Place of the Hawks: Prehistoric, Roman and later activity at Hawkinge, Kent 1993–2006

By Giles Dawkes and Anna Doherty

March 2024
PLACE OF THE HAWKS:
PREHISTORIC, ROMAN AND LATER ACTIVITY AT
HAWKINGE, KENT 1993–2006

Giles Dawkes and Anna Doherty

with contributions by
Luke Barber, Chris Butler, Trista Clifford, Hayley Forsyth-Magee, Pat Hinton, Karine Le Hégarat, Malcolm Lyne, Mike Seager Thomas, Lucy Sibun, David Rudling Paola Ponce and Angela Vitolo

ASE report number 2024028

2024
CONTENTS

LIST OF FIGURES ... vii
LIST OF TABLES ... x
ACKNOWLEDGEMENTS .. xi
SUMMARY ... xii

1 INTRODUCTION .. 1

1.1 Study area... 1
1.2 Geology and topography .. 1
1.3 Project background ... 1
1.4 Archaeological background .. 3
1.5 Fieldwork methodologies .. 11
1.6 Post-excavation analysis, publication and the limitations of the dataset .. 12
1.7 Structure of analysis and report .. 13

2 PREHISTORIC ACTIVITY ... 15

2.1 Introduction.. 15
2.2 Period 1.1 Early/Middle Neolithic (4000–2500 BC) .. 15
2.3 Period 1.2 Late Neolithic/Early Bronze Age (2250–1900 BC) ... 16
2.4 Period 2.1 Middle Bronze Age (1500–1150 BC) .. 18
2.5 Period 2.2 Late Bronze Age/Early Iron Age (950–500 BC) ... 19
2.6 Period 3.1 Early Iron Age/Middle Iron Age (500–300 BC) ... 20
2.7 Period 3.2 Late Iron Age (100–50 BC/AD 10) ... 26

3 LATER IRON AGE/ROMAN AND MEDIEVAL ACTIVITY .. 31

3.1 Introduction.. 31
3.2 Period 4.1 Late Iron Age/Early Roman (AD 10–80/100) .. 31
3.3 Period 4.2 Roman (AD 80/100–200) ... 40
3.4 Period 4.3 Late Roman (AD 250–410) .. 43
3.5 Period 5 Medieval... 45

4 SPECIALIST REPORTS ... 47

4.1 Worked flint .. 47
4.2 Prehistoric and Roman Pottery ... 55
4.3 Fired Clay .. 107
4.4 Registered Finds ... 111
4.5 Metalworking Waste ... 114
4.6 Coins .. 117
4.7 Animal bone .. 119
4.8 Human bone .. 122
4.9 Plant Remains ... 126
4.10 Wood Charcoal ... 131
LIST OF FIGURES

Fig 1.1 Location of Hawkinge and areas of investigation ... 2
Fig 1.2 Location of archaeological investigations in relation to the geology of Hawkinge. 3
Fig 1.3 Location of archaeological investigations in relation to the topography of Hawkinge. 4
Fig 1.4 Plan of archaeological evaluation trenches shown in relation to subsequent phases of archaeological work .. 5
Fig 1.5 Photograph of the Hawkinge Aerodrome excavation in progress (Site A) in 1998 5
Fig 1.6 Plan of excavated features at Site A ... 6
Fig 1.7 Plan of excavated features at Site AA ... 7
Fig 1.8 Plan of excavated features at Site B ... 8
Fig 1.9 Plan of excavated features at Site C .. 9
Fig 1.10 Plan of excavated features at Site D ... 10
Fig 1.11 Plan of excavated features at Site E ... 11
Fig 1.12 Plan of excavated features at Site F ... 12
Fig 1.13 Multi-period plan of Terlingham III Site (after AOC Archaeology) ... 13

Fig 2.2 Plan of tree throw D[259] .. 1
Fig 2.3 Plan of pit D[628] .. 16
Fig 2.4 Plan of shallow gully [137a/8] ... 16
Fig 2.5 Plan of pit B[47] .. 16
Fig 2.6 Plan of Ring Ditch 1 (RD1) .. 17
Fig 2.7 Photograph of excavated section through Ring Ditch 1, facing south-east (0.5m and 1m scale bars) .. 17
Fig 2.8 Location of period 2.1 and 2.2 features .. 18
Fig 2.9 Plan of pit AA[7] and other possible period 2.1 features ... 19
Fig 2.10 Photograph of fragmentary remains of inverted urn in pit AA[7] (0.15m scale bar) 19
Fig 2.11 Plan of period 2.2 pits in relation to Ring Ditch 1 ... 20
Fig 2.12 Photograph of partially-complete pottery vessel in pit A[140] (0.30m scale bar) 20
Fig 2.13 Plan of period 2.2 pits E[227] and E[168] ... 21
Fig 2.14 Locations of period 3.1 Early/Middle Iron Age and period 3.2 Late Iron Age features 21
Fig 2.15 Plan of period 3.1 Early/Middle Iron Age features in Aerodrome (Site A) 22
Fig 2.16 Plan of Building 1 .. 22
Fig 2.17 Photograph of excavation of Building 1 and pits A[154] and A[156] facing south-east 22
Fig 2.18 Photograph of excavation of postholes in front of Building 1 facing north-east 22
Fig 2.19 Plan of hearth/oven G13 ... 22
Fig 2.20 Photograph of calf burial G15 facing north-west (1m scale bar) ... 23
Fig 2.21 Photograph of possible iron ingot in pit A[10] (0.30m scale bar) .. 23
Fig 2.22 Photograph of partially-complete pottery vessel in pit A[86] .. 23
Fig 2.23 Plan of pits [74d/5] and [85c/4] ... 23
Fig 2.24 Plan of Early/Middle Iron Age features in Canterbury Road (Site C) 25
Fig 2.25 Photograph of pit A[74] under excavation facing south-west .. 27
Fig 2.26 Photograph of metal object in pit A[74] (0.05m scale bar) ... 27
Fig 2.27 Photograph of pottery vessels smashed in the base of pit A[74] facing south-east 27
Fig 2.28 Plan of Enclosure 1 (Site E) ... 28
Fig 2.29 Plan of Field System 1 ... 29
Fig 3.1 Location of period 4.1 Late Iron Age/Early Roman, period 4.2 Roman, and period 4.3 Late Roman features ... 31
Fig 3.2 Plan of Open Area 4 and Building 2 ... 32
Fig 3.3 Photograph of pottery vessel in pit A[26] (0.05m scale bar) .. 33
Fig 3.4 Plan of Field System 2 and Track/Droveway 1 and 3 ... 34
Fig 3.5 Plan of Track/Droveway 2 and Cremation Cemeteries 2 and 5 ... 35
Fig 3.6 Plan of Field System 2 (FS2) and Cremation Cemetery 1 (CC1) ... 36
Fig 3.7 Plan of Field System 2 (FS2) and Cremation Cemetery 3 (CC3) ... 37
Fig 3.8 Photograph of the excavation of cremation burial E[130] facing north-east .. 38
Fig 3.9 Photograph of cremation burial E[144] facing west .. 38
Fig 3.10 Photograph of cremation burial pit F[148] facing south ... 38
Fig 3.11 Photograph of cremation burial pit F[150] facing east ... 38
Fig 3.12 Photograph of cremation burial F[157] facing west ... 39
Fig 3.13 Plan of fire-pit F[152] and truncated burial/cenotaph pit F[154] .. 39
Fig 3.14 Photograph of fire-pit F[152] and pit F[154] facing north (scales 1.0m and 0.15m) ... 39
Fig 3.15 Photograph of truncated burial/cenotaph pit F[154] facing south (scale 0.15m) ... 39
Fig 3.16 Plan of Field System 3, Cremation Cemetery 4 and other period 4.2 features .. 41
Fig 3.17 Detailed plan of Field System 3 ditches, and features G24 and G25 ... 42
Fig 3.18 Plan of pits and postholes G26 .. 42
Fig 3.19 Plan of period 4.2 Cremation Cemetery 3 ... 42
Fig 3.20 Photograph of amphora vessel in cremation burial pit F[144], facing north-east (scale 0.5m) .. 42
Fig 3.21 Photograph of cremation burial pit F[146] and large storage vessel, facing west (scale 0.5m) .. 43
Fig 3.22 Plan of cremation burial pit [80b/4] .. 43
Fig 3.23 Photograph of four pottery vessels in cremation burial pit [80b/3], facing south-east (scale 0.20m) .. 43
Fig 3.24 Photograph of cremation burial E[147] under excavation facing south .. 44
Fig 3.25 Plan of medieval features ... 44

Fig 4.1 Selected illustrated worked flint nos 1-9 .. 48
Fig 4.2 Length and breadth of complete flints from tree throw D[259] ... 52
Fig 4.3 Illustrated Beaker pottery, nos P1-P4 ... 60
Fig 4.4 Illustrated pottery P5–P52 .. 71
Fig 4.5 Illustrated pottery P53–P56 .. 72
Fig 4.6 Illustrated pottery P57–P84 .. 73
Fig 4.7 Illustrated pottery P85–P97 .. 74
Fig 4.8 Illustrated pottery P98–P131 ... 85
Fig 4.9 Illustrated pottery P132–P169 ... 86
Fig 4.10 Illustrated pottery P170–P182 .. 87
Fig 4.11 Quantification of principal pottery fabric types in PDR and Early Iron Age - Early Iron Age/Middle Iron Age pottery groups Canterbury Road ... 88
Fig 4.12 Graph showing relative quantities of main Middle/Late Iron Age fabrics in pit A[74] ... 89
Fig 4.13 Illustrated pottery P183–P198 ... 93
Fig 4.14 Illustrated pottery P199–P209 ... 94
Fig 4.15 Illustrated pottery P210–P222 ... 95
Fig 4.16 Illustrated pottery P223–P240 ... 96
Fig 4.17 Illustrated pottery P241–P246 ... 97
LIST OF TABLES

Table 1.1: Archaeological mitigation investigations at Hawkinge Aerodrome ...1

Table 2.1: Summary of the finds assemblage from pit A[74] ..28

Table 3.1: Cremation Cemetery 1 at Canterbury Road (Site C) ..35
Table 3.2: Cremation Cemetery 2 at The Street (Site E) ..35
Table 3.3: Period 4.1 Cremation Cemetery 3 (CC3) ..38
Table 3.4: Period 4.2 Cremation Cemetery 3 ..42
Table 3.5: Cremation Cemetery 5 ...43

Table 4.1: Quantification of worked flint from evaluation and sites A, AA and B ..47
Table 4.2: Quantification of worked flint by context (Site C) ..48
Table 4.3: Quantification of worked flint (Site D) ...51
Table 4.4: Quantification of worked flint (Site E) ...53
Table 4.5: Quantification of the worked flint (Site F) ...53
Table 4.6: Quantification of fabrics in contexts belonging to pottery groups 1 and 2 (Site C) ...74
Table 4.7: Quantification of fabrics in contexts belonging to pottery groups 3 and 4 (Site C) ...76
Table 4.8: Quantification of pottery in pit A[74] ...90
Table 4.9: Range of Late Iron Age pottery forms associated with grog-tempered fabrics in pit A[74] ..90
Table 4.10: Summary of pottery dating evidence from pit A[74] ..92
Table 4.11: Quantification by EVEs of pottery from pit B[15] ...99
Table 4.12: Summary of Roman funerary pottery by vessel type ...101
Table 4.13: Percentage of accessory vessel type in the Late Iron Age/early Roman and mid Roman burials from Hawkinge102
Table 4.14: Quantification of pottery fabrics in pit F[163] ..106
Table 4.15: Quantification of fired clay from Canterbury Road (Site C) ...108
Table 4.16: Quantification of fired clay from pit C[145] ..110
Table 4.17: Description of iron working waste from Site C ..116
Table 4.18: Identification of iron-working waste from Site C ..118
Table 4.19: Quantity of (NISP) Number of Identifiable Specimens of hand collected bone from each Site, context and period.120
Table 4.20: Number of Identifiable Specimens (NISP) count by taxa and site. *Plus 134 identified specimens with no species count available......120
Table 4.21: Summary of results on cremated human bone analysis from Page Road. Note: (S= skull, A = axial, U= upper limb, L = lower limb)123
Table 4.22: Summary of results on cremated human bone analysis from The Street. Note: (S= skull, A = axial, U= upper limb, L = lower limb)125
Table 4.23: Species List from The Street (Site E) ...128
Table 4.24: Species List from the Relief Road (Site D) ..129
Table 4.25: Taxonomic identifications of charcoal (Key cf: compares with, rw: round wood) ...133
Table 4.26: Radiocarbon dating results ...133
ACKNOWLEDGEMENTS

In particular Archaeology South-East wish to thank, the members of the Heritage Conservation Group at Kent County Council (HCGKCC) for their support and advice with all four excavations included in this volume, especially John Williams, Lis Dyson, Simon Mason and Wendy Rogers. We also wish to thank Ges Moody for his advice and help.

Archaeology South-East also wish to thank the following:

HAWKINGE AERODOME (HA93; HWB98; HAF98)
Truck Inns and McLean Homes South-East Ltd for commissioning and funding the project. The excavation phase (HAF98) was also part funded by English Heritage. The evaluation (HA93) was directed in the field by Luke Barber, the watching brief was supervised by Greg Priestly-Bell (HWB98) and the excavation was supervised by Simon Stevens. The projects was managed in the field by Mark Gardiner and Ian Grieg and in post-excavation by Luke Barber. The figures were prepared by Jane Russell and Fiona Griffin.

HAWKINGE-DENTON BYPASS ROAD (HRL99)
Truck Inns and Pentland Homes Ltd for commissioning and funding the project. The fieldwork was supervised by Greg-Priestley-Bell and the project was managed in the field by Ian Grieg and in post-excavation by Luke Barber. The figures were prepared by Jane Russell and Fiona Griffin.

CANTERBURY ROAD (CRH99)
Pentland Homes Ltd for commissioning the project and for their support whilst on site. The site work was supervised by Greg Priestley-Bell and the project was managed in the field by Ian Greig and in post-excavation by Luke Barber and Louise Rayner. The figures were prepared by Jane Russell and Fiona Griffin.

PAGE ROAD (HPH00)
Pentland Homes Ltd for commissioning the project and for their support whilst on site. The fieldwork was supervised by Greg Priestley-Bell and the project was managed in the field by Ian Greig and in post-excavation by Luke Barber and Louise Rayner. The figures were prepared by Jane Russell and Fiona Griffin.

THE STREET (TSH06)
Malcolm Jarvis Homes Ltd for commissioning the project and for their support whilst on site. The fieldwork was supervised by Alice Thorne and the project was managed in the field by Darryl Palmer and in post-excavation by Louise Rayner. The figures were prepared by Justin Russell and Fiona Griffin.

HAWKINGE RELIEF ROAD (MRR06)
Kent County Council for commissioning the project. The fieldwork was supervised by Paul Riccoboni and the project was managed in the field by Darryl Palmer and in post-excavation by Louise Rayner. The figures were prepared by Justin Russell and Fiona Griffin.

FIELD STAFF
Archaeology South-East wish to thank all the staff who conducted the field excavations. These are: Robert Beck, Gary Bishop, Fiona Griffin, Neil Griffin, Mark Ornstein, Greg Priestley-Bell, Justin Russell, Simon Stevens, Peter Scutt, David Yates, Alice Thorne, Simon Stevens, Andy Margetts, Liz Chambers and Deon Whittaker.
SUMMARY

The six archaeological investigations published in this volume were excavated by Archaeology South-East (ASE; UCL Institute of Archaeology), in and around Hawkinge in south-east Kent, where work has been taking place since 1993. The study area is largely focussed on the site of the former aerodrome at Hawkinge, for which a major programme of redevelopment was proposed comprising both residential and industrial areas. Subsequently, further sites in the vicinity of Hawkinge were also proposed for redevelopment resulting in the six excavations presented in this volume.

The sites were all located relatively close together, scattered across an area c. 1.5km². The historic village of Hawkinge is located less than a mile to the east of the modern, expanded town of Hawkinge. The large coastal town of Folkestone is located approximately 1km to the south.

The excavations uncovered archaeological remains from a wide range of chronological periods, from the Neolithic to modern era. The majority of the activity identified relates to the prehistoric development of the landscape (mainly Bronze Age to Late Iron Age) and Romano-British settlement. A scatter of Mesolithic and early Neolithic flints was also uncovered evidencing an earlier presence in the landscape. The features excavated include a Bronze Age ring ditch, a number of cremation cemeteries of prehistoric and Roman date, as well as settlements comprising buildings, ovens and hearths, set within enclosures.

The Late Iron Age-Roman funerary evidence was particularly significant comprising four different small cremation cemeteries, and several burials with ceramic containers and accessory vessels. One of the cremations was buried in a re-used amphora vessel, which is an increasingly recognised features of Roman funerary practice in Kent and south-east England more generally.

Evidence for post-Roman activity was much more limited and comprised only a handful of features and finds, suggesting this area of Hawkinge was apparently left as open ground or pasture at this time. The original historic core of Hawkinge village developed on the higher ground c. 800m to the east.
CHAPTER 1 INTRODUCTION

1.1 STUDY AREA
This volume presents the results of six archaeological investigations undertaken by Archaeology South-East (ASE; UCL Institute of Archaeology), in and around Hawkinge in south-east Kent, since 1993 (Fig 1.1). The study area is largely centred on the site of the former aerodrome at Hawkinge, for which a major programme of redevelopment was proposed comprising both residential and industrial areas. Subsequently, further sites in the vicinity of Hawkinge were also proposed for redevelopment resulting in the series of excavations presented in this volume.

The six excavated sites were located at: Hawkinge Aerodrome; Hawkinge-Denton Bypass Road; Canterbury Road; Page Road; The Street and the Hawkinge Relief Road and were part of an extensive area of new housing. While none of the sites were particularly large, or produced especially dense archaeological remains, the similarity of the results has allowed the creation of a basic overall landscape narrative. Reference is also made to another important site, Terlingham III, on Gibraltar Lane to the immediate south-west of the area (Fig 1.1), excavated by AOC Archaeology. This site has not been published, but an attempt has been made here to incorporate its preliminary results into this interpretation.

1.2 GEOLOGY AND TOPOGRAPHY
The British Geological Survey (BGS sheets, nos 305/306 and 289) shows the drift geology as clay-with-flints with smaller areas of Head Brickearth and Sand-in-Clay-with-Flints and an underlying solid geology of cretaceous chalk (Fig 1.2). Topographically Hawkinge occupies the relatively flat plateau, located at c 155m AOD, on top of the south-easternmost outcrop of the North Downs (Fig 1.3). This chalk upland area is bisected by numerous small waterways creating lower elevation access routes between the Weald and the North Kent Plain. The area also has extensive views over the English Channel to the south.

1.3 PROJECT BACKGROUND
The individual project background for each investigation is presented below. Due to the duplication of context numbers across projects, a site-specific prefix letter has been assigned to ensure clarity (Table 1.1).

<table>
<thead>
<tr>
<th>Site/code</th>
<th>Site</th>
<th>Site Code</th>
<th>Mitigation</th>
<th>Approximate Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Hawking Aerodrome</td>
<td>HA93</td>
<td>Eval</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Hawking Aerodrome</td>
<td>HAF98</td>
<td>SMS</td>
<td>2.5</td>
</tr>
<tr>
<td>AA</td>
<td>Hawking Aerodrome</td>
<td>HWB98</td>
<td>WB</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Hawkinge-Denton Bypass Road</td>
<td>HRL99</td>
<td>WB; SMS</td>
<td>3.5</td>
</tr>
<tr>
<td>C</td>
<td>Canterbury Road</td>
<td>CRH99</td>
<td>WB; EXC</td>
<td>5</td>
</tr>
<tr>
<td>D</td>
<td>Hawkinge Relief Road</td>
<td>BLM05 MRR06</td>
<td>SMS; WB; TP</td>
<td>1.6</td>
</tr>
<tr>
<td>E</td>
<td>The Street</td>
<td>TSH06</td>
<td>EVAL; SMS</td>
<td>0.2</td>
</tr>
<tr>
<td>F</td>
<td>Page Road</td>
<td>HPH00</td>
<td>WB</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Table 1.1: Archaeological mitigation investigations at Hawkinge.
Key: watching brief (WB); strip, map and sample (SMS); evaluation trenches (EVAL); test-pits (TP)

HAWKINGE AERODROME (SITE A AND AA)
The initial archaeological work was a large-scale evaluation across the whole available area of Hawkinge Aerodrome (including the proposed route of the Hawinge-Denton Bypass where it crossed the aerodrome), undertaken in February 1993 (Fig 1.4). Subsequent to this, in 1998 a strip, map and sample excavation was carried out on the part of the aerodrome shown to contain archaeological deposits of particular interest (Site A: Figs 1.5 and 1.6) and a watching brief was undertaken in the aerodrome’s south-eastern corner (Site AA: Fig 1.7). The results from all these investigations were included in a final archive report completed in 2003 (Stevens 2003).

HAWKINGE-DENTON BYPASS ROAD (SITE B)
In 1999 a further phase of strip, map and sample excavation and watching brief was conducted in advance of the construction of the Hawkinge-Denton bypass and Haven Drive road extension (Fig 1.8). Part of this road, known at the time as the ‘southern bypass link’ was eventually named ‘Spitfire Way’. Results from this fieldwork were included in the final archive report on the Hawkinge Aerodrome (Stevens 2003).

CANTERBURY ROAD (SITE C)
An archaeological watching brief and limited excavation in two areas was undertaken in advance of the construction of new dwellings to the rear of 48 Canterbury Road intermittently
Fig 1.1 Location of Hawkinge and areas of investigation
between June 1999 and June 2000 (Fig 1.9). The results were presented in final archive report completed in 2000 and revised in 2005 (Priestley-Bell 2000).

RELIEF ROAD (SITE D)
In 2006 a strip, map and sample excavation and watching brief was undertaken in advance of the construction of the Hawkinge Relief Road (Fig 1.10). This road was eventually renamed ‘Spitfire Way’. A series of 62 test pits were also excavated through topsoil and subsoil deposits to explore and recover early prehistoric lithic material. The results were presented in a post-excavation assessment in 2007 (Riccoboni 2007).

THE STREET (SITE E)
The fieldwork at this location comprised archaeological evaluation of four trenches in January 2006 and subsequently strip, map and sample excavation of a c 1500m² area (Fig 1.11). The combined results were presented in a post-excavation assessment report completed in 2006 (Thorne 2006).

PAGE ROAD (SITE F)
Between June and September 2000, a watching brief was undertaken on groundworks associated with a housing development at Page Road (Fig 1.12) and the results were presented in a summary report and post-excavation assessment completed in 2002 (Priestley-Bell 2002).

1.4 ARCHAEOLOGICAL BACKGROUND
Given the importance of this area during the Battle of Britain, it is understandable that the vast majority of Historic Environment Record entries comprise World War II remains. Other than these, clustered along the edge of the steep southern
escarpment of the North Downs overlooking Folkestone and the English Channel, are a number of prehistoric barrows and a series of notable, mostly early prehistoric settlements. However, these sites are relatively poorly understood, as none have been published or subjected to the techniques of modern large-scale archaeological excavation.

The summit of Cheriton Hill was the site of a large defensive Iron Age enclosure and located, on the lower slopes was a small Middle Anglo-Saxon settlement (TR13NE62, TR13NE61). To the west, the prominent Castle Hill, also known locally as ‘Caesar’s Camp’, was a likely prehistoric enclosure and Bronze Age barrow, later reused as the site of a major ringwork and Norman timber castle (TR23NW2). Finds of Beaker pottery sherds in association with a series of postholes (TR23NW180) attest to early prehistoric occupation at Holywell Combe. Further west at Creteway Down a geophysical survey identified a series of enclosures clearly representing multi-period occupation in an area where Neolithic flintwork and pottery sherds have also been recovered (TR23NW205).

Some 5kms south of Hawkinge, between the North Downs and English Channel is the modern town of Folkestone. This was the location of two coastal Roman villas at East Cliff and Warren Road (Black 1987, 144), and the site of a subsequent Anglo-Saxon settlement and in the medieval period, a developing harbour town.

TERLINGHAM III SITE

At the Terlingham III site, off Gibraltar Lane some of the densest archaeological remains in the Hawkinge area have been uncovered (Figs 1.1 & 1.13). This important 3.6 ha archaeological strip, map and sample excavation was located to the immediate south-west of the six sites presented in this volume and was undertaken between May and August 2005 by...
AOC Archaeology. Sadly, the results of this highly significant piece of fieldwork have never been published and the results only exist in a post-excavation assessment report (AOC Archaeology 2006).

The earliest archaeological evidence of occupation was Late Bronze Age enclosure [F603] with a double entrance, but few internal features. From the relatively sparse artefact...
assemblage were two incomplete perforated clay plates from a pit with burnt fills, as well as spindle whorls and fragments of burnt daub (AOC Archaeology 2006, 10–12). This enclosure was interpreted as a form of ‘aggrandised enclosure’: a term first coined by David Yates to describe a form of circular earthwork or ‘ringwork’ used by farmers exploiting new opportunities in the landscape (2007, 18). After the abandonment of the enclosure, there was no evidence for any form of sustained settlement in the Iron Age, with only a scatter of pits and occasional postholes containing few finds (AOC Archaeology 2006, 12–15).

The early Roman period (c. AD 50–100) witnessed an extensive division of the landscape with a multi-phase field system established. The four main phases of use can be summarised as: an initial phase (3a) of enclosures and droveway; a second stage (3b) of an enclosure with an increased abundance of finds; a third phase (3c) of a rectilinear enclosure field system; and a final modification (3d). According to the Roman Rural Settlement Project, this form can be described as a sub-divided type of complex farmstead (Smith et al 2016, 28–33). The internal differentiation of space reflected different activity areas of the farm, such as crop processing and storage (ibid); however, diagnostic functions of the individual areas at Terlingham are generally not apparent. This settlement form is more common in the south-east from the 2nd century onwards, and this is the first example identified at the eastern end of the North Downs (ibid 84–5; 29, fig 2.13).

The most significant feature identified was a shrine comprising of a small square ditched enclosure [F420] with evidence of an internal post-built timber structure [F1396] (not...
Fig 1.8 Plan of excavated features at Site B
Fig 1.9 Plan of excavated features at Site C
Fig 1.10 Plan of excavated features at Site D
illustrated). This form of shrine is well known in the south-east of England and northern France and broadly dates to the Late Iron Age/early Roman period (Hamilton 2007; Dawkes 2016; Margetts 2018). Placing the shrine into its wider context on site is not straightforward as the feature could be contemporary with any one (or more than one) of the early Roman land-use phases (3a–3d). However, perhaps the most likely candidate is the phase 3b enclosure, which had a more substantial ditch and seems to be more likely to be associated with settlement rather than agriculture. Other features possibly contemporary with the use of the enclosure were ovens and a series of four-post structures (AOC Archaeology 2006, 15–32).

1.5 FIELDWORK METHODOLOGIES

1993 EVALUATION

As discussed above, the first stage of work was a large-scale archaeological evaluation undertaken across the entire Hawkinge Aerodrome development site, which included land that was eventually investigated further including the sites at Hawkinge-Denton Bypass Road (Site B), Relief Road (Site D) and Page Road (Site F) (Fig 1.4). This formed the baseline information for subsequent planning decisions regarding the mitigation of the archaeological record preserved within the Hawkinge Aerodrome development site. The evaluation sampling methodology divided the site into a gird of 153 individual 75m² squares or part squares. Within each
individual grid square an identical pattern of four trenches was excavated, each labelled by grid number (1–153) and then trench letter (a–d). Occasionally extra trenches were excavated to further investigate archaeological features (labelled by grid number and then letter e). Each trench measured 20m by 1.5m and approximately 2% of the available site was sampled. In addition, the route of the Relief Road was evaluated by similar-sized trenches laid out at 20m intervals along its length. These were prefixed with the letter R and numbered consecutively (for example, R1–R30).

MITIGATION INVESTIGATIONS
Subsequent to the evaluation, a series of mitigation investigations were commissioned on various parts of the site in advance of housing developments (Table 1.1). All these investigations were monitored by HCGKCC. On the Relief Road site, following evaluation trenching, a possible in situ flint scatter was located around trenches 1 to 10, an additional 62 test pits were hand excavated in the adjacent area. However, the test pits demonstrated that this was not the case, with only a minimal amount of struck flint recovered.

In addition, a negative watching brief was also undertaken at Mill Lane in 1999 in advance of a housing development (Fig 1.1). The site had suffered extensive modern truncation and no archaeological features were identified.

The SMS areas all followed a standard methodology of machine stripping the topsoil and subsoil to the level of archaeological features, which were subsequently hand-excavated and recorded.

1.6 POST-EXCAVATION ANALYSIS, PUBLICATION AND THE LIMITATIONS OF THE DATASET
These sites were all excavated over 10 years ago, and their post-excitation analysis and reporting has been an on-going process over this period. There are inevitably problems with bringing legacy sites to publication and these stem from both changing expectations of standards of on-site excavation and recording and post-excavation analysis techniques, and that the older post-excitation analysis lacks reference to recent publications. In an attempt to overcome these problems, new work and
interpretation has been incorporated and specialist reports updated where feasible, but a complete reassessment of all of the finds was beyond the scope of this publication.

The on-site problems of the older excavations largely derive from the minimal level of interventions excavated through archaeological features. This is less of a problem with relatively simple features such as field boundary ditches, but much more so with archaeologically-complex elements, such as ring ditches and buildings. This was particularly acute with Bronze Age Ring Ditch 1 on the Hawkinge Aerodrome site, where less than 5% of the feature was excavated. Inevitably and unfortunately, this has compromised the possible interpretation of such features. Equally, environmental sampling strategies, if they existed at all, were limited and samples were generally infrequently taken and small in volume. As a result, the environmental record from these older sites is correspondingly poor.

1.7 STRUCTURE OF ANALYSIS AND REPORT

A hierarchical context, group, and land-use framework was used to structure the data. This framework is summarised below.

CONTEXT

A unique number is assigned to each archaeological context in the field. Context numbers are shown in square brackets: [000]. As mentioned above, to avoid confusion given the duplication of context numbers across the different projects, a site-specific prefix letter has been used (Table 1.1). Evaluation context numbers are shown as: [1/10] where the first number indicates the trench number and the second the context number.
GROUP

Group numbers (shown as G00) are an interpretative structuring of the context data and comprise a number (sometimes many) of interrelated contexts. For example, all the individual context numbers associated with a single phase of a ditch have been grouped together under a single group number. The same applies to all other features (for example, a cluster of associated pits or postholes has been assigned a single group number).

LAND USE

Each group has been assigned to a land use, which encompasses many separate features. These numbers are used to characterise broadly the function of the land for a given period. A single land-use structure has been imposed across all six projects as part of the process of preparing this publication.

The following land use classifications have been used:
B = Building
CC = Cremation Cemetery
EN = Enclosure
FS = Field System
OA = Open Area (open fields, yards etc)
ST = Structures (yard surfaces, post-built structures etc)
D = Droveway

Chapters 2 and 3 present the results for each of the individual sites as a chronological narrative that covers the archaeological discoveries by period from the Neolithic to the medieval period (periods 1–5). Chapter 4 contains selected specialist reports on the artefacts and environmental remains from the individual sites, including a substantial overview and discussion of the prehistoric and Roman pottery assemblages. Finally, Chapters 5 and 6 then consider all the sites together within their regional context. As far as possible, an integrated approach has been followed, with relevant finds (RF<0> indicates Registered Find number) and environmental information (<0> indicates sample number) included as part of the narrative.
2.1 INTRODUCTION

Significant prehistoric remains were identified on the majority of sites, beginning with evidence for a sporadic human presence in the Early/Middle Neolithic landscape (period 1.1), before the first substantial feature, a funerary monument of a round barrow (RD1) was dug in the Late Neolithic/Early Bronze Age (period 1.2). The later Bronze Age occupation (periods 2.1 & 2.2) was characterized by activity marginal to the settlement located beyond the limits of the investigation at Terlingham III.

Two settlements were established in the Early/Middle Iron Age (period 3.1) at the Aerodrome site and at Canterbury Road. The former was centred on a round house (B1) and the latter had abundant evidence of metalworking and these seem to have been part of a larger zonally-organised landscape. Evidence for settlement noticeably decreased in the Late Iron Age (period 3.2) and a small field system (FS1) developed.

2.2 PERIOD 1.1 EARLY/MIDDLE NEOLITHIC (4000–2500 BC)

The single feature dating to this early period was found on the Relief Road (Site D) in the north of the development area, representing Open Area 1, a largely unexploited, mostly wooded environment.

OPEN AREA 1: RELIEF ROAD

Only one feature, tree throw D[259] was assigned to this period (Figs 2.1 & 2.2). The tree throw was irregularly-shaped, 0.76m wide and 0.36m deep with concave sides and a gently rounded base. It was filled by grey brown clay silts (D[261], D[337], D[260] and D[336]) containing a group of 121 technologically coherent worked flints, suggesting evidence of in situ flint knapping. Hampering the dating was a lack of diagnostic tools, and only a broad Neolithic-Early Bronze Age date range for the flint work could be assigned. However, the single pottery sherd recovered was in an ill-sorted flint-tempered fabric characteristic of the Early Neolithic Carinated/Plain Bowl (4000–3300BC) and Middle Neolithic Peterborough Ware (3500–2800/2500BC) traditions, but uncommon in the Beaker style vessels found in subsequent period 1.2 (see Chapters 4.1 & 4.2).

Given the very limited area of investigation at this location, it is uncertain how isolated this feature was, particularly as even the extent of this feature was not fully seen at the edge of the excavation area. Archaeological evidence for the Neolithic/Early Bronze Age is frequently limited to deposits of cultural material in pits or natural features, often occurring as isolated features or small groups of features and it is possible this feature was part of a group.

In Kent and further afield, early prehistoric flintwork is often found in tree throws, such as at Coldharbour Road, Gravesend (Mudd 1994) and Iwade (Bishop & Bagwell 2005, 2009).
11–13) and these naturally-occurring hollows seem to have acted as quarries, fortuitously exposing raw materials for flint knapping. While the interpretation of these features as ‘pit dwellings’ is no longer accepted, it is probable that fallen trees were landscape markers in heavily-wooded environments and may have been foci for activity or occupation (Evans et al 1999).

2.3 PERIOD 1.2 LATE NEOLITHIC/EARLY BRONZE AGE (2250–1900 BC)
The remnants of a possible round barrow, surviving as a large ring ditch (RD1) on the aerodrome (Site A) dominate this phase. Elsewhere, the evidence from Open Area 1 was similar to the preceding phase, with only a few ephemeral features, although a possible structured pottery deposit was also found at the aerodrome (Site A).

OPEN AREA 1: RELIEF ROAD
Pit D[628] measured 0.60m in diameter and 0.09m deep with concave sides and base (Figs 2.1 & 2.3). The pit fill (D[629]) contained 11 worked flints and charred hazelnut shells. A C14 radiocarbon date on the hazelnut shells provided a date of 3701±27 BP (SUERC-68629; 2197–1984 cal BC; see Chapter 4.11).

OPEN AREA 1: AERODROME
Two features and three areas with residual finds were identified. Ten sherds representing two Beaker pottery vessels were recovered from a shallow gully in evaluation Trench 137a ([137a/8]), as well as residual finds of similar pottery from later features in the trench (Figs 2.1 & 2.4). The other feature identified was small pit B[47] in the excavation area of the Southern Bypass Link Road (now Spitfire Way; Site B; Figs 2.1 & 2.5). The pit fill (B[48]) contained one partially-complete decorated Beaker vessel and a few sherds from a second vessel (see Chapter 4.2). These pottery vessels may have been deliberately deposited, possibly to mark some form of boundary.

In addition to these features, residual finds of Beaker pottery were also recovered from the subsoil in evaluation Trench 122a. Finds of Neolithic worked flint were also recovered from the subsoil during the various archaeological investigations, including a broken Neolithic flint arrowhead and three fragments of Neolithic axes (see Chapter 4.1).
RING DITCH 1: AERODROME

In the northern part of the 1998 excavation area, Ring Ditch 1 (RD1) was identified with a diameter of c. 33m (Figs 2.6 & 2.7). The feature became partially visible after heavy rain and five slots were excavated amounting to less than 5% of the feature.

The ring ditch (RD1) was a wide, flat-bottomed ditch between 2.60m and 3.70m in width and 0.31m and 0.52m deep. The single ditch fill A[105] was grey brown silt clay with flint nodules and lenses of charcoal. The only dating evidence from the fill was a small, fragmentary assemblage of Late Bronze Age/Early Iron Age pottery sherds, as well as a small quantity of Late Iron Age sherds.

DISCUSSION

What this circular ring ditch (RD1) actually represents is problematic. It has been interpreted by David Yates as one of eleven ‘high-status’ settlement enclosures, including the sites of Kingsborough and Highstead, created by ‘contemporary aggrandisers’ at key strategic points (2007, 23–25). While later Bronze Age enclosures or ‘ringworks’ vary greatly both morphologically and in function (see Ellis 2008), Ring Ditch 1 does seem to be morphologically much more similar to round barrows, than with the large high-status enclosures such as Highstead and Kingsborough (Bennet et al 2007, 16–27; Allen et al 2008). These high-status enclosures were extensive (more than 50m in diameter) with multiple entrances and associated with numerous contemporary features, such as internal post-built structures. Several of these enclosures also contained varied and abundant finds assemblages, including a metalwork hoard from the enclosure at South Dumpton Down (Perkins 1994).

By contrast, Ring Ditch 1 is much smaller, with a complete ditch circuit with no entrance and contained very little material culture, and certainly nothing that could be described as ‘high-status’. There is also a complete absence of associated contemporary features. Ironically, there is a much better candidate for an ‘aggrandised enclosure’ at Hawkinge on the Terlingham III site (AOC Archaeology 2006) and Yates’ basic rationale, that this was a key strategic point in the landscape still holds true.

