notably, the
state-variables of the observer canonical realization can be
expressed as a linear combination of the output derivatives:

zr(t)=y
(r)(t)−

r−1∑
j=0

a2n−r+j y
(j)(t) , r ∈ {0, 1, · · · , 2n− 1}

(14)
where we have used the convention

∑k
j=0{·} = 0, ∀k < 0.

Assuming that K(·, ·) is a 2n-th order Bivariate Causal
kernel function satisfying the condition (11), thanks to
Lemma 2.1, it is immediate to show that

[
VKy

(i)
]

(t) =

i−1∑
j=0

(−1)i−jy(j)(0)K(i−j−1)(t, 0)

+ (−1)i
[
VK(i) y

]
(t) (15)

for all i ∈ {0, 1, · · · , 2n}.
Consider the case i = 1, from (15) we have that[

VK(1) y
]
(t) = −y(0)K(t, 0)−

[
VKy

(1)
]

(t) .

Moreover, performing the substitution of y with y(2n−1) we
have that also the following integral equation holds

[
VK(1) y(2n−1)

]
(t) = −y(2n−1)(0)K(t, 0)−

[
VKy

(2n)
]

(t) .

Therefore, owing to the I/O relationship (13), it holds that

[
VK(1) y(2n−1)

]
(t) = −y(2n−1)(0)K(t, 0)

−
2n−1∑
i=0

ai

[
VKy

(i)
]

(t)

which can be rearranged as

(−1)2n−1
[
VK(2n) y

]
(t) = −y(2n−1)(0)K(t, 0)

−
2n−2∑
j=0

(−1)2n−1−jy(j)(0)K(2n−j−1)(t, 0)

−
2n−1∑
i=0

ai

i−1∑
j=0

(−1)i−jy(j)(0)K(i−j−1)(t, 0)

+(−1)i
[
VK(i) y

]
(t)
)
.

After some cumbersome algebra, we get

(−1)2n−1[VK(2n)y](t) +

2n−1∑
i=0

ai(−1)i[VK(i)y](t)

= −
2n−1∑
r=0

K(2n−r−1) (−1)2n−r−1

×

y(r)(0)−
r−1∑
j=0

a2n−r+j y
(j)(0)

 (16)

that, thanks to (14), can be written in a compact form[
VK(2n) y

]
(t) =

n−1∑
i=0

αi
[
VK(2i) y

]
(t)+

2n−1∑
r=0

γr(t)zr(0) (17)

where γr(t) = K(2n−r−1)(t, 0)(−1)2n−r−1.
Noting that the right-hand side of (17) is linear with

respect to the parameters αi and the initial state zr(0), it
can be recast in vector form

[VK(2n) y] (t) = ν(t)>θ (18)

where θ , [α0, α1, . . . , αn−1, z0(0), z1(0), . . . , z2n−1(0)]>

is an extended parameter vector that contains, besides the
model model parameters, also the initial conditions of
output derivatives, while

ν(t) ,
[
[VKy](t), [VK(2)y](t), . . . , [VK(2n−2)y](t),

γ0(t), γ1(t), . . . , γ2n−1(t)
]>

is a vector of known signals. For the sake of the further dis-
cussion, let us partition ν(t) as follows: ν(t) = [ze(t),γ(t)]
where ze(t) contains signals obtainable by processing y(t)
by Volterra operators, while γ(t) contains known (kernel-
dependent) functions of time. In the following, we show that
ze(t) can be obtained by processing the measurable output
through a stable linear filter.

Consider a BC-K in the form of (12) with N = 2n+ 1:

K(t, τ) = e−β(t−τ)
(

1− e−β(t−τ)
)2n+1

(19)

with the the design parameter β ∈ R>0.
For any i ∈ {0, 1, 2, . . . , 2n}, the i-th derivative of the

designed kernel with respect to the second argument can be
expressed as:

K(i)(t, τ) =

2n+2∑
j=1

e−jβtfi,j(τ) . (20)

Let Ki,j(t, τ) , e−jβtfi,j(τ), then we have

∂

∂t
Ki,j(t, τ) = −jβe−jβtfi,j(τ).

