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Abstract

Objective—Flow diverters (FDs) aim to occlude intracranial aneurysms (IAs) while preserving 

flow to essential arteries. Incomplete occlusion exposes patients to risks of thromboembolic 

complications and rupture. A priori assessment of FD-treatment outcome could enable treatment 

optimization leading to better outcomes. To that end, we applied image-based computational 
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analysis on FD-treated aneurysm patients to extract morphology, pre- and post-treatment 

hemodynamics, and FD-device characteristics and trained machine-learning algorithms using 

these features to predict their 6-month clinical outcome.

Methods—Eighty-four FD-treated sidewall aneurysms in 80 patients were retrospectively 

collected. Based on 6-month angiographic outcomes, IAs were classified as “occluded” (n=63) or 

“residual” (incomplete occlusion, n=21). For each case, we modeled FD deployment using a fast 

virtual stenting algorithm and hemodynamics using image-based CFD. Sixteen morphological, 

hemodynamic and FD-based parameters were calculated for each aneurysm. Aneurysms were 

randomly assigned to a training or testing cohort in a 3:1 ratio. Student’s t-test and Mann-Whitney 

U-test were performed on the training cohort to identify significant parameters distinguishing the 

occluded from residual groups. Predictive models were trained using 4 types of supervised 

machine-learning algorithms: logistic regression (LR), support vector machine (SVM, linear and 

Gaussian kernels), k-nearest neighbor (k-NN) and neural network (NN). On the testing cohort, we 

compared outcome prediction by each model using all parameters vs only the significant 

parameters.

Results—Training cohort (n=64) consisted of 48 occluded and 16 residual aneurysms; testing 

cohort (n=20) consisted of 15 occluded and 5 residual aneurysms. Significance tests yielded 2 

morphological (ostium ratio and neck ratio) and 3 hemodynamic (pre-treatment inflow rate, post-

treatment inflow rate and aneurysm-averaged velocity) discriminants between the occluded (good-

outcome) and the residual (bad-outcome) group. In both training and testing, all the models trained 

using all 16 parameters performed better than all the models trained using only the 5 significant 

parameters. Among all-parameter models, NN (AUC=0.967) performed the best during training, 

followed by LR and linear-SVM (AUC=0.941 and 0.914, respectively). During testing, NN and 

Gaussian-SVM models had the highest accuracy (90%) in predicting occlusion outcome.

Conclusions—NN and G-SVM models incorporating all 16 morphological, hemodynamic and 

FD-device parameters predicted 6-month occlusion outcome of FD treatment with 90% accuracy. 

More robust models using the computational workflow and machine learning could be trained on 

larger patient databases towards clinical use in patient-specific treatment planning and 

optimization.
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IN endovascular treatment of intracranial aneurysms (IAs), flow diverters (FDs) have 

emerged as an alternative paradigm to coil embolization, particularly in treating wide-neck 

and challenging aneurysm morphologies.6,28 Deployed across an aneurysm ostium, the 

densely woven mesh of FD induces flow stasis in the aneurysmal sac, promoting thrombotic 

conditions and eventual occlusion of the IA. The mesh-like structure of FDs also facilitates 

endoluminal reconstruction of the parent artery.18,34 Over the past few years, FDs have been 

one of the mainstays of endovascular intervention. However, despite this, approximately 

25% of FD-treated IAs fail to reach complete occlusion even after 6 months.6,15 These FD-

treated patients, who experience persistent residual filling in the aneurysm sac, are at risks of 

thromboembolic complications and aneurysm rupture.16,32 A priori assessment of FD-
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treatment outcome could aid the clinicians in treatment optimization and lead to better 

outcomes.

For coil embolization, recanalization have been shown to correlate with aneurysm 

morphometrics such as size, neck-to-dome ratio and neck size, which have been used to 

gauge coil treatment outcome.11 However, for FD-treated IAs, these metrics have not been 

found to correlate with occlusion outcome.3,6 Instead, other morphological and 

hemodynamic metrics have been proposed specifically for FDs that correlate with occlusion 

outcome. Gentric et al.12 showed that a large aneurysm ostium is associated with incomplete 

occlusion after FD-treatment. Mut et al.21 demonstrated pre- and post-treatment inflow rate, 

post-treatment aneurysm averaged velocity, and post-treatment shear rate, were significantly 

different between occluded and non-occluded IAs after 6 months of FD-treatment. However, 

it remains unclear if these parameters can predict the FD treatment outcome.