While the ring ditch has clear morphological parallels with round barrows, a type of funerary monument common
in Kent, no human remains were recovered in association with it. This is perhaps unsurprising, considering how little of the actual ditch was archaeologically excavated, and it is highly possible that any associated interred human remains were missed. Equally, it is not uncommon for ring ditches to not produce burial evidence. Of the ring ditches recorded as part of the HS1 project, only one contained a surviving burial in a central context and 13 ring ditches had no evidence for mortuary deposition (Garwood 2011, 128). This opens questions about the function of such monuments, which as well as being for burial may have been used for ceremonial activities, shrines or non-funerary memorialisation (ibid).

Another problem with the round barrow interpretation is that the dating evidence recovered is c 1000 years later than the expected date for most funerary features of this type. However, there are several examples from Kent, where the ditches of Early and Middle Bronze Age round barrows contained largely, or exclusively later prehistoric finds (for example, see Dawkes 2017), and in these cases the pottery does not date the construction and use of such monuments but the extended period of time over which the often large ditches were infilling. In conclusion, while there is still an element of uncertainty in its interpretation, it does seem most likely that this was indeed a round barrow of Early/Middle Bronze Age date.

In addition to the ‘monumentalising’ of the landscape with the ring ditch, there was evidence of a more sustained occupation in the vicinity, with some dug features and c 150 sherds of Beaker pottery. The nature and duration of this occupation is hard to discern and is probably insufficient to be described as ‘settlement’, although such sites from this period in Kent are rare.

2.4 PERIOD 2.1 MIDDLE BRONZE AGE (1500–1150 BC)

Within the aerodrome watching brief area (Site AA) a scatter of poorly dated pits and postholes and one possible cremation represent the only activity potentially dating to this period, but which may stretch into the first millennium BC (Figs 2.8 & 2.9). As an open feature, Ring Ditch 1 continued to silt-up throughout this phase and the next.

OPEN AREA 2: AERODROME WATCHING BRIEF AREA

The only feature that can be more confidently assigned to this period on the basis of associated pottery was pit AA[7], which contained the fragmentary remains of an inverted Middle Bronze Age Deverel-Rimbury bucket urn accompanied by a small amount of calcined bone (Figs 2.8–2.10). This may have been a cremation burial, or some form of funerary deposit, which had subsequently suffered from truncation; too little bone survived to allow a positive identification. The possible cremation burial was interred apparently without reference to Ring Ditch 1, located c 400m to the west, although any barrow mound may have still been visible.

Two further pits lay either side of possible cremation AA[7]. The larger feature to the north, AA[10], only contained two pottery sherds broadly dated to the first millennium BC. Discolouration of the feature edges suggested in situ burning of some kind, as did a lens of burnt material within the associated fill deposits. It is unclear whether this feature relates to the possible cremation. To the south-east was a post-hole AA[12], which was undated and again its association with the other features is unclear. Also in this area of the watching brief, to the north, were a group of six features loosely arranged in an L-shape (G8; Fig 2.9). Only one of these features produced any finds; a single sherd of pottery of first millennium BC date and a small quantity of calcined bone. The function of these is uncertain though the calcined bone may hint at further funerary deposits.
OPEN AREA 2: AERODROME

Adjacent to Ring Ditch 1, which was likely to still be an extant landscape feature, were five small pits (A[38], A[58], A[64], A[78] and A[140]) which all produced assemblages of Late Bronze Age or Late Bronze Age/Early Iron Age pottery (Fig 2.11). Pits A[78] and A[140] contained sherds from the same vessel suggesting broadly contemporary dates of deposition although the majority of the vessel was recovered from pit A[140] (Fig 2.12). The ring ditch also produced pottery broadly of this period, presumably incorporated into the still partially open feature, but derived from activity related to the material in the adjacent pits.

OPEN AREA 2: THE STREET

This period was represented by two small pits (E[227] and E[168]), both containing a few small pottery sherds (Figs 2.8 & 2.13). A fragmentary partially-complete vessel was also recovered from the subsoil deposit (E[2/004] and E[2/009]) in this area.

2.5 PERIOD 2.2 LATE BRONZE AGE/EARLY IRON AGE (950–500 BC)

Period 2.2 cannot be fully understood without reference to the development of the enclosed settlement at the adjacent Terlingham III site (see Chapter 1.4). To date, this is the earliest known settlement in the wider landscape, and the scatter of small features found at the aerodrome (Site A) are probably associated with its occupation and represent peripheral activity to the main settlement.
2.6 PERIOD 3.1 EARLY/MIDDLE IRON AGE (500–300 BC)

Located at the aerodrome (Site A), adjacent to Ring Ditch 1 that was likely to have still been an extant earthwork, was a small farmstead and further away to the north-east at Canterbury Road (Site C) was a second settlement (Fig 2.14). These sites represent the start of more intensive exploitation of the landscape that continued to a greater or lesser degree until the Late Roman period.

BUILDING 1 AND OPEN AREA 3: AERODROME

The remains of a small building or structure (B1) were identified in the north-eastern corner of the excavation area (Figs 2.15 & 2.16). This consisted of D-shaped penannular gully A[174] and a scatter of postholes (G10) to the south around the front of the structure (Figs 2.16 & 2.17).

Penannular gully A[174] was c. 7m in diameter, up to 0.8m wide and 0.16m deep. The gully fill was grey brown silt clay A[175] and contained no finds. The gully probably represented a foundation slot for some form of timber superstructure. Finds of burnt daub from pits (G11 A[152], A[154] and A[156]) located within the building suggest that at least part of the construction used wattle and daub. Whether or not these pits (G11) were contemporary with the use of the building is uncertain, although as open features these would have clearly hampered its practical use.

Postholes A[114] and A[130] are the best candidates for the doorway supports and the other postholes seem to form an external porch or vestibule. The exact nature of this external structure is not clear and these may well represent more than one phase of construction, not all necessarily contemporary with the use of the building. In contrast to gully A[174], Early/Middle Iron Age pottery was recovered from nearly all of the posthole fills.

Extending north-west (A[182]) and south-east (A[120]) from the building was a shallow ditch, possibly representing
some form of contemporary drainage gully, although the relationships are not clear and the interpretation uncertain. The ditch to the north-west A[182] ran out of the excavation area and appears to link into the rear of the penannular gully of Building 1 (B1). The southward running gully A[120] appeared to compromise the access to the building or at least restrict it. The fills of both ditches contained small groups of pottery of Early Iron Age-Early/Middle Iron Age date, similar to those found in the postholes of Building 1 (B1), which may indicate a broadly contemporary life-span, even if the way these features functioned together is unclear.

Of the three large oval, flat-bottomed pits (G11 A[152], A[154] and A[156]) identified within the building (Fig 2.18), pit fills (A[153], A[155] and A[157]) were a similar dark brown ash-enriched silt containing burnt stone and Early Iron Age and Early/Middle Iron Age pottery, and 1.5kg of burnt daub, possibly from the building superstructure (see Chapter 4.3). The ash-enriched fills and burnt stones may indicate their use as hearths, with the encircling structure B1 providing protection for the associated activities. The pits may have been used for structured deposition as a closing rite once the building went out of use, but this is not certain. The pits, as with the postholes may not all have been contemporary with the building.

A scatter of five postholes and pits (G12) were located to the immediate north of the building, but their function is unknown (Fig 2.16). To the west was a dispersed scatter of small pits (G17) containing relatively few finds, and their function is also uncertain (Fig 2.15).

HEARTH/OVEN G13
A hearth or oven G13 was located immediately north-west of the building (Figs 2.15 & 2.19). It consisted of pit A[80], with a 0.95m diameter and 0.08m depth, with evidence of heating affecting the sides and base, and surrounded by a number of stakeholes (G14). The stakeholes possibly represent the remains of a domed superstructure. The pit fill A[81] was grey brown silt clay with occasional flecks of charcoal and finds of Early Iron Age-Early/Middle Iron Age pottery sherds. Many of the stakehole fills were charcoal-enriched silts.
A calf burial was interred in shallow subcircular pit A[158] (Figs 2.15 and 2.20). The skull and bones of the upper body were articulated, although the hind quarters of the animal had been truncated by later pit A[160]. There were no other finds.
from the pit fill A[159], but pit A[160] contained two sherds of pottery dating to the 1st millennium BC.

PITS AND POSTHOLES IN OPEN AREA 3: AERODROME

Across the excavation area was a scatter of numerous, mostly small pits and postholes (G16), largely containing small assemblages of Early/Middle Iron Age pottery sherds (Fig 2.15). No concentrations of features or structures were apparent. Some pits contained noticeably larger amounts of finds, with pottery often mixed in date, and these can be interpreted as refuse pits, perhaps dug to deposit material that had previously been deposited in middens. Pit A[72] contained over 300 pottery sherds, as well as over 1.5kg of burnt daub, animal bone and a ceramic spindle whorl from the single fill A[73]. Another spindle whorl and a moderate quantity of pottery sherds were recovered from pit A[12] in the west. Pit A[6] was 1.28m in diameter and 0.19m deep and fills A[15] and A[7] contained an abundance of Early/Middle Iron Age pottery sherds. Between A[6] and A[12] was large clay-lined storage pit A[10], with a diameter of c. 2m and up to 0.73m deep. The pit was lined with clay (A[41]) and was filled by a thin layer of charcoal (A[40]) and dark brown silt (A[11]). A large assemblage of pottery and two pieces of ironwork, possibly chain links from cauldron-hangers, were recovered from A[40], and pottery, and seven strips of iron, possibly ingots (Fig 2.21) were recovered from A[11] (see Chapter 4.4).

Other smaller pits, such as A[86] and A[96] produced the remains of apparently complete, if fragmentary pottery vessels (Figs 2.22). The near complete vessel from pit A[96] is a small cup/lamp, which is a rare vessel form (see Chapter 4.2 and Fig 4.9, P160).

To the south of the excavation area were two pits identified in evaluation trenches (Fig 2.23). In Trench 74d, 116 sherds of Early/Middle Iron Age pottery were recovered from pit [74D/5] and an iron ard tip was found in the fill of pit [85C/4] (see Chapter 4.4).
OPEN AREA 3: CANTERBURY ROAD

A very large quarry pit C[116], possibly dug to obtain raw materials for the iron working identified on site, measured 8m by 12m and at least 1.4m deep and contained a series of sandy silt fills (C[134], C[135], C[130] and C[117]) (Figs 2.13 and 2.24). Large quantities of Early Iron Age pottery sherds were recovered from the lower fill C[134], while Early/Middle Iron Age and residual Late Bronze Age/Early Iron Age pottery was recovered from upper fill C[117]. Over a kilogram of ironworking slag was also recovered from fill C[117] (see Chapter 4.5). The uppermost fill was a dump or spread of ironstone blocks C[140]. The finds from the pit suggest that it was an open feature for a considerable duration and the amount of pottery suggests settlement was located in the near vicinity.

South-west of quarry pit C[116] were two intercutting pits groups. Pit C[122] was 3m by 2m and 0.6m deep, with an upper fill containing Late Bronze Age/Early Iron Age pottery. This was cut by small pit C[131] containing finds of Early Iron Age pottery and hearth C[114] that contained no datable finds. The other pit group comprised elongated pit C[124] measuring 1.7m by 0.6m wide and 0.22m deep, filled with sandy silt C[125]. The finds included Early/Middle Iron Age pottery sherds, fragments of small crucibles and a small amount of fuel ash, copper-alloy and iron-working slag. Metallurgical analysis of the crucible material indicated it was likely to have been associated with bronze working (see Chapter 4.5). Cutting pit C[124] was storage pit C[135], measuring 1.8m in diameter and 0.45m deep, with a bell-shaped profile. A very large assemblage of Early/Middle Iron Age pottery was recovered from its pit fill C[129] as well as two loomweights and ten fragments of small crucibles.

To the south were a scattered series of pits across the excavation area, with no particular concentrations (Fig 2.24). Many of these pits contained moderate size assemblages of pottery, including large feature sherds and some partially complete vessels in pits C[31], C[33], C[37], C[39], and C[57]. Pit C[8] also contained significant quantities of burnt material, including fired clay, fire-cracked flint and pottery and pit C[159] also produced a ceramic spindle whorl. A block of slag was also recovered from fill C[58] of pit C[57] and adjacent to pit C[33] was another pit or posthole C[16] which also contained pottery and burnt sandstone. What these pits represent is uncertain, but they may have been structured deposits and/or related to the metalworking activities.

Located some distance to the west, hearth C[143] was filled with charcoal-rich deposits and contained finds of slag, semi-vitrified pottery and fired clay. Nearby, pit C[145], measuring 2m by 1.3m and 0.45m deep, was filled with dark grey brown sand silt C[146]. The fill contained a large assemblage of Early Iron Age pottery sherds, 1.5kg of burnt daub, three ceramic loomweights and over 4.5kg of fired clay kiln furniture (see Chapter 4). These pits (C[124], C[135] and C[145]) are again, suggestive of structured deposits, although the precise contextual information was not recorded, and little more can be said about the sequence or their interpretation.

Five fragmentary ditch lengths were identified in the two excavated areas (C[35], C[67], C[105], C[149] and C[153]). All of the ditches were shallow (less than 0.25m deep), and nothing longer than a c 10m length of any ditch was seen. What these ditches represent is uncertain, but they may have been a precursor to the later prehistoric and Roman field systems found at Hawkinge (FS?).

DISCUSSION

This period saw the first substantial evidence of settlement within the excavation areas with two sites identified, at the aerodrome centred on Building 1, and at Canterbury Road. Although these were only c 750m apart, they do appear to have been separate entities, and this is also reflected in the contrasting finds assemblages. At the aerodrome, there was more domestic pottery and a number of spindle whorls relating to textile production, whilst at Canterbury Road there was extensive evidence for metalworking, finds of loomweights and possible kiln furniture. This suggests that these sites may have been part of a larger zonally-organised settlement across the landscape.

Building 1 was a type of non-circular structure occasionally found in southern Britain during the late prehistoric, that comprised a variety of forms including D-shaped, oval and boat-shaped buildings. These were generally smaller than the more common domestic roundhouse and have been variously interpreted as workshops, stores and open stock pens, although proving function has been notoriously difficult (Lambrick et al 2009, 153–155). The postholes (G10) located at the entrance in the south-east could have represented some form of doorway and porch, or alternatively a fence around an open front. A comparable structure of similar size was found associated with a Middle Iron Age farmstead at Farmoor, Oxfordshire (Lambrick & Robinson 1979, 13–25). This was reconstructed as an open-fronted thatched building with an enclosing palisade fence possibly used for weaving, although a general workshop is probably the least problematic interpretation (ibid).
Fig 2.24 Plan of Early/Middle Iron Age features in Canterbury Road (Site C)
Structured deposits are often found in features associated with the use and abandonment of buildings, and the daub recovered from the possible internal hearths (G11 fills A[153], A[155] and A[157]) may have been placed as votive offerings after the building had burnt down. Closing deposits are commonly found on later prehistoric sites, particularly in field boundaries and water holes, and similarly the filling of the hearths may have been associated with the deliberate decommissioning of the house (Lambrick et al 2009, 149, 284–285).

Whether this building was an isolated structure or part of a larger settlement is unknown: the excavation limits were close to the east and north, and more buildings could have lain adjacent. Other than pits and occasional postholes, the only features of note were hearth/oven G13 (Fig 2.19) and Middle/Late Bronze Age Ring Ditch 1. Hearth/oven G13 was likely to have been for domestic use, possibly for bread, but its interpretation is hampered by the lack of environmental samples from the feature. The Bronze Age Ring Ditch (RD1) is likely to have still been an extant landscape feature in the Early to Middle Iron Age, and its presence may have been a factor in the decision to locate the settlement.

Although other structures were lacking, there are a number of pit features containing significant artefact assemblages which also suggest domestic settlement and related activities nearby. Pits A[72] and A[12] both produced ceramic spindle whorls, alongside quantities of pottery, indicating the presence of textile working. Pits A[6], A[10] and A[12] contained fragments from the same pottery vessels, indicating they were filled within a broadly comparable time, possibly with long-lived midden material given the mixed nature of the pottery. Pit A[10] contained a particularly significant finds assemblage, including possible iron ingots and chain links from cauldron-hangers, both of which are object types which have been associated with structured deposition. Although the identification of the ingots as currency bars is uncertain, the seven items are still a considerable amount of iron to bury in a pit. Work by Hill (1995, 20) and Hingley (1990) has suggested that the deposition of iron ‘currency bars’ and ‘hoards’ of iron objects was ‘clearly structured, non-functional, if not ritual events’; Hingley cites the deposition of currency bars at the margins or edge of settlements as highly symbolic deposits (Hingley 1990; Hill 1995, 20).

The formal internment of a calf in a specially-dug feature is more unusual. The calf was not complete as the hind quarters of the animal had been truncated by a later pit, although it is likely that the animal was complete when buried and had not been partially butchered. As the animal was likely to have been interred complete and not killed for consumption, the nature of its death is unknown, although possibilities include the result of disease or ritual sacrifice. It must be remembered, however, that the dating of the animal burial was not particularly robust and it remains possible that the calf burial in fact relates to later periods of activity at the site. The amount of burnt sandstone in the fill suggests some form of depositional structure or even burial rite, although as the bones were not burnt, this did not include the animal carcass. There were only two sherds of pottery recovered from an overlying feature and again the dating evidence for the burial is poor.

In Britain, prehistoric animal burials are relatively rare in the earlier prehistoric period but become more common in the Iron Age (Morris 2011). A prehistoric calf burial is known from Kent from Damhead Creek on the Isle of Grain. Here, the calf was interred with a grave accessory of a gold pin or bar and the grave was marked by flanking rings of marker posts (Dawkes 2017, 129–131). This Middle Bronze Age example was more elaborate with clear evidence of structured deposition than the burial at Hawkinge, but they may well have been part of a related form of practise or veneration. Animals, such as cattle, are likely to have been of considerable value to individuals and communities, and the off-spring of a prized beast would have been no insignificant offering (ibid). This interpretation is, however, offered with caution, as ‘ritual’ is one of the most common explanations for prehistoric animal burials even though most examples lack any clear evidence for such practises (Morris 2011, 34). Morris goes on to conclude that animal burials represent a myriad of human actions and meanings (ibid, 182).

While no buildings were identified at Canterbury Road (Site C), there was abundant evidence of sustained occupation, with large quantities of pottery sherds, loomweights, kiln furniture and significant evidence of metal-working, possible involving both copper and iron working. There were also hearths, refuse pits, a huge quarry pit and several candidates of probable structured deposition.

2.7 PERIOD 3.2 LATE IRON AGE (100–50 BC/AD 10)

The principal changes in this phase were the shifting location of the settlements and the laying out of a series of fields (FS1; Figs 2.24 & 2.29). Overall there was less archaeologically identifiable activity and, in terms of dating evidence, aside from one large pottery assemblage that can be placed c 100–50 BC,
the dating of the rest of the pottery from this phase is more uncertain, but could be slightly later, c 50 BC–AD 10.

OPEN AREA 3: AERODROME
A notable feature was large pit A[74], over 5m long and 0.85m deep with three fills: A[75], A[164] and A[165] (Figs 2.15 & 2.25). Fill A[75] contained a large and significant range of finds including a large assemblage of pottery (37kg), animal bone, up to five potin coins, a complete triangular loomweight, four ceramic sling-shots, three ceramic beads/toggles (two complete and one shattered), one flint pebble sling-slot, a dark blue glass pin head, a fragment of quernstone, two quartzite whetstones, two fragments of shale bracelets, a range of metalwork including bill-hooks/reaping-hooks, cleaver/knives and a latch-lifter, a large quantity of daub (3.58kg) and nine pieces of probable briquetage (Table 2.1; see also Chapter 4; Figs 2.26 & 2.27). The pottery was an unusual mix of fragments and near-complete vessels and its dating suggest the deposition was in the latter half of the 1st century BC. The animal bone also comprised an interesting assemblage; over half of the identifiable material was cattle and sheep/goat and pig were also well represented. Most distinctively over 90% of the animal bone is burnt and the assemblage is dominated by meat productive areas and includes juvenile individuals.

The abundance and diversity of the finds assemblage probably indicates the material was purposefully chosen as a form of structured deposit (Hill 1995). Unfortunately, detailed contextual information of the location or position of individual finds was not recorded and little can be ventured regarding the details of the deposition. Nevertheless, the range and quantity of the assemblage is clearly associated with the domestic and agricultural activities of a settlement in the close vicinity. No buildings or structures were found, but these may have lain beyond the limits of excavation.
ENCLOSURE 1: THE STREET

Only the north-eastern part of an enclosure ditch (Enclosure 1; EN1) was seen within the excavation area (Fig 2.28). The ditch had been truncated by later features and in some areas, especially the south, it could not be readily defined. However, a possible entrance was apparent in the north.

The enclosure was formed by ditch G252, measuring up to 1.8m in width and 0.40m in depth. It had tapered sides with a rounded base and was filled with grey brown silts. The few finds recovered from the fills were Late Iron Age in date.

Within the enclosure was a scatter of features (G36) including occasional postholes and fire pit E[190]. However, these features were all poorly dated and they could belong to other periods. Fire pit E[190] was shallow, sub-circular and filled with burnt clay E[192] containing no finds.

FIELD SYSTEM 1: RELIEF ROAD

A series of short, fragmentary ditches were identified within the excavation area and interpreted as part of a field system (Field System 1, FS1; Fig 2.29). All were lacking finds so dating is problematic, although they were cut by early Roman ditches (FS2), providing some chronological constraint.

Understanding the form of the fields was greatly hampered by the limited excavation area, and the high degree of intercutting. Nevertheless, the fields seem to have been small and potentially of more than one phase of activity.

FIELD SYSTEM 1: CANTERBURY ROAD

Two ditches (C[45] and C[51]) were identified, and may have been part of a wider field system (Fig 2.24). However, too little was identified to suggest an overall layout. Both ditches were substantial: over 1.5m wide and 0.4m deep. A large assemblage of Middle/Late Iron Age pottery sherds was obtained from curving ditch C[45]. This may suggest domestic settlement in the near vicinity. Scattered throughout the field system were a series of small pits (G31) containing relatively few finds.

DISCUSSION

There was a noticeable decrease in identifiable activity, in terms of both material culture and features, in this period compared to the previous one. However, there was still evidence of

<table>
<thead>
<tr>
<th>Finds</th>
<th>Quantity</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pottery</td>
<td>36.71kg</td>
<td>Including many complete vessels and complete profiles</td>
</tr>
<tr>
<td>Burnt daub</td>
<td>163 fragments</td>
<td></td>
</tr>
<tr>
<td>Briquetage</td>
<td>9</td>
<td>Possible identification</td>
</tr>
<tr>
<td>Triangular loomweight</td>
<td>1/860g</td>
<td>Complete</td>
</tr>
<tr>
<td>Metalwork</td>
<td><50 fragments</td>
<td>Where identifiable, was mainly agricultural equipment including reaping-hooks</td>
</tr>
<tr>
<td>Ceramic sling shots</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Flint sling shots</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Glass pin head</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron forging slag</td>
<td>200g</td>
<td></td>
</tr>
<tr>
<td>Potin coins</td>
<td>+3</td>
<td>At least 3 but probably 5</td>
</tr>
<tr>
<td>Animal bone</td>
<td>845 fragments</td>
<td></td>
</tr>
<tr>
<td>Bow brooch</td>
<td>1</td>
<td>RF<1></td>
</tr>
<tr>
<td>Fired clay beads/toggles</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.1: Summary of the finds assemblage from pit A[74]

Fig 2.28 Plan of Enclosure 1 (Site E)
settlement in the vicinity, based mainly on the nature and abundance of the finds from pit A[74]. This pit was located not far from the earlier Building 1 (period 3.1) and suggests a continuity of habitation in the vicinity of the aerodrome. Settlement might also have been associated with Enclosure 1 at The Street (site E), although this was only partially seen, contained few finds and its exact character is uncertain. Overall, this indicates a relocation of people and activity in the local landscape, but the establishment of a field system (FS1) suggests a still notable presence.
CHAPTER 3 LATER IRON AGE/ROMAN AND MEDIEVAL ACTIVITY

3.1 INTRODUCTION
The occupation of the landscape by small agricultural settlements continued, increasing in the Late Iron Age to early Roman period before gradually declining. Settlements were relatively short-lived and continued to periodically shift location within field systems. Funerary activity was evidenced by the establishment of a series of small cremation cemeteries (CC1–CC4). The occupation ceased by the end of the AD 4th century and the landscape remained as open ground for the vast majority of the post-Roman period. The only later features identified were a few medieval refuse pits (period 5), indicative of activity peripheral to settlement.

3.2 PERIOD 4.1 LATE IRON AGE/EARLY ROMAN (AD 10–80/100)
This phase witnessed the continuation of settlement at the aerodrome site (Site A), the extension of an adjacent field system (FS2), and the establishment of routeways (G22, TD1 & TD2) and three small cremation cemeteries (CC1-CC3). Overall, there was a marked increase in the number of archaeological features and artefactual evidence.

BUILDING 2: AERODROME
The remnants of circular post-built Building 2 (B2) consisted of six postholes and three stakeholes G19 forming an approximate circle c 4–5m in diameter (Figs 3.1 & 3.2). The postholes formed the outer ring and the stakeholes were internal, possibly forming an internal division. The location of the entrance was uncertain. The postholes and stakeholes were filled with similar grey-brown silt clays with frequent flint cobbles, possibly the remains of post-packing. Late Iron Age pottery was recovered from pit fill A[149] (from adjacent pit A[148]) and A[137] (from posthole A[136]), as well as residual Early Iron Age pottery sherds.

OPEN AREA 4
A scatter of small pits and postholes (G20) were recorded across the excavation area (Figs 3.1–3.3). Most of these features contained small finds assemblages and did not form any particular concentrations or structures. The only notable feature was pit A[26] containing the remains of a small Late Iron Age pottery vessel (Fig 3.3).

TRACKWAY? G22
A broad (c 5m), shallow (c 0.4m) linear feature G22 was identified in evaluation trenches (located within the excavation area and to the west; Fig 3.2). However, this feature was not identified or further investigated during the 1998 excavation phase and the reasons for this are not clear but may have been due to the area not being sufficiently stripped to a deep enough level to encounter these archaeological features. Further uncertainty arises from the minimal amount of investigation undertaken: the feature was only excavated in Trench 62d, and in that instance only by machine and only possible ditches were identified further east in trenches 73c and 73d. The feature is dated by 1st century BC to the 1st century AD pottery recovered from both within the fills and collected from the upper surface in Trenches 73c and 73d. Pottery of Late Bronze Age/Early Iron Age date was also recovered from Trench 73d, including some large unabraded sherds, which might indicate these features related to more than one phase of activity.
Fig 3.2 Plan of Open Area 4 and Building 2
These problems make any interpretation both difficult and tentative, and perhaps the best that can be ventured is that this was a small trackway, which survived intermittently in the landscape and was perhaps related to the field system (FS2) identified further east.

FIELD SYSTEM 2

Various ditches recorded throughout the excavation area were all on a north-east to south-west or north-west to south-east alignment and can be considered as part of the wider early Roman field system (FS2) known from other excavations in Hawkinge (Fig 3.1).

Where relationships were present, these ditches all stratigraphically cut the Field System 1 ditches (period 3.2) or earlier features and most of the ditch fills contained early Roman pottery (AD 50–120). Most of the ditches were small (less than 0.5m wide and 0.35m deep) with concave sides and base and filled by orange-brown silt clay.

Other than the field boundary ditches, a likely track or droveway (TD1; Site D) was located to the north and aligned north-west to south-east (Fig 3.4). Track/Droveway 1 was composed of four parallel ditches (D[603], D[608], D[618] and D[619]) which were clearly of more than one phase, and had been re-dug and remodelled on at least one occasion. A field boundary ditch (D[659]) was contemporary with the use of the droveway and may suggest that this was an access through the field system (FS2). Roman pottery was recovered from the 5 fills of ditches D[619] and D[618], but the other ditches contained no finds. Ditches D[603] and D[608] had both at some point been recut (as D[615] and D[639] respectively).

A scatter of pits (G33) were located within Field System 2 (Fig 3.4 inset). These were mostly undated, but several pits did contain finds dating to the early Roman period.

The remains of Field System 2 on Site E were represented by ditch G195 and possibly ditch G253 (Figs 3.1 & 3.5). The ditch had been re-dug on at least one occasion. The ditches were concave and filled by orange-brown clay silt, containing occasional manganese clusters, charcoal flecks and small angular to sub-angular flints. Late Iron Age and Roman pottery sherds were recovered from the ditch.

The relationship between ditches G102 and G107 of Track/Droveway 2 (TD2) and G195 could not be explored in the field as the intersection had been truncated by a modern pit. Within the field system was a scatter of small pits (G35) containing small amounts of pottery. Track/Droveway 2 was aligned north-west to south-east and formed by two parallel ditches (G102 and G107) c 7m apart. The best dating evidence was from G107 with a moderate size assemblage of pottery. The exact purpose of the shallow gully (G251) placed across the route, connecting G102 and G107, is uncertain. It was too small to have impeded movement and may have been for drainage.

More ditches (C[47], C[63] and C[120]) were dug in this period on Site C, and these may represent further subdivisions or replacement elements of the earlier Field System 1 (Figs 3.1 & 3.6). A hearth C[157] measuring c 0.5m in diameter and 0.17m deep, was filled with a charcoal-rich fill (C[158]) and finds of pottery and fired clay. Two small pits (C[88] and C[98]) contained large quantities of pottery sherds and are likely to represent refuse pits.

On Site F, a single ditch was identified (F[132]) broadly aligned north-west to south-east (Figs 3.1 & 3.7). The ditch was 0.78m wide and 0.13m deep and filled by fine sandy silt fill F[133] with occasional charcoal flecks and no finds. However, the ditch was on a broadly similar alignment to other field boundary ditches identified in nearby excavations and is likely to be part of Field System 2.

CREMATION CEMETERY 1: CANTERBURY ROAD

Cremation Cemetery 1 comprised two features (Table 3.1). Cremation burial pit C[69] contained two truncated pottery vessels, a beaker and a jar dating to AD 50–70/80. The cremation burial was interred inside the jar, with a butt-beaker as an accessory vessel. Also recovered from inside the jar was a copper-alloy Langton Down type brooch of pre-Flavian date (see Chapter 4.4). Close by was heavily-truncated cremation burial pit C[55], which comprised a jar containing a small amount of burnt bone (Fig 3.6). While the bone was too
Fig 3.4 Plan of Field System 2 and Track/Droveway 1 & 3
fragmentary to positively identify as human, its location close to burial C[69] would suggest human origin to be the most likely.

<table>
<thead>
<tr>
<th>Cremation pit no.</th>
<th>Cremation burial no.</th>
<th>Urn</th>
<th>Accessory vessels</th>
<th>Age</th>
<th>Sex</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>C[69]</td>
<td>C[70]</td>
<td>Jar</td>
<td>Butt-beaker</td>
<td>Adult</td>
<td>?Female</td>
<td>AD50–70/80</td>
</tr>
</tbody>
</table>

Table 3.1: Cremation Cemetery 1 at Canterbury Road (Site C)

CREMATION CEMETERY 2: THE STREET

In the southern part of Site E, a small cremation cemetery was located with three burials and an adjacent pit containing an accessory vessel (Figs 3.5, 3.8 and 3.9; Table 3.2). The lack of stratigraphic relationships and refinement in the dating evidence inevitably means it is not possible to determine which phase of landuse the cremation cemetery related to.

The three vessels in cremation burial pit E[128] had 1st century AD dates, and contained a jar containing the cremated bone (E[130]) with two accessory vessels (Figs 3.5 & 3.8). The cremation burial pit E[120] contained a cremation burial E[144] of an adult, possibly female interred in a jar with a smaller jar as an accessory vessel (Figs 3.5 & 3.9). Cremation burial pit E[116] contained a cremation burial E[118] of an adult, possibly male interred in a pedestal urn (Fig 3.5).

Heavily-truncated pit E[132] contained the base of a beaker or jar although no cremated remains were found. While this feature may have been another cremation burial, it seems to represent a form of cenotaph to the adjacent burials.

The relationship of the cremation cemetery to the adjacent field system (FS2) and routeway (TD2) is unclear (Fig 3.5).

Table 3.2: Cremation Cemetery 2 at The Street (Site E)

The three cremation burial pits and pit E[132] were located close together and all contained pottery vessels dating to the 1st century AD. This suggests they were all interred at around the same time, and probably represent a family burial plot in use for a generation.
Fig 3.6 Plan of Field System 2 (FS2) and Cremation Cemetery 1 (CC1)
Fig 3.7 Plan of Field System 2 (FS2) and Cremation Cemetery 3 (CC3)
Several fragments of early Roman pottery were recovered from the backfill of the ditches, and they may well have still been visible and functioning landscape features during the early Roman period. Ditch G195 (which is located on a different alignment to G102/G107 and appears to have a separate function) is located within two metres of the cremation group and may relate to the cremation activity rather than to the systems of land division nearby. It may possibly constitute a northern boundary to the funerary plot.

CREMATION CEMETERY 3: PAGE ROAD

A small cremation cemetery of six burials, and two possible burials, located in a straggling line of c 100m was identified on site F (Fig 3.7; Table 3.3). The burials were invested with accessory vessels, and date to two broad phases: four in the 1st century (period 4.1) and two in the middle to later 2nd century (period 4.2).

Cremation burial pit F[148] contained the cremation burial (F[149]) with a jar/beaker (Figs 3.7 & 3.10). To the west was a similar burial (F[150]) with the cremated remains (F[151]) and a butt-beaker (Figs 3.7 & 3.11). A small amount of possible animal bone was recovered from F[150] and this may represent a grave good (see Chapter 4.7).
Some distance to the east and south-west was burial pit F[155] with the cremation burial (F[156]) and a jar, and burial pit F[157] with cremation burial F[158] and a jar/beaker (Figs 3.7 & 3.12). The exact location of the cremated remains within the burial was not recorded, and it is uncertain whether the pottery vessels represent burial urns or accessory vessels. All the burials were of adult individuals, but there were no surviving elements to assign sex.

Fire-pit F[152] measured 2.03m long by 1.05m wide and 200mm deep (Figs 3.7, 3.13 & 3.14). Although there was little charred material in fills F[153] and F[161], there was some evidence of in situ burning in the base of the feature along with two stake-holes F[159] and F[162]. Dug into the upper fill of F[152], was shallow pit F[154] which contained a near complete globular beaker (Figs 3.7 & 3.13–3.15). This feature may be a truncated burial, or some form of funerary-related feature, such as a cenotaph.

A large sloping-sided cut F[163], measuring at least 4.3m in diameter and 1m deep, was located c. 400m to the south of Cremation Cemetery 3 (Fig 3.7). It was identified during bomb clearance works, in an area which would later be excavated by AOC Archaeology as the Terlingham III site (AOC Archaeology 2006; Fig 1.13). Notably it contained possible structured deposits of disarticulated human bone, a bow-brooch, and a possibly curated potin coin. Unfortunately, little context information exists for this pit and the exact locations of the finds is uncertain. The pit is almost certainly associated with the activity of the large multi-phase early Roman enclosed settlement found at Terlingham III (AOC Archaeology 2006).

DISCUSSION

The important changes to the Hawkinge landscape in this period was the apparent continued occupation at the aerodrome (B2) and the expansion of the field system (FS2) embedded with small discrete burial plots (CC1–CC3) and routeways (TD1–TD2 and holloway G22). Beyond the limits of these excavations, to the immediate south-west the large settlement at Terlingham III emerged (AOC Archaeology 2006).

The location of Building 2 (B2), located in close proximity to Building 1 (B1; period 3.1) and finds-rich pit A[74] (period 3.2) suggests that if settlement was not continuous at the aerodrome site (Site A), then it was renewed after a relatively
short period. Knowledge of the earlier occupation may have been retained by oral tradition or due to settlement features becoming fossilized in the landscape by their articulation with surrounding features, perhaps the field system (FS1 or FS2).

Building 2 was only c. 4–5m in diameter and it is debatable what this ring of postholes represents. The entrance may have been located in the west, but this is far from certain. Whatever this structure represents, like Building 1, there was very little associated contemporary activity other than pits within the immediate excavated area. This structure may have been isolated, but conceivably other adjacent structures may have existed beyond the excavation limits to the north and east. However, it seems most likely that this represented some form of small agricultural building or farmstead outlying from the main settlement focus c. 400m to the west at Terlingham III, which dominated the settlement of the surrounding landscape and can be considered its principal nodal point.

3.3 PERIOD 4.2 ROMAN (AD 80/100–200)

In this period, the agricultural character of the landscape continued, and the principal changes were the partial remodeling of the field system (FS3) and routeways (TD3), a settlement shift, the continued use the Cremation Cemetery 3 and the addition of another Cremation Cemetery 4 (CC4).

FIELD SYSTEMS 3

The field system (FS3) survived as fragmentary lengths of ditches aligned broadly on north-west to south-east and north-east to south-west alignments (Figs 3.1, 3.16 & 3.17). These fields (FS3) are either replacements or a later extension to the earlier fields system (FS2), although understanding their overall layout is greatly hampered by the linear nature of the investigation.

The ditched elements of Field System 3 were identified mostly in the east of the excavated area. There were few stratigraphic relationships present, but ditch B[11] was cut by ditch B[22], and ditch B[7] cut ditch B[5]. Paired ditches B[3] and B[7] may have been part of a possible droveway and were notable for producing the only sizable quantity of Roman pottery sherdson, generally dating to the 2nd and early 3rd centuries AD. Most of the ditches were small and between 0.15-0.25m deep, apart from ditches B[22] and B[30]. The latter ditch (B[30]) was notable in being recut (B[112], B[116] and B[118]) on at least three occasions, indicating that this was a more significant boundary, and possibly related to the adjacent occupation in Open Area 4 (Figs 3.16 & 3.17).

TRACK/DRIVEWAY 3: RELIEF ROAD AND HAWKINGE-DENTON BYPASS ROAD

The Field System 2 ditches were cut by Track/droveway 3 (TD3), aligned north-east to south-west indicating that at least this part of the field system had fallen out of use (Fig 3.4 inset). The droveway also had an entrance on the north-east side opening presumably into a field and was probably contemporary with Field System 3 to the south-west.