Moreover, by the linearity of the Volterra operator, it fol-
lows that [VK(i) y] (t) =

∑2n+2
j=1

[
VKi,jy

]
(t). Defining the

internal state vector

ξ(t) = [ξ0,1(t), ξ0,2(t), . . . , ξ0,2n+2, ξ2,1(t), . . . , ξ2n,2n+2]>,

with ξi,j(t) , [VKi,jy](t). Then the augmented signal vector

za(t) ,
[
ze(t)

[
VK(2n) y

]
(t)
]>

can be computed by the
following stable LTI system:{

ξ(1)(t) = Gξξ(t) + Ey(t)
za(t) = Hξ(t)

(21)



with ξ(0) = 0 ∈ R(n+1)×(2n+2) and where Gξ

is a diagonal, time invariant and Hurwitz matrix, de-
fined by Gξ = blockdiag[G, . . . , G], with G =
diag(−β,−2β, . . . ,−(2n + 2)β), and H is defined by
H = blockdiag[1>, . . . , 1>], with 1> denotes a row
vector of ones with 2n + 2 elements. Finally, the vector
E = [E0,E2, ...,E2n]> can be obtained as described in the
following lines. Since the functions Ki, j(t, τ), evaluated for
τ = t,

Ki,j(t, t) = λi,j , (−1)j−1
(

2n+ 1
j − 1

)
(jβ)i

are constant, then Ei is given by Ei =
[λi,1, λi,2, . . . , λi,2n+2]

>
. In order to form a well-posed

algebraic system based on (18) conventional augmentation
tools used in system’s identification can be employed. The
covariance filtering technique is adopted here to construct a
linear algebraic system. Let us multiple ν(t) on both sides
of (18), leading to:

S(t) = R(t)θ (22)

where S(t) , ν(t)[VK(2n) ](t) ∈ R3n×1 and R(t) ,
ν(t)ν>(t) ∈ R3n×3n .

Note that rank (R(t)) = 1, ∀t > 0, hence we apply to both
sides of the (22) a low-pass filtering operation, obtaining{

Ṡf (t) = −gSf (t) + S(t)
Ṙf (t) = −gRf (t) + R(t)

, (23)

where Sf (0) = 0 ∈ R3n×1, Rf (0) = 0 ∈ R3n×3n.
Now, let

Fr,j = (−1)j−1
(

2n+ 1
j − 1

)
(−jβ)2n−r−1 , (24)

it is worth noting that γr(t), r = 0, 1, . . . , 2n− 1 contained
in the regressor ν(t) can be represented as the sum of
exponential functions

γr(t) =

2n+2∑
j=1

e−jβtFr,j

which decay to zero as t → ∞. The following technical
result characterizes a specialized persistency of excitation
condition (PE) on signal ν(t) that is needed to prove the
convergence of the proposed algorithm.

Lemma 3.1: (Finite-time persistency of excitation) Given
the multi-sinusoidal measurement y(t) (see (1)) and the
designed kernel (19), there exist some ε ∈ R>0, tε ∈ R>0

and T ∈ R>0 such that∫ t

t−tε
ν(τ)ν>(τ)dτ ≥ εI, ∀t ∈ [tε, tε + T ]. (25)

Proof: Let us split ν(t) into two vector signals ν1(t) ∈
Rn and ν2(t) ∈ R2n, such that

L {ν1(t)} = G1(s)L {y(t)},

and
ν2(t) = G2ψ2(t)

where

G1(s) = [ κ0(s) κ2(s) · · · κ2n−2(s) ]
> ∈ Cn

with κi(s) ,
∑2n+2
j=1

λi,j
s+jβ , i = 0, 2, . . . , 2n− 2, and

ψ2(t) ,
[
e−βt e−2βt · · · e−(2n+2)βt

]>
, (26)

G2 =


F0,1 F0,2 · · · F0,2n+2

F1,1 F1,2 · · · F1,2n+2
... ¨

. . .
...

F2n−1,1 F2n−1,2 · · · F2n−1,2n+2


∈ R2n×(2n+2) .

Since y(t) takes on the multi-sinusoidal form (1), it can
be concluded that y(t) is sufficient rich of order 2n.
Thanks to the linear independence of the complex vectors
G1(jω1)), · · · ,G1(jωn)) on the complex space Cn, ν1(t)
is PE for all t ≥ 0 ([28, Chapter 2]).

Moreover, for the signal ψ2(t) defined in (26), there
always exists a finite time interval [t, t] with t > t over which
the elements of ψ2(t) are linearly independent functions
[29]. It also implies that for any t > t, there exist a constant
ε2 ∈ R>0, such that∫ t

t−t
ψ2(τ)ψ>2 (τ)dτ ≥ ε2I .

Then, in view of (24), G2 is full row rank of 2n. Hence, we
have∫ t

t−t
ν2(τ)ν>2 (τ)dτ = G2

∫ t

t−t
ψ2(τ)ψ>2 (τ)dτ G>2

≥ g2
2
ε2I (27)

where we denote by g
2

the minimum singular value of G2.
The inequality (27) implies ν2(t) PE over an interval [t, t].

By using the fact that the sinusoidal functions in ν1(t) and
the exponential functions in ν2(t) are linearly independent,
it can be concluded that also for ν(t) there exist some ε ∈
R>0, tε ∈ R>0 and T ∈ R>0, such that the finite-time PE
condition (25) holds, thus ending the proof.