In order to develop models for predicting clinical outcome of FD-treated IAs, we surveyed 

potential candidate algorithms. In IA research, multivariate logistic regression on untreated 

morphological and hemodynamic parameters have been used to classify aneurysm rupture 

status.39 In other areas of medical research, novel machine learning (ML) algorithms have 

emerged as alternatives to traditional statistical methods to predict clinical outcomes, e.g., 

using medical imaging data to classify brain tumors and heart diseases.2,31,36 Unlike 

univariate statistical analysis that focus on identifying the independently significant 

differences between averages of parameters in different populations, ML algorithms use 

given features on the available data on a case-by-case basis to predict an outcome.2,19,22,27 

Furthermore, studies have also shown that ML algorithms could extract nonintuitive linear 

and nonlinear combinations of parameters, which themselves may be insignificant in 

univariate statistical analyses.22

In this study we explored 4 ML algorithms, including not only the most recent algorithms 

such as support vector machine (SVM), k-nearest neighbor (k-NN) and neural network 

(NN), but also the traditional multivariate logistic regression, in training predictive models 

for FD treatment outcome, and compared their performances. The purpose was to establish a 

proof of concept for mining bigger data towards building models to potentially aid clinicians 

in a priori treatment planning and optimization.

Methods

Patient Selection

Data for patients treated using the commercial FD Pipeline embolization device (PED) 

(Medtronic) at the Gates Vascular Institute between 2009 and 2017 were retrospectively 

collected for this study. The inclusion criteria were the presence of a sidewall aneurysm 

located at the internal carotid artery (ICA) and treated using a single PED, availability of 6-

month follow-up angiographic image and pre-treatment 3D rotational digital subtraction 

angiography (DSA) image. Aneurysms with prior treatment and those with insufficient 

quality of pre-treatment DSA were excluded from this study. Approval for the collection and 

review of patient data was obtained from the institutional review board at the University at 

Buffalo. Patient consent was waived by the board due to retrospective use of de-identified 
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data. Pre-treatment 3D-DSA images, 6-month clinical outcome data, and general clinical 

and demographic data were collected for cases that satisfied the inclusion criteria. Based on 

their angiographic outcome at 6-month follow-up, aneurysms were dichotomized as 

occluded (complete occlusion) or residual (contrast filling at the neck/dome). Aneurysms 

were randomly assigned to either the training or the testing cohort in a 3:1 ratio, keeping the 

ratio of occluded to residual cases equal in the 2 cohorts.

Virtual FD Deployment and Computational Fluid Dynamics Setup

The 3D-DSA images of FD-treated IAs obtained before treatment were segmented using an 

open-source software package vascular modeling tool kit (vmtk, www.vmtk.org)1 to obtain 

surface representation of the vascular geometry of each aneurysm. We could not directly 

obtain the deployed FDs in post-treatment images due to lack of adequate imaging 

resolution and artifacts. Therefore, to deploy the FD device in the computational model for 

each aneurysm, we used our previously reported virtual stenting workflow.25,26 Details of 

the workflow are provided in the Supplementary Material. To accurately represent the 

patient-specific treatment, the actual specifications of the FD-device (diameter and length) 

was imported into the workflow. To obtain hemodynamics, we ran image-based 

computational fluid dynamic (CFD) simulations. For each aneurysm, two simulations were 

performed: untreated and treated with the modeled FD. Technical details of the CFD 

simulation setup is provided in the Supplementary Material.

Parameters Calculated: Morphological, Hemodynamic, and FD-Related

From 3D IA models, virtual FD deployment, and untreated and treated CFD simulations, 

morphology, FD-related, and hemodynamic parameters were calculated for each aneurysm. 

Previously studied morphology metrics,10 including aneurysm size, neck diameter (ND), 

size ratio (SR), aspect ratio (AR), and the novel morphometrics neck ratio (NR) and ostium 

ratio (OsR), were calculated. NR is defined as the ratio of clinical aneurysm neck diameter 

and parent vessel diameter, and OsR is defined as the ratio of aneurysmal ostium surface to 

the remaining circumferential surface area of the parent artery. Size, ND, SR, and AR were 

calculated on the 3D IA models using the integrated clinical software AView;37 NR was 

calculated on the pre-treatment 2D-DSA images of patients; and OsR was calculated on the 

3D surface IA models using a standalone MATLAB workflow.