The ditches of the droveway, D[117], D[195] and D[275] were all considerably larger than the earlier field system ditches, being up to 3.5m wide and 1.14m deep. All three ditches contained moderate assemblages of pottery dating broadly to the 2nd and early 3rd century. Notably, the primary fill D[277] of ditch D[275] contained a moderate-sized pottery assemblage (see Chapter 4.2).

OPEN AREA 4: HAWKINGE-DENTON BYPASS ROAD

Adjacent to ditch B[30] were a cluster of refuse pits (G25) and possible hearths G24, that produced a notable finds assemblage, including evidence for non-intensive metalworking, which indicate that a settlement was likely located in the near vicinity (Figs 3.16 & 3.17). Of the five refuse pits (G25) identified, the largest pit (B[15]) measured 4.3m by 3.1m and 0.85m deep, and produced almost 900 late-2nd to early-3rd century Roman pottery sherdson and 1.3kg of slag (fills B[16], B[46], B[73] and B[74]). A smaller amount of slag was also recovered from pit B[34]. To the north, was a rough metallising of flint cobbles B[126] perhaps representing a remnant of a working surface.

A cluster of four pits (G24) all filled with charcoal-enriched silts and a small amount of slag were interpreted as hearths (B[38], B[44], B[120] and B[138]) (see Chapter 4.5). It may be the metal-working waste from the pits was derived from these hearths, but either way the recovery of the slag in this area of the site clearly demonstrates the presence of small scale iron forging in the immediate vicinity.

Small pit (B[36]) containing an apparent structured deposit of two inverted ceramic jars was located immediately adjacent and would seem to be some form of associated offering. Neither of these vessels is closely datable but comprise a necked jar from the Canterbury kilns (see Fig 4.20, P259) and an everted-rimmed jar in an unsourced Native Coarse Ware (see Fig 4.20, P260).

Some 60m to the north-west was a dense cluster of postholes and small pits (G26), probably related to some form of structure, although no obvious pattern is discernible.
and they remain poorly understood (Figs 3.16 & 3.18). An abundance of charcoal and burnt material in the fills possibly suggests a heat-related use although their exact function remains unclear. In addition, no dating evidence was recovered from any of these features, and only an outlying posthole B[88], contained a single sherd of Roman pottery.

In the far south, three pits (G23) were also identified, that contained charcoal-enriched fills and are interpreted as hearths. The features were poorly dated with the only find was a single sherd of Roman pottery from B[57] (see Fig 3.16).

CREMATION CEMETERY 3 CONTINUES: PAGE ROAD

Cremation cemetery 3 in period 4.2, comprised three features (Table 3.4). Cremation burial pit F[144] contained cremation burial F[145] interred in the base of an amphora with two flagons as accessory vessels (Figs 3.7, 3.19 & 3.20). Nearby was cremation burial pit F[146] with cremation burial F[147] in a large storage vessel and flagon accessory vessel (Figs 3.19 & 3.21). Some 10m to the north-east was a shallow pit F[142] containing the remains of a dish (Fig 3.7). Like pit F[154], this feature is likely to represent either a truncated burial or some form of cenotaph.
CREMATION CEMETERY 4: AERODROME

Cremation burial pit [80b/4] identified in the initial evaluation trenching, consisted of four pottery vessels (Figs 3.16, 3.22 & 3.23). The largest, a fine greyware pot [80b/5] contained cremated burial [80b/3] of an adult, possibly female. The burial ([80b/3]) was accompanied by a fine greyware flask, a miniature jar and a samian dish, suggesting a c. 120-140 AD date for the burial.

DISCUSSION

This period represented a marked decline in archaeologically-visible activity with a reduction in the area of fields in use (FS3) and settlement only apparent in Open Area 4 on Site B. This small community or farmstead were most likely responsible for nearby cremation burial [80b/4] (CC4), and possibly Cremation Cemetery 3 which continued in use. The close spatial
relationship between the later cremations to the earlier ones suggest that the latter may have had grave markers, or that the area was still known by the local inhabitants as a place of burial.

In addition to these results, an archaeological watching brief to the immediate north also identified remains almost certainly part of this Haven Drive settlement (Fig 3.16). Here more ditches, likely to be associated with Field System 3, were found (KCC HER: TR 23 NW 242), as well as a pond (KCC HER no: TR 23 NW 244).

3.4 PERIOD 4.3 LATE ROMAN (AD 250–410)
The nature of the occupation largely continued although there was an overall decrease in activity. The field system (FS3) was largely maintained and a further small cremation cemetery established (CC5).

FIELD SYSTEM 3 CONTINUES: AERODROME
Elements of Field System 3 seem to have survived into the Late Roman period, with ditches [R10a/12] and [87c/3] dug (Fig 3.4). Other ditch elements in these areas were largely undated but may well have been contemporary elements. However, all of these features were seen in an area of the evaluation trenching which was not subject to further mitigation work.

Cremation burial pit E[147] contained five vessels, broadly dating to the later 3rd century AD, and was located some 60m north of the earlier cremation cemetery (Fig 3.5 & 3.24). In later Roman Britain, cremation burial was less common than inhumation, and it is more than likely that this burial was interred in the earlier part of the suggested date range. Cremation burial E[147] may have been part of a larger cemetery located to the north and east, beyond the limits of the excavation.

Within pit E[147] were the cremated remains (E[148]) of an adult, possibly female individual interred in a necked jar. In addition, were four accessory vessels: a flanged bowl positioned on top of the necked jar, acting as a lid; a flagon/flask; a samian dish and an indented beaker (Table 3.5). A chalk or limestone block had been used as a stopper to the beaker, a fragment of possible quernstone used as packing against the flagon or flask, and a possible slingshot were found close to the main cremation vessel.

The later date and the distance from the earlier cremation burials suggests that this is not a continuation or re-use of an earlier cemetery and their occurrence in the wider landscape is coincidental.

<table>
<thead>
<tr>
<th>Cremation pit no.</th>
<th>Cremation burial no.</th>
<th>Urn</th>
<th>Accessory vessels</th>
<th>Age</th>
<th>Sex</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>E[147]</td>
<td>E[148]</td>
<td>Necked jar</td>
<td>Bead & flanged bowl, samian dish, indented neck beaker, flagon/flask</td>
<td>Adult</td>
<td>Female</td>
<td>AD 250/270–300</td>
</tr>
</tbody>
</table>

Table 3.5: Cremation Cemetery 5

OPEN AREA 4: RELIEF ROAD
Shallow pit D[325] measured c 10m long and 0.2m deep and may have been a brickearth quarry (Fig 3.4). The pit fill
D[324] contained a solitary tiny sherd of Late Roman pottery (AD 270–400).

DISCUSSION

The near absence of features and finds from this period indicates the end of widespread exploitation of the landscape, although the single cremation burial (CC5) suggests that there was still a limited presence maintained in the vicinity.

Left: Fig 3.24 Photograph of cremation burial E[147] under excavation facing south

Below: Fig 3.25 Plan of medieval features
3.5 PERIOD 5 MEDIEVAL
Very little post-Roman activity was identified and the area was clearly peripheral to settlement.

OPEN AREA 5: AERODROME
Medieval remains were only located in a small number of irregularly-shaped features found in evaluation Trench 97a, including a pit ([97a/4]), which contained an assemblage of 160 pieces of 13th- to 14th-century pottery including sherds from cooking pots and jugs (Barber 1993; Fig 3.25).

OPEN AREA 5: RELIEF ROAD
Finds of pottery sherds dating from the 13th/14th centuries were recovered from the subsoil and some cut features (G34) identified in the test pits and evaluation trenches (Barber 1993; Fig 3.25). However, their interpretation is difficult due to the limited size of the interventions, although the pits and gullies are likely to represent some form of agricultural activity or fleeting occupation.

DISCUSSION
Frustratingly, the only evidence for early medieval settlement or occupation at Hawkinge is still its Old English placename, meaning ‘place frequented by hawks’, as contemporary archaeological features are yet to be identified (INS website). All the features found in these investigations were 13th century at the earliest. They were also identified in evaluation trenches not subjected to further mitigation work and very limited amounts were exposed and excavated. This inevitably hampers any attempts at interpretation. The only notable finds assemblage was from pit ([97a/4]), and this probably represents a refuse pit located on the periphery of settlement. In the medieval period, this area of Hawkinge was apparently left as open ground or pasture, and the original historic core of Hawkinge village developed on the higher ground c. 800m to the east (Newman 2013, 394–5).
4.1 WORKED FLINT

Karine Le Hégarat

INTRODUCTION

Of the reports presented here, two were written as part of the stand-alone single site reports prepared in 2000 and 2003. The different styles of data presentation reflect the different authors preferred formats and have been included here as originally prepared. The other three reports were produced for this volume following on from post-excavation assessment.

Worked flints were found on all the sites. Although the assemblages were of relatively limited quantities, they provide evidence for a continued presence from the Mesolithic to the Bronze Age, with the majority dating from the Neolithic to the Early Bronze Age.

SITE ASSEMBLAGES

HAWKINGE AERODROME (SITES A, AA AND B)

Chris Place (as completed in 2003)

The fieldwork at sites A, AA and B resulted in the recovery of a small collection of 1224 flints recognised as being humanly worked (Table 4.1).

It should be noted that the category of ‘flakes’ includes some ‘true blades’ and ‘blade-like flakes’ as well as fragments and chips of bladelets. Given the nature of the collection, no attempt was made to categorise debitage objectively into divisions based on breadth/length ratios. Despite this, ‘true blades’ can obviously be recognised by their parallel dorsal ridges and sides; and their presence, as well as that of cores exhibiting blade removal, was noted as an indicator of gross technological differences.

Flint from a number of sources can be recognised in the debitage and implements. The local ‘Clay-with-Flints’ was probably a source for much of the material, though there is also evidence for the utilisation of beach and river cobbles.

For the most part, the implements are an undiagnostic collection of scrapers points/awls, a knife and retouched flakes. Evidence of blade removals on the dorsal surface of some of the end-scrapers perhaps suggests a date before the Late Neolithic for some pieces whilst others would fit a later Neolithic or Early Bronze Age date.

The exception to the above was the recovery of a leaf shaped arrowhead, two sections from polished flint axes and an axe rough-out. The arrowhead (Fig 4.1, no 1) was recovered from the topsoil during the 1998 excavation and is finely retouched over the entirety of both faces, missing the tip and the base. A short mid-section of an axe (Fig 4.1, no 2) was recovered during the 1993 evaluation ([96b/2]), the tip and base having been broken off in antiquity. The entire remaining surface has been polished and only a few scars remain from initial flaking. The second section was found in 1999 and is the cutting edge of a polished axe. The cutting edge is damaged, probably through use, and the axe has been broken with some flake scars and abrasion on the broken edge (Fig 4.1, no 3). An axe roughout was also found in the topsoil during 1999 (Fig 4.1, no 4). This had been discarded due to a miss hit or flaw which has resulted in a large unintended removal near the butt end. It also retains patches of cortex. All of these artefacts would be consistent with a Neolithic date.

It is concluded that the majority of the debitage and implements recovered would not be out of place in a Neolithic context. A significant proportion, however, would also be equally comfortable in Bronze Age contexts and some of the blades and blade cores and bladelets could be Mesolithic. It is probable that both Neolithic and Bronze Age activity was occurring at the site and the flint from this is mixed with earlier residual Mesolithic material.

CANTERBURY ROAD (SITE C)

Greg Priestly-Bell (as completed in 2000)

Introduction

A total of 623 pieces of worked flint were recovered, of which 526 pieces were from the topsoil or unstratified. The remaining 97 pieces were recovered from 28 contexts (see Table 4.2).

The raw material from which the flintwork was derived was almost exclusively of downflint, typically consisting of dark/
very dark grey fine grained material with few inclusions and a chalky cortex, while approximately 1% of the assemblage derived from a light/medium grey coarser grained material with occasional inclusions. A few artefacts, including an end-scraper and a side-scraper (topsoil), were derived from Bullhead flint which is characteristically very dark bluish grey, fine grained with occasional light grey inclusions and a light brown/dark green banded cortex. Less than 1% of the assemblage was fire-cracked and c 1% was patinated. Much of the material bore moderate to severe plough damage, although there was little evidence of rolling. The absence of thermal fracture surfaces on the artefacts suggests that the raw material had probably been collected from fresh exposures in the chalk.
Overview of assemblage

Waste flakes

A total of 531 waste flakes were identified, of which only 15 were of soft-hammer manufacture, the remainder being either hard-hammer or undiagnostic. Obvious thinning, trimming and finishing flakes, characteristically associated with biface or axe production, were completely absent. The butts of the waste flakes were predominantly flat with occasional cortical examples together with a few dihedral and winged examples. Only c 17% of the waste flakes were cortical, suggesting that some initial preparation of the raw material had taken place offsite.

Cores

A total of 26 cores were recovered from nine contexts, including 16 pieces from topsoil and unstratified. The cores were predominantly single or double platform with three globular examples. Only one piece showed moderate flaking control, while the remainder of the cores showed minimal control, indicating that flakes of varying thickness and outline would have been produced.

Retouched/diagnostic

A total of 64 intentionally retouched or diagnostic pieces were identified from nine contexts, including 53 pieces from topsoil. The artefacts fall into the following classes:

Bladelets

Two bladelet fragments with punctiform platforms were recovered from topsoil. These pieces were the only artefacts of broadly Mesolithic character within the assemblage.

Crested flake

A single crested flake was recovered from the topsoil. This piece is characteristic of a controlled flaking regime, something not generally seen in the assemblage as a whole, suggesting that the piece is either fortuitous or perhaps Mesolithic.

Utilised flakes

Five utilised flakes were recovered, showing apparently unintentional retouch/use wear usually along one edge. The high incidence of plough damage in the assemblage makes the identification of use-wear retouch problematic and it is likely that a significant number of utilised flakes remain unrecognised.

Hammer stone

A single flint hammer stone was recovered from C[134]. The piece showed heavy battering on one surface, indicating prolonged intensive use, and may have shattered in use.

Unspecific retouch

A total of nine pieces showed discrete areas of intentional retouch on one edge, including one piece with additional apparent use wear. Although the pieces could not be classified as particular tool types, it is likely that the retouch was intended as blunting to facilitate manipulation and/or represented minimal modification before opportunistic use.

<table>
<thead>
<tr>
<th>Cxt</th>
<th>WF</th>
<th>SH</th>
<th>Core</th>
<th>Crx</th>
<th>Retouched/Diagnostic</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>457</td>
<td>14</td>
<td>16</td>
<td>79</td>
<td>7 ret, 15ds, 8es,</td>
<td>526</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1es/ret, 3ss, 6nf,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2br, 1br/s 1tms,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1cftd, 3uf, 1inf/ret,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1bff, 2bit,</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 ret, 1br, 1es,</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1uf</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1lsaf</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>46</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>48</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>85</td>
<td>5</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>99</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>106</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>108</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>115</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>117</td>
<td>18</td>
<td>1</td>
<td>3</td>
<td>8</td>
<td>1 paf</td>
<td>22</td>
</tr>
<tr>
<td>121</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>123</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1uf</td>
<td>2</td>
</tr>
<tr>
<td>125</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>128</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>129</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>130</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>1 es</td>
<td>5</td>
</tr>
<tr>
<td>134</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1 hs</td>
<td>5</td>
</tr>
<tr>
<td>146</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>150</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1 es</td>
<td>4</td>
</tr>
<tr>
<td>154</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>frag</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Totals</td>
<td>531</td>
<td>15</td>
<td>26</td>
<td>109</td>
<td>64</td>
<td>623</td>
</tr>
</tbody>
</table>

* The term ‘soft-hammer’ is used here to describe a percussor of a material softer than flint. The analysis of soft/hard hammer flakes (all unclassified flakes are hard hammer or undiagnostic) is based upon a range of diagnostic criteria.

** Dorsal surface consists of 20%+ cortex

Table 4.2 Quantification of worked flint by context (Site C)
Notched flakes
Seven notched flakes were identified within the assemblage, five formed by the removal of a single flake and one formed by the removal of three or four small flakes. One piece also bore an additional discrete area of retouch.

Borers
Four borers were recorded, including a borer/scaper composite tool. In all cases, the tools have been formed by modifying the distal end of an apparently fortuitous flake to create an isolated projection.

Discoidal scrapers
A total of 15 discoidal scrapers were identified from toposil. The pieces show retouch around between 50–70% of their circumferential edges. The angle of the removals on all the pieces is crossed abrupt or abrupt with occasional semi-abrupt retouch. Five of the artefacts have diameters between 50–65mm and most are made on flakes with a concave ventral surface, giving a slightly claw-like profile. One of the artefacts with predominantly semi-abrupt retouch is made on a large thinning flake, a characteristic piece of *debitage* produced during biface manufacture.

End-scrapers
A total of 12 end-scrapers were identified from four contexts, including an end-scraper with an additional area of retouch. Although the pieces are of varying size and outline, some level of selection seems to have taken place in the choice of flakes with a concave ventral surface. The artefacts bear discrete areas of retouch on the distal ends, in some cases continuing onto the lateral edges, while the angle of removals ranges from crossed abrupt to low angle.

Side-scrapers
Three side-scrapers were identified from toposil. The pieces are made on flakes of varying thickness and outline, and the retouch ranges from semi-abrupt to abrupt.

‘Thumbnail’ scraper
A single ‘thumbnail’ scraper of Bronze Age character was recovered from toposil. The artefact had been formed by modifying the proximal end of a flake by abrupt retouch and snapping off the distal end.

Polished axe fragment
A fragment of ground and polished Neolithic flint axe was recovered from C[117]. The piece may have detached spontaneously during the original use of the axe, or a broken axe may have subsequently been used as a core.

Biface fragments
Two bifacially worked fragments were identified, both from the topsoil. The first piece is the tip of a blade of a flaked axe, not a tranchet type, that seems to have detached spontaneously during manufacture or use. The second is a finely shaped bar, broken at one end and bearing cortex on the unworked end. It is likely that the break occurred during manufacture, and was probably the result of ‘end shock’, a phenomenon well known to experimental archaeologists. The end product may perhaps have been intended to have been a ground or partly ground long narrow hafted tool of Neolithic type, perhaps an adze.

?Leaf-shaped arrowhead fragment
A fragment of possible leaf-shaped arrow head was recovered from C[6]. The artefact shows bifacial sub-parallel pressure-flaked removals along one edge.

CONCLUSIONS
The assemblage represents most stages of a flaking industry, producing blanks for scrapers as well as a few flakes for use as slightly modified or unretouched tools. The flaking regime shows only minimal premeditated tools, producing flakes of varying outline and thickness. A very small amount of flintwork characteristic of biface manufacture is also present, including most significantly a fragment of polished axe. This material, together with the fragment of possible leaf-shaped arrowhead, is almost certainly Neolithic in origin. The high incidence of scrapers, particularly discoidal scrapers is probably associated with the processing of raw materials, perhaps the de-fleshing of hides or bone working. The presence of borers and notched flakes suggests wood or bone working. Lightweight retouched or unretouched flakes would have served as general purpose knives for processing and butchery. Moderately large quantities of waste flakes, including worked out cores and a hammer-stone indicate that a significant level of flint working took place on the site.

With the exception of a probably Bronze Age thumbnail scraper and two perhaps Mesolithic bladelets, all the diagnostic material is of Neolithic origin. In view of this, it is likely that the majority of the assemblage dates from this period, although some
of the material may be contemporary with probably residual sherds of Bronze Age pottery recovered from various contexts.

HAWKINGE RELIEF ROAD (SITE D)

INTRODUCTION

A total of 581 pieces of struck flint (including 71 chips) were recovered during the investigations along the Relief Road (Table 4.3). The assessment report concluded that the bulk of the assemblage could fit an Early Neolithic context (Riccoboni 2007). A large quantity of struck flint (121 pieces) were retrieved from tree throw D[259]. The remaining 460 pieces were more thinly distributed, recovered from topsoil, subsoil or unstratified deposits, from 50 of the 62 1m² test pits and from two pits and a series of ditches dated to the Roman period. While the majority of pieces were clearly redeposited, the material from tree throw D[259] appeared coherent. It was proposed that it should be studied in detail in order to confirm the dating of the material and characterise the type of activity taking place.

METHODOLOGY

The flints were rapidly recorded onto an Excel spreadsheet. Information regarding technology was noted and modified pieces were studied in greater detail. The flint from tree throw D[259] were subject to technological and metrical analysis. Technological attributes recorded included butt type, hammer mode, platform abrasion, flake type, termination type, extent of dorsal cortex and the presence of dorsal scars. Butt types were defined after Inizan et al (1999, 136, fig. 62). The hammer mode traits were defined by Onhuma and Bergman (1982, 161-71), and flake types were defined after Harding (1990, 218-9). Metrical analysis was conducted on all complete flakes over 10mm² following the standard measurements set by Saville (1980).

RAW MATERIAL AND CONDITION

The majority of the pieces were manufactured from a light to dark grey flint. Where present the cortex was mainly stained and abraded. It was principally thin, but could measure up to 4-5mm. The chalked-derived raw material would have been available locally from superficial deposits. A small quantity of pieces were made from gravel-derived flint, and two pieces were made using Bullhead Beds flint. The condition of the flintwork varies. The assemblage is generally in a good condition suggesting that it was not exposed for long before burial, although several pieces displayed moderate to heavy signs of weathering indicating that some of the material has been

<table>
<thead>
<tr>
<th>Category</th>
<th>Southern section of road</th>
<th>Northern section of road</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tree throw [D259]</td>
<td>Remaining assemblage</td>
<td></td>
</tr>
<tr>
<td>Flake</td>
<td>87</td>
<td>61</td>
<td>249</td>
</tr>
<tr>
<td>Bladelet</td>
<td>1</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Blade</td>
<td>-</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Blade-like</td>
<td>3</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>Thinning flake</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Flake from a ground implement</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Irregular waste</td>
<td>-</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>Chip</td>
<td>27</td>
<td>-</td>
<td>44</td>
</tr>
<tr>
<td>Core face / edge rejuvenation flake</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Single platform blade core</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Single platform flake core</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Multiplatform flake core</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Fragmentary core</td>
<td>-</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Side scraper</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>End scraper</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>End-and-side scraper</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Hollow scraper</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Thumbnail scraper</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Denticulated scraper</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Other scraper</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Notched piece</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Backed knife</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Truncated blade-like</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Unfinished arrowhead</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Backed blade</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Polished axe</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Hammerstone</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>121</td>
<td>83</td>
<td>377</td>
</tr>
</tbody>
</table>

Table 4.3 Quantification of worked flint (Site D)

subject to some movement. Overall the pieces were free from surface cortication.

Tree throw D[259]

A total of 121 pieces of struck flint were recovered from two deposits within tree throw D[259] (Table 4.3). They were recovered entirely through hand collection; and surprisingly, sieving of bulk samples produced no further flintwork. In total,
118 pieces came from fill D[260] that was excavated in a series of six 0.10m spits (spits 1–6); and the shallow lower fill D[261] (spit 7) produced just three pieces. The quantity of flints was unevenly distributed through the spits. Whilst the highest quantities came from spits 1 (32 pieces), spit 4 (21 pieces) and spit 6 (49 pieces), spits 2, 3, 5 and 7 produced just one, 11, four and three pieces each, respectively.

The material is in a fresh condition, and the majority of pieces are free from surface cortication. The condition of the flints suggests that none of the material was exposed for long before deposition. In total 69 pieces are broken (73% of the total assemblage excluding the chips). The assemblage consists almost entirely of débitage products, principally flakes (85 pieces) and chips (27 pieces). The majority of the flakes are small (Fig 4.2), thin and fragmented, although the average weight of complete flakes and blades is 9.8g. Blades and bladelets are uncommon (4 pieces). Where present, the platforms are mostly plain, very narrow and unabraded. Nonetheless a few winged and punctiform platforms were also recorded. In total 31% (n=12) of the 38 assessable flints display minimal preparation of the striking platform. Where assessable, soft hammer percussion dominates (24 pieces), but hard hammer percussion was also recorded (8 pieces). Cortex on dorsal face was uncommon, indicating that the flakes from the first stages of the knapping sequence were deposited elsewhere. Two small thinning flakes were present.

Two small cores are present; two multiplatform flake cores weighing 48g and 19g. Both cores consist of small narrow thin flake types. The modified component is limited to a single end scraper although a blade-like flake with evidence of use-wear was also recovered. The end scraper is made on a hard hammer flake, and it displays fine direct semi-abrupt retouch. A Neolithic or Early Bronze Age date is most likely for this piece.

The flintwork was examined for refits, but no refits or conjoins were found. Nonetheless, the similarity of the raw material and the condition of the flints suggest that flakes from both cores were certainly present.

The material appears to be the result of a technology aimed at a relatively controlled production of flakes. The absence of diagnostic tools makes it difficult to date this assemblage, but based on technological grounds, a broad Neolithic – Early Bronze Age is most likely. The presence of so many small thin flakes, together with chips and two small cores suggests last stages of modification/thinning.

Remaining assemblage

The remaining flintwork is chronologically mixed. A small quantity of regular blades and bladelets as well as blade-like flakes and flakes with blade scar removals were recovered from various contexts. They possibly date to the Mesolithic or Early Neolithic. No microliths were found, but context D[50/02] produced a backed blade that confirms a Mesolithic presence.

The majority of the débitage was represented by flakes. For the most part, they were struck using simple reduction techniques characteristic of the late prehistoric period. Nonetheless, a fair amount are likely to be earlier. Topsoil D[242] produced a broken polished axe (Fig 4.1, no 5). It is made on a light grey flint and provides evidence for Neolithic presence. In addition, an arrowhead (Fig 4.1, no 6) was also recovered as a topsoil find. The implement is unfinished, and it may represent a leaf arrowhead or a barbed and tanged arrowhead. Only a broad Early Neolithic to Early Bronze Age date can therefore be proposed for the tool. The tool component comprised a total of 15 scrapers. Scrapers are difficult to date, but several examples are likely to belong to the Neolithic – Early Bronze Age including the thumbnail scraper from context D[279].

THE STREET (SITE E)

A total of 72 pieces of struck flint were recovered during the evaluation and excavation (Table 4.4). The technological appearance of the assemblage suggests that it dates mainly to the Late Neolithic and Bronze Age period. A thin blade-like flake and a flake struck from a core tool indicate that an earlier Neolithic component is present. It is possible that a few flakes also date to this period.
Forty-two pieces came from residual contexts including a pit, a layer and a series of ditches dating to the Late Iron Age period. The remaining 30 pieces were recovered from topsoil and subsoil deposits and from the spoil heap. Excluding Late Iron Age ditch E[199] which contained 11 struck flints, no archaeological features produced more than five pieces.

The condition of the flint varies, but the majority of pieces display moderate to heavy edge damage suggesting that the material has been subject to some movement. The flints are free from surface cortication. The main raw material selected consists of a mid to dark grey flint. The chalky stained cortex is of variable thickness. It is occasionally eroded and thin, but for the majority of pieces it measures between 4–8mm. This material would have been available locally from secondary geological contexts such as Clay-with-flints. A few pieces (c. 4) were made from gravel-derived flint.

The assemblage is dominated by unmodified pieces of débitage products. Flakes are represented by 61 pieces (Table 4.4). They represent 95.31% of the total débitage, a proportion that suggests a late prehistoric flake-based industry. A mixed hammer mode was recorded, but hard hammers were predominantly used. Where present the striking platforms were plain and unprepared. They often display several incipient points of percussion, and the bulb of percussion were often prominent. Overall the flakes appear to be the results of an informal approach to flake production. This reduction strategy is suggestive of a late prehistoric (Late Neolithic or Bronze Age) date. Some flakes and the blade-like flake from Late Iron Age ditch E[199] are likely to be earlier.

Two cores were recovered; a single platform flake core from the spoil heap and a multiplatform flake core from the subsoil deposit. Both have been worked in a rather unsystematic fashion to remove small flakes.

Six modified pieces were recovered, none of which are typologically diagnostic. The assemblage comprises five scrapers (three end scrapers, an end-and-side scraper and a disc scraper) and a notched piece. The small disc scraper from ditch E[199] weight 9g. It displays inverse retouch that extend all around the blank, including some stepped and scaled invasive retouch (Fig 4.1, no 7). The tool is likely to be Early Bronze Age in date. Dating the remaining modified pieces is less certain, but they would not be out of place in a Late Neolithic or Early Bronze Age context.

The assemblage provides limited evidence for late prehistoric presence at and around the site, although it is possible that a few pieces are earlier in date. The assemblage indicates that flint knapping and tool-using activities were taking place. Scrapers are frequently associated with hide working, but they would have been used in a multitude of activities.

PAGE ROAD (SITE F)

The watching brief at Page Road recovered 263 pieces of struck flint weighing 6095g (Table 4.5). The flint was predominantly from the topsoil (246 pieces). Five pieces came from Iron Age pit fill F[164], three from Roman pit fill F[147] and nine came from unstratified contexts. The flints represent more than one industry. Based on typological and technological grounds the bulk of the assemblage can be assigned to a broad Mesolithic - Early Bronze Age date. A few pieces are likely to be later in date.

<table>
<thead>
<tr>
<th>Category</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flake</td>
<td>175</td>
</tr>
<tr>
<td>Bladelet</td>
<td>3</td>
</tr>
<tr>
<td>Blade</td>
<td>21</td>
</tr>
<tr>
<td>Blade-like</td>
<td>9</td>
</tr>
<tr>
<td>Irregular waste</td>
<td>5</td>
</tr>
<tr>
<td>Core face / edge rejuvenation flake</td>
<td>1</td>
</tr>
<tr>
<td>Core on a flake</td>
<td>2</td>
</tr>
<tr>
<td>Single platform blade core</td>
<td>1</td>
</tr>
<tr>
<td>Multiplatform blade core</td>
<td>3</td>
</tr>
<tr>
<td>Multiplatform flake core</td>
<td>5</td>
</tr>
<tr>
<td>Single platform flake core</td>
<td>2</td>
</tr>
<tr>
<td>Fragmentary core</td>
<td>3</td>
</tr>
<tr>
<td>Side scraper</td>
<td>5</td>
</tr>
<tr>
<td>End scraper</td>
<td>9</td>
</tr>
<tr>
<td>End-and-side scraper</td>
<td>3</td>
</tr>
<tr>
<td>Other scraper</td>
<td>1</td>
</tr>
<tr>
<td>Piercer</td>
<td>1</td>
</tr>
<tr>
<td>Notched piece</td>
<td>2</td>
</tr>
<tr>
<td>Denticulate</td>
<td>1</td>
</tr>
<tr>
<td>Serrated piece</td>
<td>1</td>
</tr>
<tr>
<td>Core tool</td>
<td>3</td>
</tr>
<tr>
<td>Retouched flake</td>
<td>4</td>
</tr>
<tr>
<td>Retouched blade-like</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>263</td>
</tr>
</tbody>
</table>

Table 4.5 Quantification of the worked flint (Site F)
The raw material exploited for majority of pieces are mid to dark grey (to almost black). Overall, the flint appears fine grained with very few inclusions, and it seems to be of good flaking quality. Where present the cortex is slightly stained with a thickness varying from 1mm to 12mm, averaging between 4–6mm. A small amount of pieces (c 14) are struck from a lighter grey flint, in which inclusions are more abundant. This material would have been readily available at and around the site, from secondary geological contexts such as Clay-with-flints. There was no evidence for the use of gravel-derived flint, but two pieces were made using Bullhead Beds flint. They display a rusty band below a dark olive green outer surface. Bullhead flint occurs at the base of the Thanet Formation (Shepherd 1972, 114) or at the base of the Reading Formation.

A large proportion of the assemblage (c 75%) displays slight to moderate edge damage. It is surprising given the origin of the flints (material from topsoil deposits are usually expected to be in a worn state). The overall good condition of the flints suggests that the material has only been subject to minimal post depositional disturbance. Nonetheless, several pieces display more pronounced edge damage suggesting that a small proportion of the assemblage has undergone repeated depositions. Iron marks frequently associated with ploughing activities were often noted on these pieces. A total of 137 pieces were recorded as broken. The majority of pieces were free from surface cortication, but a small amount of pieces (c 10) display light blue or creamy surface discolouration.

A large proportion of the assemblage consists of débitage products (Table 4.5). This group is largely composed of flakes (175 pieces), but a few bladelets, blades and blade-like flakes are also represented (33 pieces). The presence of bladelets, blades, blade-like flakes and flakes with blade scars on the dorsal surface reflects a blade-based industry. This indicates presence in the landscape during the Mesolithic or Early Neolithic period (Ford 1987). In addition to the blades and bladelets, the presence of a core face/edge rejuvenation flake and four cores used to remove blades and bladelets (eg Fig 4.1, no 8), indicate knapping activity during that period.

Amongst the remaining flakes, a mixed hammer mode was recorded. Several flakes were crudely made, but the majority appear to be carefully worked, representing the results of a technology aimed at a relatively controlled production of flakes. Although striking platforms were often plain, they were mostly narrow and occasionally trimmed. Thin flake scar removals on the dorsal face were common. Evidence for careful reduction is characteristic of Neolithic - Early Bronze Age assemblage. The majority of the cores were extensively worked. In addition to the blade-types mentioned above, the majority of the cores consisted of narrow thin flake types. They displayed evidence for platform preparation. They are most characteristic of a Neolithic - Early Bronze Age date.

Thirty-three modified pieces were found including 18 scrapers, a piercer, two notched pieces, a serrated piece, three core tool fragments and seven retouched pieces. The serrated piece (Fig 4.1, no 9) was made on a blade-like flake with parallel ridges on the dorsal surface. It displays a series of worn serrations on the right-hand edge towards the distal end. The tool indicates a Neolithic date. One of the core tool is sub rectangular in profile. It is likely to represent a broken flaked pick/adze or chisel and possibly belongs to the Mesolithic or Neolithic period. The remaining tools are less diagnostic, but several scrapers display fine retouch and a broad Neolithic/ Early Bronze Age date would be appropriate for these pieces. A few pieces are simply retouched, and they are likely to be later in date.

The assemblage from Hawkinge Aerodrome Page Road development is likely to be incomplete. Small pieces appear missing or under-represented. This absence could be genuine, but it is likely to be due to collection bias and subsequent disturbance of the site. It is therefore difficult to interpret accurately the assemblage. The flintwork indicates that the site was visited during the Mesolithic / Early Neolithic period although the only pieces that can be clearly assigned to this period consists of cores used to remove very narrow blades and blades with parallel lateral edges. The assemblage suggests that flints were likely worked at or close to the site. Furthermore, the large quantity of modified pieces suggests that during the Neolithic - Early Bronze Age occupation widened to domestic activities.

CONCLUSIONS

Flints were recovered in varying quantities from all the sites, although a large quantity came from the top soil, and no large significant well-stratified groups were found. Nonetheless, the assemblages provide evidence for a continued presence during the prehistoric period, with greater evidence for occupation during the Neolithic to Early Bronze Age period.

Blades, bladelets and blade-like flakes reflecting a blade-orientated industry were found in very small quantities on all the sites, with the highest incidence deriving from Page Road (Site F). The same site produced four blade cores (eg Fig 4.1, no 8) and a core face/edge rejuvenation flake indicating
knapping activity. These pieces indicate a low-level exploitation of the area during the Mesolithic or Early Neolithic period. The quantity of flints recovered from the various sites is small, but it is in keeping with the generally scarce evidence for Mesolithic presence on the Chalkland around Hawkinge. Saying that, the distribution of Mesolithic material often reflects the underlying geology, and an assemblage of eight Horsham Points was found in a pit during the HS1 Section 1 excavation at Saltwood Tunnel, located just to the southwest of Hawkinge on the Lower Greensand (Garwood 2011, 42).

Probable Early Neolithic material was also present in a tree throw D[259] from the Relief Road (Site D) excavation. The flintwork comprised principally of knapping débitage. With no chronologically distinctive tools, it is difficult to be certain which period it represents. Based on technological grounds a broad Neolithic – Early Bronze Age date is most likely. Nonetheless, the flints were very fresh, and given the presence of a pottery sherd with potentially an Early Neolithic date, it is likely that the small flint group is contemporary with the pottery and the tree throw. An Early Neolithic presence is certainly confirmed in the area. Early Neolithic pits dated to 3650-3380 cal BC (NZA-20599) were found at Saltwood Tunnel. They contained flintwork including some serrated pieces and Plain Bowl pottery sherds (Garwood 2011, 57).

No other groups were found from these Hawkinge excavations. Nonetheless, the diagnostic tools and much of the débitage seem to indicate primarily Neolithic and Early Bronze Age activity. Neolithic diagnostic tools include four polished axe fragments (Fig 4.1, nos 2-3 and 5), a finely worked broken leaf arrowhead (Fig 4.1, no 1) and a serrated flake (Fig 4.1, no 9). The polished axe fragments came mainly from the top soil; they may have become damaged during use, or once they were abandoned. In addition, a roughout from Site B (Fig 4.1, no 4) and a bifacially worked piece from Site C provide limited evidence for axe manufacture. Tool making was also evidenced by the presence of second unfinished arrowhead from Site D (Fig 4.1, no 6). It could represent a Neolithic leaf arrowhead or an Early Bronze Age barbed and tanged arrowhead. A thumbnail scraper from Site D and a small disc scraper from Site E (Fig 4.1, no 7) are also likely to be Early Bronze Age in date. The remaining tools were found in varying quantities from all sites. They are less diagnostic, but they indicate that a wide range of activities were occurring alongside flint knapping.

Overall, the flintwork suggests a more extensive Neolithic/Early Bronze Age occupation, although the focus of this activity may have been located away from the excavated areas. The flintwork is in keeping with the assemblage from Terlingham III, which produced material indicating principally a Late Neolithic to Early Bronze Age date (AOC 2006, 38).