Owing to (23) and (25), it is straightforward to show that

Rf (t) ≥
∫ t

t−tε
e−g(t−τ)ν(τ)ν>(τ)dτ

≥ e−gtεεI, t ∈ [tε, tε + T ]

which in turn implies that, under the PE condition, the
filtered auto-covariance matrix Rf (t) is invertible within a
time interval tε ≤ t ≤ tε+T . In this connection, the unknown
parameter vector θ can be estimated by

θ̂(t) =

 θ0, t < tε,
Rf (t)−1Sf (t), tε ≤ t ≤ tε + T,
Rf (tε + T )−1Sf (tε + T ), t > tε + T

where θ0 is a guessed parameter vector. It is worth noting
that the algorithm is switched off after t = tε+T by freezing
the estimates.

Given θ̂, the estimates of the αi, i ∈ {0, . . . , n − 1}
and the initial states zr(0), r ∈ {1, . . . , 2n − 1} are
computable. Thanks to the the characteristic polynomial (4)
that is parametrized by αi, the frequencies ω0, . . . , ωn−1
are computed by letting P (s) = 0 . From (3), using the



initial states wi(0), obtained by w(0) = T−1z(0) and ωi,
we finally get

(ωiw2i−2(0))2 + w2i−1(0)2 = A2
iω

2
i

which yields

Ai =
√

((ω̄iw2i−2(0))2 + w2i−1(0)2) /ω̄2
i

with ω̄i , max(ωmin, ωi), ωmin is a known lower bound of
the input frequencies. Finally,

φi = tan−1
(
ωiw2i−2(0)

w2i−1(0)

)
for all i ∈ {1, . . . , n− 1}.

IV. NUMERICAL EXAMPLE

In this section, a few numerical examples are carried
out to examine the behavior of the proposed methodology,
the performance of which is also compared with another
algebraic algorithm proposed in [23].

A. Identification of two sinusoidal signals
Let us first consider the example used in [23], assuming

y1(t) =
∑2
i=1Ai sin (ωit+ φi) where A1 = 2, A2 = 5,

ω1 = 1.4π ≈ 4.4 rad/s, ω2 = 0.6π ≈ 1.89 rad/s, φ1 = 1 rad
and φ2 = 0.5 rad.

The parameters of the algebraic algorithm [23] are set as
ε = 1s, ζ = 0.707, ωn = 31.4 rad/s, while the proposed
method is tuned by β = 1, g = 1. All the estimates are
initialized by zero. According to Fig. 1, in the noise-free
scenario, both methods are able to capture the sinusoidal
parameters precisely in finite-time.

Instead of using a pure sinusoidal signal, let us assume
the input y1(t) is corrupted by a bounded disturbance d(t)
with uniform distribution in the interval [−0.1, 0.1]. Keeping
the tuning parameters unchanged, the behavior of the two
methods in the presence of d(t) are shown in Fig. 2. It
is observed that the kernel-based method succeeds in AFP
detection with fast convergence speed and slightly better
noise immunity than [23]. It is worth noting that the algebraic
estimator may be susceptible to numerical problems in the
noisy scenario, due to its internal instability (as shown in the
results at t = 3.8s).

B. Identification of three sinusoidal signals
In the second example, we investigate the behavior of

the proposed method in the presence of three sinusoidal
components with nearby frequencies. Consider y2(t) =∑3
i=1Ai sin (ωit+ φi) where A1 = 2, A2 = 5, A3 = 4,

ω1 = 2 rad/s, ω2 = 2.2 rad/s, ω3 = 5 rad/s, φ1 = 1, φ2 =
0.7 rad and φ3 = 0.2 rad.

The estimation results in the noise-free scenario with
tuning gains tuning β = 1 and g = 1 are reported in Fig. 3,
showing the two nearby frequencies (ω1 and ω2) are precisely
discriminated, while the other sinusoidal parameters are
accurately identified as well. Moreover, Fig. 4 shows the
estimated parameters when the measurement is perturbed
by a bounded disturbance within [−0.5, 0.5]. Despite some
degradation, the proposed methodology can provide satisfac-
tory estimates within a short period of time.

V. CONCLUDING REMARKS

In this paper, the problem of AFP identification for a
multi-sinusoidal signal has been addressed. A novel estimator
is designed to provide reliable amplitude, frequency and
phase estimates in finite-time. While relying upon strong
theoretical foundations referring to the algebra of integral
operators, the estimator ends up with a simple linear filter
that, applied to the measured signal, produces an array
of auxiliary signals that are exploited to retrieve all the
parameters of the sinusoidal components in one shot.
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Fig. 1. Time behavior of the AFP estimates in noise-free scenario (estimates are overlapped for both methods).
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Fig. 2. Time behavior of the AFP estimates in noisy scenario.
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Fig. 3. Time behavior of the AFP estimates in noise-free scenario.
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