FD-related parameters, metal coverage rate (MCR) and pore density (PD) were quantified 

based on virtual FD-deployment results on patient IA models. MCR and PD were calculated 

across the aneurysm orifice with the deployed FD visible to capture its deployment at the 

neck.9 MCR quantifies the relative area covered by the FD struts at the neck as opposed to 

open space (pores), and PD quantifies the number of pores per unit area.17 Virtual FD 

deployment images of each patient at the aneurysmal neck were obtained in STAR-CCM+, 

and a standalone MATLAB code was written to quantify the MCR and PD from the 

deployment images.

From CFD simulation results, time-averaged flow parameters were quantified to measure the 

effect of FDs on aneurysm hemodynamics. To quantify the pre- and post-FD intra-

aneurysmal flow activity, magnitudes of aneurysm averaged velocity (AV) and shear rate 
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(SHR) were volume-averaged inside the aneurysm sac. Flow stasis was quantified by 

aneurysm inflow rate (IR) and turnover time (TT), defined as the aneurysm sac volume 

divided by the inflow rate at the neck plane. Increasing aneurysmal flow turnover time can 

accelerate blood clotting and thrombotic occlusion of the aneurysms.17 These hemodynamic 

parameters have previously shown association with the occlusion outcome of FD-treated 

IAs.21,38 The subscripts “pre” and “post” were used to distinguish between the untreated and 

treated hemodynamic values for each parameter.

A total of 16 parameters were calculated for each aneurysm, including 6 morphology-based 

parameters—size, ND, SR, AR, NR, and OsR; 2 FD-related parameters—MCR and PD; and 

8 hemodynamic-based parameters—AVpre, AVpost, SHRpre, SHRpost, IRpre, IRpost, TTpre, 

and TTpost.

Statistical Analysis

Statistical analysis was performed on the patient clinical, demographic, morphological, FD-

related, and hemodynamic parameters in the training cohort to identify those that differed 

significantly between the occluded and residual groups. A Shapiro-Wilk test was performed 

to check for normality of the continuous variables. Differences in parameters between the 2 

groups were tested using the Mann-Whitney U-test (for nonnormally distributed data) or 

Student t-test (for normally distributed data). For categorical variables, a chi-square test was 

used to test for significant differences between the groups. Statistical significance was 

defined as p<0.05. All continuous parameter values were subsequently expressed as mean

±standard error (SE). Before training the ML models, values of each parameter in the testing 

and training cohorts were normalized to have a mean value of zero and a standard deviation 

of 1.

Machine Learning Algorithms

Supervised ML algorithms with binary classification were used to build predictive models. 

Four ML algorithms were selected for model building since these have shown good 

performance in clinical healthcare classification studies.20,30,31,35,36 The models include the 

standard statistical logistic regression (LR), support vector machine (SVM, with linear [L-

SVM] and Gaussian [G-SVM] kernels), k-nearest neighbor (k-NN), and neural network 

(NN). An illustration of the concept of each algorithm is shown in Fig. 1. As shown in Fig. 

1, LR uses a linear classification line to separate the two groups, SVM uses either a linear 

(L-SVM) or non-linear (Gaussian, G-SVM) kernel to identify the hyperplane that maximizes 

the distance between the two groups, k-NN performs predictions on a new data-point based 

on its euclidean distance from its ‘k’ neighbors, and NN uses a system of interconnected 

layers that use back-propagation while training to generate non-intuitive combinations of 

parameters to optimize classification model. Descriptions of each algorithm is provided in 

the Supplementary Material. Each algorithm was used to train two sets of predictive models: 

1) using all 16 parameters as input, and 2) using only the statistically significant parameters.

In-house codes were written to normalize the parameter data and train the predictive models 

for LR, L-SVM, G-SVM and k-NN in MATLAB (v9.3, R2017, MathWorks) using the 

Machine Learning Toolbox. For NN algorithm, python 3.6 code was developed using the 
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open-source Tensorflow (v1.4.1, Google) and Keras (v2.0.8, https://keras.io/) libraries. A 

four-fold cross-validation was used during model training to avoid overfitting on the training 

cohort.