CATALOGUE (FIG 4.1)
1. Leaf-shaped arrowhead; Neolithic; Site A topsoil
2. Mid-section of polished axe; Neolithic; Site A evaluation trench [96b/2]
3. Section of polished axe with cutting edge; Neolithic; Site B topsoil B[1]
4. Axe roughout; Neolithic; Site B topsoil B[1]
5. Polished axe; Neolithic; topsoil D[242]
6. Unfinished arrowhead; Neolithic or Early Bronze Age; Site D topsoil,
7. Small disc scraper; residual Early Bronze Age; Late Iron Age ditch E[199], fill E[201]
8. Multiplatform blade core; Mesolithic or Early Neolithic; Site F topsoil
9. Serrated piece; Neolithic; Site F topsoil

4.2 PREHISTORIC AND ROMAN POTTERY
Anna Doherty, Sue Hamilton, Malcolm Lyne, Mike Seager
Thomas and Isobel Thompson

INTRODUCTION
Each of the five main excavation areas at Hawkinge produced prehistoric and/or Late Iron Age/Roman pottery. The more significant elements include two small Beaker pit groups from the Aerodrome (Site A) and larger assemblages of post-Deverel-Rimbury and Early Iron Age to transitional Early/Middle Iron Age types from both the Aerodrome (Site A) and Canterbury Road (Site C). The Aerodrome (Site A) also produced a large regionally-important group of transitional Middle/Late Iron Age pottery which represents one of the only contemporary assemblages of its type from Kent to be directly stratified with early coinage.

Although all of the sites produced some Late Iron Age/Roman pottery, the assemblages from settlement-related features were generally relatively modest in size, the only reasonably large groups being recovered from Aerodrome. Funerary groups dating to the Late Iron Age/early Roman period were however, noted at the Aerodrome (Site A), Canterbury Road (Site C), Page Road (Site F) and The Street (Site E) sites.

OVERVIEW OF AUTHORSHIP
Separate specialist reports on the prehistoric pottery from the Canterbury Road (Site C) and Aerodrome sites (sites A, AA and B) were prepared in 2000 and 2003 by Sue Hamilton and Mike Seager Thomas. The 2003 grey literature report from the Aerodrome also included specialist reports by Isobel Thompson (on the Middle/Late Iron Age pottery) and Malcolm Lyne (on the Roman pottery). These were originally intended for publication with the standalone site narratives; although these texts are largely presented as originally written, some editing...
has been carried out. Some of the discussion on chronology and pottery typology had been superseded by more recent literature, so these have been omitted and a new text on chronology, incorporating some discussion of the ceramic evidence, has been added. In addition, some very similar elements of analysis on the two early/mid 1st millennium BC assemblages have been synthesized in an updated discussion section.

More generally, some additional context has been added throughout the following texts from the many regionally-significant assemblages published in the intervening years since 2003. Most notably these include pottery from the High Speed 1 project (Booth 2006; Booth et al. 2011) whose south-eastern extent lies within a few kilometres of Hawkinge. Other important sites like Highstead (Bennett et al. 2007) and Rainham (Seager Thomas 2014), though located further afield, represent some of the most useful regional parallels which were not available at the original time of writing. All updates to the text were carried out by Anna Doherty in 2016; most of these revisions can be readily distinguished by references to works post-dating 2003.

Pottery from the Page Road (Site F), The Street (Site E) and Relief Road (Site D) excavations had previously been subject to post-excavation assessment (Barber 2002; Thompson 2006; Thompson 2007). A new analysis report was prepared by Anna Doherty on Late Iron Age and Roman funerary ceramics from all of the sites (incorporating some elements taken from the existing reports from the Aerodrome and Canterbury Road). The non-funerary assemblages from these three more recent sites were all fairly small so only summary reports have been included here.

METHODS

The recording of the Aerodrome and Canterbury Road prehistoric assemblages was carried out in the 1990s/early 2000s following the then current guidelines of the Prehistoric Ceramics Research Group (PCRG 1992; 1997). Site specific fabric codes were ascribed on the basis of macroscopic examination. It should be noted that the two assemblages were not recorded using common fabric codes; however, fabric descriptions in both reports note any fabric concordances between the two assemblages. Each diagnostic sherd was assigned to morphological/decorative and technological type and dating of fabrics was by association with chronologically diagnostic feature sherds. The pottery was counted and weighed to the nearest whole gram.

A report on a single large group of later Iron Age pottery from pit C[74] at Canterbury Road also used a series of site-specific fabric definitions and follows the form typology set out by Thompson (1982). Quantification was by sherd count and weight.

The Roman pottery from Canterbury Road was examined and assemblages quantified by numbers of sherds and their weights per fabric. Only one assemblage was large enough for more accurate quantification by Estimated Vessel Equivalents (EVEs) based on rim sherds (Orton 1975).

These fabrics were identified with the aid of a x8 lens with built-in metric scale for determining the nature, size, frequency and shape of inclusions. A x30 pocket microscope with artificial illumination source was also used for some of the finer fabrics. All fabric codings used in quantification tables are those formulated by the Canterbury Archaeological Trust for East Kent and divided into three groupings with the prefixes B for ‘Belgic’, R for Early Roman and LR for Late Roman.

The small prehistoric pottery assemblages from The Street and the Relief Road were originally recorded for assessment by Charlotte Thompson using site-specific fabric type-series formulated in accordance with the guidelines of the Prehistoric Ceramics Research Group (1997). Late Iron Age and Roman pottery from Page Road, The Street and the Relief Road was recorded using site-specific codes with some concordance to fabric codes from the unpublished Canterbury Archaeological Trust series. Fuller details of these codes are provided in the original assessment reports (Barber 2002; Thompson 2006; Thompson 2007).

CERAMIC PHASE OVERVIEWS

Anna Doherty

OVERVIEW OF POTTERY FROM PERIOD 1.1 EARLY/ MIDDLE NEOLITHIC (4000–2800 BC)

Evidence for activity in this period is slightly tenuous as only one rather broadly-dated tree throw feature (D[259]) was assigned to it. The dating was based on a large flint group, which was technologically coherent but lacking in diagnostic tools, and therefore only assigned a general Neolithic-Early Bronze Age date range. However, a single associated bodysherd of pottery was in an ill-sorted flint-tempered fabric, which is characteristic of the Early Neolithic Carinated/Plain Bowl (4000–3300 BC) and Middle Neolithic Peterborough Ware (3500–2800/2500 BC) traditions but atypical of the Beaker style vessels which characterise Period 1.2.
early DR vessels are usually associated with grog-tempered between 1700-1500BC (Needham 1996, 132-133). These East Anglia, which suggest that this ceramic style emerged radiocarbon dates associated with Ardleigh-style DR urns from Age Deverel-Rimbury (DR) tradition. There are some early (Site AA) could be confidently assigned to the Middle Bronze D), also appears to belong to this narrower date range. hazelnut shells from an isolated pit at the Relief Road site (Site T unnel site (Garwood 2011, 118-130, table 3.3). The only burials from barrow-like monuments at the nearby Saltwood 2250–1900 BC, including a single pit group and a series of groups for several hundred years after its emergence, before becoming much more widely adopted from c 2250 BC (Needham 2005). It seems most likely that the activity at Hawkinge belongs to this second phase of development. Analysis of a limited number of radiocarbon associations in Needham's paper also suggested that globular S-profile with shoulders at the mid body which are present in the two Hawkinge pits, and which typify the Beaker tradition in East Anglia and the South-East more generally, tend to cluster around and after the turn of the 2nd millennium (ibid, 200). Certainly, taken as a whole, both the radiocarbon and ceramic evidence from the High Speed 1 project seems to indicate that most Beaker-related activity belonged broadly to the period 2250–1900 BC, including a single pit group and a series of burials from barrow-like monuments at the nearby Saltwood Tunnel site (Garwood 2011, 118-130, table 3.3). The only radiocarbon date obtained from the current project, on charred hazelnut shells from an isolated pit at the Relief Road site (Site D), also appears to belong to this narrower date range.

OVERVIEW OF POTTERY FROM PERIOD 2.2 LATE BRONZE AGE/EARLIEST IRON AGE (950–500 BC)
Period 2.2 represents the earliest evidence for more tangible settlement activity at the Aerodrome (Site A) and the Street (Site E) and is dated by its association with post-Deverel-Rimbury (PDR) pottery assemblages. Ceramics of this tradition were also noted at Canterbury Road (Site C) but they were often found in mixed groups with later material so it was difficult to ascribe any individual feature or landuse element to this period although the pottery suggests some Late Bronze Age/earliest Iron Age activity at the site. Diagnostic examples of early undeveloped ‘plain wares’ usually dated to c 1150–950 BC (Needham 1996, 134-137), appear to be absent but both developed plain wares (c 950–800) and decorated wares (c 800–500) were noted. Unfortunately, relatively few individual pottery groups could be assigned conclusively to one or the other and many appeared to contain a mixture of both. For this reason, no attempt has been made to distinguish different stratigraphic sub-phases relating to the different styles of PDR pottery. The end date for this period is given here at 500 BC, following the chronological scheme proposed in the High Speed 1 project (Champion 2011, table 4.1, 156). However, this is possibly too early for typical DR assemblages from Kent. Champion (ibid, table 4.2, 158) only cited a single DR-producing feature with radiocarbon dates which could significantly pre-date 1500BC, from Princes Road, Dartford. However the two vessels in this case were unusual and distinctive DR urns with very complex decoration, which found their closest parallels outside the region, in the early Ardleigh group (Couldrey 2003, 59).

OVERVIEW OF POTTERY FROM PERIOD 2.1 MIDDLE BRONZE AGE (1500–1150BC)
A single placed vessel from the 1998 Aerodrome watching brief (Site AA) could be confidently assigned to the Middle Bronze Age Deverel-Rimbury (DR) tradition. There are some early radiocarbon dates associated with Ardleigh-style DR urns from East Anglia, which suggest that this ceramic style emerged between 1700-1500BC (Needham 1996, 132-133). These early DR vessels are usually associated with grog-tempered fabrics and complex decorative styles which might suggest a direct evolution from other Late Neolithic/Early Bronze Age ceramic traditions (Brown 1995, 128-129). However, DR pottery from Kent, which at least initially, seems to be almost exclusively flint-tempered, and which tends to be less extensively decorated, probably largely post-dates this initial period of development. It should be noted here that, on the High Speed 1 project, a start date of 1600BC for Deverel-Rimbury was suggested (Champion 2011, table 4.1, 156). However, this is possibly too early for typical DR assemblages from Kent. Champion (ibid, table 4.2, 158) only cited a single DR-producing feature with radiocarbon dates which could significantly pre-date 1500BC, from Princes Road, Dartford. However the two vessels in this case were unusual and distinctive DR urns with very complex decoration, which found their closest parallels outside the region, in the early Ardleigh group (Couldrey 2003, 59).
OVERVIEW OF POTTERY FROM PERIOD 3.1 EARLY IRON AGE AND TRANSITIONAL EARLY/MIDDLE IRON AGE (500-300BC)

Period 2.3 appears to represent the height of settlement activity at the Aerodrome and Canterbury Road. It is probably worth emphasising that it was often difficult to distinguish between the ceramics of periods 2.2 and 2.3 when only fairly undiagnostic material was present. However, the latter period was associated with a new suite of forms, often exhibiting continental influences and frequently using rusticated surface treatment. This material is analogous to the important Early or Early/Middle Iron Age assemblage from periods 3a and 3b at Highstead (Couldrey 2007). The Highstead report attributes slightly different date ranges to material which is typologically similar to that from Hawkinge (Period 3a was assigned to 600-500BC and 3b to 500-400BC). Although the Highstead chronological framework is probably not an unreasonable estimate, it was not supported by associated scientific dates or closely-dated metalwork. Work on the High Speed 1 project also identified a number of pottery assemblages which appeared to span the Early Iron Age and transitional Early/Middle Iron Age periods, including examples from sites at the southeastern end of the scheme at Saltwood Tunnel, Little Stock Farm, Beechbrook Wood and Tutt Hill. Some metalwork and radiocarbon associations from the scheme as a whole lead to an estimate of 550-300 BC for this period which was termed ‘Early Iron Age’ (Champion 2011, 164-167); though again, the specialist pottery report from the same project used a slightly different chronological framework with a proposed ‘Early-Middle Iron Age’ ceramic phase spanning 600-350 BC (Morris 2006, fig 3.2, 71).

In the absence of many high quality associations between pottery and radiocarbon dates, or of any systematic regional review of such evidence, there is probably little point in arguing over differences of 50 years here or there: all of these date ranges are essentially estimates. In the current text, period 2.2 has been ascribed to 500-300BC, as suggested in the specialist pottery report, on the grounds that it clearly represents a typological development from the preceding period 2.1 and there is reason to suspect that the assemblage may have continued into the early part of the Middle Iron Age (Hamilton and Seager Thomas this volume). On the other hand we can make no more claims to pinpoint accuracy in dating the Hawkinge pottery assemblages than any of the examples stated above.

OVERVIEW OF POTTERY FROM PERIOD 3.2 MIDDLE/LATE IRON AGE (100-50BC/AD10)

The Hawkinge excavations failed to produce wholly Middle Iron Age pottery assemblages characterised by S-profile jars, saucepan pots, and other plain profile ovoid forms, like those encountered at sites like Beechbrook Wood, Little Stock Farm and Saltwood Tunnel on the High Speed 1 project (Morris 2006). This strongly suggests a period of hiatus at the end of period 2.2. However, some Middle Iron Age elements were found in features that also contained grog-tempered or occasionally wheel-thrown pottery. Evidence for a hiatus in the middle part of the Middle Iron Age, followed by renewed activity in the late 2nd/1st century BC was mirrored in another nearby excavation at Gibraatar Lane, Hawkinge. Here, small assemblages of transitional Middle/Late Iron Age character are recorded from a handful of pits and there appeared to be some degree of continuity over the course of the 1st century BC into the early Roman period (Coulthred 2006). Although the stratigraphic evidence from period 2.3 in the current project is relatively slight, the finds assemblages are significant and appear slightly at odds with the picture on the High Speed 1 project, where it was noted, ‘among the HS1 sites, those with Late Iron Age evidence were almost all found in the half century or so before the conquest’ (Champion 2011, 169).

One massive ceramic group, from pit A[74] at the Aerodrome, included elements from several hundred vessels, many found in a partially-complete state. Interestingly many of the typologically Middle Iron Age vessels from this group were amongst the most complete (see for example the vessels on Figs 4.15–4.16). This makes it seem unlikely that these are residual sherds or material that had become mixed up in long-lived midden deposits. Instead this is probably a primary, possibly votive, deposit from the period when Middle Iron Age ceramic styles were still current and in use but shortly after the arrival of new grog-tempered, wheel-thrown technology and ‘Belgic’ stylistic traits. Similar transitional groups have been noted at a number of sites in Kent at Farningham Hill, Canterbury, Iwade and Highstead (Couldrey 1984; Blockley et al 1995; Lyne 2005; Couldrey & Thompson 2007), though none of these produced any direct stratigraphic associations with coins, metalwork or scientific dates, which might help us to determine conclusively when they were deposited. The fact that the Aerodrome assemblage is directly associated with at least three, and probably five, Class I potin coins, dating to the late 2nd-early 1st century BC, therefore constitutes important dating evidence for the region.
Several radiocarbon determinations from High Speed 1, have previously hinted that grog-tempered vessels might occasionally have been used even further back into the Middle Iron Age, perhaps deposited in the early 2nd century BC or before (Morris 2006, 69). Some of these associations are questionable, however. For example, although the pottery report describes the grog-tempered vessels accompanying an inhumation burial from Little Stock Farm, radiocarbon dated to 380-170 BC, as grave goods (ibid), the synthetic volume indicates that this burial was partial and truncated and does not mention any placed vessels but suggests that the discrepancy in dating between the pottery and the skeleton might be down to curation of the human remains (Champion 2011, 237). The other supporting dating evidence for the early occurrence of grog at Beechbrook Wood and Eynhorne Street was based on single determinations on associated charcoal or charred plant remains, which could possibly be residual (Morris 2006, 68). The grog-tempered conical cup from the latter did however, have strong continental parallels, suggesting it could be an import from the Champagne region where grog-tempered pottery was much more common in Middle Iron Age (Morris 2006, 68). Certainly none of these potentially early grog-tempered vessels displayed ‘Belgic’ stylistic traits such as cordons or pronounced pedestal bases which appear to have first arrived in southern Britain as part of a cultural package, alongside high-status Aylesford Swarling style burials.

The earliest evidence we have for ‘Belgic’ vessels in such funerary contexts is from the cemetery dated to c 90–50 BC at Westhampnett in West Sussex, although interestingly, it was noted that the contemporary settlement pottery from the site appeared to have retained its Middle Iron Age characteristics (Mepham 1997, 133). The association with class I potin coins in the Aerodrome pit perhaps suggests the possibility that such pottery could have arrived even earlier, although it is equally likely that the coins were deposited at the end of their production range or perhaps even that they were curated beyond the early 1st century BC. Interestingly a similar transitional Middle/Late Iron Age assemblage was recovered from pits which produced multiple Class I potins at St Anne’s Road Eastbourne; however, the pottery in this case was more fragmented and possibly characteristic of longer-lived mixed midden material (Doherty 2016, 11).

Since secure evidence for the widespread use of grog-tempered fabrics in the 2nd century BC is lacking from other sites, it is suggested that the A[74] group was probably deposited in the first half of the 1st century (100–50 BC). More modest assemblages of broadly similar character, probably predating Period 3, were noted in field-systems and an enclosure from Canterbury Road and The Street. However because this material is more fragmentary it cannot be dated so closely and might belong anywhere in the 1st century BC to very early century AD.

BEAKER POTTERY FROM HAWKINGE AERODROME

Mike Seager Thomas

QUANTIFICATION AND DISTRIBUTION

The Beaker pottery from Hawkinge Aerodrome comprises c 150 sherds weighing less than half a kilogram. At least five different vessels are represented. Most of this total (126 sherds/355g) belongs to one of two vessels found in pit B[47] (pit illustrated on Fig 2.5). Two further groups come from widely separated locations to the north of this. One was unstratified. It comprises sherds from one or more vessels. The other, from the extreme north-east of the evaluation, was associated with a small ditch [137a/8] (ditch illustrated on Fig 2.4). It yielded sherds from two vessels. Both of the stratified pairs comprise a medium-size and a much smaller vessel. All these groups are likely to indicate contemporary Beaker activity in the areas in which they were found.

POTTERY FABRICS

All of the surviving Beaker sherds are tempered with rare (<1%) medium sand-sized (<1mm) burnt flint and un-quantifiable medium sand-sized grog. They also contain occasional sub-rounded, large sand-sized (2mm) to small granule-sized quartz (4mm), assumed to have been naturally occurring in the potting clay. Their outer surfaces are mostly red (oxidized), and their cores and inner surfaces red to brown. Sherd thickness ranges from 5 to 8mm. This compares closely to other Beaker fabrics from the region (cf Smith 1987, 251; Gibson 1992, 283; Boast & Gibson 2000, 370).

TYPOLOGY

Four out of the five vessels represented can be accommodated within the existing Beaker typologies of Clarke (1970) and Case (1977; 1993). All were probably globular or barrel-shaped with short, everted rims, and fall into the lower size range for British Beakers. Collectively they fall into Case’s ‘Group E’, a regional grouping primarily associated with East Anglia and south-east England (Case 1993, 263). In terms of form they are probably all best classified amongst Needham’s (2005, 198-
200) globular S-profile Beakers. The assemblage is probably broadly typical of Beakers from the period 2250–1900 BC, the period following Needham's (2005) 'fission horizon' when Beaker culture became more pervasive and less restricted to elite groups.

From pit fill B[48] comes a vessel with a short, everted rim and a barrel-shaped body decorated with distinct horizontal zones of 'barbed wire' impressions (short cord impressions at right-angles to the line created by them, thought to be created by winding a cord around itself or some other former). The zones comprise horizontal lines and half chevrons (Fig 4.3, P1). The form of the vessel and mode of its decoration, if not its exact configuration, is closely paralleled in an assemblage from barrow 2 at Martlesham in Suffolk (Case 1993, fig 20.2; Martin 1976). Similar Kent vessels come from Folkestone, Canterbury and Tovil (Clarke 1970, figs 336, 338 and 350). Barbed wire decoration was noted in the relatively large non-funerary beaker assemblage from Beechbrook Wood (eg Garwood 2011, fig 3.48, 122).

Pit fill B[48] also yielded a vessel with a short, everted rim and a barrel-shaped body decorated with horizontal, tooled lines (Fig 4.3, P2). It too has a close parallel in the assemblage from barrow 2 at Martlesham in Suffolk (Case 1993, fig 20.3; Martin 1976). Closer to home, this type of tooling occurs on a vessel from Deal (Clarke 1970, fig 391) and similar vessels have been noted in assemblages from the A2 Pepperhill to Cobham Scheme (Brown & Millum 2012, fig 2.36, no 5) and was a recurrent feature at Beechbrook Wood (Garwood 2011, fig 3.48, eg P3-P5, P8).

A sherd from ditch [137a/8] with a round body decorated with horizontal, comb-impressed lines (Fig 4.3, P3) probably also belongs to a similar globular shaped Beaker. Similarly decorated Kent vessels come from Preston, Erith and Bromley (Clarke 1970, figs 389, 394 and 406), and Minster (Boast & Gibson 2000, fig 6.2.6). More recently larger pit assemblage from the A2 and Beechbrook Wood on the High Speed 1 project also featured numerous comb-stabbed vessels (Brown & Millum 2012, Fig 2.36, 6-7 and Fig. 2.37, 11-15; Garwood 2011, Fig 3.48, P2).

The second vessel from ditch [137a/8] has a short, everted rim and a barrel-shaped body decorated with horizontal lines of finger-nail impressions (Fig 4.3, P4). Such ‘rusticated’ vessels are thought to be primarily a domestic type (Gibson 1986, 33). There is no difference in quality of execution, however, between this vessel and the foregoing Beakers. Again, close parallels are found in the Beaker groups from the A2 and Beechbrook Wood (Garwood 2011, fig 3.48 P6, P11; Brown & Millum 2012, fig 2.36, no 1 & fig. 2.37, no 8).

DISCUSSION

The Beakers from Hawkinge form two pairs of a medium-sized and a much smaller vessel. The pairing of vessels in both may be a coincidence, but it may suggest that they were deliberately selected and deposited together. On the High Speed 1 project it was suggested rich pit groups might have served as markers of significant boundaries (Garwood 2011, 123) and this may explain the wide geographical spread of the features.

CATALOGUE

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Barrel-shaped Beaker; body decorated with distinct horizontal zones of ‘barbed wire’ impressions; pit B[47], fill B[48]</td>
</tr>
<tr>
<td>P2</td>
<td>Barrel-shaped Beaker; body decorated with horizontal, tooled lines; pit B[47], fill B[48]</td>
</tr>
<tr>
<td>P3</td>
<td>Beaker sherd; round body decorated with horizontal, comb-impressed lines; ditch [137a/8]</td>
</tr>
<tr>
<td>P4</td>
<td>Barrel-shaped beaker; decorated with horizontal lines of finger-nail impressions; ditch [137a/8]</td>
</tr>
</tbody>
</table>

EARLIER FIRST MILLENNIUM BC POTTERY FROM HAWKINGE AERODROME (SITE A)

Sue Hamilton and Mike Seager Thomas

INTRODUCTION

Earlier first millennium BC pottery was spread across the whole south-eastern half of the site but concentrated in the area of the 1998 excavation (Site A). Aside from a small amount of Middle Bronze Age material from a single feature in the area of the 1998 watching brief (pit AA[7], fill AA[8]), the assemblage belongs to three, chronologically sequential traditions. The first two of these comprise ‘developed’ and ‘decorated’ post Deverel-Rimbury (PDR) pottery, usually dated to the Late Bronze Age and the Late Bronze Age/Early Iron Age transition respectively. Owing to the longevity of ‘developed’ types, however, it is impossible to draw a clear chronological line between these two styles: possibly the two Hawkinge groups are contemporary.
However, contexts containing only ‘developed’ pottery were concentrated to the south-west of the building (B1) suggesting that this could be the earliest focus of activity on the site.

The principal assemblage of ‘decorated’ pottery is from the ring ditch (RD1), which on typological grounds, seems likely to represent a Late Neolithic/Early Bronze Age round barrow, in which much later pottery accumulated, either as entirely intrusive material or deposited or accumulated in the top of still-visible negative features. It is tempting to date this assemblage to the Late Bronze Age/Early Iron Age transition. But the ‘decorated’ material from it is abraded, and was associated with several later ‘rusticated’ sherds, including two which were unabraded. Indeed ‘developed’ and/or ‘decorated’ pottery is present in almost all unequivocally Early Iron Age or Early/Middle Iron Age pits and indicates the re-deposition of early material on the site at this time. No individual feature contained only ‘decorated’ pottery or only ‘developed’ and ‘decorated’ pottery.

The largest group dates broadly to the Early Iron Age or Early/Middle Iron Age transition. It is defined by the frequent presence of pottery with applied ‘rustication’ and by a new suite of forms many of which exhibit direct continental influences. This includes large assemblages from pits to the south (G16) and the south east (G17) of the ring ditch (RD1) and within the building (B1), and from several of the postholes (G10). A lack of later material from these features and the good condition of much of the Early Iron Age or Early/Middle Iron Age material – which implies that it was buried soon after it went out of use – suggest a contemporary, Early Iron Age or transitional Early/Middle Iron Age date for them.

POTTERY TYPOLOGY

The way the Hawkinge assemblage was treated after discard has resulted in pottery belonging to at least three typological groups described, ‘developed’ and ‘decorated’ PDR and Early Iron Age – Early/Middle Iron Age, becoming mixed. Since each group overlaps typologically with the next it is not certain to which many individual vessels belong. For this reason, therefore, they are grouped here by type rather than date. This is far from an ideal methodology but from it a trend of parallels consistent with the foregoing dating emerges. Each of the different typological group comprises a wide variety of types and sizes of vessel and it is clear that within each period pottery was used in a wide variety of roles, probably including storage (the very large jars), cooking (open, smaller jars) and the presentation of food (the finewares).

Deverel-Rimbury pottery

But the ‘decorated’ material from it is abraded, and was associated with several later ‘rusticated’ sherds, including two which were unabraded. Indeed ‘developed’ and/or ‘decorated’ pottery is present in almost all unequivocally Early Iron Age or Early/Middle Iron Age pits and indicates the re-deposition of early material on the site at this time. No individual feature contained only ‘decorated’ pottery or only ‘developed’ and ‘decorated’ pottery.

The largest group dates broadly to the Early Iron Age or Early/Middle Iron Age transition. It is defined by the frequent presence of pottery with applied ‘rustication’ and by a new suite of forms many of which exhibit direct continental influences. This includes large assemblages from pits to the south (G16) and the south east (G17) of the ring ditch (RD1) and within the building (B1), and from several of the postholes (G10). A lack of later material from these features and the good condition of much of the Early Iron Age or Early/Middle Iron Age material – which implies that it was buried soon after it went out of use – suggest a contemporary, Early Iron Age or transitional Early/Middle Iron Age date for them.

The way the Hawkinge assemblage was treated after discard has resulted in pottery belonging to at least three typological groups described, ‘developed’ and ‘decorated’ PDR and Early Iron Age – Early/Middle Iron Age, becoming mixed. Since each group overlaps typologically with the next it is not certain to which many individual vessels belong. For this reason, therefore, they are grouped here by type rather than date. This is far from an ideal methodology but from it a trend of parallels consistent with the foregoing dating emerges. Each of the different typological group comprises a wide variety of types and sizes of vessel and it is clear that within each period pottery was used in a wide variety of roles, probably including storage (the very large jars), cooking (open, smaller jars) and the presentation of food (the finewares).

Deverel-Rimbury pottery

Bucket-urns are the principal type fossil of the DR pottery tradition. They are generally in coarse fabrics and some are very large. Hawkinge yielded fragments from two different urns, both straight-sided. The first was associated with a possible cremation deposit in pit AA[7] (Fig 4.4, P5). It came from the area of the 1998 watching-brief, north-east of the main excavation (Site AA; feature shown on Fig 2.9). Its fabric, which is one of the coarsest distinguished at Hawkinge (fabric F3), resembles other Middle Bronze Age fabrics from the Folkestone area and is within the range characteristic of this type of vessel. A Middle Bronze Age date for it, therefore, seems most likely. The other is from pit A[72], an Early Iron Age or Early/Middle Iron Age dated feature to the south of main excavation (feature shown on Fig 2.15). It has a line of finger-pinched impressions around its upper body (Fig 4.6, P67). The earliest material with which it was associated is of Late Bronze Age or Late Bronze Age/Early Iron Age date. It is unabraded, and it is in a fabric (fabric FG) otherwise associated with earlier first millennium BC pottery types. It is assumed, therefore, that it belongs to this later period.

Post Deverel-Rimbury pottery

Much of the earlier first millennium BC pottery from Hawkinge Aerodrome belongs to the PDR pottery tradition (vide Barrett 1980). This can be sub-divided into three overlapping but roughly sequential, typological groups. The first and earliest of these, usually called ‘plain’ or ‘undecorated’, is not obviously represented in the Hawkinge Aerodrome assemblage. Characteristic vessel forms of it include shouldered jars with pronounced, usually rounded, shoulders and flared necks, closed-mouthed convex jars, and bi-partite bowls with obtuse but often sharp shoulder angles and concave upper necks. These tend not to be decorated. It was succeeded by a ‘developed’ group. Jar forms associated with this group are largely unchanged from the previous one but decoration on vessel-bodies, both linear and finger-tip impressed, is more common. Also there are more hemispherical bowls with inverted rims and bi-partite bowls with straight or convex, as opposed to concave necks, and ‘developed’ rims. The last and most recent group is usually characterized as ‘decorated’. It marks a floruit in tooled-linear, incised, and finger-tip impressed decoration. Rim decoration, rather than being placed on top as in earlier groups, was frequently external. Increasingly common vessel forms include angular, tri-partite jars and angular, bi-partite bowls with incised or ‘notched’ shoulder cordon, and round shouldered or ‘onion-shaped’ bowls.

CHAPTER 4 SPECIALIST REPORTS
with flared necks. Clay slurry finishes known as ‘rustication’, restricted to northern France, Belgium, the Netherlands and Kent only, also appear for the first time. Earlier forms, however, continued in production.

Bipartite bowls
Most Hawkinge bi-partite bowls are in fabric F1 and are burnished. Two undecorated vessels have sharp but obtuse shoulder angles, slightly concave upper bodies and simple rims. One of these, a near complete profile from pit A[38] (G6; Fig 4.4, P6), had no typologically late associations and is probably the earliest from the site. The concavity of its upper body, however, is less pronounced than that of most very early PDR bi-partite bowls (eg St Mary’s Hospital, Carshalton: Adkins & Needham 1985, fig 8.215). It has a slightly out-turned, squared rim. This feature is loosely paralleled in bowls from Runnymede Bridge in Berkshire (Longley 1991, fig 78.28) and Petter’s Sports Field, Egham, in Surrey (O’Connell 1986, fig 49.109) which yielded, respectively, ‘developed’ but largely undecorated, and ‘decorated’ assemblages. Unusually it is in fabric Q1. It is thought to be of Late Bronze Age or transitional Late Bronze Age/Early Iron Age date. The other, from pit A[156], is smaller and has a rounded rim (Fig 4.7, P89). It was associated with vessels of ‘decorated’ PDR and, possibly, Early Iron Age or Early/Middle Iron Age type. The earlier of these two groupings is preferred for it owing to the presence of close parallels in the ‘decorated’ assemblage from Petter’s Sports Field (O’Connell 1986, fig 48.100). It is thought to be of transitional Late Bronze Age/Early Iron Age or earliest Iron Age date. Vessels from both the ring ditch A[104] (RD1; Fig 4.4, P10) and the upper fill of pit A[10] (Fig 4.4, P27 are of broadly similar type.

Three further types are also best paralleled in ‘decorated’ assemblages. The first is represented by three tiny sherds from thin-bodied vessels with slightly convex upper bodies and rounded, out-turned rims, two associated with the ring-ditch (Fig 4.4, P9 and P25) and one from pit A[152] (Fig 4.7, P85). One (Fig 4.4, P9) has a tool-impressed line immediately below the bead. At Highstead, bi-partite bowls occur in period 3a (600-500 BC) and 3b (500-400 BC), though they seem more common in the latter (Couldrey 2007, table 5, form F34). Elsewhere in Kent the feature has been taken as a type-fossil for this period (Macpherson-Grant 1994, 275), but it is also present in numerous ‘decorated’ assemblages including those from Brooklands (Hanworth & Tomalin 1977, fig 17) and Petter’s Sports Field in Surrey (O’Connell 1986, 49), Loft’s Farm in Essex (Brown 1988, fig 14) and Minnis Bay, Birchington, in Kent (Worsfold 1948, fig 6). Like the Hawkinge Aerodrome vessels, but unlike some published examples from Highstead, all of these are thin bodied. Once again, therefore, an earlier, ‘decorated’ PDR grouping is preferred for it. All are thought to be of transitional Late Bronze Age/Early Iron Age or earliest Early Iron Age date. The same applies to the second type, a ‘notched’ shoulder from the ring-ditch (Fig 4.4, P11). No published examples of this type of vessel are available for Kent but it occurs in ‘decorated’ assemblages from Brooklands, associated with the bead rim bowl referred to above (Hanworth & Tomalin 1977, fig 17), and at least two Sussex sites, Stoke Clump (Cunliffe 1966, fig 1) and Chanctonbury Ring (Hamilton 1980; 2001). It, too, is probably of transitional Late Bronze Age/Early Iron Age or earliest Iron Age date.

The last type is represented by sherds from the lower fill of pit A[10] (Fig 4.4, P43) and the upper fill of pit A[12] (Fig 4.4, P47). Both of these pits contained mixed ‘decorated’ and Early Iron Age or Early/Middle Iron Age assemblages. The sherds belong to a single vessel with a sharp, almost right-angular shoulder angle, a straight or slightly concave upper body and a rounded, internally-bevelled rim. Immediately above the shoulder angle and immediately below the rim it is decorated with horizontally tooled lines. Two sets of parallels occur for it, one in ‘decorated’ assemblages from Mill Hill, Deal, in Kent (Champion 1980, fig 6.9), Esher in Surrey (Freer 1947, fig 18), Harting Beacon in Sussex (Morris 1978b, fig 6), and Loft’s Farm in Essex (Brown 1988, fig 15), and one in an Early Iron Age or Early/Middle Iron Age assemblage from Fontaine-Notre-Dame, Nord, in France (Hurtrelle et al 1990, 59, fig 5.29). The type, therefore, may be of some longevity. Since Esher and Loft’s Farm, which provide its closest British parallels, are thought to represent a late manifestation of the ‘decorated’ PDR tradition, an earliest Iron Age rather than a transitional Late Bronze Age/Early Iron Age date is preferred for it.

Hemispherical bowls
Sherds from roughly finished, intermediate ware hemispherical bowls come from pit A[38] (G6; Fig 4.4, P7) and the lower fill of pit A[10] (Fig 4.4, P46). Both have rounded, in-turned rims. Pit A[38] also yielded sherds from a smaller hemispherical bowl with an upright rim (not illustrated). The latter is in the same fine ware fabric as a bi-partite bowl from the context (see above, Fig 4.4, P6) and has lost its original surface finish. A further, possible hemispherical bowl comes from the ring ditch. Its rim is in-turned and internally bevelled (Fig 4.4, P15).
Owing to the small size of this sherd, it is impossible be certain of its identification, but internally bevelled and squared rims are typical of Kent hemispherical bowls (Hamilton & Seager Thomas 2005, 33). Published east Kent parallels for individual Hawkinge hemispherical bowls range from early ‘decorated’ assemblages such as that from Mill Hill (Champion 1980, fig 6), to the largely Early Iron Age or Early/Middle Iron Age Barham Downs assemblage (Macpherson-Grant 1980a, fig 7.34). The impression this gives is misleading, however, for in southern Britain generally, the type, with a handful of exceptions only, appears earlier and does not continue as late. In Sussex for example it is present at Selsey (Seager Thomas 1998, fig 5.14; 2001, fig 5.38), Yapton (Hamilton 1987, fig 6.17) and Thundersbarrow Hill (Hamilton 1993) but absent from Park Brow (Wolesley & Smith 1924) and Eastbourne (Hodson 1962). It is probable, therefore, that the Hawkinge Aerodrome examples are of transitional Late Bronze Age/Early Iron Age or earlier date.

Shouldered jars
The shouldered jar dominates most Kent settlement assemblages of the earlier first millennium BC. The Hawkinge assemblage incorporates sherds from a minimum of 35. Broadly they can be divided into those with a distinct upright or slightly flared neck and those with vestigial necks or no neck at all (bi-partite).

With a few exceptions, the ‘necked’ group is represented by small sherds which are difficult to reconstruct below the upper shoulder, but it is likely that some of the many finger-tipped shoulders present belong to it (eg Fig 4.4, P41). Most sherds belonging to this group are in roughly finished intermediate fabrics (fabrics F2 or FG). They range from small (Fig 4.4, P39) to very large vessels (Fig 4.5, P56 and Fig 4.6, P72). Pit A[72] and the upper fill of pit A[10] yielded four each. From pit A[10] two are undecorated with plain, squared rims (Fig 4.4, P38), one has a cabled rim (Fig 4.4, P40), and one a squared, externally finger-tipped rim and tool-impressed shoulder (Fig 4.4, P39). Exceptionally the last of these vessels is burnished. From pit A[72] one is round shouldered with a finger-tip impressed rim (Fig 4.6, P72). Another has a short, deeply incurved shoulder and flat to rounded rim (Fig 4.6, P73), another a more angular shoulder and a plain squared rim (Fig 4.6, P75), and another a flat, internally expanded rim (not illustrated).

The ring-ditch yielded both cabled and externally finger-tipped rims (Fig 4.4, P12 and P16), both from ‘necked’ shouldered jars, and several finger-tipped shoulders, two of which are from vessels with pronounced shoulders and upright or flared necks (Fig 4.4, P21 and P22). Cabled rims also occurred in pits A[10], A[38], A[140] and A[156] (the latter illustrated as Fig 4.7, P92). Particularly large vessels came from pit A[156] and the upper and lower fills of pit A[12]. Both have plain squared rims and long necks/shoulders. That from pit A[12] curves gently inward from an angular shoulder (Fig 4.5, P56), that from pit A[156] springs from a discrete shoulder (Fig 4.7, P94). All of these vessels were associated with ‘decorated’ finewares and Early Iron Age or Early/Middle Iron Age types and it is likely that the date range represented by them is broad. Round shouldered jars with finger-tipped rims like that from pit A[72], for example, occur in both PDR and much later-dated groups (eg Selsey: White 1934, fig 2; and Texel in Holland: Woltering 2001, fig 172). A number of characteristics, however, suggest that many belong to a PDR rather than an Early Iron Age or Early/Middle Iron Age tradition. Individual traits of decoration such as cabled rims, externally decorated rims, and finger-tip impressed shoulders are less common in Early Iron Age or Early/Middle Iron Age than they are in PDR assemblages. Additionally, though distinct necks occur on Early Iron Age or Early/Middle Iron Age shouldered jars, overall they are less pronounced than in PDR pottery. Compare, for example, Chanctonbury Ring (Hamilton 1980, 2001) and Worth (Hawkes 1940) or Van Heeringen’s (1989c, figs 63 and 67) Rotterdam and Haamstede pottery style groups. The dates of these vessels are thought, therefore, to range from the Late Bronze Age to the Early Iron Age or Early/Middle Iron Age with an earlier rather than later emphasis.

Finally, a single bi-partite shouldered jar from pit A[78] (G6) has a cabled rim (Fig 4.4, P8). Probable bi-partite jars with cabled rims occur in the ‘developed’ PDR assemblage from Runnymede Bridge (Needham & Spence 1996, fig 72.714) and the ‘developed’ and later PDR assemblage from West Blatchington in Sussex (Norris & Burstow 1950, plate 1). The present vessel is thought to be of Late Bronze Age or transitional Late Bronze Age/Early Iron Age date.

Globular jar
A small jar from pit A[72] (G6) is globular in shape. It is in fabric F2. In profile it has no shoulder at all but a clear difference between its upper and lower body is defined by a horizontal row of deep finger-tip impressions and, below this, heavily applied ‘rustication’. Its rim is out-turned and internally bevelled (Fig 4.6, P74). Currently this vessel is unparalleled but, in Holland, the combination of ‘applied’ rustication and finger-tipping on the shoulder seems to appear before
Early-Early/Middle Iron Age

The succeeding group at Hawkinge is typologically related to PDR traditions and there is clearly some overlap between them. Owing to the similarities between some of the types it encompasses and some contemporary, continental material, this tradition has sometimes been described as ‘Marnian’ (eg Hawkins 1940; Schinkel 1998, 85). However, like its Late Iron Age counterpart ‘Belgic’, this term perhaps carries some connotations of earlier 20th century ‘invasionist’ ideas about the Iron Age and, unlike its counterpart, the term has not gained acceptance through common usage in current ceramic literature; it has therefore been replaced with the more neutral term ‘Early Iron Age - Early Iron Age/Middle Iron Age’, referring to the period c 500-300 BC. It comprises many vessel types associated with PDR traditions including shouldered-jars and bi-partite bowls, but there is a tendency for Kent vessels belonging to it to be coarser than their equivalents in preceding traditions (P Couldrey pers comm.). Common characteristics are ‘rustication’, and jar necks diminish to the extent that the dominant form becomes bi-partite with at most an everted or externally beaded rim. Other characteristic forms include the pedestal base, the open-mouthed convex or conical jar, bowl and ‘cup’, and the round bottomed dish or domed lid. Round shouldered ‘onion-shaped’ bowls with flared necks and pedestal bases appear to be associated with this tradition in Britain. Many assemblages are also characterised by the presence of pots with painted bi-chrome and polychrome decoration.

Bipartite bowls or dishes

Several sizable sherds from pit A[72] belong to a round bottomed, bi-partite bowl or dish (Fig 4.6, P64). It has a rounded, slightly out-turned rim, and was burnished both inside and out. Its fabric, FG, falls somewhere between a fine and an intermediate ware. Dishes of this sort do not occur in PDR assemblages but they are present in Early Iron Age - Early/Middle Iron Age ones from Worth in Kent (Hawkes 1940, fig 2) and large number of sites in France, including Coquelles ‘Le petite Rouge Cambre’ in Pas-de Calais (Blancquaert 1998, fig 8), Compiègne ‘Le Fond Pernant’ in Oise (Malrain et al 1996, fig 6), and Fontaine-Notre-Dame in Nord (Hurtrelle et al 1990, 56, fig 5). They should not be confused with the ‘lid’ from Park Brow in Sussex which is of quite a different form: Wolesley and Smith (1924, fig 10). As they have no defined bases and occur upside-down on cinerary urns, similar, round bottomed vessels are often described as lids or covers, but the burnish on the underside of the present example shows signs of wear, and hence the present ascription as a bowl or dish. A further bowl or dish from the same context has an angular bi-partite body and a pronounced, flared rim or vestigial neck (Fig 4.6, P71). It is in fabric F2. It is burnished inside and out, is quite large, and appears to taper to a narrow or rounded base. A sherd in fabric FG from a similar vessel comes from the upper fill of pit A[10] (Fig 4.4, P31). This type is also present in the Early Iron Age – Early/Middle Iron Age assemblages from Canterbury Road, and, like the foregoing round bottomed dish, a vessel type with which it is frequently associated, occurs widely in Early Iron Age - Early/Middle Iron Age assemblages from the continent including those from Fontaine-Notre-Dame in Nord (Hurtrelle et al 1990, 56, fig 5) and Tergenier ‘Les Hauts Riez’ in Aisne, France (Naze 1993, fig 22), and from Kooigem in Belgium (Doorselaer 1989, fig 3).

‘Onion-shaped’ bowls or jars

The Aerodrome site yielded two fine, round shouldered bowls with flared necks. The first, from post-hole or pit A[116] (G10) inside the building B1 (Fig 4.6, P83), has long, slightly convex upper shoulder. Its proportions are similar to those of three Sussex jars, one from Park Brow (Wolesley & Smith 1924, fig 4), one from Binderden ‘Rummages Barn’ (Kenny 1985, fig 4.6), and one from Eastbourne (Hodson 1962, fig 1.2). It is in fabric FG. The second, from pit [85c/4], in an evaluation trench just outside the area of the main excavation (Fig 4.7, P95), is round shouldered and has a hæmatite coating. It too has good Sussex parallels. These include a second vessel from the Eastbourne assemblage which, like that from Hawkinge, is hæmatite coated but which has a shorter neck (Hodson 1962, fig 1.5), and two larger but similarly proportioned vessels from Ford (Hamilton 2004, fig 15, no 47; fig 17, no 52). It is in fabric F1. Associated with it was a pedestal-base in the same fabric (Fig 4.7, P96). Dating evidence is ambiguous, for, although fabric F1 is primarily associated with ‘decorated’ PDR pottery and a similar grouping is suggested for the Park Brow assemblages by parallels between it and Sussex ‘decorated’ PDR assemblages (eg Slonk Hill, Shoreham: Hartridge 1978), Eastbourne yielded a vessel closely paralleled at Barham Down, Kent (Macpherson-Grant 1980a, fig 4), which, though not obviously Early Iron Age - Early /Middle Iron Age, has good local parallels with other Early Iron Age - Early /Middle Iron Age assemblages (at Hightead and Deal) (see below, ‘Bipartite shoulderred jars’). Accordingly, a very late ‘decorated’ PDR or Early Iron Age grouping is suggested for them.
Bipartite shouldered jars
Although bipartite shouldered jars occur in PDR assemblages, the character of those in the present assemblage is overwhelmingly Early Iron Age - Early/Middle Iron Age. The site yielded sherds from eleven or twelve, most in the upper size range for the site. Like the ‘necked’ vessels discussed above, all are in intermediate fabrics FG and F2. Two have obtuse but sharp shoulder angles, slightly convex upper shoulders, and simple expanded rims. One of these is from the lower fill of pit A[10]. It is burnished above the shoulder angle and ‘rusticated’ with an applied, grog-rich slurry below it (Fig 4.4, P45). This configuration is paralleled in unstratified Kent assemblages from Ebbsfleet in Thanet (Macpherson-Grant 1992b, fig 6.11) and Deal (Parfitt 1985, fig 7). The type also occurs in assemblages from Den Haag and Sanpootort in Holland (Van Heeringen 1989 a, b & c). All of these have Early Iron Age - Early/Middle Iron Age associations. The other is from the upper fill of pit A[12]. It is burnished above the shoulder angle, combed below (Fig 4.4, P50). Similar vessels, again with unambiguous Early Iron Age - Early/Middle Iron Age associations, occur in assemblages from Worth (Hawkes 1940, fig 5), Fontaine-Notre-Dame in Nord, France (Hurtrelle et al 1990, 56, fig 5), and Oss-Ussen in Holland (Van den Broeke 1987, fig 8). A related vessel from the upper fill of pit A[10] is currently without a close parallel. It is finely burnished above the shoulder angle and impressed with two vertical rows of tool, or possibly finger-nail, impressions below (Fig 4.4, P36).

Four more bi-partite shouldered jars have vestigial necks. Two of these, one from the lower fill of pit A[12] (Fig 4.5, P53) and one from pit A[156] inside the building B1 (Fig 4.7, P91), are burnished above the shoulder angle and ‘rusticated’ with applied slurry below; one, also from pit A[12], is plain (Fig 4.5, P54), and one, from pit [85c/4], just outside the area of the main excavation, is roughly finished above the shoulder angle and ‘rusticated’ with applied slurry below the shoulder (Fig 4.7, P97). Close parallels for vessel P91 are present at Fréthun ‘Les Reiz’ in Pas-de-Calais, France, just across the channel from Hawkinge (Blancquaert 1998, fig 12). Kent vessels of similar type but without ‘rustication’ occur in the assemblages from Highstead (Coulldrey 2007, type F32, 107). Barham Downs (Macpherson-Grant 1980a, fig 5.15), and, in a smaller size, Worth (Hawkes 1940, fig 4).

The Hawkinge assemblage includes two other bi-partite jar variants. One has a short, slightly concave upper shoulder and an obtuse shoulder angle. Examples occurred in pits A[6] and A[72]. That from pit A[6] is roughly burnished above the shoulder angle, and unfinished or roughened below (Fig 4.6, P58). Similar but much more elegant vessels are present in the ‘developed’ PDR assemblage from Runnymede Bridge (eg Needham & Spence 1996, fig 47.727) but the type’s closest parallel is from Ebbsfleet (Macpherson-Grant 1992a, fig 6.12) where it was associated with other Early Iron Age - Early/Middle Iron Age types. Pit A[10] also yielded a very large grog-tempered vessel with a sharp shoulder angle, a high, slightly convex upper shoulder and a prominent, externally expanded rim (Fig 4.6, P57), and a vessel with a pronounced out-turned rim or neck (Fig 4.6, P59). Like the simple bi-partite jars discussed above, these too are burnished or unfinished above the shoulder angle and ‘rusticated’ with applied slurry below. Although it has a sharper shoulder angle, vessel 1’s high convex upper shoulder and prominent, externally expanded rim is paralleled in the assemblages from Highstead (Coulldrey 2007, fig 92, no 388), Deal (Parfitt 1985, fig 7) and Barham Downs (Macpherson-Grant 1980a, fig 5.10), all three of which yielded either Early Iron Age - Early/Middle Iron Age types or types which are associated elsewhere with Early Iron Age – Early/Middle Iron Age types. All of the foregoing are of Early Iron Age or transitional Early Iron Age - Early/Middle Iron Age date.

Open mouthed, round bottomed dish
Posthole A[116] (G10) yielded part of a large rounded coarseware dish with a flat, internally-expanded rim (Fig 4.6, P84). The form perhaps has some similarities to assiettes tromoniques: a continental type which on its rare occurrences in Britain tends to be associated Late Bronze Age assemblages (Cunliffe 1980, 175; Seager-Thomas 2001, 33). However, other examples from Britain are finer and better finished. Some coarser vessels of broadly similar profile were all found in a single pit at Hightead, although these seemed to have been involved in salt-working processes unlike the Hawkinge example (Coulldrey 2007, 156 & fig 90, no 375). In fact, P84 might be better paralleled amongst the shallower examples of coarse hemispherical bowls at noted in Period 3B at Hightead (ibid, fig 66, no 134).

Ungrouped Pottery
The following vessel types share either characteristics or parallels in both of the groups discussed above.

Round shouldered bowl
A thin-walled round shouldered bowl in fabric F1 comes from the upper fill of pit A[10]. It has a squared rim and a slightly rounded shoulder angle (Fig 4.4, P29). It has a coarseware equivalent in an assemblage from Yapton in Sussex (Hamilton
at Barham Downs, on the Bridge Bypass, at Highstead and Rainham (Macpherson-Grant 1980a, figs 4.2 and 17.86; Seager Thomas 2014, fig 5, no 4, fig 8, 19 & 21, fig 10, 44). The largest come from the upper fill of pit A[10] (Fig 4.4, P37) and building B1 pit A[152] (Fig 4.7, P87). The vessel from pit A[10] is ‘rusticated’ with applied slurry. It is roughly paralleled at Canterbury Road (see Fig 4.9, P137), by an open-mouthed convex jar with grog-rich ‘rustication’ identical to that of the Early Iron Age - Early Iron Age/Middle Iron Age bi-partite jar P45 (Fig 4.4) from pit A[10]. It is presumably of Early Iron Age or Early Iron Age - Early/Middle Iron Age date.

Large conical or open mouthed convex jars, however, occur in assemblages with ‘decorated’ PDR and Early Iron Age - Early/Middle Iron Age associations. These includes those from Yapton in Sussex (Hamilton 1987, fig 5.12), which yielded a ‘decorated’ PDR assemblage, and Barham Downs (Macpherson Grant 1980a, fig 4.5), the Bridge Bypass (Macpherson-Grant 1980a, fig 18.102), and Bailloul in Nord, France (Hurtrelle et al 1990, 37, fig 4), which yielded Early Iron Age - Early/Middle Iron Age assemblages. Similar vessels from two French sites, Compiègne ‘Le Fond Pernant’, Oise (Malrain et al 1996, fig 5), and Escobecques ‘Fin de la Guerre’, Nord (Loridant 1999, fig 4), fall between the two traditions. The type, therefore, is unlikely to be earlier than Late Bronze Age/Early Iron Age.

Finger-tipped sherds
Finger-tip impressed body sherds come from the upper fill of pit A[10] (Fig 4.4, P32) and pit A[72] (Fig 4.6, P68 and P78). Vessel P68 has several widely separated impressions. The earliest good parallel for it is in the ‘developed’ assemblage from Runnymede Bridge (Longley 1991, fig 100) but the type reoccurs on later sites both in Britain and on the continent. Vessels P78 and, possibly, P11 have double rows of overlapping finger-tip impressions, a stylistic trait also seen at Highstead (eg Couldrey 2007 fig 94, no 416; fig 99, 484).

Closed-mouthed convex jars
In Kent assemblages incorporating convex jars include those from Iwade (Hamilton & Seager Thomas 2005, 28-29, fig 32), Kingston Down (Macpherson-Grant 1980a, fig 10.51 and fig 11.64), Highstead (Couldrey 2007, F1, F2 & F3), Barham Down (Macpherson-Grant 1980a, fig 6.27), and the Whitfield-Eastry Bypass Site 2 (Davey and Macpherson-Grant 1996, 67). They also occur widely outside the county. The Hawkinge Aerodrome assemblage incorporates four or five, all in roughly finished intermediate fabrics (fabrics FG, FQ1 and F2). The
dating of closed-mouthed convex jars varies, but it is clear that they were produced throughout the earlier first millennium BC. In Kent, however, differences in the shapes of vessels from PDR (barrel-shaped) and later assemblages (shouldered) suggest that the predominant form changed over time. Three or four Hawkinge vessels are of the ‘later’, shouldered type. These come from the upper fill of pit A[12] (not illustrated) and pit A[72] (Fig 4.6, P66 and, probably P76). Additionally, two closed-mouthed convex jar rims, one from the ring ditch (Fig 4.4, P14) and one from post-hole A[128] (G19) in Building 2 (Fig 4.6, P82), are finger-tip impressed. This feature occurs in assemblage from Iwade (Hamilton & Seager Thomas 2005, fig 32, no 7), Bishopstone in Sussex (Hamilton 1977, fig 47) and Weston Wood, Albury, in Surrey (area 1) (Russell 1989, fig 14.25). The first two examples belong to the ‘decorated’ PDR group; while the pottery from Bishopstone is currently thought to cover the whole of the earlier first millennium BC (Hamilton & Gregory 2000, 66).

EARLY FIRST MILLENNIUM BC FORMING TECHNOLOGY
Constructional techniques which are common to many earlier first millennium BC pottery assemblages include the pinching of vessel walls to shape and thin them, very thin walls, vertical smearing or furrowing and the pinching-together of shoulder carinations and bases. These techniques, although not restricted to it, are frequently taken as indicators of slab building (Hamilton 1987, 58; 1997a, 83). All are present in the Hawkinge assemblage. The bowls, for example, are mostly very thin-walled. Body pinching and smearing is present on shouldered jars (eg Fig 4.6, P58, Fig 4.4, P38, Fig 4.6, P75, Fig 4.7, P94) and on conical or open-mouthed convex jars (eg Fig 4.4, P49 and Fig 4.6, P63), a few shouldered jars have thin walls (Fig 4.4, P38 and Fig 4.5, P56), and there are a handful of pinched bases (eg Fig 4.6, P80). However, many other of the jars are thick-walled, and at least one of these shows clear evidence of ring or coil-building (Fig 4.7, P97). It is probably also worth noting that slab-building was considered rare at Highstead (Couldey 2007, 161). Possibly there are two technologically distinct groups within the Hawkinge assemblage, one related to PDR and one to Early Iron Age - Early/Middle Iron Age pottery. The dividing line between these two traditions is insufficiently clear to prove this at the present time, but it is worth reiterating in this context how other workers have noted a general coarsening of wares between the Late Bronze Age/Early Iron Age transition and the Early Iron Age or Early/Middle Iron Age. Other traits of manufacture identified include folded over rims (Fig 4.7, P93), faceting (not illustrated), heavily-gritted or roughened bases (not illustrated). Faceting is thought to result from the use of a knife on the faceted vessel, perhaps while rotating it on a turntable. It occurs in an ‘undecorated’ PDR assemblage from Bosham in Sussex (Hamilton 1997b, 83). Heavily-gritted bases result from placing still wet clay on a bed of flint. They are widely associated with PDR assemblages in Kent and elsewhere (eg Macpherson-Grant 1991, 39; 1994, 253; Hamilton 1997a, 83; Seager Thomas 2001, 22, 38; Field & Needham 1986, 137). Roughened bases, which are not widely recognized, probably result from working leather-hard clay in the same way.

Pottery manufacture
Sherds belonging to a ?shouldered jar with a prominent rim or neck from pit A[6] (Fig 4.6, P59) also occurred in the upper fills of pits A[10] and A[12]. One of these has a sharp shoulder angle (not illustrated), the other no shoulder angle at all (not illustrated). This distortion may imply that the vessel was a waster and therefore that pottery making occurred on site.

POTTERY FABRICS
Eleven earlier first millennium BC fabric types were distinguished in the Hawkinge Aerodrome assemblage. The textural range is from very fine to very coarse. The inclusions identified are burnt flint, grog, quartz sand, charred or burnt-out organic material, shell, chalk, siliceous sandstone and greensand (Kentish Rag). Nine types have exact parallels in the earlier first millennium BC assemblage from Canterbury Road (see below), and the range as a whole resembles that of contemporary fabrics from nearby Dolland’s Moor and Saltwood Tunnel (Macpherson-Grant 1989, 61; Jones 2006). Additionally, a single coarse flint gritted late second millennium BC fabric was identified, which, like the earlier first millennium BC fabrics, is closely paralleled in contemporary assemblages from the Folkestone area (Macpherson-Grant 1992a, 60). Intermediate flint tempered and wholly grog tempered earlier first millennium BC fabrics overlap with similar LIA fabrics from the site, and the remaining earlier first millennium BC fabrics mostly recur throughout this period. This demonstrates considerable continuity in potting traditions. It also makes the precise dating of unassociated non-feature sherds uncertain.

Most of these types occur throughout the earlier first millennium BC. The exceptions are fabric G, which does not occur until the end of this period, and fabric F1, which, though present throughout, is primarily associated with PDR forms.
This perhaps reflects a shift away from the fine ‘decorated’ wares associated with the Late Bronze Age/Early Iron Age transition and, possibly, since grog tempering was rare in Kent pottery at this period but widely associated on the continent with pottery similar to that which occurs at Hawkinge (eg Oss-Ussen; Schinkel 1998, 83), the increasing influence of continental traditions. This latter view is supported by the presence within the assemblage of a number of contemporary vessel types best paralleled on the continent. The overall range of fabrics is part of a wider trend. This is characterized by a proliferation of vessel forms and fabrics adapted to fulfill specialized roles. At Hawkinge, for example, though exclusive relationships between form and fabric are rare, bowls forms tend to be in fine fabrics and jars forms in intermediate or coarse fabrics. In southern Britain this trend developed through the Bronze Age, coming to a head in PDR pottery (Barrett 1980, 303; Woodward 1995, 197). In many places thereafter it was reversed: Sussex ‘saucepan pots’, for example, come in a diminished range of both size and fabric (Hamilton 1985; Morris 1978a). At Hawkinge variability in fabric, vessel size and form continued up to and possibly into the Middle Iron Age.

Fabric descriptions

Fine flint (F1) (Nos refer to catalogue)

Rare to sparse (2 to 3%) medium sand-sized calcined flint grit, and sparse (<5%) fine to medium, quartz-sand. Body sherds from 5–8mm thick. Key forms include the bi-partite bowl (Fig 4.4, P43, Fig 4.7, P85 and P89), tooled decoration (Fig 4.4, P30 and P43), the bi-partite bowl with vestigial neck (Fig 4.4, P29), the ‘onion-shaped’ jar (Fig 4.7, P95) and the pedestal-base (Fig 4.7, P96). The most recent of these (Fig 4.7, P95 and P96) are best associated with the Early Iron Age or Early/Middle Iron Age pottery traditions (500–300 BC) but most belong to the earlier, ‘decorated’ PDR tradition (Late Bronze Age/Early Iron Age 800–500 BC). Fabric F1 equivalent at the Aerodrome and Canterbury Road.

Fine quartz sand (Q1)

Moderate (10 to 15%) fine quartz-sand, and rare (0 to 2%) burnt out or decalcified voids. Body sherds from 6 to 7 mm (fine wares) and 9 to 11mm (intermediate wares) thick. Key forms include the bi-partite shouldered jar with below shoulder applied ‘rustication’ (Fig 4.6, P57). This vessel may be associated with the Early Iron Age or Early/Middle Iron Age pottery tradition (500–300 BC). Fabrics Q1 is the equivalent to Canterbury Road’s, fabric G1. It reoccurs in Late Iron Age ‘Belgic’ pottery.

Coarse quartz sand (Q3)

Sparse (5%) coarse sub-round to sub-angular, coarse quartz sand. Body sherds from 9–12mm thick. Key forms include the finger-tip impressed shoulder of an angular shouldered jar with below shoulder applied ‘rustication’ (Fig 4.4, P34). This vessel probably belongs to the ‘decorated’ PDR tradition (Late Bronze Age/Early Iron Age 800–500 BC). Fabric Q3 is the equivalent to Canterbury Road fabric Q3.

Flint and grog (FG)

Unquantifiable grog and burnt-out or decalcified voids, rare (<1 to 2%) coarse sand to small granule-sized calcined flint grit, and sparse (3%) to moderate (10%) medium quartz-sand. Probably two overlapping fabrics, one sandy and one including calcareous material. Body sherds from 8 to 12 mm. Key forms include the bi-partite shouldered jar (Fig 4.4, P45 and Fig 4.6, P58), the slack shouldered jar with vestigial neck (Fig 4.4, P48), the closed-mouthed convex jar (Fig 4.6, P66), the hemispherical bowl (Fig 4.4, P7), the round bottomed bi-partite bowl or dish (Fig 4.6, P64), the bucket urn (Fig 4.6, P67), the cabled rim (Fig 4.4, P12), the applied cordon (Fig 4.4, P13), the ‘onion-shaped’ jar (Fig 4.6, P83) and applied ‘rustication’ (eg Fig 4.4, P45 and Fig 4.6, P61). These vessels...
span both the PDR and the Early Iron Age or Early/Middle Iron Age pottery traditions (950–300 BC). Fabric FG is the equivalent to Canterbury Road fabric FG.

Flint and fine quartz sand (FQ1)
Sparse (3 to 5%) coarse sand-sized to (very infrequently) small granule-sized calcined flint grit, very rare (0 to 1%) small granule-sized nodules of siliceous sandstone, and sparse (5 to 7%) fine to medium quartz-sand. Body sherds from 8 to 10 mm thick. Key forms include the straight sided jar (as Fig 4.6, P77), the finger-tip impressed shoulder (not illustrated) and the closed-mouthed convex jar with finger-tip impressed rim (Fig 4.4, P14). All of these vessels belong to the PDR tradition (950–500 BC). Fabric FQ1 is the equivalent to Canterbury Road fabric FQ1.

Medium flint (F2)
Sparse to moderate (3 to 10%) medium sand-sized to small granule-sized calcined flint grit, very rare (0 to 1%) coarse sand-sized to small-granule sized unburnt flint, very rare (0 to 1%) small granule-sized chalk nodules, and rare to sparse (<5%) fine to medium quartz sand. Body sherds from 7–14 mm thick. Key forms include the bi-partite and necked shouldered jar (Fig 4.4, P8, P16, P26, P36, P38, P39, P50, Fig 4.5, P54, P56, Fig 4.6, P59, P72, P73, P74, P75, P79, Fig 4.7, P91, P94 and P97), the conical or open-mouthed convex jar (Fig 4.4, P37, Fig 4.6, P63, Fig 4.7, P87 and P93), the finger-tip impressed shoulder (Fig 4.4, P41, P21 and Fig 4.6, P74), the angular bowl (Fig 4.6, P71), the closed-mouthed convex jar (Fig 4.6, P76 and P82), the open mouth cup/lamp (Fig 4.6, P80), combed finishes (Fig 4.4, P23, P42, P50), the assiettes tronconique (Fig 4.6, P84) and applied ‘rustication’ (Fig 4.4, P37, P52, Fig 4.6, P74, P91 and P97). These vessels span both the PDR and the Early Iron Age or Early/Middle Iron Age pottery traditions (950–300 BC). Fabric F2 is the equivalent to Canterbury Road fabric F2. It reoccurs in Late Iron Age pottery.

Flint and coarse quartz sand (FQ2)
Rare (2 to 3%) medium to coarse sand-sized calcined flint grit and coarse, sub-rounded quartz sand, and unquantifiable burnt-out or decalcified voids. Body sherds from 9–12mm thick. Key forms included applied ‘rustication’ (not catalogued). Applied ‘rustication’ occurs in association with both ‘decorated’ PDR and Early Iron Age or Early Iron Age/Middle Iron Age pottery (800–300 BC). Fabric FQ2 is the equivalent to Canterbury Road fabric FQ2.

Coarse flint (F3)
Sparse (5%) coarse sand to small granule sized calcined flint grit. Body sherds from 7 to 13mm thick. Key forms include the bucket urn (Fig 4.4, P5). Bucket urns are usually associated with the DR tradition (Middle Bronze Age 1500–1150 BC). Fabric F3 was not represented at Canterbury Road.

Very coarse flint (F4)
Sparse (7%) medium sand to large granule-sized calcined and unburnt flint, and rare to sparse (<5%) fine to medium quartz sand. Body sherds c 10mm thick. No chronologically diagnostic forms occurred in this fabric. Fabric F4 may be the equivalent to Canterbury Road fabric F4 where it is provisionally dated to the Late Iron Age.

CATALOGUE

Period 2.1 Middle Bronze Age (1500–1150 BC) (Fig 4.4)
Pit AA[7], fill AA[8], OA2
P5 Upper body and flat to rounded rim of possible DR bucket urn. Possible cremation pit. Fabric F3.

Period 2.2 Late Bronze Age/Early Iron Age (950–500 BC)
Pit A[38], fill A[39], (G6) LBA/EIA
P6 Convex lower body, sharp to slightly rounded shoulder angle, slightly concave upper shoulder, and flat, squared rim of large bi-partite bowl. Fabric 1. Burnished surfaces.
P7 Slightly convex upper body and rounded, in-turned rim of hemispherical bowl. Fabric FG.

Pit A[78], fill A[79] (G6)
P8 Upper shoulder/neck with cabled rim of probable shouldered-jar. Fabric F2.

Ring ditch A[104], fill A[105]
P10 Slightly convex upper shoulder of bi-partite bowl with flat topped, externally beaded rim underlined by a horizontal, tooled line. Fabric F1. Burnished.
P11 Rounded lower body, sharp shoulder angle, shoulder notch, and concave upper shoulder/neck of bi-partite bowl. Fabric F1.
P12 Upper shoulder, slightly flared neck, and cabled, slightly externally expanded rim of probable shouldered-jar. Fabric FG.
P13 Body sherd with plain, applied cordon. Fabric FG.
P15 Convex upper shoulder and flat, internally bevelled, in-turned rim of hemispherical bowl or closed-mouthed convex jar. Fabric F2.
P16 Externally cabled rim. Fabric F2.
P17 Upper shoulder and flat, externally expanded rim. Fabric F2.
P18 Slightly flared neck and flat, squared rim of shouldered-jar. Fabric F2.
P20 Upper shoulder, (?)slightly flared neck and rounded rim of possible cup. (?)Burnished. Fabric F2.
P22 Finger-tip impressed shoulder angle and concave neck of shouldered jar. Fabric F2.
P23 Flat base with straight, slightly flared sides. Fabric F2. Vertically combed exterior.
P24 Flat base with out-curved then straight, flared sides. Fabric F4. ‘Rusticated’ (with applied slurry) body.

Ring ditch A[102], fill A[103] (modern service trench)
Ditch [73d2], fill [73d3] (HA93)

P26 Upper shoulder and flat, externally expanded rim of large, probable bi-partite shouldered-jar. Fabric F2.

Period 3.1 Early/Middle Iron Age (500–300 BC)

Pit A[10], fill A[11], OA2
P28 Upper shoulder, upright neck with flat to rounded externally expanded rim of small shouldered-jar or bowl. Fabric F1. Burnished surfaces.
P30 Rounded shoulder angle of probable bi-partite bowl with horizontal, tooled lines on and (?)[below] the shoulder angle. Fabric F1. Burnished surfaces.
P32 Body sherd with double row of finger-tip impressions. Fabric FG.
P33 Flat base with slightly convex, slightly flared sides. Fabric FG.
P34 Slightly convex upper shoulder and shoulder angle. Fabric F2. (?) 'Rusticated' (with applied slurry) lower body.
P35 Flat, externally expanded rim of very large (?)jar. Fabric F2. (?) Burnished surfaces.
P37 Flared upper body and externally rounded, internally expanded rim of large, conical jar. Fabric F2. 'Rusticated' (with applied slurry) c 40mm below rim.
P38 Upper shoulder, and upright neck with flat, squared rim of probable shouldered-jar. Fabric F2.
P39 Tool-impressed shoulder angle, slightly concave upper shoulder neck with flat to rounded, externally (?) 'finger-tip' impressed rim of probable shouldered-jar. Fabric F2. (?) Burnished surfaces.
P40 Slightly flared neck with cabled, squared rim of probable shouldered-jar. Fabric F2.
P41 Finger-tip impressed shoulder angle and slightly concave upper shoulder of shouldered jar. Fabric F2.
P42 Flat base with straight, flared sides. 'Rusticated' (with vertical combing) from c 15mm above base. Fabric F2.

Pit A[10], fill A[40]
P43 Sharp shoulder angle and slightly convex upper shoulder of bi-partite bowl with horizontal tooled lines above the shoulder and below the rim. Fabric F1. Burnished surfaces. Possibly part of vessel P47 P26 N7.
P45 Sharp shoulder angle and upper shoulder with flat to rounded rim of large bi-partite shouldered jar. Fabric FG. 'Rusticated' (with applied grog-rich slurry) below shoulder angle.
P46 Upper body and rounded, slightly in-turned rim of possible hemispherical bowl. Fabric F2.

P48 Round shoulder and upright neck with rounded rim of weakly shouldered-jar or bowl. Fabric FG. Roughly finger finished.
P49 Upper body with flat to rounded, externally expanded rim (wall angle uncertain). Fabric FG. Finger furrowed exterior.
P50 Sharp shoulder angle, short, slightly concave upper shoulder and rounded rim of bi-partite shouldered-jar. Fabric F2. 'Rusticated' (by combing) below shoulder angle.
P51 Slightly concave upper shoulder with flat, externally expanded, slightly out-turned rim of possible bi-partite shouldered jar. Fabric F2.
P52 Slightly rounded shoulder angle of probable bi-partite shouldered jar. Fabric F2. 'Rusticated' (with applied slurry) below shoulder angle. Possibly part of vessel P59 3

Pit A[12], fill A[14] (Fig 4.5)
P53 Slightly convex upper shoulder and flat, externally expanded, slightly out-turned rim. Fabric FG. Burnished upper shoulder, lower body 'rusticated' (with applied slurry).
P54 Slightly convex upper shoulder and flat, externally expanded rim. Fabric F2. Roughly finger smeared surfaces.
P55 Near upright, slightly concave neck, and flat, squared rim underlined with horizontal tooled line, and body sherd with three parallel tooled lines. Fabric F2.
P56 Slightly rounded shoulder angle, concave upper shoulder/neck and squared rim of very large shouldered-jar. Fabric F2. Burnished upper shoulder/neck. Sherd probably of this vessel also identified in fill [A13]

Pit A[6], fills A[7] and A[15], OA3 (Fig 4.6)
P57 Sharp shoulder angle, slightly convex upper shoulder, and flat to rounded, externally expanded rim of large bi-partite shouldered jar. Fabric G. (?) Burnished above shoulder angle and 'rusticated' (?) with applied slurry) below.
P58 Rounded lower shoulder, sharp shoulder angle, and short, slightly concave upper shoulder/neck with flat to rounded, externally expanded rim of bi-partite shouldered jar. Fabric FG. Roughly burnished above shoulder angle. (?) 'rusticated' (by roughening) below.
P59 Slightly convex upper shoulder and short, flared neck with flat to rounded rim of large (?) round shouldered-jar. Fabric F2. Burnished exterior. (?) Burnt. Sherd of the probably of the same vessel identified in Pit [A10] and possibly [A12]

Pit A[30], fill A[31], G17, OA3
P60 Body sherds with horizontal tooled lines and tooled lattice. Fabric F1. Burnished surfaces.

Pit A[36], fill A[37], G17, OA3
P61 Upper shoulder, upright neck and flat, externally expanded rim of possible shouldered-jar. Fabric FG. (?) 'Rusticated' (with applied slurry) below rim.
P63 Flared, slightly convex upper body, flat, internally and externally expanded (hammerhead) rim of conical jar. Fabric F2.
P65 Convex upper body and flat, squared, slightly in-turned rim of probable convex jar. Fabric FG. Burnished surfaces.
P66 Convex upper body and rounded, in-turned rim of closed-mouthed convex jar. Fabric FG.
P67 Slightly convex upper body, finger-tip impressed/pinched cordon and flat, internally impressed rim of bucket-urn. Fabric FG. Finger-smeared.
P68 (?) 'Rusticated' (with finger-tip impressions) body sherd. Fabric FG.
P69 Body sherd with roughly tooled cross. Fabric FG. Finger-smeared. Part of vessel P70.
P70 Flat base with slightly concave, flaring sides. Fabric FG. Part of vessel P69. P71 Flat to (?) rounded base/lower body, sharp shoulder angle, very slightly convex upper vessel, short flared neck/rounded, out-turned rim of bowl/ lid. Fabric F2. Burnished surfaces.
P73 Convex lower body, sharp to rounded shoulder angle, concave upper shoulder/upright neck and rounded to flat, slightly externally expanded rim of shouldered jar. Fabric F2.
P74 Rounded, finger-tip impressed shoulder angle, slightly concave upper shoulder/neck and rounded, out-turned rim of probable round shouldered jar. Fabric F2. Rusticated (with applied slurry) below shoulder angle.
P75 Upper shoulder, slightly flared neck and flat, squared rim of shouldered jar. Fabric F2. Finger smeared.
P76 Convex upper body and flat, internally expanded rim of probable closed-mouthed convex jar. Fabric F2.
P77 Upright upper body and flat, squared rim of straight sided jar/bucket urn. Fabric F2.

Posthole A[96], fill A[97], G16, OA3
P79 Rounded shoulder and flat, externally expanded rim of shouldered jar. Fabric F2. Finger smeared with vertical brush/wipe marks below rim.
P80 Flat, finger-pinched base, flared body and flat, externally expanded rim of small, near complete cup/(?)lamp. Fabric F2.

Posthole A[110], fill A[111], G10, OA3
P81 Body sherd with tooled, vertical decoration. Fabric F1.

Posthole A[129], fill A[130] (G10, OA3)
P82 Convex upper shoulder and finger-tip impressed, squared, in-turned rim of closed-mouthed convex jar. Fabric FG.
Fig 4.4 Illustrated pottery P5–P52
FABRICS

The first millennium BC pottery assemblage from Canterbury Road, Hawkinge, incorporates 22 distinct fabric types. Internally these display some inhomogeneity and it is likely that a more thorough, that is, a destructive, analysis would have distinguished more. The textural range is from very fine to very coarse. The most common include flint (burnt and/or unburnt), gog and quartz sand. Many also include small but otherwise unquantifiable amounts of organic material. The least common fabrics include glauconite, Fe oxide nodules, burnt out or decalcified shell, chalk, siliceous sandstone and larger quantities of burnt-out organic material. Many of the fabrics are exactly paralleled in the first millennium BC assemblages from nearby Hawkinge Aerodrome and they are similar to other, contemporary fabrics from the Folkestone area (eg Dolland's Moor and Saltwood Tunnel) (Macpherson-Grant 1989, 61; Jones 2006). Contextual and typological associations suggest that there are two broad chronological groups of fabrics, one focussing on the earlier Iron Age and the other later Iron Age. This difference allows some contexts to be dated by fabric alone. Some fabrics, however, occur in both. For example, at both Canterbury Road and Hawkinge Aerodrome the most common fabric type, F2, recurred throughout the first millennium BC.