Training and Testing Accuracy Estimation

Area under the receiver-operator characteristic (ROC) curve (AUC) and 95% confidence 

intervals were quantified to assess the performance of the models on the training cohort for 

each algorithm.13 The predictive performance of each model was quantified by its accuracy 

on the independent testing cohort. The flowchart of the model training and testing for all 

models is shown in Fig. 2.

Results

Patient Population and Statistical Analysis

Based on the inclusion criteria, 84 IAs in 80 patients were enrolled in this study. At 6-month 

follow-up, 63 aneurysms had complete occlusion (occluded), whereas 21 aneurysms had 

residual contrast-filling (residual). The clinical and demographic information of patients in 

each group is listed in Table 1. The patients in the occluded group had a mean age (±SE) of 

56.7±1.8 years; this group included 51 females, 20 patients with hypertension, and 23 

patients who were current smokers. The residual group had an average age of 58.5±2.8 

years, included 19 females, 10 patients with hypertension and 14 patients with smoking. 

There was no significant differences in age, sex, hypertension and smoking status between 

the 2 groups. Upon randomization, the training cohort included 64 aneurysms (48 occluded 

and 16 residual), with 20 aneurysms reserved to the testing cohort (15 occluded and 5 

residual).

Table 2 lists the mean and standard error for morphology, FD-device and hemodynamic-

based parameter in the 2 groups in the training cohort, with their respective p values. Mean 

values of all morphological parameters were higher in the residual group except AR. 

However, only NR and OsR were statistically different (p=0.01 and p<0.001, respectively) 

between the groups. Both FD-related parameters, MCR and PD were higher in the occluded 

group than the residual group, but the differences were not statistically significant. In terms 

of pre-treatment hemodynamic parameters, aneurysm that occluded within 6-months had 

lower mean values of AVpre, SHRpre and IRpre and higher TTpre as compared to those that 

did not occlude. However, only IRpre was significantly different between the 2 groups 

(p=0.04). Similar to pre-treatment hemodynamic parameters, occluded group had lower 

mean values of AVpost, SHRpost and IRpost and higher value of TTpost than the residual 

group, with AVpost and IRpost showing statistically significant differences between the two 

groups (p=0.02 and p=0.02, respectively). NR, OsR, IRpre, AVpost and IRpost had statistically 

significant differences between the 2 groups, and were used for training models with 

significant-parameters only; all 16 parameters were used in training all-parameter models.

Final Converged Models

Through training, we obtained the final converged models for all algorithms. The training 

loss function for the LR, L-SVM, G-SVM, k-NN and NN models trained using all-
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parameters were 0.10, 0.125, 0.156, 0.171 and 0.10, respectively. For the LR, L-SVM, G-

SVM, k-NN and NN models trained with significant parameters, the loss functions were 

0.121, 0.156, 0.140, 0.203, 0.214, , respectively.

Model Performance on the Training Cohort

To compare the use of significant parameters versus all parameters on the performance of 

ML models on the training cohort, ROC analysis was performed for all models. As shown in 

Fig. 3, all-parameter models had better performance for each algorithm as compared to 

significant-parameter models. Among all-parameter models, NN had the highest training 

performance (AUC=0.967) followed by LR (AUC=0.941), whereas G-SVM model had the 

lowest AUC (0.841). However, among significant-parameter models, k-NN had the highest 

performance (AUC=0.875) followed by the NN model (AUC=0.854).

Model Accuracy on the Testing Cohort

The predictive accuracy of each model in the testing cohort is shown in Table 3. Overall, 

models with significant parameter as input had lower accuracy on the testing cohort as 

compared to the models trained using all parameters. The all-parameter models’ predictive 

accuracy ranged from 85% to 90%, with LR, L-SVM, and K-NN having 85% and G-SVM 

and NN having 90% prediction accuracies. On the other hand, the significant-parameter 

models’ accuracy ranged from 55%–75%, with LR, L-SVM, and G-SVM having the highest 

accuracy of 75%.

To further analyze the predictive performance of all-parameter models on the testing cohort, 

individual predictions on 20 IAs in the testing cohort were plotted in a confusion matrix in 

Fig. 4. The confusion matrix plots the number of correct and incorrect model-predicted 

outcome (horizontal axis) against the actual outcome (vertical axis) for each aneurysm. The 

cells with correct and incorrect predictions were shaded green and red, respectively. The 

most accurate NN model had 2 incorrect predictions, where 1 residual IA was predicted as 

occluded and 1 occluded IA predicted as residual. The predicted versus actual outcomes of 

all other models is shown in Fig. 4.