LATE BRONZE AGE, EARLIEST IRON AGE, EARLY IRON AGE AND EARLY IRON AGE/MIDDLE IRON AGE TRANSITION (POTTERY GROUPS 1 AND 2)

Owing to the large numbers of early and middle first millennium BC feature sherdas in the assemblage and the absence of residual, earlier material, this group is easy to define. It includes all but two of the early and middle first millennium BC fabric types distinguished in the Hawkinge Aerodrome assemblage (Q2 and Late Bronze Age/Early Iron Age fineware S1). It also includes two not present in the Hawkinge
Fig 4.6 Illustrated pottery P57–P84
Aerodrome assemblage (fabrics C and G2). The fabrics (quantified in Table 4.6) range from fine to very coarse wares. Four fabric types occur in, or are directly associated with Late Bronze Age or earliest Iron Age forms (fabrics F1, FG, C and F2). Almost all of the fabrics occur in, or are directly associated with Early Iron Age or transitional Early Iron Age/Middle Iron Age forms. It is to this latter period that most of the earlier Canterbury Road contexts are attributed. The later emphasis of the Canterbury Road assemblage is highlighted by the relatively poor representation of fabric F1, which at Hawkinge Aerodrome, was primary associated with Late Bronze Age/earliest Iron Age types.

Table 4.6 Quantification of fabrics in contexts belonging to pottery groups 1 and 2 (Site C)

<table>
<thead>
<tr>
<th>Principle inclusions</th>
<th>Fabric</th>
<th>Sherds</th>
<th>% Sherds</th>
<th>Weight (g)</th>
<th>%Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaff</td>
<td>C</td>
<td>4</td>
<td><1%</td>
<td>24</td>
<td><1%</td>
</tr>
<tr>
<td>Flint</td>
<td>F1</td>
<td>149</td>
<td>10%</td>
<td>1087</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td>F2</td>
<td>750</td>
<td>49%</td>
<td>9039</td>
<td>53%</td>
</tr>
<tr>
<td></td>
<td>F4</td>
<td>4</td>
<td><1%</td>
<td>107</td>
<td>1%</td>
</tr>
<tr>
<td>Fe oxide</td>
<td>FE</td>
<td>2</td>
<td><1%</td>
<td>36</td>
<td><1%</td>
</tr>
<tr>
<td>Flint/Fe</td>
<td>FFE1</td>
<td>2</td>
<td><1%</td>
<td>53</td>
<td><1%</td>
</tr>
<tr>
<td>Flint/grog</td>
<td>FG</td>
<td>354</td>
<td>23%</td>
<td>3002</td>
<td>18%</td>
</tr>
<tr>
<td>Flint/quartz</td>
<td>FQ1</td>
<td>123</td>
<td>8%</td>
<td>1493</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td>FQ2</td>
<td>20</td>
<td>1%</td>
<td>192</td>
<td>1%</td>
</tr>
<tr>
<td>Grog</td>
<td>G1</td>
<td>95</td>
<td>6%</td>
<td>1450</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>18</td>
<td>1%</td>
<td>210</td>
<td>1%</td>
</tr>
<tr>
<td>Quartz</td>
<td>Q1</td>
<td>13</td>
<td>1%</td>
<td>160</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>Q3</td>
<td>2</td>
<td><1%</td>
<td>45</td>
<td><1%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1536</td>
<td>100%</td>
<td>16898</td>
<td>100%</td>
</tr>
</tbody>
</table>

Fabric descriptions

Fine flint, F1
Rare to sparse (2 to 3%) medium sand-sized calcined flint grit, and sparse (<5%) fine to medium, quartz-sand. Body sherds from 5 to 8mm thick. In the Canterbury Road assemblage the principal forms in fabric F1 are a flared neck of a small ‘onion’ shaped bowl/jar (Fig 4.8, P98) and a bowl with slack shoulder and short, flared neck (Fig 4.9, P167), both of which are burnished. These vessels are currently thought to date to the Early Iron Age or Early/Middle Iron Age and Early Iron Age, respectively. Fabric F1 is equivalent at Canterbury Road and Hawkinge Aerodrome.

Quartz sand, Q1
Moderate (10 to 15%) fine quartz-sand, and rare (1%) medium to coarse sub-angular quartz-sand. Body sherds from 6 to 7mm thick. In the Canterbury Road assemblage the principal form in fabric Q1 is a burnished, round shoudered bowl with a flared rim (Fig 4.9, P134). This vessel is dated to the early to middle first millennium BC but its exact place within this period is uncertain. The fabric's principal association at Hawkinge Aerodrome is with a burnished, bi-partite bowl of probable Late Bronze Age date. Fabric Q1 is equivalent at Canterbury Road and Hawkinge Aerodrome.

Flint and grog, FG
Unquantifiable grog and burnt-out or decalcified chaff or shell casts, rare (<1 to 2%) coarse sand to small granule-sized calcined flint grit, and sparse (3%) to moderate (10%) medium
quartz-sand. Probably two overlapping fabrics, one sandy and one including calcareous material. Body sherds from 5 to 11 mm. In the Canterbury Road assemblage the principal forms in fabric FG are a squat, roughly finished jar or large bowl with a high, rounded shoulder and short, concave upper shoulder/neck (Fig 4.8, P99), a burnished, very angular, narrow shouldered tri-partite bowl (Fig 4.8, P112), a vessel with a ‘festooned’ rim (Fig 4.8, P113), a large, open mouthed convex jar with applied, grog-rich ‘rustication’ (Fig 4.9, P137), two bi-partite shouldered jars burnished above the shoulder and ‘rusticated’ below (including Fig 4.9, P145), a burnished, pedestal jar (Fig 4.9, P163) and a very slack shouldered jar with an upright rim (Fig 4.9, P168). Vessel P112 is thought to be Earliest Iron Age. Vessels P137, P145 and P163 are Early Iron Age or Early/Middle Iron Age. Vessels P99, P113 and P168 may be of either date.

Medium grog, G1
Unquantifiable to sparse (c 7%) rounded, coarse sand-sized grog, rare (0 to 2%) burnt out or decalcified chaff or shell casts, and rare coarse, rounded quartz sand (in some vessels only). Body sherds from 6 to 7 mm (fine wares) and 6 to 9 mm (intermediate wares) thick. In the Canterbury Road assemblage the principal forms in fabric G1 are a burnished, sharply angular bi-partite shouldered jar with incised decoration above and below the shoulder (Fig 4.8, P110) and a coarser bi-partite shouldered jar with a slight foot-ring (Fig 4.9, P156). Both of these vessels are dated to the Early Iron Age or Early/Middle Iron Age. Canterbury Road fabric G1 is the equivalent to Hawkinge Aerodrome fabric G. Fabric G1 is indistinguishable from Late Iron Age fabric G1.

Coarse quartz sand Q3
Sparse (5%) coarse sub-rounded to sub-angular, coarse quartz sand (sometimes Fe coated). Body sherds from 7 to 10mm thick. In the Hawkinge Aerodrome assemblage the principal form in fabric Q3 is an angular shouldered jar with a finger-tip impressed shoulder angle and below shoulder applied ‘rustication’ dated to the earliest Iron Age (not illustrated). It did not occur in chronologically diagnostic forms at Canterbury Road.

Chaff, C
Sparse (5%) burnt-out chaff casts. Body sherds from 7 to 8mm thick. The only feature sherd in fabric C is a flat, externally expanded rim belonging to a ‘closed mouthed jar of uncertain form (not illustrated). The dating of this vessel is uncertain but its associations are wholly Early Iron Age or Early/Middle Iron Age (pit C[145]). Fabric C is not represented in the Hawkinge Aerodrome assemblage. Near contemporary chaff tempering at Oss-Ussen in Holland is equated with salt production (Schinkel 1998, 85).

Flint and fine quartz sand, FQ1
Sparse (3 to 5%) coarse sand-sized to (very infrequently) small granule-sized calcined flint grit, very rare (0 to 1%) small granule-sized nodules of siliceous sandstone, and sparse (5 to 7%) fine to medium quartz-sand. Body sherds from 8 to 10 mm thick. In the Canterbury Road assemblage the principal forms in fabric FQ1 are a coarsely finished bi-partite bowl with a straight upper shoulder and simple rim (not illustrated), an open mouthed convex jar (Fig 4.9, P139), a round shouldered to bi-partite jar with a short everted rim/vestigial neck and applied ‘rustication’ below the shoulder (Fig 4.9, P158), and a very large bi-partite jar with a short, concave upper shoulder/upright neck (Fig 4.9, P159). Vessel P158 is Early Iron Age or Early Iron Age/Middle Iron Age. Vessels P139 and P159 may be of any date in the early-mid 1st millennium.

Medium flint, F2
Sparse to moderate (3 to 10%) medium sand-sized to small granule-sized calcined flint grit, very rare (<1%) coarse sand-sized to small-granule sized unburned flint, very rare (<1%) small granule-sized chalk nodules, and rare to sparse (<5%) fine to medium quartz sand. One sherd from context C[17] is glauconite-rich. Body sherds from 6 to 12mm thick. In the Canterbury Road assemblage the principal early and middle first millennium BC forms in fabric F2 are a slack shouldered jar with a tall neck (Fig 4.8, P105), a narrow shouldered tri-partite bowl (Fig 4.8, P106), five shouldered jars with high, rounded shoulders and short, concave upper shoulder/upright necks (Fig 4.8, P107, P118, P119, P129 and Fig 4.9, P164), a large bi-partite bowl with a straight upper shoulder and simple rim (Fig 4.8, P109), two bi-partite bowls with out-turned rims (including Fig 4.9, P161), two shouldered jars with flared necks and impressed rim tops (Fig 4.8, P117 and P124), two jattes (Fig 4.8, P120 and Fig 4.9, P169), a thin bodied, narrow shouldered jar with a tall, flared rim (Fig 4.8, P123), a shouldered jar with an concave upper shoulder/upright neck and an externally decorated rim (Fig 4.8, P121), a very large convex jar (Fig 4.9, P140), an open-mouthed, convex-sided cup with a foot ring (Fig 4.9, P160) and a bi-partite shouldered jar (Fig 4.9, P162). Together these vessels span a period between the end of the Late Bronze Age and the beginning of
the Middle Iron Age. Fabric F2 also occurs in association with later Iron Age forms.

Flint and coarse quartz sand, FQ2
Rare (2 to 3%) medium to coarse sand-sized calcined flint grit and coarse, sub-rounded quartz sand, and unquantifiable burnt-out or decalcified chaff or shell casts. Quartz sand sometimes Fe coated. Body sherds from 9 to 12mm thick. Sherds from quarry pit fill C[117] retain traces of applied ‘rustication’. This finish dates from the earliest EIA, and continues at least until the Early Iron Age/Middle Iron Age. Fill C[117] is thought to belong to the Early Iron Age or Early Iron Age/Middle Iron Age.

Coarse grog, G2
Sparse (5%) coarse sand-sized to large granule-sized grog, and rare (<1%) coarse quartz sand. Body sherds from 6 to 10mm thick. Only two vessels are in fabric G2, a slack shouldered-jar with a tall, upright neck (Fig 4.9, P152) and a short, thin bodied, jar with a very weak shoulder and a slightly flared neck (Fig 4.9, P151). Both are very roughly finished and of probable early or middle first millennium BC form, but their exact dating within this period is uncertain. Fabric G2 is not represented in the Hawkinge Aerodrome assemblage.

LATER IRON AGE FABRIC GROUPS (POTTERY GROUPS 3 AND 4)
Owing to the presence within many Late Iron Age features of residual, earlier Iron Age material, this group is less easy to define; however, a quantification of fabrics appearing in later Iron Age features is provided below in Table 4.7. It includes six of the Late Iron Age fabric types distinguished in the Hawkinge Aerodrome assemblage (Thompson, this volume) (fabrics GS, Q1, QC, S2, G1 and F2) and a number of others which were not. Together these range from fine to very coarse wares. They can be divided into two sub-groups, one associated with ‘Belgic’ forms and the grog-tempered fabric G1, and one associated with transitional Middle Iron Age/Late Iron Age forms and a range of non-grog-tempered fabrics (F1, GS, Fe, QC, S2, F2, FFe1-3 and F2) (in this group only pit C[13] incorporated fabric G1). This chronological difference is reflected in the sheer numbers of Late Iron Age fabric types, which, despite fewer sherds overall and a more limited typological range, exceeds that of the early and middle first millennium BC fabric types. The recognition of a discrete, discontinuous fabric sub-group pre-dating the adoption of grog-tempered fabrics and Belgic forms importantly helps close the gap between the earlier and later Iron Age occupations of the site. The phasing of two fabrics with primarily Late Iron Age associations is problematic. These are fabrics FC, which was present in Middle/Late Iron Age pit C[13], but in what should be an early first millennium BC form, and fabric F4, which was present in Late Iron Age and undated contexts, but which occurred in no chronologically diagnostic forms. Further identifications from the area will be necessary if these two fabrics are to be dated with confidence.

<table>
<thead>
<tr>
<th>Principle inclusions</th>
<th>Fabric</th>
<th>Sherds</th>
<th>% Sherds</th>
<th>Weight (g)</th>
<th>% Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flint</td>
<td>F1</td>
<td>31</td>
<td>5%</td>
<td>185</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td>F2</td>
<td>185</td>
<td>28%</td>
<td>1971</td>
<td>31%</td>
</tr>
<tr>
<td></td>
<td>F4</td>
<td>21</td>
<td>3%</td>
<td>639</td>
<td>10%</td>
</tr>
<tr>
<td>Flint/chaff</td>
<td>FC</td>
<td>6</td>
<td>1%</td>
<td>50</td>
<td>1%</td>
</tr>
<tr>
<td>Fe oxide</td>
<td>FE</td>
<td>112</td>
<td>17%</td>
<td>680</td>
<td>11%</td>
</tr>
<tr>
<td>Flint/Fe</td>
<td>FFE1</td>
<td>31</td>
<td>5%</td>
<td>458</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>FFE2</td>
<td>23</td>
<td>4%</td>
<td>112</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>FFE3</td>
<td>8</td>
<td>1%</td>
<td>134</td>
<td>2%</td>
</tr>
<tr>
<td>Flint/grog</td>
<td>FG</td>
<td>35</td>
<td>5%</td>
<td>325</td>
<td>5%</td>
</tr>
<tr>
<td>Flint/quartz</td>
<td>FQ1</td>
<td>2</td>
<td>0%</td>
<td>23</td>
<td>0%</td>
</tr>
<tr>
<td>Grog</td>
<td>G1</td>
<td>104</td>
<td>16%</td>
<td>1334</td>
<td>21%</td>
</tr>
<tr>
<td>Glaucnite</td>
<td>GS</td>
<td>20</td>
<td>3%</td>
<td>70</td>
<td>1%</td>
</tr>
<tr>
<td>Quartz</td>
<td>Q1</td>
<td>19</td>
<td>3%</td>
<td>153</td>
<td>2%</td>
</tr>
<tr>
<td>Quartz/chaff</td>
<td>QC</td>
<td>45</td>
<td>7%</td>
<td>180</td>
<td>3%</td>
</tr>
<tr>
<td>Shell</td>
<td>S2</td>
<td>14</td>
<td>2%</td>
<td>125</td>
<td>2%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>656</td>
<td>100%</td>
<td>6439</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 4.7 Quantification of fabrics in contexts belonging to pottery groups 3 and 4 (Site C)

The identification at Canterbury Road (Site C) of earlier and later Iron Age fabric types with similar, naturally occurring inclusions such as quartz sand (FQ1, LQ1 and QC), glauconite (F2 and GS) and Fe-oxides (F1, FG, Fe and FFe1-3) suggest the use of common, probably local clay sources for potting. There is little else in common between the two chronological groups. Only fabrics Q1, F2 and G1 are present in both but there are chronological gaps in the occurrence of both Q1 and G1 which probably rule out direct continuity between the two groups. Additionally, unlike the Early Iron Age or Early/Middle Iron Age fabric G1, Late Iron Age grog-tempered fabrics occur widely in southeast England (eg Mepham 1997, 119), and on the continent (eg Coquelles, Pas-de-Calais, France: Blancquaert 1998, 124). By this date the unique relationship between the Folkestone area and the continent was over.
Fabric descriptions

Fine flint, F1
Rare (2%) medium to coarse sand sized calcined flint grit. Body sherds from 6 to 11mm thick. The principal forms in this fabric are two burnished bowls with slightly flared, internally thickened necks (Fig 4.9, P132 and Fig 4.10, P176), and a vessel with at least one pre-firing perforation (Fig 4.8, P127 and Fig 4.9, P133). The bowls are dated to the Late Iron Age. Fabric F1 is not represented in the later Iron Age material from Hawkinge Aerodrome.

Fine flint and Fe oxide nodules, FFe1
Rare (1-3%) medium to coarse sand-sized and occasional small-sized calcined flint grit, rare (3%) coarse sand to small granule-sized Fe-oxide nodules, and sparse (5 to 7%) fine quartz sand. Body sherds from 8 to 10mm thick. The only feature sherds in fabric FFe1 are two pedestal-bases (Fig 4.10, P179 and Fig 4.8, P126). Both are burnished. The possible date range of these vessels spans the Early Iron Age to Late Iron Age. Fabric FFe1’s contextual associations place it somewhere between these two periods. It is not represented in the Hawkinge Aerodrome assemblage.

Greensand, GS
Common (30%) fine to medium, sub-round glauconite sand. Body sherds from 6 to 7mm thick. Canterbury Road’s fabric GS is the equivalent to Hawkinge Aerodrome’s Late Iron Age fine sandy fabric with glauconite. In the Aerodrome assemblage the principal form of fabric GS is a cup with an everted rim and omphaloid base dated to the earlier Late Iron Age (see for example Fig 4.16, nos P228 and P229). No chronologically diagnostic forms occurred at Canterbury Road.

Fine quartz sand, LQ1
Common to very common (25-30%) fine to medium sub-round quartz-sand. Body sherds from 6 to 7mm thick. In the Canterbury Road assemblage the principal form in fabric LQ1 is a closed-mouthed jar with a beaded, internally thickened rim (Fig 4.10, P182) and a few sherds in it (from pit C[55]) are wheel thrown. These vessels were often associated with grog-tempered vessels and typologically ‘Belgic’ forms. Canterbury Road fabric LQ1 is the equivalent to Hawkinge Aerodrome Late Iron Age fine sandy fabric.

Intermediate quartz sand and chaff, QC
Moderate (10%) medium sub-round quartz-sand, and unquantifiable chaff. Body sherds c 9mm thick. Canterbury Road fabric QC is the equivalent to Hawkinge Aerodrome Middle/Late Iron Age coarse sandy fabric. In the Aerodrome assemblage the principal forms in fabric QC are a ‘bag-shaped’ vessel similar to vessel P178 (Fig 4.10) and several large, everted rim jars. These are from a large group probably dating to the early 1st century BC and associated with an assemblage of Class I potin coins (see Chapter 4.6). No chronologically diagnostic forms were associated with this fabric at Canterbury Road.

Fe oxide nodules, Fe
Rare (3%) coarse sand to small granule-sized Fe-oxide nodules, sparse (5 to 7%) fine quartz sand, and unquantifiable (but rare) grog. Body sherds from 6 to 9mm thick. Possibly a very badly sorted variant of fabric FFe3. The principal forms in fabric Fe are a weakly shouldered or bag shaped jar with an upright neck (Fig 4.10, P178), dated to the later Iron Age, and a straight sided jar from the same context (Fig 4.10, P177). Fabric Fe is not represented in the Hawkinge Aerodrome assemblage.

Medium grog, G1
Body sherds from 8 to 9mm thick. In the Canterbury Road assemblage the principal forms in this fabric are a closed-mouthed jar with a beaded, internally thickened rim (not illustrated) and a large, everted rim jar with a rippled neck and diagonally slashed upper shoulder (Fig 4.10, P181). A sandier fabric variant was associated with one shouldered jar form (Fig 4.10, P170). Canterbury Road Late Iron Age fabric G1 is the equivalent to Hawkinge Aerodrome Late Iron Age grog-tempered fabric. Fabric G1 also occurs in earlier Iron Age contexts at Canterbury Road.

Flint and chaff, FC
Sparse (5%) burnt-out or decalcified voids (probably chaff), rare to sparse (2 to 3%) coarse sand-sized to small granule-sized unburnt flint, rare (0 to 1%) small granule-sized siliceous sandstone nodules. Body sherds 7 to 8mms thick. Although no feature sherds in this fabric belong to a shouldered-jar with an upright neck and a squared rim (Fig 4.10, P172). This vessel should belong to the early first millennium BC but its contextual associations are later Iron Age. Fabric FC is not represented in the Hawkinge Aerodrome assemblage.

Medium flint, F2
The same as early and middle first millennium BC fabric F2. Body sherds from 8 to 10mm thick. In the Canterbury Road assemblage the principal forms in fabric F2 are a closed-mouthed jar with an upright, internally thickened, bead rim
(not illustrated) and a closed mouth jar with a short upright, internally thickened neck and rounded rim (Fig 4.10, P175). Both of these vessels are of Late Iron Age date. Canterbury Road Late Iron Age fabric F2 is the equivalent to Hawkinge Aerodrome Late Iron Age coarse flint-tempered fabric. Fabric F2 was also found in earlier Iron Age groups from Canterbury Road.

Medium flint and Fe oxide nodules, FFe2
Sparse (3 to 5%) coarse sand to small granule-sized unburnt and calcined flint grit, rare (3%) coarse sand to small granule-sized Fe-oxide nodules, and sparse (5 to 7%) fine quartz sand. Body sherds from 8 to 10mm thick. No diagnostic forms occurred in this fabric but its contextual associations are wholly later Iron Age. Fabric FFe2 is not represented in the Hawkinge Aerodrome assemblage.

Shell, S2
Sparse to moderate (7 to 10%) burnt-out or decalcified shell, and sparse to common (7 to 20%) fine to medium quartz sand. Body sherds from 6 to 10mm thick. Canterbury Road fabric S2 is the equivalent to Hawkinge Aerodrome Late Iron Age shelly fabric. No chronologically diagnostic forms occurred at either site

Coarse flint and Fe oxide nodules, FFe3
Sparse (3 to 5%) coarse sand to large granule-sized unburnt and calcined flint grit, rare (3%) coarse sand to small granule-sized Fe-oxide nodules, and sparse (5 to 7%) fine quartz sand. Body sherds from 8 to 10mm thick. Possibly a very badly sorted variant of fabric FFe3 (eg no 37). No chronologically diagnostic forms occurred in this fabric but its contextual associations are wholly later Iron Age. Fabric FFe3 is not represented in the Hawkinge Aerodrome assemblage.

Very coarse flint, F4
Sparse (7%) medium sand to large granule-sized calcined and unburnt flint, and rare to sparse (<5%) fine to medium quartz sand. Body sherds < 10mm thick. No chronologically diagnostic forms occurred in this fabric but where dateable, its contextual associations are later Iron Age. Fabric F4 is not represented in the Hawkinge Aerodrome Late Iron Age assemblage although an identical fabric, once again in a chronologically undiagnostic form, is present in the earliest Iron Age pottery group which appears in the ring ditch (RD1).

POTTERY FORMS AND DATE
The prehistoric pottery assemblage comprises pottery belonging to four typologically distinct groups. Three of these correspond closely to known regional traditions. The first and second groups straddle the Early Iron Age. They incorporate, respectively, later post Deverel-Rimbury (PDR) and Early Iron Age-Early/Middle Iron Age pottery. These two traditions share a number of vessel types in common and it is difficult and, possibly, wrong to draw a sharp chronological line between them. At Canterbury Road only one difference between the two groups could be distinguished stratigraphically (in quarry pit C[116]). Most pottery from the site belonging to the first group is dated to the earliest Iron Age. A handful of sherds, however, are likely to be slightly earlier (Late Bronze Age). Pottery belonging to the second group is dated to the Early Iron Age or Early/Middle Iron Age transition. The third and fourth groups both belong to the later Iron Age. The third, which is distinguished primarily by its fabrics, comprises a handful of vessels only, and has few chronologically specific parallels. It probably belongs to the transition Middle/Late Iron Age. The fourth and final group incorporates both ‘Belgic’ grog-tempered vessels and pre-Belgic types and is typical of latter Late Iron Age assemblages from the region.

Pottery Group 1: Late Bronze Age to Earliest Iron Age
Characteristic Late Bronze Age-earliest Iron Age pottery came from a variety of both earlier first millennium and later dated features. The principal findspot of pottery belonging to these periods is quarry pit C[116]. Its lowest fills (C[133] and C[134]) yielded earliest/Early Iron Age sherds only, while its uppermost fill (fill C[117]) yielded a mixed Late Bronze Age/earliest Iron Age, and Early Iron Age-Early/Middle Iron Age assemblage. Additionally, probable earliest Iron Age/Early Iron Age pottery comes from pits C[20], C[57], C[122] and C[131]. In the Canterbury Road assemblage the key chronologically diagnostic forms belonging to this group include the dish or jatte, the bi-partite bowl, the shouldered jar with externally slashed rim, the shouldered jar with flared neck, and the narrow shouldered tri-partite bows. Also present are rare applied rustication.

Jatte
The jatte or conical dish from the quarry pit (Fig 4.8, P120) is one of only a handful of such vessels so far recognized in Britain. It is in fabric F2 and burnished. Similar vessels (both wrongly described as assiettes tronconique) come from Kingston Down, in Kent (Cunliffe 1980), and Selsey ‘Seaside Field’, in West Sussex (Seager Thomas 2001). Both of these sites yielded largely undecorated but ‘developed’ PDR assemblages datable to the end of the Late Bronze Age. Continental parallels from Choissy-
au-Bac ‘La Confluence’ (Talon 1989, plates 2.12 and 3.10) and Catenoy ‘Le Camp César’ (Blanchet & Talon 1987, fig 10), in Oise, France, and Kooiken, in Belgium (Doorselaer 1989, fig 2) come from assemblages of similar tradition and date.

Bipartite bowls

The Canterbury Road assemblage includes sherds from two bi-partite bowls with obtuse shoulder angles, straight to very slightly concave shoulders/upper bodies and simple squared to rounded rims. Both are in fabric F2. One is very roughly finished (not illustrated) and one is burnished (Fig 4.8, P109). Bi-partite bowls with simple rims are a common component of both early, ‘undecorated’ PDR assemblages and later, ‘decorated’ ones, but they are not generally associated with Early Iron Age-Early/Middle Iron Age groups. The concavity of the shoulders/upper bodies of the two vessels from Canterbury Road is less pronounced than that of most early PDR bi-partite bowls (eg St Mary’s Hospital, Carshalton: Adkins & Needham 1985, fig 8.215) but is closely paralleled in vessels from Minnis Bay, Birchington, in Kent (Worsfold 1948, fig 6.4) and Petter’s Sports Field, Egham, in Surrey (O’Connell 1986, fig 49.98), both of which yielded ‘decorated’ PDR assemblages. These assemblages were associated with hoards of Ewart Park metalwork, dated to the latter Late Bronze Age or earliest Iron Age. Two similar, but finer ware, vessels occurred in the Hawkinge Aerodrome assemblage. One came from a Late Bronze Age or earliest Iron Age feature, the other from and Early Iron Age or Early/Middle Iron Age feature.

At least four shouldered jars belonging to three types should belong to the first Canterbury Road group. Each is distinguished by a different rim and neck form. The first is small and has a slight, rounded, but well defined shoulder, a pronounced, flared neck and a flat, squared rim, with finger-tip impressions on top (Fig 4.9, P128). It is in fabric F2 and roughly finished. Vessel P117 (Fig 4.8), which has a flared neck and flat, squared rim, with tool impressions on top, was probably similar in size and form. It is in fabric F2 and burnished. Although these vessels could be accommodated within a ‘developed’ PDR repertoire (a neck/decorated rim similar to P128, albeit somewhat larger, occurs in the assemblage from Monkton, Kent: Macpherson-Grant 1994, fig 14.77), their overall form is more common in later, ‘decorated’ PDR assemblages. For example, at Isleworth in Greater London it occurred repeatedly in association with exclusively ‘decorated’ PDR traits (Timby 1996, figs 5 and 6). The Isleworth assemblage dates to the latter Late Bronze Age or earliest Iron Age.

The remaining two jars in Group 1 may be slightly later. Both are in fabric F2. One has a narrow, rounded shoulder and a very tall flared neck (Fig 4.8, P123). Its neck is very thin and retains clear traces of finger-pinching, traits which, although not restricted to it, are frequently taken as indicators of slab building (Hamilton 1987, 58; 1997b, 83). The flared neck of this vessel is reminiscent of those on vessels from earliest Iron Age sites such as West Harling in Norfolk (Clark & Fell 1953), Esher in Surrey (Freer 1947), and the Caburn in East Sussex (Curwen & Curwen 1927; Drewett & Hamilton 1999, 18), but the closest British parallel is from Park Brow, Findon, in West Sussex (Wolsey & Smith 1924, fig 2). The assemblage from this site is repeatedly linked with Early Iron Age-Early/ Middle Iron Age groups such as that from Worth, in Kent, but it has long been recognized that it lacks several key components of such assemblages, including, most conspicuously, its bi-partite or biconic forms (Hawkes 1940, 116; Hodson 1962, 150). It is possible, therefore, that it is of a different date. Other Park Brow traits (externally finger-tipped rims, round shouldered vessels with short, upright necks) have better parallels with other Sussex assemblages of the earliest Iron Age.

The other has a thick, concave upper shoulder/upright neck, with an externally slashed, flat, hammerhead rim (Fig 4.8, P121). Shouldered jars of this shape occur regularly in PDR assemblages of all phases, ‘undecorated’, ‘developed’ and ‘decorated’. However, hammerhead rims and external rim decoration are characteristic of later PDR pottery. In Kent hammerhead rims come from the Darenth valley (Couldrey 1984a, fig 45.336) and Monkton (Macpherson-Grant 1994, fig 16.95), and external rim decoration from Hawkinge Aerodrome (Fig 4.4, P16 and P39) and Monkton (Macpherson-Grant 1994, fig 14.78). The assemblages from the Darenth valley and Monkton would both be characterized as ‘developed’ and probably date to the Late Bronze Age; the sherd from Hawkinge Aerodrome comes from an Early Iron Age or Early/Middle Iron Age dated assemblage dominated by residual ‘decorated’ PDR pottery of Late Bronze Age or earliest Iron Age date. Since P121 overlay P122 stratigraphically an Early Iron Age date is postulated for it.

Narrow shouldered tripartite bowls

Sherds from two or possibly three narrow shouldered tripartite bowls are present in the Canterbury Road assemblage. One is sharply angular (Fig 4.8, P112), the other two have more rounded angles (for example Fig 4.8, P106). They are in fine to intermediate ware fabrics (fabrics FG and F2) and all three are burnished. The angularity of vessel P112 and the tri-
partite form of all three vessels is characteristic of much later, ‘decorated’ PDR or earliest Iron Age pottery from southern Britain (see Cunliffe 1991, figs A3 to A13). The form in which it occurs at Canterbury Road, however, is best paralleled in assemblages from Dolland’s Moor, Folkestone, in Kent (Macpherson Grant 1989, 61), Slonk Hill, Shoreham, in West Sussex (Hartridge 1978, fig 12.6), and in continental (French) assemblages such as those from Neuville-sur-Escaut in Nord (Hurtrelle et al 1990, 18), Duisans in Pas-de-Calais (ibid, 27), Conde-sur-Suippe ‘Le Deprofundis’ in Aisne (De La Brieffe & Sidéra 1988, fig 32) and Compiègne ‘Le Fond Pernant’ in Oise (Malraux et al 1996, fig 5). The associations of the Dolland’s Moor vessels are not yet fully published and they cannot be dated independently but that from Slonk Hill appears to belong to a ‘decorated’ PDR assemblage of probable earliest Iron Age date. The French material, too, although associated with some later, Early Iron Age-Early/Middle Iron Age types, appears to belong primarily to an earlier typological tradition.

Pottery Group 2: Early Iron Age or Transitional Early/Middle Iron Age Pottery

The most clearly defined Early Iron Age-Early/Middle Iron Age assemblage from Canterbury Road comes from pit C[145]. It was associated with three pierced triangular loomweights. More or less contemporary material, comes from at least thirteen other features, including two ditches (ditches C[35] and C[67]) and ten pits (pits C[16], C[20], C[57], C[84], C[114], C[116], C[131], C[136], C[143] and C[159]). In the Canterbury Road assemblage the key chronologically diagnostic forms belonging to this group include the bi-partite bowl or dish, the bi-partite shouldered jar, often with ‘applied rustication’ below the shoulder, the conical cups or lamp, and perhaps the ‘onion-shaped’ jar with pedestal-base.

The Canterbury Road assemblage includes two sherds from different, thick bodied bi-partite bowls or dishes (including Fig 4.9, P161). Unlike the early bi-partite bowls described above these vessels have pronounced shoulder angles and out-turned rims/vestigial necks. Both are in fabric F2 and burnished. This vessel type is present in the Early Iron Age-Early/Middle Iron Age assemblages from Hawkinge Aerodrome (Fig 4.6, P71), and in continental assemblages in the same tradition from Fontaine-Notre-Dame in Nord (Hurtrelle 1990, 56, fig 5), Fréthun ‘Les Reitz’ in Pas-de-Calais (Blancquaert 1989, fig 13) and Tergenier ‘Les Hauts Riez’ in Aisne, France (Nazé 1993, fig 22), Kooigem in Belgium (Doorselaer 1989, fig 3), and Het Geestje in Holland (Van Heeringen 1989a, 40), and numerous other sites. It should date to the Early Iron Age or Early/Middle Iron Age.

‘Onion-shaped’ jars with pedestal bases

A deep pedestal base and widely flared lower body probably belong to an ‘onion-shaped’ jar (Fig 4.9, P163) of the sort identified at Eastbourne in Sussex (Hodson 1962, fig 1) and Barham Downs in Kent (Macpherson-Grant 1980a, fig 4). The dating of this vessel type is based upon a chain of typological parallels which include material both from poorly stratified and incompletely published assemblages. These include Eastbourne and Barham Downs, and Deal (Parfit 1985, fig 4). Examples were also noted in Highstead period 3b (Couldey 2007, fig 90, no 380). Currently these associate it with Early Iron Age or Early/Middle Iron Age assemblages. Such a date for vessel P163 is perhaps confirmed by its association with a sherd in fabric G1. However, pedestal bases also occur at Park Brow, which has earlier ‘decorated’ PDR parallels, as have some of the vessels in the Eastbourne assemblage. Possibly, therefore, it is earlier.

Bi-partite jars of Early Iron Age-Early/Middle Iron Age type range from those with a plain squared (Fig 4.8, P103) or slightly out-turned rim (Fig 4.9, P162) to those with a pronounced upright or slightly out-turned rim or vestigial neck (Fig 4.9, P156 with a foot ring base, and P158. Characteristically several of those from Canterbury Road are finished differently above and below the shoulder angle. These include vessel P145 (Fig 4.9), burnished above and with applied ‘rustication’ below, vessel P103 (Fig 4.8) burnished above and combed below, and P158 (Fig 4.9) burnished above and roughened below. French examples of these types come from Coquelles ‘La petite Rouge Cambre’ (Blancquaert 1998, fig 8) Fréthun ‘Les Rietz’ (ibid, fig 12), and Baillieux-sire-Berthoult (Hurtrelle et al 1990, 39, fig 5) in Pas-de-Calais. All of these sites have yielded more or less contemporary Early Iron Age or Early/Middle Iron Age groups. Kent parallels include vessels from Hawkinge Aerodrome (Fig 4.4, P45, Fig 4.7, P91 and P97), the Whitfield-Eastry bypass (Davey & Macpherson-Grant 1996) and Worth (Hawkes 1940, 117). Vessel P109 (Fig 4.8), in fabric G1, is the fineware equivalent of this type. It is burnished overall and has linear tooled decoration above and below the shoulder. No exact parallels for it are known, either from Britain or the continent, but its form and decoration are reminiscent of that of a number of vessels from Fréthun ‘Les Rietz’ (Blancquaert 1998, fig 12) and it seems likely to be of the same Early Iron Age or Early/Middle Iron Age date.
A complete cup or lamp with an open-mouthed, conical shape, and a foot-ring base comes from pit C[145] (Fig 4.9, P160). A similar vessel was found in the Aerodrome assemblage (Fig 4.6, P80) for which a range of Early Iron Age-Early/Middle Iron Age continental and Kentish parallels have been suggested.

Many Canterbury Road sherds have a ‘rusticated’ finish consisting of a layer of roughened, applied clay slurry (eg Fig 4.8, P107 and Fig 4.9, P137). Previous study of Kent pottery has suggested that, though occasionally present in ‘decorated’ PDR assemblages dating to the earliest Iron Age, this finish is more common in later assemblages such as those from Hamilton Road, Deal (Parfitt 1985, fig 7), Hawkinge Aerodrome (this volume), and Ebbsfleet in Thanet (Macpherson-Grant 1992b, 289). The best evidence for the chronological development of this surface treatment comes from Hightead. Here, quantified data shows that rustication is present in very small quantities (c 1-2% of vessels) both periods 2 and 3a (900–600 BC & 600–500 BC respectively) but it suddenly becomes much more common in period 3b (estimated at 500–400 BC) when it occurs on nearly 20% of vessels (Couldrey 2007, table 9, 166). At Canterbury Road the difference is best illustrated in pit C[116], the lower fills of which contain no ‘rusticated’ sherds, the upper fills of which contain many. It should be noted, however, that as a group, the remaining feature sherds from this feature can all be accommodated in the site’s ceramic group 1.

In Britain this finish is restricted to a limited number of Kentish sites (see Seager Thomas 2014, table 4) and the coastal distribution of this of this surface treatment is pronounced, suggesting a clear cultural and stylistic affinity with ceramic traditions across the Channel. Rustication is common in both France, and, particularly, in Belgium and the southern Netherlands (Couldrey 2007, 170). In Holland, it appears to become more common over time (at Oss-Ussen in Waalre; Van den Broeke 1987, fig 5; and other Dutch sites: Van Heeringen 1989a & b).

Pottery group 1 And 2 (undifferentiated)

Pottery which could belong to groups 1 or 2 occurs in most early and middle first millennium BC features from the site. In a handful of cases (notably pits C[8], C[131] and C[161]) it is necessary to rely upon these ambiguous types for dating. Key vessel types belonging to this group include the ‘festooned’ rim, the shouldered jar with a short, concave neck, the open mouthed convex jar, and, in small quantities, applied ‘rustication’.

The ‘festooned’ rim (Fig 4.8, P113) from Canterbury Road is in fabric FG and roughly finished. It is one of the very few examples from British sites, although other Kentish parallels have been noted at White Horse Stone and Rainham (Morris 2006, 66, Seager Thomas 2014, 59). Festooned rims are common in France where they occur on a variety sizes of, usually, conical vessels. The body curvature of vessel P113 indicates that it was at the upper end of the size range. Such ‘festooned’ rims occurred in association with narrow shouldered tri-partite bowls at DUISANS (Hurtrelle et al 1990, 27), Condesur-Sur-Suippe ‘Le Deprofundis’ (De La Breiff and Sidéra 1988, fig 32) and Compiègne ‘Le Fond Pernant’ (Malrain et al 1996, figs 5 and 6) and presumably date from the same period, although occurrences on French sites which have yielded predominantly Early Iron Age-Early Iron Age/Middle Iron Age assemblages such as Bailleul-sur-Berrhoul in Pas-de-Calais (Hurtrelle et al 1990, 18) suggest that the type was long-lived. The fabric of the present vessel shows it to have been a domestic product.

A further category of shouldered jar in the Canterbury Road assemblage is bi-partite with a short, concave neck. There are six in all. One is in fabric FG (Fig 4.8, P99), one is in fabric FQ1 (Fig 4.9, P159), and four are in fabric F2 (Fig 4.8, P107, P118, P129, and Fig 4.9, P164). Three vessels are finger-furrowed and all are roughly finger-pinched. One retains possible traces of applied ‘rustication’ below the shoulder. At Canterbury Road the type occurred in association with both earliest Iron Age and Early Iron Age-Early/Middle Iron Age assemblages. Additionally, it occurs in earliest Iron Age assemblages from Neuville-sur-Escaut in Nord, France (Hurtrelle et al 1990, 18), and Early Iron Age-Early/Middle Iron Age assemblages from Hawkinge Aerodrome (Fig 4.6, P58 and P73) and Ebbsfleet in Thanet (Macpherson-Grant 1992, fig 6.12). Presumably, therefore, the type straddles both periods. Vessel P167 (Fig 4.9) may represent a fine ware equivalent of this form. Similar vessels come from Park Brow in Sussex (Wolseley & Smith 1924, fig 6) whose dating is discussed above.

Large open-mouthed convex jars from Canterbury Road occurred primarily in Early Iron Age or Early/Middle Iron Age dated features. A vessel from pit C[135] (Fig 4.9, P137) is finished with applied, grog-rich ‘rustication’ identical to that of a bi-partite jar from Hawkinge Aerodrome (Fig 4.4, P45). Large conical or open mouthed convex jars, however, occur in assemblages with ‘decorated’ PDR and later, Early Iron Age-Early/Middle Iron Age associations. These includes those from Yapton in Sussex (Hamilton 1987, fig 5.12), which yielded a ‘decorated’ PDR assemblage, and Barham Downs (Macpherson Grant 1980a, fig 4.5), the Bridge Bypass (ibid, fig 18.102), and...
Pottery group 3: Middle/Late Iron Age Pottery

Probable Middle/Late Iron Age pottery came from both contemporary and later features. Ditch C[45] yielded a large assemblage of this date and smaller, contemporary assemblages came from pits C[94] (G31) and, possibly, pit C[13] (G31). Vessel forms which could date anywhere in the mid 2nd century BC to earlier 1st century AD come from ditch C[63] (FS2) and pits C[27], C[39], C[80], C[86] and C[98]. Of these features, ditch C[63] and pit C[98] also contain diagnostic ‘Belgic’ material. In the Canterbury Road assemblage the key chronologically diagnostic forms belonging to this group include the rough barrel shaped or saucepan pot, the pedestal base, the closed-mouthed jar with internally thickened bead rim/upright neck and the round shouldered bowl with upright, internally thickened neck.

Canterbury Road yielded sherds from a single slack-bodied jar with a short, upright neck (Fig 4.10, P178) which closely resembles ‘saucepan’ pots found at Hawkinge Aerodrome (see examples on Fig 4.16). It is made in fabric F2 and roughly decorated with a diagonal slash immediately below the neck. Although the saucepan ceramic tradition is quintessentially Middle Iron Age, there is good evidence that its currency extended well into the 1st century BC, suggesting some degree of overlap with Late Iron Age ceramic styles (Cunliffe 1991). Until recently saucepan pots were thought to be much rarer in Kent than in central southern England. However, vessels belonging to this tradition are increasingly being recognised in the region, in both Middle and transitional Middle/Late Iron Age assemblages (Morris 2006, 84-85). Its associations at Hawkinge Aerodrome, which include Belgic and wheel-thrown vessels, suggest that this is a very late example but its Canterbury Road fabric, which was distinct from those associated with Belgic style forms, would allow for a slightly earlier, transitional Middle/Late Iron Age date.

Shallow pedestal bases come from pit C[124] (Fig 4.8, P126), associated with a mixed earlier and later Iron Age feature assemblage, and ditch C[45] (Fig 4.10, P179), associated with the ‘saucepan’ pot described above. Both are in fabric FFe1, burnished and come from vessels with widely flared lower bodies. Similar bases occur as early as the Early Iron Age or Early/Middle Iron Age but the fabric of the present vessels, which was exclusively associated with Middle/Late Iron Age or earlier Late Iron Age types, ties them to this period. Kent parallels include vessels from probable pre-Belgic Late Iron Age contexts at Bigbury (Thompson 1983, fig 12.92) and Oldbury (Ward Perkins 1944, fig 12.1).

Sherd from three round shouldered bowls with upright or slightly flared, internally thickened rims may also belong to pottery Group 3. Vessel P170 (Fig 4.10) is in a unique sandy variant of fabric G1. It has a rounded rim and is roughly finished. Vessel P176 (Fig 4.10) is in fabric F1. It has a flat rim and is burnished. Vessel P132 (Fig 4.9), from a mixed Early Iron Age–Early/Middle Iron Age and Late Iron Age feature, is in fabric F1. It has a rounded rim and is burnished. Similar vessels are present in Late Iron Age assemblages containing early Belgic pottery but not in those containing developed Belgic material, and, given its present non-Belgic associations, it is probable that the type dates from before the advent of this tradition. Examples, possibly of this date, come from the lower fill of a Late Iron Age ditch at North Bersted in Sussex (Bedwin & Pitts 1978, fig 21) and the waterhole at Bigbury (Thompson 1983, fig 12).

The Canterbury Road assemblage also includes sherds from two large closed mouthed jars with short, upright, internally thickened necks. Both are in fabric F2. One has a rounded rim with a slight horizontal facet (Fig 4.10, P175), the other a rounded rim (not illustrated). Although this closed-mouthed form occurs in Belgic assemblages (see below ‘Pottery Group 4’), three facetted-rim jars from Barham Downs similar to vessel P175 have been assigned earlier Late Iron Age dates owing to the absence from the site of other Belgic forms (Macpherson-Grant 1991, 44). Since neither of the Canterbury Road vessels was associated with fabric G1 or Belgic feature sherds, it is possible that they too represent a pre-Belgic manifestation of the form. At both Hawkinge Aerodrome and Bigbury (Thompson 1983, fig 12) similar closed-mouthed jars were associated with round shouldered bowls of the sort described above.
Pottery group 4: Late Iron Age/Early Roman
Small assemblages of Belgic pottery came from at least six features, one ditch (C[63]; FS2) and five pits (C[55], C[88], C[98], C[136] and C[157]). As noted above a further four features yielded forms which occur both in pre-Belgic and Belgic assemblages (see above, ‘Pottery Group 3’). An extremely large mixed group of this type was associated with several late 2nd/early 1st century potin coins at the Aerodrome (see Chapter 4.6). In the Canterbury Road assemblage, the key chronologically diagnostic forms belonging to this group include the closed mouthed jar with internally thickened, beaded rim/upright necks and the everted rim jar with ripple neck.

Everted rim jar with ripple neck
The Canterbury Road assemblage includes sherds from two jars with ‘ripple’ necks, both in fabric G1. The more complete of these, vessel P181 (Fig 4.10), comprises a large jar with a pronounced, everted rim, a row of diagonal slashes at the base of the neck and a combed upper body. Vessels of this sort are described by Thompson (1982) as ‘large storage jars’ (type C6) and dated by her to the first century BC and later. On stylistic grounds the present vessel is likely to be later, rather than earlier, perhaps straddling the end of the Iron Age and the beginning of the Roman period. Similar vessels occur at Ebbsfleet in Thanet, in association with pre-conquest Gallo-Belgic imports (Macpherson-Grant 1992b, fig 12), and Cheriton, in association with early Roman material (Testor & Bing 1949, fig 3).

Closed mouth jars
Additionally, two further closed-mouthed jars probably belong to the later 1st century BC-mid 1st century AD. Both are smaller and better finished than the flint tempered closed-mouthed jars described above. Vessel P182 (Fig 4.10) is in fabric LQ1 and burnished. It was directly associated with the grog-tempered storage jar described above. Vessel P182 (Fig 4.10) is in fabric LQ1 and burnished. It was directly associated with the grog-tempered storage jar described above. Kent parallels for fabric LQ1 and burnished. It was directly associated with the grog-tempered storage jar described above. Vessel P182 (Fig 4.10) is in fabric LQ1 and burnished. It was directly associated with the grog-tempered storage jar described above. Kent parallels for fabric LQ1 and burnished. It was directly associated with the grog-tempered storage jar described above.

Ungrouped pottery
A single vessel remains ungrouped (Fig 4.10, P172). It came from Late Iron Age pit C[13] but typologically it most closely resembles a PDR shouldered jar. Its fabric, FC, is unparalleled in any of the Canterbury Road or Hawkinge Aerodrome groups.

CATALOGUE
Period 3.1 Early/Middle Iron Age (500–300 BC) (Fig 4.8)
Vessel C[17], fill C[12], G29, OA3

Vessel C[16], fill C[17], G29, OA3

Vessel C[20], fill C[21], G29, OA3

Vessel C[103], fill C[104], G29, OA3
P111 Flat base, and flared, straight sided lower body. Fabric F2. Deep vertically tooled/incised lines c.50mm apart on lower body.

Quarry pit C[116], uppermost fill C[117], OA3

Quarry pit C[116], secondary fill C[133]
P121 /Shoulder angle, concave upper shoulder/upright neck, and flat, externally slashed (every 0.1m to 0.15m), internally and externally expanded (hammerhead) rim of shouldered jar. Fabric F2. Finger smeared. P122 Rounded shoulder, upright neck, and flat, squared rim of very slack shouldered jar. Fabric F2.

Quarry pit, primary fill C[134]

Vessel C[124], fill C[125]
P113 Flat, slightly expanded base, and slightly convex lower body. Fabric F2. Roughly burnished exterior.
P114 Slightly convex upper body, and slightly short, upright neck. Fabric F2. Very roughly burnished exterior.
Fig 4.8 Illustrated pottery P98–P131
Fig 4.9 Illustrated pottery P132–P169
DISCUSSION AND REGIONAL CONTEXT OF THE LATE BRONZE AGE TO EARLY/MIDDLE IRON AGE POTTERY FROM HAWKINGE

Sue Hamilton, Mike Seager Thomas & Anna Doherty

The two important pottery assemblages of earlier/mid 1st millennium BC date from the Aerodrome (Site A) and Canterbury Road (Site C) show that the wider area was occupied continuously – at least in terms of pottery use – from the later part of the Late Bronze Age (possibly from as early as c 950 BC at the Aerodrome), into the earliest Iron Age (c 800–500 BC) and Early Iron Age/transitional Early /Middle Iron Age (c 500–300 BC).

SITE ORGANIZATION

During this period the focus of occupation shifted, and, where it occurred simultaneously on both sites, pottery associations differed. For example, the Aerodrome site yielded more deep features, containing contemporary, Early Iron Age or Early/Middle Iron Age pottery, mixed with earlier material. Associated artefact types also differed, the Aerodrome producing spindle whorls, Canterbury Road triangular loomweights, crucible fragments and possible kiln furniture. Together these features and finds give the impression of a large, zonally organized site.

How pottery was treated after discard can be inferred from the mixing of material belonging to different chronological/typological groups and the occurrence of several vessel joins between different features. It seems likely that features containing chronologically mixed assemblages were derived from long-lived middens. It is uncertain whether individual features were filled as they went out of use or whether the site was ‘closed down’ in a single act of clearance. The latter is suggested of one Kent site (Whitfield-Eastry Bypass site 2: Davey & Macpherson-Grant 1996, 68) and two Sussex sites (Yapton and Knapp Farm, Bosham: Hamilton 1987, 56; 1997b, 97) and it may be implied by the possible simultaneous closure of more than one category of feature at Hawkinge.

Equally, however, the similar configuration of Late Bronze Age and Early Iron Age - Early Iron Age/Middle Iron Age fills and the absence of conjoins between other mixed assemblages there may argue in favour of a piecemeal process. This would indicate continuity of practice over a long period.

CONTINENTAL INFLUENCES

Turning to intra- and inter-regional comparisons, it is clear that it is fairly easy to find contemporary parallels for the Late Bronze Age/earliest Iron Age material from Hawkinge in Sussex, Surrey and Greater London but that, by the Early Iron Age/Middle Iron Age, Kent’s chief ceramic influences are continental rather than British. Above, numerous parallels have been drawn with sites in northern French regions – especially in the departments of Pas-de-Calais and Nord – and others in Belgium and Holland. In fact even within Kent itself, it appears that there are a group of stylistically-linked assemblages with a distinctly coastal distribution. Not surprisingly, some of the most comparable assemblages come from sites located within a few kilometres of Hawkinge like Dolland’s Moor and Saltwood Tunnel (Macpherson-Grant 1989; Jones 2006). Nevertheless it is clear that the Hawkinge Early Iron Age - Early Iron Age/Middle Iron Age assemblages – with their onion shaped jars, pedestal bases, chevron decoration, rusticated surface treatments and the unusual ‘festooned’ rim from Canterbury Road – have better parallels in coastal sites from north and east Kent, like Highstead, Deal, Kingsnorth, Iwade and Rainham (Couldrey 2007, Parfitt 1985, Seager-Thomas in prep a,
Hamiliton & Seager Thomas 2005; Seager Thomas 2014) than they do to much more proximate sites from landlocked areas. In fact many of the continental influences on coastal areas probably extend far further west than the Folkestone area, since stylistically similar vessels have been noted in Eastbourne and a group of Early Iron Age pedestal jars from the West Sussex coastal plain may also be related (Hodson 1962; Doherty 2015; Seager Thomas in prep).

One aspect of the Hawkinge pottery which appears highly localised however – at least in the context other Kentish assemblages – is the use of grog-tempering in the earlier Iron Age. At both the Aerodrome and Canterbury Road sites, grog-with-flint wares are amongst the most common fabrics in groups of mid 1st millennium date and wholly grog-tempered wares are also clearly associated with this period. The relative lack of large diagnostic groups and the presence of residual material in many Early Iron Age - Early/Middle Iron Age groups makes it difficult to quantify Early Iron Age - Early/ Middle Iron Age fabrics separately to earlier, post-Deverel-Rimbury ones; however, Figure 4.11 shows that grog-with-flint wares were the second most frequently-occurring fabrics in the predominantly Early Iron Age - Early/Middle Iron Age assemblage from Canterbury Road and purely grog-tempered wares were also common. It is clear that these two fabrics are associated with diagnostic Early Iron Age - Early/Middle Iron Age forms at both sites. For example a rusticated jar from the Aerodrome is associated with fabric G (Fig 4.6, P57) and a typical continentally-influenced chevron decorated bipartite jar, together with a similar undecorated form, were associated with fabric G1 at Canterbury Road (Fig 4.8, P110 and Fig 4.9, P156). Associations between Early Iron Age - Early/Middle Iron Age forms and grog-with-flint wares are even more numerous: amongst the most chronologically diagnostic forms are rusticated jars and a tripartite form from the Aerodrome, and a pedestal base from Canterbury Road (Fig 4.4, P45, Fig 4.8, P99, Fig 4.6, P83; Fig 4.9, P163).

By comparison grog-tempered wares are a rarity in Early Iron Age - Early/Middle Iron Age assemblages from elsewhere in Kent. For example, on the High Speed 1 project, contemporary use of such fabrics was more or less confined to the most south-easterly of the investigated sites at Saltwood Tunnel, located c 2km to the south-east of Hawkinge (Morris 2006, 82). This strongly suggests that grog-tempering represents a direct influence from across the Channel, since similar fabrics occur widely in contemporary assemblages from the continent eg Oss-Ussen in Holland and Bailleul in the Pas-de-Calais, France (Schinkel 1998, 83; Hurtrelle et al 1989, 33). Interestingly though, grog-tempered wares are not found in the other stylistically similar assemblages from other coastal regions of north and east Kent, highlighted above. For example, grog-tempering does not appear in Hightead before the Late Iron Age (Couldrey 2007, 103) and it is absent from Rainham (Seager Thomas 2014).

There is no evidence that any of the pottery from Hawkinge and its locality or from the other Kent coastal sites is imported (eg Couldrey 2007, 168), although admittedly, the geological similarities might make it challenging to identify wares from northern France or the Low Countries even through petrographic or chemical analysis. It seems likely that vessels might occasionally have made their way across the Channel as containers for other commodities or as the possessions of travellers although it is doubtful that there was any organised cross-channel trade in ceramics at this time. Nevertheless, the very clear stylistic links between the two regions suggests fairly frequent contact. Moreover, the very localised pattern of grog-tempering in the Folkestone area suggests not just the imitation of stylistic elements – which could presumably be copied just by observing rare examples of imported vessels – but technological innovation.

Recent isotope analysis of skeletons from Thanet has shown that a number of individuals buried in Kent during the Middle Iron Age, came from very distant regions although, so far, this evidence points more strongly to northern Europe or the Alps than to the opposite side of the Channel (Fitzpatrick 2015, 191-194). However, this new field of archaeological science is starting to renew interest in the topic of prehistoric migration. It is unlikely that the users of grog-tempered pottery would be aware of the fabric recipe just by looking at the fired vessel, so this aspect of the Hawkinge assemblage potentially has quite...
important implications. Namely, that methods of pottery manufacture are likely to have been brought with incoming people. Of course, this need not imply large scale migration of whole populations. It has generally been suggested, based on ethnographic analogy that most prehistoric pottery is likely to have been made for the household by non-specialist, probably largely female potters. One possible explanation for the longer-distance movement of Iron Age vessels within Britain is that they might have accompanied marriage partners to their new households (Morris 2006, 74). It is not unreasonable then to suggest that this might also be a mechanism for the spread of ceramic technology and that similar movements could have occurred across the Channel as well as within mainland Britain. That continental grog-tempered technology, which is atypical elsewhere on contemporary sites in southern Britain, now occurs on a number of sites within a few kilometres’ radius around Folkestone, perhaps even raises the possibility of a slightly larger immigrant community. If this is the case however, it is clear that this aspect of ceramic manufacture did not spread very widely into Kent. This perhaps implies that restricted and localised relationships existed between specific communities on either side of the Channel.

Finally it is worth noting that Early Iron Age - Early/Middle Iron Age pottery and, by association, mid 1st millennium activity, has been recorded much more frequently in Kent than in other neighboring regions. It is therefore tempting to infer a causal link between Kent’s strong continental associations and its apparent resilience in a period marked elsewhere by contraction in settlement activity in the south-east (SERF 2007, 10).

MIDDLE/LATE IRON AGE POTTERY FROM PIT A[74], HAWKINGE AERODROME (SITE A)
Isobel Thompson

INTRODUCTION
A huge pottery assemblage from fill A[75] of pit A[74], encountered during the 1998 excavation is of considerable interest, as it is a mixture of both Middle and Late Iron Age fabrics, forms, and decorative motifs. Crucially this group was directly associated with at least three and probably five Class I potin coins dating to the late 2nd-early 1st century BC. The assemblage is a curious mixture of a great quantity of broken-up vessels with a number of whole profiles and virtually complete vessels. Table 4.8 summarises the overall quantity of pottery. Overall, there are minimum of 119 unique rim profiles and potentially, fragmented sherds from several hundred more vessels.

FABRICS AND FORMS
The pit fill, context A[75], yielded 36.71kg of pottery. This considerable amount is represented by four main fabric groups and small quantities of four other fabrics. Of the main fabrics, the largest by weight is grog-tempered (Fig 4.12). The next largest by weight is a distinctive ‘fine sandy’ fabric. The other main fabrics are flint, and coarse sandy wares. The most significant of the minor fabrics is grog-and-flint; shell, chaff, and later sandy fabrics are represented by a few sherds each.

Grog-tempered
It can be seen from Table 4.8 and Figure 4.12 that grog-tempered vessels are the most numerous in the assemblage. These include four virtually complete vessels, but few of the others are represented by more than one sherd each. All appear to be hand-made; some neatly and some less carefully. Thirty-three of the rims are grey or dark grey, but seven others are red or buff or pale brown in exterior colouring, showing some firing difference that forms a distinctive group. This sub-group is not different in form from the grey majority. There are a few sherds which may have an admixture of shell. The range of associated forms (after Thompson 1982) is not extensive (see Table 4.9).

As well as these standard forms, the assemblage includes part of a pedestal urn base, of a normal type for the fabric. The range of forms associated with this fabric is markedly restricted: no B1 or B3 jar forms, no carinated cups, and certainly no G forms (copies of Gallo-Belgic imports, from c 10 BC onwards). It does not have many of the characteristics most typical of grog-tempered vessels in east Kent (hardness of the fabric, heavy combing, flaring storage jar rims, thickened bead rims, and the fully developed C4 jar form). The C1-1 jar (Fig 4.13, P183) would be recognisable in early levels in Canterbury, but
it is comparatively underfired; another vessel (Fig 4.13, P189) is almost, but not quite, a C4.

The grog-tempered forms also include vessels which are normally local later Iron Age flint- or sand- tempered forms, and these are also matched at Bigbury as well as elsewhere. These include rims apparently from small cups or bowls with curving body and small everted rim, close to Bigbury (Thompson 1983, fig 11 no 71, and rims similar to fig 12 no 84). At least one vessel (Fig 4.32, P186) is in a ‘saucepan’ form, discussed below under the Fine Sandy fabric.

Grog and flint

Only three recognisable rim forms were present, and of these two are not standard forms for grog-tempered vessels. P210 (Fig 4.15) which is closer to a bucket shape than a ‘saucepan’ form, has some interesting parallels at other sites: a flint-gritted one at Bigbury (Thompson 1983, fig 11 no 71, and rims similar to fig 12 no 84). At least one vessel (Fig 4.32, P186) is in a ‘saucepan’ form, discussed below under the Fine Sandy fabric.

<table>
<thead>
<tr>
<th>Form</th>
<th>Description</th>
<th>Approx date</th>
<th>Parallels</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-1</td>
<td>Everted-rim jars with rippled shoulders</td>
<td>1stC BC and later</td>
<td>Rippled forms are common in Kent</td>
</tr>
<tr>
<td>B2-2</td>
<td>Rippled jar rims, not everted</td>
<td>1stC BC and later</td>
<td>Common in Kent; cf. Bigbury, Thompson 1983 fig.10 nos 40-41</td>
</tr>
<tr>
<td>B2-3</td>
<td>Tall jars with rippled shoulder</td>
<td>1stC BC and later</td>
<td>Common in east Kent</td>
</tr>
<tr>
<td>C1-1</td>
<td>Bead-rim jars</td>
<td>Pre- and post-conquest</td>
<td>Best known in east Kent; cf. Canterbury Castle ditch, Bennett et al 1982 fig.57 no.15</td>
</tr>
<tr>
<td>C1-2</td>
<td>Rounded jars with bead rims</td>
<td>1stC BC and later</td>
<td>Generally similar forms at Bigbury: Thompson 1983 fig.11 no.64</td>
</tr>
<tr>
<td>C2-3</td>
<td>Plain everted-rim jars, no offset</td>
<td>Most pre-conquest</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>Plain jars with no true external rim but usually internal thickening</td>
<td>1stC BC and later; typologically early</td>
<td>This one is primitive, not yet a real C4; cf. Canterbury Castle ditch, Bennett et al 1982 fig.57 no.17</td>
</tr>
<tr>
<td>C4</td>
<td>Round-shouldered jars with inset below slightly everted or bead rim, and often decoration on shoulder</td>
<td>1stC AD in its full form</td>
<td>A range of varieties here, from primitive to standard. A base is close to Bigbury, Thompson 1983 fig.11 no.67</td>
</tr>
<tr>
<td>C6-1</td>
<td>Storage jars</td>
<td>1stC BC and later</td>
<td>cf. Canterbury Castle ditch, Bennett et al 1982 fig.58 no.29</td>
</tr>
<tr>
<td>D2-4</td>
<td>Round bowls with rippled shoulder</td>
<td>1stC BC and later</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>High bell-shaped lids with slightly turned-out rim</td>
<td>1stC BC and later</td>
<td></td>
</tr>
</tbody>
</table>

Marlowe car park at Canterbury (Blockley et al 1995, fig 282 no 209), in hand-made grog-tempered fabric. The Canterbury example is clearly an oddity there, in a 1st century AD context, and the Bigbury and Borden sites suggest a much earlier date for the form in general. Both these latter sites also have a range of fabrics: flint, grog, grog-and-flint, and sandy.

P211 (Fig 4.15) is another small cup or bowl with curving body and small everted rim, as noted under grog, above. P212 (Fig 4.15) is the only vessel in this fabric which would be normal in grog, as it appears to have a ripple neck. One or two of the flint-tempered vessels may also have some grog temper in them, including jar P218 (Fig 4.15), a storage jar, and foot-ring base P221 (Fig 4.15).

Flint

All of the Hawkinge examples with this tempering are comparatively well-made, but between a third and a half are made in a thin, fine fabric with a range of surface colours including a well-controlled buff-red. These beautiful vessels
show a high degree of potting skill, the culmination of a long-standing Iron Age tradition. The forms are dominated by everted-rim bowls of the sort found all over Kent, Surrey, and further afield in the Iron Age, and which often had foot-rings. None of the profiles at Hawkinge had a surviving base, although one foot-ring in the fine flint was present in the assemblage (Fig 4.15, P222), with others represented only by scraps; flat bases in the same fine ware are also present. The forms in general have several parallels in the waterhole at Bigbury (Thompson 1983), and other Kent sites which have also produced early grog-tempered vessels. The Aylesford cemetery itself has a more or less complete example, in fine flint fabric and with a flat base, amongst the ungrouped vessels (Thompson 1982, 596, no 1391). A grog-tempered pedestal urn at Sturry was apparently found with several foot-rings and other pieces, all flint-gritted (Ince 1928; Thompson 1982, 833).

Alongside these is the saucepan pot P219 (Fig 4.15), with its elaborate tooled decoration. In fabric, form, and decoration it clearly belongs to the saucepan tradition. Although saucepan pots were, until recently, thought to be very rare in Kent, a number of examples were noted on the High Speed 1 project alongside similar styles of curvilinear tooled decoration on other types of Middle Iron Age and Middle Iron Age/Late Iron Age vessels (Morris 2006, 84-85; fig 3.8, TUT/27a & b, BBW/53).

Fine sandy
This is an interesting and distinctive fabric, mostly in pale colours, and described in detail in the catalogue below. It is not a typical Kent Iron Age fabric, although it is known elsewhere in the Folkestone area (Macpherson-Grant & Thompson 1990). One or two of the vessels appear to have glauconite in their fabric suggesting that they may be of non-local origin. In form it is dominated by ‘saucepan’ pots, and by wide-mouthed curving bowls with short upright rims. There are also some small curving vessels, at least two with an omphalos base. This form occurs in flint at other east Kent Late Iron Age sites such as Sturry (Ince 1928) and Deal (Thompson 1982, 691, no 808). The saucepan pots, however, immediately relate Hawkinge to the ‘saucepan pot continuum’ found across central southern Britain from the 4th-1st centuries BC. It is the ceramic sequence at Danebury in Hampshire that provides dating for them and the other Fine Sandy forms at Hawkinge. Danebury ceramic phase 7 (Cunliffe 1984, 248, fig 6.19) includes similarly shaped saucepan pots as well as small curving bowls, with flat bases but similar in profile to the small pots at Hawkinge. Ceramic phase 8 (ibid) at Danebury was marked by a notable change: the beginnings of the use of the potter’s wheel bringing new shapes and motifs, including the appearance of cordons. The new technique and styles reflect the influence of wheel-made cordoned vessels imported from north-west France to Hampshire (ibid, 248; also West Sussex: Fitzpatrick 1997). The Hawkinge vessels do not show much of this influence, although one or two (including Fig 4.16, P224) have characteristics similar to phase 8 forms in pit 1089 at Danebury (ibid, 328). The change from phases 7 to 8 is placed somewhere in the period 100–80 BC, a date which well accords with the associated Class I potin coins found in direct association with the current assemblage from pit A[74]. The Danebury fabrics were local flint and sand products, and largely reduced, unlike the pale colours of the Hawkinge fabric, and no direct connection in either fabric or form is suggested here; but the similarities suggest a date in early 1st century BC for the Hawkinge vessels. They also show a strong connection between Hawkinge and the later Iron Age pottery of Sussex and Hampshire.

Coarse sandy
Several of these vessels are, as might be expected, large storage jar types, but the fabric is also used for less well made versions of Fine Sandy jars and bowls. P253 (Fig 4.18) is a wide-mouthed bowl in a grey grainy fabric; P250 (Fig 4.18) is one of the small rounded bowls. P247 (Fig 4.18) a large storage jar form with pie-crust rim, has some interesting parallels: a scrap from ‘ceramic phase 8’ at Danebury (Cunliffe 1984, 328, no 1014), and a similar jar at Oldbury, while the Oldbury reference (Ward Perkins 1944, fig 12 no 15) mentions another fragmentary vessel in unpublished material from Aylesford. The Coarse Sandy vessels exhibit a range of tempering, including glauconite that presumably derives from more than one source.

Shell
The two rim scraps, of inturned form, are possibly from the same vessel. The body sherds are combed. The fragility of the fabric implies that it has a lower survival rate than the other fabrics and the small quantity may be misleading. Not much can be concluded from these sherds except that they ought to be contemporary with early grog-tempered vessels.

Chaff
Macpherson-Grant (1980b) identifies this fabric, its similarity to daub, and the simple rims, found in ‘early Roman levels in Canterbury City excavations’. The Hawkinge fabric and rim forms are plainly comparable. In Canterbury the fabric is
consistently found associated with grog-tempered vessels, and while it was going out of use in the post-conquest levels there was no indication of how early it might be, or what it might have been used for.

Belgic/Early Roman Fine Sandy and Belgic/Early Roman Coarse Sandy

These two fabrics may be considered together, as there was so little of them. The essential difference is that these appear to be wheel-made, and the fine version at least is distinctive. The forms, too, are apparently later than the bulk of the assemblage and could be intrusive, in particular the flaring jar rim P257 (Fig 4.19). Another unillustrated example, on the other hand, is close in form to the everted-rim jars in fine flint, and may have some glauconite in its fill; it is only the wheel technique that makes it appear later. The other pieces are all similar to grog-tempered forms. There is nothing to suggest, however, that these vessels are early Roman or even perhaps as late as the 1st century AD.

DISCUSSION

The range of fabrics and forms, as summarized in Table 4.10, demonstrate that the date of deposition for the pit is likely to be in the early 1st century BC, which would be in the latter half of the production range for the three to five associated *potin* coins (see Chapter 4.6). As the condition of the vessels includes many worn and broken-up pieces as well as some virtually complete profiles, their dates of manufacture may cover decades. It may also be the case that the complete profiles are the latest, newest vessels; this certainly may be true of the grog-tempered C1-1 jar, and perhaps the D2-4 bowls. On balance the date of deposition of the grog-tempered vessels appears to be slightly later than Bigbury, and earlier than the early groups from Canterbury.

But other complete profiles were in other fabrics: six in Fine Sandy ware, and one each in Flint, Grog-and-Flint, and Coarse Sandy. We can assume that the fabrics are contemporary. Flint and Grog-with-Flint associated with grog are known fairly widely in the Late Iron Age of Kent. The sites at Aylesford (but not Swarling), Allington, and Borden can be seen to have a similar mixture of forms and fabrics. The Fine Sandy fabric, on the other hand, is not a typical Kent fabric. It appears to belong to the Folkestone area. The forms made in this fabric belong to the ‘saucepan pot continuum’ of the later Iron Age in central southern Britain, with an indication of date given by the ceramic sequence at Danebury in Hampshire.

Eastern Kent had until recently been considered to lie outside this style zone, though communities from the Folkestone area may presumably have had contact with saucepan using groups from Sussex and Hampshire, using sea routes along the south coast. Although, the two decorated vessels, P219 (Fig 4.15) (in flint) and P258 (Fig 4.19) (in an unusual grog-tempered fabric) appear stylistically similar to vessels of the Caburn-Cissbury group from Sussex, they may in fact be local Kentish types since assemblages from the High Speed 1 project now provide evidence that saucepans and related decorative styles are more common in the region than was previously thought (Morris 2006, 84–85).

It has been noted above that to judge by the condition of the pottery, the date of deposition is likely to be the end point of a long period of manufacture. The presence in the pit of a few pieces in wheel-made 'Belgic/Early Roman Sandy' and hand-made Chaff-tempered wares could be somewhat later than the bulk of the pottery, but their dating is far from certain. Nothing else in the assemblage need be as late as this, and the grog forms, plainly earlier than Canterbury, ought to indicate an early date for the whole. The wheel-made sherds might be intrusive; but they might merely reflect the beginnings of the change in technology. Further west, in Hampshire, this change occurred near the beginning of the 1st century BC, inspired by imports from north-western Gaul.

<table>
<thead>
<tr>
<th>Fabric</th>
<th>Forms</th>
<th>Parallels</th>
<th>Date range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grog</td>
<td>restricted range of standard forms; also saucepan form, small bowl</td>
<td>Bigbury; earliest Canterbury</td>
<td>pre-10 BC</td>
</tr>
<tr>
<td>Grog-Flint</td>
<td>grog jar form; saucepan; small bowl</td>
<td>Bigbury, Borden, Canterbury</td>
<td>3rd-1st centuries BC</td>
</tr>
<tr>
<td>Flint</td>
<td>everted-rim bowls; decorated saucepan</td>
<td>Bigbury, Sturry, Aylesford; West Sussex</td>
<td>c 100–80 BC</td>
</tr>
<tr>
<td>Fine Sandy</td>
<td>saucepans, wide bowls, small bowls; omphalos bases</td>
<td>Danebury; (Sturry, Deal)</td>
<td>c 100–80 BC or later</td>
</tr>
<tr>
<td>Coarse Sandy</td>
<td>Various</td>
<td>Danebury, Aylesford</td>
<td>c 100–80 BC or later</td>
</tr>
</tbody>
</table>

Table 4.10 Summary of pottery dating evidence from pit A(74)

CATALOGUE (FIG 4.13)

Grog-tempered

P183 C1-1 Whole profile, but shattered into over 100 sherds and apparently not complete. Many clean breaks and some worn ones. The entire rim circuit and most of the base are present. The rim is solid and hard-fired but the body is underfired. The interior surface is a consistent grey with distinctive wiping; the outside is vigorously combed. Similar to a vessel in the primary and recut phase of the ditch at Canterbury Castle (Bennett et al. 1982, fig 57 no 15).

P184 B2-1 Ripple-necked jar with smoothed surfaces and tooled to darker grey on outside. Joining sherds from the upper body.

P185 L1 lid Smoothed dark grey surfaces. One sherd.

P186 Saucepan shaped wide plain bowl. Tooled surfaces. Most of the upper body is present along with some base and body sherds.
Fig 4.13 Illustrated pottery P183–P198
P187 'Saucepan' shape. Tooled surfaces. Uneven rim and shaping but well finished.
P188 C1-2 bead rimmed jar. Combed in a zone on the middle of the body.
About half of the upper body is present.
P189 Jar with combed body, slightly dished neck and very slightly thickened rim. This looks like an incipient C4 form, not yet the true C4 that was common in the 1st century AD. Cf Canterbury Castle ditch, Bennett et al (1982) fig 57 no 17.
P190 D2-4 ripple-necked bowl. Faint tooled diagonal hatched decoration on the girth below the neatly executed ripples. A pair of holes has been drilled after firing, one on either side of a break at the rim (40mm apart). There is no matching pair on the other side of the pot, so they are apparently not suspension holes. A similar vessel in the Canterbury Castle ditch (Bennett et al 1982, fig 58 no 29) is not as well made. Fragmented but virtually complete and may have been a whole pot when deposited in the pit.
P191 D2-4. Larger but in the same condition as P190; also similar in fabric and decoration. The ripples are not quite as even, and the decoration is slightly more heavy-handed. Tooling marks and finger dents on the inside.
P192 Possible B2 jar. More or less smoothed on the neck; rough combing, sooted, on the girth, and rusticated below. Cf Bigbury, Thompson 1983 fig 10 nos 40-41.
P193 Closed jar form; smoothed on inside but roughly faceted. Tooling on neck, and stub-finish below.
P194 B2-2 ripple-necked jar. Smoothed, with traces of black pigment on and below the lowest ripple.
P195 Small bowl. Smoothed inside surface, sweeping shallow combing on exterior below the shoulder. Cf Bigbury, Thompson 1983 fig 11 nos 71 and 76.
P198 Jar with upright to everted rim. Traces of diagonal tooled decoration on the shoulder.
P199 C6-1 storage jar. Heavily combed below tooled neck and rim. (Fig 4.14)
P200 C6-1 storage jar.
P201 C2-3 everted rim plain jar. Cf generally similar vessels at Bigbury: Thompson 1983 fig 11 no 64.
P202 C5 inturned rim, a larger vessel than usual for this form. Shallow combing on exterior.
P203 Jar with slight shoulder and poorly defined neck.
P204 Pedestal, foot missing.
P205 Footing.
P207 Two sherds, joining. Smoothed neatly and with deep incised diagonal lines widely spaced.
P208 Plain base.
P209 Plain base with shallow tooled decoration on outside and on the underside, right to the edges.