Discussion

IN endovascular intervention of IAs by flow diverters, clinicians use pre-treatment and 

immediate post-treatment DSA images of aneurysms to assess the flow stasis induced by the 

FD.3,6 However, these images do not provide enough information to assess the long-term 

outcome of the IA healing. For illustration purpose, Fig. 5 shows two representative FD-

treated ICA aneurysms from our cohort, with pre-treatment DSA on the left panel, and 6-

month follow-up DSA on the far right panel. Although the FD placement was successful in 

both cases, their outcomes at 6 months were quite different: the top aneurysm was 

completely occluded (red circle), while the bottom aneurysm had significant residual filling. 

This example highlights the fact that despite the successful FD placement, a treatment might 

be ultimately unsuccessful due to persistent filling (i.e., IA is not occluded over a long 

period of time), which exposes the patient at risk of thromboembolic complications and 

rupture.16,32 We believe that an ability to predict potential failure of FD treatment prior to 
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the intended intervention will improve treatment planning, and thus minimize complications 

and optimize outcomes.

To that end, we have developed a computational analysis workflow that extracts information 

from the pre-treatment 3D DSA to potentially predict the treatment outcome. Conceptually, 

this computational workflow is an extension of the pre-treatment 3D DSA (middle panel in 

Fig. 5), which extracts pertinent features that include aneurysm morphology, pre- and post-

treatment hemodynamics and characteristics of the candidate FD-device. These features lend 

themselves to building ML models that could predict long-term outcome when trained on a 

large number of retrospective FD-treated IA cases.

As a proof of concept of the proposed methodology, we retrospectively collected 84 FD-

treated ICA aneurysm from our center. We applied the computational workflow to extract 16 

aneurysm morphology, FD characteristics and pre- and post-treatment hemodynamic 

features for each IA. We then trained ML algorithms on 63 FD-treated IAs (training cohort) 

based on these features and produced models that were 85–90% accurate in predicting the 6-

month occlusion outcome in an independent testing cohort, including correct predictions of 

the 2 example cases shown in Fig. 5. Application of this methodology to larger databases 

could generate, as well as validate, more robust predictive models, which could potentially 

help in assessing the outcome of FD-treatment a priori.

It has been argued in the literature that relevant features must be carefully selected for 

training ML models, especially for larger dataset.5 The reason is that including irrelevant 

features might incur extra computational cost during training, with little contribution to 

enhance the performance of the models.5 However, since our feature space is not very large 

(16 features), we asked if the so-called “irrelevant” features should be discarded. Therefore, 

we first performed univariate statistical analysis to significant parameters (could be 

considered as relevant) and insignificant parameters (could be slated as “irrelevant”). Then, 

we trained two sets of models, one using all parameters and one with significant parameters 

only and compared their performance to evaluate whether the inclusion of insignificant 

parameters helped to increase the model performance. Comparison results showed that all 

models trained with all 16 parameters had better accuracy (≥85%) than all models trained 

with only 5 significant ones (≤75%), and for each ML algorithm, all-parameter models 

outperformed their significant parameter counterparts. This indicates that the nonsignificant 

parameters are not truly “irrelevant”; they could be relevant through nonintuitive 

combinations. However, we cannot determine if that was the case due to small sample-size 

in the training cohort. Studies on larger patient database are required to elucidate the role of 

irrelevant parameters in predictive model-building.

Healing mechanism of FD-treated aneurysms is currently poorly understood.8,21,23,24,38 

Based on our statistical results, we found that pre- and post-treatment inflow rate, post-

treatment aneurysm-averaged velocity, ostium ratio and neck ratio were significantly higher 

in the residual group. This could provide some insight into the reason why some FD-treated 

IAs do not heal. FD intervention aims at diverting the flow away from the IA sac, inducing 

flow stasis and eventual thrombotic occlusion of the IA. Larger post-treatment inflow rate in 

the residual group indicates that the FD implantation did not divert enough flow away from 
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the IAs in this group, resulting in ineffective flow diversion. This flow condition could lead 

to constant replenishment of fresh blood into the IA, which could be reason for the persistent 

residual filling into the IA sac even after 6-months for residual group. Interestingly, we also 

found pre-treatment inflow rate to be significantly higher in the residual group as compared 

to the occluded aneurysms. For these IAs, FD placement evidently cannot provide sufficient 

flow diversion away from the IA sac to ensure the long-term thrombotic occlusion of the 

IAs. Even more interestingly, the residual group also had significantly higher ostium ratio 

and neck ratio. This means that a larger portion of the parent vessel was the opening into the 

aneurysms in this group, which allowed more flow into the aneurysmal sac.40 In these cases, 

use of alternative strategies like overlapping FDs, compacted FD or FDs with adjunctive 

coils could be more beneficial for successful outcome, namely occlusion.9,38 In the ideal 

case, our models will identify IAs that may not occlude with a single, uniformly implanted 

FD, promoting the interventionalist to consider these alternative methods.

To find the best predictive models, we have also compared the performance of 4 different 

ML algorithms for FD treatment outcome prediction, including LR, SVM, k-NN and NN. 

Results show that NN and G-SVM (90% accuracy) performed slightly better than LR, L-

SVM and k-NN (85% accuracy). Almost similar performance of all the algorithms suggest 

that a larger dataset is required to identify the best algorithm among these.

A common concern with training predictive models is overfitting to the training cohort when 

there are a large number of variables considered. However, we took steps to mitigate this 

risk, through both 4-fold cross-validation as well as holding out a test set, to which the 

models were naïve.29 The models trained using all parameters performed well in training, as 

well as on the independent testing cohort, confirming that our models are generalizable.

Limitations

First, the CFD had to make simplifying assumptions, like assumed inlet flow waveform 

because patient-specific waveforms were not available. Second, our sample-size is small and 

limited to a single center. Future multicenter collaborations could help generate more robust 

predictive models. Third, the parameters used in our study were entirely derived based on 

findings from previous studies, which do not exhaustively represent the relevant 

morphological, device, and hemodynamic features in FD-healing. Fourth, this study is 

focused on sidewall aneurysms located at the ICA only, and the derived models may not be 

applicable for FD treatment of IAs at other locations. Last, we did not include patients’ 

clinical comorbidities and medications in our study, and these could influence the occlusion 

of FD-treated IAs. Future studies should include clinical comorbidities and medications as 

input parameters for training the predictive models.

Conclusions

We used ML algorithms to build predictive models for occlusion outcome of FD-treated 

sidewall IAs located at the ICA. Results show that models incorporating all 16 investigated 

morphological, hemodynamic, and FD-related parameters perform best with 90% predictive 

accuracy in an independent testing cohort. The implications are 2-fold: 1) ML algorithms 

that use all parameters, not just the statistically significant ones, may be utilizing some 
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underlying morphological factors or hemodynamic factors for better outcome classification. 

2) Using the computational analysis on larger patient-specific databases, future studies to 

build robust predictive ML-based models are necessary to allow clinicians to better plan and 

triage for appropriate treatment of IAs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

AR aspect ratio

AUC area under the ROC curve

AV averaged velocity

CFD computational fluid dynamic

DSA digital subtraction angiography

FD flow diverter

IA intracranial aneurysm

ICA internal carotid artery

IR inflow rate

K-NN k-nearest neighbor

LR logistic regression

MCR metal coverage rate

ML machine learning

ND neck diameter

NN neural network

NR neck ratio

N-S Navier-Stokes

OsR ostium ratio

PD pore density
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PED Pipeline embolization device

ROC receiver operator characteristic

SE standard error

SHR shear rate

SR size ratio

SVM support vector machine

TT turnover time
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Fig. 1. 
Illustration of different ML classification algorithms. A: Logistic regression where a 

classification line is fitted on the data. B: Support vector machine, where the best hyper-

plane that separates the data is identified by maximizing the margins on its either sides. C: 
K-nearest neighbor, where the predictions of a new point are made based on its distance 

from the points in the exiting database. D: Neural network with 2 hidden layers, where a 

system of interconnected neurons uses back-propagation to learn from the training data.
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Fig. 2. 
Flowchart for building and testing the predictive models for occlusion outcome of FD-

treated IAs. After extraction of morphological, FD-related, and hemodynamic parameters, 

patients are randomly divided into the training and testing cohorts. Two sets of models are 

then trained using: 1) all parameters and 2) significant parameters on the training cohort. 

The predictive performance of these models is then tested on the testing cohort.
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Fig. 3. 
ROC curves for each ML model on the training cohort: built using all parameters (A) and 

built using significant parameters (B). AUC = area under the ROC curve; G-SVM = 

Gaussian support vector machine; K-NN: k-nearest neighbor; LR = logistic regression; L-

SVM = linear support vector machine; NN = neural network.
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Fig. 4. 
Confusion matrix for predictions of ML models (trained using all parameters) on the testing 

cohort. The vertical axis represents the actual clinical outcome and the horizontal axis 

represents the model-predicted outcome. Green indicates correct predictions; red indicates 

incorrect predictions.
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Fig. 5. 
Concept of the methodology of generating clinically practical predictive models for FD-

treated IAs. Left panel shows two representative patient-specific ICA aneurysms, which 

were treated using a single FD. Right panel shows the 6 month-occlusion outcome of both 

cases: top aneurysm was complete occluded (red circle) while bottom aneurysm had 

persistent residual filling in the IA. The middle panel show the computational analysis 

workflow, which uses pre-treatment 3D DSA images to generate 3D aneurysm model, and 

then models the FD deployment and hemodynamics using virtual stenting and CFD, 

respectively. The morphological, hemodynamic and candidate FD characteristics ae used as 

features to train machine-learning algorithms that can predict the 6-month occlusion 

outcome of FD-treated IAs. Note that neural networks are shown as a representative 

machine-learning algorithm for predictive model-building.
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Table 1:

Description of patient population

Occluded
(n=63)

Residual
(n=21)

P value

Patient Characteristics

Age (years) 56.7±1.8 58.5±2.8 0.53

Female sex (no. pts) 51 19 0.31

Hypertension (no. pts) 20 10 0.49

Smoking (no. pts) 23 14 0.39

*
no. pts=number of patients; continuous values expressed as (average ± standard error)
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Table 2:

Statistical analysis of morphology, FD and hemodynamic-based parameters in the training cohort

Occluded (n=48) Residual (n=16) P value

Aneurysm Morphology

Size (mm) 4.99±0.59 5.04±0.89 0.71

ND (mm) 4.42±0.23 5.45±0.68 0.10

SR 1.32±0.18 1.52±0.36 0.47

AR 0.98±0.09 0.97±0.15 0.93

NR 1.17±0.05 1.51±0.16 0.01*

OsR 0.36±0.01 0.55±0.04 <0.001*

FD Device Characteristics

MCR (%) 27.84±0.60 27.54±1.05 0.80

PD (1/mm2) 29.60±1.11 27.03±1.64 0.20

Pre-treatment Hemodynamic Parameters

AVpre (cm/s) 6.86±0.74 11.67±2.75 0.07

SHRpre (1/s) 177.45±20.68 304.56±84.58 0.22

IRpre (ml/s) 0.51±0.09 0.87±0.25 0.04*

TTpre (s) 0.29±0.09 0.16±0.04 0.64

Post-treatment Hemodynamic Parameters

AVpost (cm/s) 1.97±0.30 5.55±1.73 0.02*

SHRpost (1/s) 52.14±9.08 150.27±54.67 0.08

IRpost (ml/s) 0.20±0.03 0.51±0.17 0.02*

TTpost (s) 0.74±0.21 0.41±0.10 0.40

*
statistically significant difference; all values expressed as (average ± standard error).

AR: aspect ratio, AV: aneurysm-averaged velocity, IR: inflow rate, MCR: metal coverage rate, ND: neck diameter, NR: neck ratio, OsR: ostium 
ratio, PD: pore density, SHR: shear rate, SR: size ratio, TT: turnover time. Suffixes pre and post represent pre-treatment and post-treatment 
hemodynamic values.
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Table 3:

Accuracy of all-parameter and significant-parameter models in the testing cohort

Machine Learning Algorithm

Accuracy

All-Parameter Model Significant-
Parameter Model

Logistic Regression 85% 75%

Linear Support Vector Machine 85% 75%

Gaussian Support Vector Machine 90% 75%

K-nearest Neighbor 85% 70%

Neural Network 90% 55%
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