Grog and flint-tempered (Fig 4.15)
P210 Saucepan pot. Virtually complete.
P211 Small bowl. Surfaces smoothed but not burnished.
P212 Everted rim with slightly rippled neck.

Flint-tempered
P213 Rounded bowl with everted rim of the ‘everted-rim foot-ring bowl’ type but no base sherds present. Very fine flint gritted fabric, beautifully made. Cf Bigbury (Thompson 1983, fig 10 no 19; and others possible).
P215 Form as P213. Evenly shaped, well tooled all over both surfaces.
P216 Form as P213. Fine almost vertical tooling.
P217 Form as P213 but wider. Both surfaces tooled, outside smooth with usual near-vertical toothing.
P219 Small saucepan pot. Heavily wavy and horizontal line tooled pattern all over the outside. Similar to Cunliffe’s Caburn-Cissbury style, with parallels in the coastal areas of Sussex in the 3rd to 1st centuries BC (Cunliffe 1991, 567). Complete profile apart from centre of base.
P220 Rounded jar with small upright rim and decorative dimples on shoulder. Bigbury has sherds with similar curved lines, but not dimples (Thompson 1983, fig 10).
P221 Foot-ring from an everted-rim foot-ring bowl. Cf Bigbury (Thompson 1983, fig 10 no 19; fig 12 no 92), and Sturry (Ince 1928, c-f).
P222 Foot-ring.

Fine sandy (Fig 4.16)
P223 Saucepan pot in form, slightly curving. Fairly low-fired. The outside has enough neat vertical tooing to give the pot a dark grey dull shine. About one third of the pot is extant.
P224 Wide-mouthed bowl (Fine sandy). It presumably had a foot-ring base (not present). The surfaces have heavy horizontal tooing, especially noticeable on the shoulder. Cf Danebury ceramic phase 8: Cunliffe 1984, 328, fig 6.97 no 723.
P225 Form as P223. Not tooled inside but heavy vertical tooing all over outside.
P226 Wide bowl with upright rim (Fine sandy). Possibly with some post-breakage burning as one sherd is grey, the others cream-buff. Surfaces smoothed, some horizontal tooing on exterior.
P227 Bowl (Fine sandy). Possibly related to everted-rim foot-ring bowls.
P228 Small rounded bowl with everted rim and omphalos base (Fine sandy).
Some apparent glauniconite. Cf Sturry (Ince 1928), and Deal (Thompson 1982, 691, no.808), although these two are apparently flint-gritted.
P229 Form as P228. Also with some glauniconite. Cf Danebury ceramic phase 7 (Cunliffe 1984, 251).
P230 Form as P223 (Fine sandy). Some glauniconite; horizontal tooing on both sides, and erosion fragments.
surfaces, more visible on inside.
P231 Form as P223
P232 Form as P223
P233 Everted rim
P234 Everted rim Faint horizontal tooling.
P235 Small bowl
P236 Wide-mouthed bowl
P237 Wide-mouthed bowl Better finished on interior surface
P238 Everted rim jar
P240 Flat jar base
P241 Flat jar base (Fig 4.17)
P242 Foot-ring, with diagonal tooling lines visible under the body.
P243 Foot-ring with tooled + design under the base. Cf Farningham Hill (Couldrey 1984, fig 15 no 14).
P244 Small foot-ring
P245 Five sherds from a small round globular beaker with a rippled neck.
P246 Six sherds, joining, from a large vessel with shallow incised spiral pattern over its girth. There are traces of tooling between the spiral lines.

Coarse sandy (Fig 4.18)
P247 Storage jar with flat-topped rim thumbed almost into a pie-crust effect. Finish on exterior is slightly rougher than the interior with very shallow tooling and a coarse feel. The fabric appears to contain glauconite. Cf Oldbury, fig 12 no.15; Danebury, a ceramic phase 8 scrap (Cunliffe 1984, 328, no 1014).
P248 Plain bag shaped vessel similar to the saucepan pots in the Fine Sandy fabric, but more primitive
P250 Small curving bowl, possibly same fabric as P249 horizontal wiping on exterior.
P251 Storage jar with short upright rim.
P252 Large everted-rim jar. Black deposit on rim.
P253 Wide-mouthed curving bowl, small rounded dark grits larger than glauconite, up to 2mm.
P254 Storage jar with flat-topped rim
P255 Plain jar base
P256 Jar sherd with the stub of a handle.

Belgic/early Roman Sandy (Fig 4.19)
P257 Flaring jar rim with neck cordon (fine sandy). Black deposit inside rim, probably burnished away.
P258 B5-5 bowl Dark grey with some grog, both grey and pale grains, and some sand, but unlike the rest of the grog assemblage. The form, a globular bead-rim bowl with groove on upper part, is most common in Kent, often from burial contexts. It is usually rather deeper than this example. The decoration on this vessel, an incised arcade above the incised groove, is similar to that on other pots found in the Folkestone area: two at Cheriton (Tester & Bing 1949, nos 11 and 34) and one from the unpublished excavations at the Channel Tunnel terminal (Macpherson-Grant & Thompson 1990). The decoration has more good parallels in East Sussex, in hand-made grog tempered vessels. The East Sussex vessels are usually everted-rim jars, and their date is 1st century AD, but it is unknown how early they can be. The arcade motif can be traced further along the coast at an earlier date (e.g. Danebury ceramic phase 7: Cunliffe 1984, 313). The bowl form can be 1st century BC in Kent.
Fig 4.16 Illustrated pottery P223–P240
INTRODUCTION

The evaluation trenches produced 879 fragments (7,317 g) of Roman pottery ranging from 1st to 4th century in date, though much of this total came from a group of funerary vessels which are discussed elsewhere (see below, ‘Late Iron Age and Roman funerary vessels’). Most of the Roman assemblages from the evaluation are small and of mid/late 1st century date. They are dominated by ‘Belgic’ native wares, with just a few fragments from early Upchurch and Canterbury industries vessels. The few 2nd to early 3rd-century assemblages are similarly small but distinguished by the presence of transitional ‘Belgic’/native coarse wares, Black-burnished wares (BB2) and central Gaulish samian.

The 1998 excavation (Site A) produced only six sherds which consist entirely of sherds from Gallo-Belgic imports and amphorae: they could well be from vessels imported before the Roman Conquest. The 1280 sherds (12029g) from the 1999 works (Site AA) all come from Roman features of 2nd to
early 3rd century date. Few of these groups are of sufficient interest for publication in detail; five representative key groups have been selected for detailed analysis below.

FABRICS
The following fabrics from the unpublished Canterbury Archaeological Trust fabric type-series were identified:
- B2/R1 Transitional ‘Belgic’ grog-tempered/native coarse ware
- R1 Native coarse ware
- R6 Canterbury coarse-sanded oxidised ware (Flavian-Antonine)
- R13 BB1
- R14 Thameside BB2
- R16 Upchurch grey ware
- R43 Central Gaulish samian
- R46 East Gaulish samian
- R64 Rhenish mortaria fabric
- R73 Thameside very-fine-sanded greyware
- LR1.1 Late Roman handmade grog-tempered ware with pale siltstone grog (Lyne 1994, Industry 7A).
- LR2.2 Coarse-sanded late Thameside fabric

KEY ASSEMBLAGES

Period 4.2 Roman (AD 80/100–200)
- Ditch B[30], fill B[31], FS3
 This ditch fill produced 33 sherds (442g) of mainly c AD 100–180 dated pottery, including an acute-latticed BB2 ‘pie-dish’ of Monaghan Class 5D4 (1987, c AD 110/120–200), a Thameside greyware everted-rim cooking-pot of Class 3J2 (ibid, c AD 120–200) and fragments from native jars in ‘Belgic’ grog-tempered (Late Iron Age – c AD 70), transitional ‘Belgic’ grog-tempered/native coarse ware (c AD 70–200) and native coarse ware (c AD 170–300). These native wares make up 9%, 24% and 3% of the assemblage by sherd count respectively.

- Ditch recut B[112], fill B[113], FS3
 The 43 sherds (377g) of pottery from this ditch recut include only two rim fragments, one of which is clearly residual and comes from a grey Upchurch ware bowl of Monaghan type SB5-2 (c AD 60–130). This assemblage also includes fragments from ‘Belgic’ grog-tempered, transitional ‘Belgic’ grog-tempered/native coarse ware and native coarse ware jars, which this time make up 2%, 21% and 26% respectively. The sizes of both assemblages are very small but the increase in the significance of native coarse ware suggests that this ditch recut may have remained open into the early 3rd century.

- Pit B[36], fill B[37], OA4
 Two pottery vessels appear to have been placed in an inverted position in an apparent structured deposit. Neither of these vessels is closely datable but comprise a necked jar from the Canterbury kilns (Fig 4.20, P259) and an everted-rimmed jar in an unsourced Native Coarse Ware (Fig 4.20, P260).

- Pit B[15], fills B[16] and B[46], OA4
 This feature produced 899 sherds (7679g) of pottery; by far the largest assemblage from the site and substantial enough for quantification by EVEs (Table 4.11).
 A mid/late 3rd century date for the filling of this pit is indicated by the presence of post-AD 270 BB1 beaded and flanged bowl and late Roman grog-tempered ware jar rim fragments in its uppermost fill ([B16]). The high ratio of jars to open forms is however, typical of late 2nd to early 3rd-century rural pottery assemblages from East Kent, although the high percentage of beakers is less so. The most significant three pottery fabrics, BB2, ‘Scorched’ sandy grey wares and Upchurch fine greywares, come from coastal production centres adjacent to the Medway estuary and account for 56% of all of the pottery.
 Forms from these sources include BB2 ‘pie-dishes’ of Monaghan’s Classes 5C2 (c AD 120/150-210) and 5C4 (c AD 150/170-250) and dog-dishes of Class 5E3 (c AD 130-230). Upchurch finewares include examples of beaker Class 2C6 (c AD 200-270+), biconical Class 2G0 (c AD 70-120), Class 3H1-1 (Fig 4.20, P261) and bowl Class 4H1 (c AD 70-130). ‘Scorched’ sandy greyware forms include everted rim jar type 5J0-2 (c AD 150-200), jars of types 3H1-7 and 3H1-9 with rolled over rims (c AD 170-230) and class 3H7 (c AD 170-250/300).
 It is noticeable that the fine grey Upchurch ware vessels in this assemblage are mainly of late 1st to early 2nd century date and possibly residual, whereas the coarse-ware forms belong...
to the late 2nd and early 3rd century. The central Gaulish and east Gaulish samian includes sherds from late 2nd century Dr 31 platters.

Jars in transitional ‘Belgic’ grog-tempered/native coarse ware and native coarse ware proper were probably made at a coastal production site near the western end of the Wantsum Channel and together make up more than 20% of the pottery in the assemblage. Their supply to Hawkinge together with that of wares from Medway sources highlights the importance of coastal trade out of the Thames estuary for the supply of pottery to the site during the 3rd century and earlier.

Period 4.3 Late Roman (AD 250–410)

Ditches [87c/3] and [R10a/12], FS3

Ditch [87c/3] yielded 58 sherds (594g) of mid/late 3rd century pottery, including the rim from a Dr.38 bowl copy in Oxfordshire Red Colour-Coated ware (c AD 240–400), the rim from a ‘pie dish’ of Monaghan Class 5C1 (1987, c AD 120/150-250) in very-fine-sanded oxidised fabric, a handmade jar (Fig 4.20, P262), beaded and flanged bowl (Fig 4.20, P263), necked jar (Fig 4.20, P264) and a cavetto-rim jar (Fig 4.20, P265). Elsewhere, a much smaller and abraded assemblage of late 4th century date from a possible ditch [R10a/12] includes a rather unusual fragment from a Pevensey Ware mortarium. This hints at coastal trading links with East Sussex during the last decades of the 4th century.

CATALOGUE (FIG 4.20)

P259 Necked jar in rough very-fine-sanded blue-grey Canterbury kilns fabric. Ext. rim diameter 90 mm. Pit B[36], fill B[37], OA4

P260 Everted-rim jar in blue-grey Native Coarse Ware fired buff-grey with thick pink margins. Ext. rim diameter 140 mm. Pit B[36], fill B[37], OA4

LATE IRON AGE AND ROMAN FUNERARY VESSELS

Anna Doherty

A total of 30 placed ceramic vessels were recovered from 16 Late Iron Age/Roman cremation burials or funerary-related features in four different excavation areas. These include a single vessel group from the Aerodrome site (Site A), two urned burials from Canterbury Road (Site C) and some slightly larger groups of cremations or other funerary related features from Page Road (Site F) and The Street (Site E). The majority of the burials belong to the Late Iron Age/early Roman period, whilst funerary activity at Page Road (Site F) continued into at least the mid 2nd century and a single cremation group from The Street (Site E) belongs to the later 3rd century.

DATING OF THE CEMETERIES

Two cremation burials at Canterbury Road (CC2) were found in close proximity. Burial C[55] contained a truncated wheel-thrown jar in a fine sandy fabric (not illustrated) said to have
a *terminus post quem* in the earlier 1st century AD. Although this vessel is described in the pottery report as of Late Iron Age date, the Roman Conquest had no immediate impact on ceramic production on rural sites and most coarse ware ‘Late Iron Age’ forms would have continued to be produced and used in the first decade or two after AD 43. Burial C[55] could therefore be broadly contemporary with the adjacent cremation C[69] which contained a North Kent Thameside jar and a butt-beaker (not illustrated), probably dating it to c AD 50–70/80.

Cremation Cemetery 3 at The Street can also be assigned to the period c AD 10–70/80. Again, the four burials are so closely-spaced as to suggest that they were probably deposited within living memory of one another. Two burials E[116] and E[120] contained grog-tempered vessels (Fig 4.21, P266 and P267) which could be of pre- or post-Conquest date (although the accessory vessel from the latter is in quite a well-fired sandy grog-tempered ware which looks more likely to belong to the mid/later 1st century AD). The other two burials each contain at least one vessel in a post-Conquest fabric type. Burial E[128] can be dated quite closely to c AD 50–70 based on the co-occurrence of an early grog-tempered cup (Fig 4.21, P269; Thompson 1982 E1-3) and a butt-beaker (Fig 4.21, P270) in a Roman sandy fabric; whilst truncated cremation or funerary-related feature E[132] contained only a heavily truncated undiagnostic jar/beaker (Fig 4.21, P271), which seems likely to be of broadly earlier Roman date, based on its coarse dark-surfaced sandy fabric.

Three of the six cremations from Page Road (CC3), and two additional funerary-related features with vessels, from which no bone was recovered, are also probably contemporary with Cremation Cemeteries 2 and 3. These include two features from the main cluster near the south-eastern limit of excavation and a separate group of three located over 50m further west. Each of these contained a single vessel, two of which (F[148] and F[155]) are in grog-tempered fabrics (not illustrated) and three of which (F[150], F[154] and F[157]) are associated with Roman sandy wares. Of the latter, F[150] contains a butt-beaker (not illustrated) which pre-dates c AD 80 and F[157] produced a truncated undiagnostic vessel in a dark-surfaced earlier Roman style fabric. Burial F[154] could be contemporary or marginally later as it contains a single globular beaker (Fig 4.21, P272) in a grey ware fabric, dated to c AD 50–100.

The dating of the latest three vessels at Page Road (CC3) suggests that there could have been a hiatus of several decades in burial activity at the site. Interestingly, a similar possible break in the burial record, during the late 1st/early 2nd century, was remarked upon at the nearby Saltwood Tunnel cemetery site (Every 2016, 13). It should be remembered that, while the entire area in the vicinity of Cremation Cemetery 3 was subject to trial-trench evaluation, most of the later cremations were found close to the limit of the open area excavation (see Fig 3.7) so it is possible that further late 1st/early 2nd century burials were present in nearby unexcavated areas, or that some burials within the limits of excavation had been completely truncated away. If there was a break in funerary deposition, it is worth noting that the newer cremations were all found within metres of Late Iron Age/early Roman burial F[155], suggesting that there could have been visible grave markers or a continued oral tradition, maintaining this area as a space for the dead.

The later Page Road burial features include cremation F[142] which contains a black-burnished style plain rim dish (Fig 4.21, P273), dating it to after c AD 120 and two other burials, F[144] and F[146], which contain cup-mouth ring-necked flagons analogous to Marsh & Tyers (1978) type 1B.8, dated to AD 140–200 (Fig 4.21, P275, P276, P278). Indirect dating evidence for burial F[144] also comes from its cinerary urn, a Dressel 20 amphora (Fig 4.21, P274). Although this vessel type is not, in itself, closely datable, the phenomenon of depositing burials in amphorae appears to have been at its height in the mid/late 2nd century (Philpott 1991, 22).

The single cremation burial from the evaluation ([80b/4], fill [80b/5]; CC4) was certainly interred after AD 120 as it includes a central Gaulish samian Dragendorff 18/31 dish (Fig 4.22, P282). However, it seems likely that this *terminus post quem* is quite close to the actual date of deposition because the three associated vessels are more typically 1st/early 2nd century in character (Fig 4.22, P279, P280, P281).

By far the latest Roman burial is from The Street (E[147]). The presence of a black-burnished ware bead-and-flate bowl (Fig 4.22, P288) and a tall indented beaker (Fig 4.22, P287) places this group certainly later than AD 250 and probably after AD 270; however, the other vessels, in particular a curated later 2nd century samian dish (Fig 4.22, 286), make it seem less likely that this burial is as late as the 4th century. Because cremation E[147] probably post-dates Cremation Cemetery 2 by around 200 years and is located over 50 metres away, it has been interpreted as a wholly unconnected phase of burial (CC5).

VESEL CHOICE

Of the 30 probable funerary vessels, 10 appear to cinerary urns and 20 accessory vessels; however, in a few cases, the status of
the vessels was uncertain. Three features with placed vessels (E[312] from The Street; F[142] and F[154] from Page Road) were located close to other cremations but did not produce human bone. These could therefore represent poorly-preserved/truncated cremations or some other type of mortuary-related feature, such as a cenotaph or later votive offering connected with the dead. In some of the other burials from Page Road, the records do not make it very clear where the bone was recovered from. For the purposes of the following analysis, jars in these features have been treated as urns and table ware forms as accessories (although it is acknowledged that there are some exceptions to this general pattern in vessel choice and it is possible that some of the vessels were not part of a formal funeral at all).

The ten cinerary urns all appeared in different burials and most were associated with accessory vessels. Only three urned cremations were interred without additional accessories (one example each from Canterbury Road, Page Road and The Street); conversely, six burials contained a single accessory vessel but no urn. This style of burial was much better represented at Page Road than in the other cemeteries: single accessory vessels accompanying unurned cremations/possible cremations made up five of the eight funerary features at the site (although two of these are features that produced no bone). Seven burials featured both urns and accessory vessels, including examples from all four sites. Most of these contained one or two ancillary vessels but the most well-provisioned graves in terms of ceramics were the single burial from the Aerodrome site, with three accessories and the latest example from The Street, with four.

As is typically the case in Roman cremations, jars were usually selected as the cinerary urn (Table 4.12). The flask/bottle (Fig 4.22, P279) from burial [80b/4] (CC4) is a vessel which is difficult to classify but it is a tall closed vessel with a constricted neck, more unusual as a cinerary urn. Only the urn from F[144] varies from the norm, being deposited in a Dressel 20 amphora (Fig 4.21, P274).

Although nowhere near as common as burials in jars, the use of Dressel 20 amphorae in cremations is fairly well-known in Kent. This vessel class occurs in most settlement assemblages and it is possible that they were simply selected because they were large durable containers which would have been fairly widely available (Philpott 1991, 25). However there are some indications that such burials represent a culturally-specific rite. For example, they are widely found on coastal and chalk land sites to the north and east of Kent but are absent in the Weald (although burials in general are rarer from this area). In recent years a marked concentration of Dressel 20 burials has been noted in Thanet, in cemeteries at Cottington Road, Manston Road, Thanet Earth, and the East Kent Access Road (Egging Dinwiddy & Schuster 2009, 96-104; Dawkes et al 2019; Lyne 2010; Booth 2015, 352). This geographical pattern may be indicative of some cultural links with groups depositing burials in similar ways in Gaul (Egging Dinwiddy & Schuster 2009, 100). Another possible hint that cremations in amphorae represent a distinct class of burial comes from Ospringe, which included a very large number of Dressel 20 burials. Here, it was noted that they tended to be associated with a more restricted range of accessory vessels than other urned burials (Philpott 1991, 240). Cremation F[144] appears to follow this pattern as, although it is one of relatively few burials from Hawkinge to contain more than one accessory vessel, both were near-identical flagons.

Looking at accessory vessels, there appears to be quite a marked chronological shift in vessel choice. Most of the Late Iron Age/early Roman burials contained only one accessory. At this time drinking vessels made up at least two-thirds of the pots placed as secondary grave goods – and perhaps as much as 90% if the uncertain jar/beaker forms are classed as drinking vessels (Table 4.13). These are predominantly butt-beakers, though one Gallo-Belgic style cup was also recorded at The Street. No serving or pouring vessels were noted at all and the only other type of accessory vessels were jars.

By contrast four of the five mid Roman burials had multiple accessories and these were predominantly pouring vessels (flagons and flasks). Bowls and dishes, presumably carrying food provisions for the deceased in the afterlife are also well represented but beakers and other drinking vessels appear to have reduced in frequency in the later cremation groups.

<table>
<thead>
<tr>
<th>Vessel type</th>
<th>Urn</th>
<th>Accessory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphora</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Beaker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beaker/flask</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bowl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cup</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Dish</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Flagon</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Flask</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Jar</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Jar/beaker</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Miniature jar/beaker</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 4.12 Summary of Roman funerary pottery by vessel type
Table 4.13 Percentage of accessory vessel type in the Late Iron Age/early Roman Mid Roman burials from Hawkinge.

<table>
<thead>
<tr>
<th>Vessel class</th>
<th>LIA/early Roman</th>
<th>Mid Roman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beaker</td>
<td>56%</td>
<td>9%</td>
</tr>
<tr>
<td>Jar/beaker</td>
<td>22%</td>
<td>0%</td>
</tr>
<tr>
<td>Miniature jar/beaker</td>
<td>0%</td>
<td>9%</td>
</tr>
<tr>
<td>Bowl</td>
<td>0%</td>
<td>9%</td>
</tr>
<tr>
<td>Cup</td>
<td>11%</td>
<td>0%</td>
</tr>
<tr>
<td>Dish</td>
<td>0%</td>
<td>27%</td>
</tr>
<tr>
<td>Flagon</td>
<td>0%</td>
<td>27%</td>
</tr>
<tr>
<td>Flask</td>
<td>0%</td>
<td>18%</td>
</tr>
<tr>
<td>Jar</td>
<td>11%</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 4.13 Percentage of accessory vessel type in the Late Iron Age/early Roman and mid Roman burials from Hawkinge.

This chronological variation in vessel choice perhaps indicates something about the changing cultural and religious life of populations around Hawkinge. The fairly restricted range of vessels in the Late Iron Age/early Roman cremation groups may, to some extent, reflect a more limited range of pottery generally available in domestic assemblages at this time. Drinking vessels, especially butt-beakers, are also amongst the most common types in the Late Iron Age/early Roman cremations from Saltwood Tunnel, for example, where very few other vessel classes were represented (Every 2006). This suggests that provision of libations for the deceased in the afterlife might have been seen as the minimum requirement in burials of this period.

The lack of diversity in the Saltwood Tunnel assemblage was also taken as an indication of a community which had not yet adopted a fully Roman style of funeral (ibid, 13). Certainly the other fairly local contemporary cemetery from the Highspeed 1 project, at Beechbrook Wood, seems to contain a greater variety of vessels, including platters in the Gallo-Belgic tradition and typologically early samian dishes and bowls (Lyne 2006, 9). Other local burials from this period, including non-beaker accessories include one with multiple vessels and brooches from Deal (Parfitt 1999). This suggests that provision of libations for the deceased in the afterlife may have been seen as the minimum requirement in burials of this period.

Beyond this, there is unfortunately very little to link the pottery vessels with the identity of the deceased. There were few other grave goods with which to compare the ceramic assemblage and too little demographic data is available to analyse whether the age or sex of the deceased might have affected vessel choice.

PROCUREMENT OF VESSELS

In at least one case, in burial [80b/4] (CC4), there was some evidence for the use of vessels which were old at the time of burial. The presence of a central Gaulish samian dish (Fig 4.22, P282) provided a firm terminus post quem of AD120, but the other vessels, including a flagon/bottle with a carinated shoulder (Fig 4.22, P279) and a grog-tempered miniature jar or beaker (Fig 4.22, P281), seemed more indicative of 1st century dating, suggesting that these vessels might have been older possessions of the deceased or their household. However, there is no other clear evidence for curation of funerary vessels. For example, there are no signs of use wear or deliberate breakage or repair (although post-depositional conditions and the truncated nature of many of the features might have obscured evidence of this nature).

By contrast the similarity of three flagons (Fig 4.21, P275, P276, P278) from two adjacent burials, F[144] and F[146], at Page Road, may suggest a different means of sourcing vessels for inclusion in burials. Although the flagons are unsourced, they almost certainly represent products of the same industry and their near-identical fabric and form may indicate that they were procured as new for the funeral, suggesting in turn that F[144] and F[146] might be directly contemporary and/or from a familial group.

CREMATION VESSEL CATALOGUE

Canterbury Road (Site C) CC1 (AD 10–70/80)
Cremation [C55] (AD 10–50/60)
Urn: Truncated wheel-thrown jar in fine quartz sand fabric LQU1 (not illustrated)

Cremation [C69] (AD 50–70/80)
Urn: Truncated jar in North Kent/Thameside fabric (not illustrated)
Accessory: Truncated barrel-shaped butt-beaker (not illustrated)

The Street CC2 (Site E) (AD 10–70/80)
Cremation [E116] (AD 10–50/60) (Fig 4.21)
P266 8 Truncated base of pedestal urn in grog-tempered fabric

Cremation [E120] (AD 10–70/80)
Urn: Truncated ripple shouldered jar in grog-tempered fabric (cf Thompson 1982 B2.1) (not illustrated)
P267 10 Accessory: Complete small wide-mouth ripple shouldered jar with a zone of wide diagonal tooled lines on the shoulder, in a grog-tempered fabric

Cremation [E128] (AD 50–70/80)
P268 11 Urn: Truncated rounded shouldered narrow-necked jar with double cordon at neck in a grog-tempered fabric
P269 12 Accessory: Complete carinated cup (cf Thompson 1982 E1-3) in a
grog-tempered fabric
P270 13 Accessory: Plain butt-beaker in a coarse early Roman sandy ware

Cremation/funerary related feature [E132] (AD 50–70/80)
P271 14 Accessory (): Truncated base of jar/beaker in coarse early Roman sandy ware

Page Road CC3 (AD 10–200)
Cremation [F148] (AD 10–70/80)
Accessory (): Heavily truncated rouletted butt-beaker in grog-tempered fabric (not illustrated)

Cremation [F155] (AD 10–70/80)
Urn (): Heavily truncated grog-tempered jar with combed decoration (not illustrated)

Cremation [F150] (AD 50–70/80)
Accessory (): Heavily truncated butt-beaker with bands of fine vertical combing imitating rouletting in early Roman coarse sandy fabric (not illustrated)

Cremation [F157] (AD 50–80/100)
Accessory (): Heavily truncated undecorated jar/beaker in early Roman sandy fabric (not illustrated)

Cremation/funerary related feature [F154] (AD 50–100)
P272 19 Accessory (): Grey ware globular beaker with band of short incised dashes on shoulder

Cremation/funerary related feature [F142] (AD 120–200)
P273 20 Accessory (): Local black-burnished style plain rim dish with groove beneath rim

Cremation [F144] (AD 140–200)
P274 21 Urn: Dressed 20 amphora with partial abraded handle stamp (reading uncertain)
P275 22 Accessory: Cup-mouth ring-neck flagon in unsourced buff fabric
P276 23 Accessory: Cup-mouth ring-neck flagon in unsourced buff fabric

Cremation [F146] (AD 140–200)
P277 24 Urn: Grog-tempered necked storage jar
P278 25 Accessory: Cup-mouth ring-neck flagon in unsourced buff fabric

Aerodrome CC4 (AD 120–140)
Cremation burial pit [808/4]
P279 1 Urn: Large carinated form in North Kent fine grey ware similar to a carinated beaker but with a narrow mouth, suggestive of a flask-like form (cf Monaghan 1987, form 2B2) (Fig 4.22)
P280 2 Accessory: Flask in coarse probable North Kent fabric (cf Monaghan 1987 1B4)
P281 3 Accessory: Miniature jar or beaker in “Belgic fabric” with stabbed decoration on shoulder
P282 4 Accessory: Central Gaulish samian Dragendorff 18/31 dish, stamped (too abraded to read)

The Street CC5 (AD 250/270–300)
Cremation [E147]
P283 26 Urn: Necked jar in coarse oxidised fabric
P284 27 Accessory: Bead and flange bowl in black-burnished style fabric
P285 28 Accessory: Plain rim flask in probable coarse North Kent oxidised fabric (cf Monaghan 1987 1B)
P286 29 Accessory: Central Gaulish samian Dragendorff 31R dish (possibly stamped but too abraded to read)
P287 30 Accessory: Indented necked beaker in probably North Kent coarse sandy fabric (cf Monaghan 1987 2B)

OTHER POTTERY FROM THE STREET, RELIEF ROAD AND PAGE ROAD

Anna Doherty

THE STREET
The non-funerary pottery assemblage from The Street, comprises 368 sherds, weighing 3.57kg, a large proportion of which come from a single vessel found in evaluation context [E2/009], apparently placed upright and intact and subsequently truncated. The vessel is of a fairly coarse flint-tempered fabric but is relatively thin-walled probably indicating that it belongs broadly to the Late Bronze Age/earliest Iron Age Post-Deverel-Rimbury (PDR) tradition; however it was too fragmented to discern any form elements.

Most of the rest of the assemblage also comprises typical Late Bronze Age/earliest Iron Age flint-tempered fabrics, though these generally come from very small undiagnostic context groups. A single small to moderate-sized assemblage from fill [E228] of pit [E227] includes some typical PDR form traits such as weakly-shouldered jars and flint-gritted base fragments.

A number of glauconitic sherds were also identified, sometimes in association with flint tempered wares and sometimes with Late Iron Age/early Roman grog-tempered fabrics. Although few form traits were identified, it seems likely that these groups belong broadly to the Middle/Late or Late Iron Age period since glauconitic wares were almost never encountered in earlier assemblages from Canterbury Road and the Aerodrome. A few Roman pottery sherds were
Fig 4.21 Illustrated Roman pottery P266–P278
also recovered from non-funerary features at the site. These were largely undiagnostic but often occurred with Late Iron Age/early Roman tempered wares, suggesting that they are likely to be contemporary 1st century sherds.

RELIEF ROAD
A few sherds of prehistoric flint-tempered pottery were recovered, including a small bodysherd which may represent an Early Neolithic fabric, associated with a much larger, though more broadly dated flint group in tree-throw [D259]. Otherwise the pottery from the site, totalling just over 400 sherds, is predominantly of early Roman date. The most common fabric type is a distinctive sandy ware containing some sparse glauconite, which is associated with both wheel-thrown and hand-made forms. Grog-tempered wares and North Kent/Thameside fabrics also occur as well as a few sherds of imported samian ware and Baetican amphora. The more diagnostic forms include platters, butt-beakers and carinated beakers, all suggestive of 1st century dating. However, a small number of contexts contain fabrics like BB2 and central Gaulish samian, suggesting that some activity continued into the earlier 2nd century, whilst a single abraded piece of late 3rd/4th century Oxfordshire red-slipped ware came from pit D[325].

It is perhaps also worth highlighting one of the few moderate-sized context groups from the site, found in the primary fill of ditch D[275]. Although this is a broken, mixed sherd assemblage, intriguingly, it contained sherds from three different vessels with post-firing perforations. In two cases these were jars with holes through the base and, in another, a dish was punctured low on the wall, close to the base. Perforations of this type have often been interpreted as functional
modifications allowing vessels to be used in processes involving filtering or pressing, including cheese-making, fermentation or the mixing of spiced drinks. Repairs to vessels in antiquity also frequently involved perforations in which organic or lead bindings were affixed; although it seems clear, at least in the case of the two jars perforated through their bases, that the vessels from D[275] had not been repaired.

A strong link between holed vessels and votive deposition has been noted in Roman Britain (Fulford & Timby 2001). This might be because particular functional types were preferentially selected for inclusion in such contexts, perhaps those associated with the preparation of alcoholic drinks, for example. Equally though, Fulford and Timby (ibid) have argued that perforated vessels may have been deliberately damaged in a way that rendered them unusable for their original function, thereby transforming them into objects suitable for use in votive contexts.

PAGE ROAD

A single large early Roman pottery assemblage (quantified in Table 4.14) was found in pit F[163] at Page Road. The pottery, which dates to c AD 50-80, was associated with other finds which seem indicative of structured deposition, including disarticulated human bone, a Colchester bow brooch and a possibly curated early patina coin; however, although quite a large quantity of ceramics were recovered, it is less clear that this material was carefully selected. The pottery, like the animal bone (see Chapter 4.7) represents a fragmented assemblage of fairly unremarkable character. Although the average sherd weight is reasonably large (c 15g), suggesting that the pottery is unlikely to have been repeatedly reworked, most of the sherds are from different vessels, probably indicating that the group represents redeposited midden material.

As shown in Table 4.14, unsourced Roman sandy wares slightly outnumber tempered fabrics. These were recorded as either oxidised or unoxidised fabric variants but many of these sherds are unevenly fired, so the distinction may not be a meaningful one. Most of the other sherds are grog-tempered, including a few examples of grog-tempered wares containing glauconite, and there are also some flint-tempered sherds. The only sourced Roman fabrics are a single example of Hoo oxidised ware and a few sherds of North Kent fine grey ware.

When quantified by EVE just over 80% of this group is made up by jars. These are mostly simple necked forms without cordon. There are also two examples of plain profile jars (Thompson 1982, type C3), a base from a pedestal jar and examples of both necked and bead rim storage jars. Two rims from beakers were recorded, including one undecorated butt-beaker like form and another globular beaker with comb-stabbed diagonal line decoration; a shoulder sherd from a North Kent grey ware carinated beaker was also noted. A lid handle is the only other form type present.

Overview of pottery from Period 4.1: Late Iron Age/early Roman AD 10–80/100

Period 4.1 was marked by the foundation new ditches and field systems at nearly all of the sites as well as by cremation cemeteries at Canterbury Road, The Street and Page Road. This pattern of renewed activity in the 1st century AD mirrors the chronological picture on many of the High Speed 1 sites (Booth 2011, Figure 5.6, 251). The funerary evidence from Hawkinge seems to suggest ordinary individuals living and dying in a period when the cremation rite had become the norm. The burials can be fairly closely dated to the 1st century AD by their accompanying pottery vessels, some of which could belong to the either the pre- or post-Conquest period, and some of which were made by Romanised industries.

Overview of pottery from Period 4.2-4.3: AD 80/100–200 and AD 250–300

After the early Roman period, settlement activity declined significantly. At the Relief Road a single ditch cutting a Period 4.1 field system produced later 1st-early 2nd century pottery, and a few sherds suggesting that its final filling post-dated AD120. At about this date, burial activity appears to have resumed, after a possible short hiatus at Page Road, continuing into the late 2nd century. A single cremation burial placed with vessels, indicating a later 3rd century date of deposition, was also recorded at The Street.
4.3 FIRED CLAY
INTRODUCTION

All of the fired clay assemblages were fully recorded and quantified on pro-forma by context, recording, where present: type, number of fragments and weight and information of the fabric noted. Objects, diagnostic fragments and a representative sample of each assemblage have been retained in the archive and the remainder of the material discarded.

The most commonly recovered object type was the triangular weight with perforated corners. Examples of these were found on three sites and they are a fairly typical find on Iron Age sites. Examples, both complete and fragmentary, have been found on numerous other sites in the south-east including the hillfort at Hascombe, Surrey (Thompson 1979, 290, No. 7) and the agricultural settlement at Bishopstone, East Sussex (Bell 1977, 119, C1-2) though they appear not to have any discernible chronological development within the period (Wheeler 1943). Their precise function is unclear and although traditionally interpreted as loom weights, Poole puts forward compelling arguments for them to have been used as oven bricks (Poole 1995). Unfortunately the context of these pieces provides little further evidence for the interpretation of their function, although their recovery with kiln furniture on Site C might indicate an association of use.

HAWKINGE AERODROME (SITE A)

Luke Barber

The excavation produced 870 pieces of fired clay, weighing 10.2kg, from 30 separate contexts. This material can be divided into three categories: daub, briquetage and objects.

DAUB

The bulk of the assemblage consists of fragments of daub (847 pieces). Most of these are burnt orange or black and contain traces of organic, grog and flint inclusions. Most pieces consist of undiagnostic amorphous lumps, however, a number (c 18) exhibit smoothed surfaces and/or wattle impressions (ranging from 7mm - 26mm in diameter). Daub was located in both Early/Middle and Late Iron Age features.

Period 3.1 Early/Middle Iron Age

Period 3.2 Middle/Late Iron Age

Burnt daub was also recovered from pit fill A[75] of large pit A[74] (163 pieces weighing 3.58kg). In addition, nine pieces of probable briquetage were also recovered from A[75]. These are in a fine grog-tempered fabric and all appear to be from thin walled vessels.

OBJECTS

Period 3.1 Early/Middle Iron Age

Two objects made from clay were present in contexts dated to the Early/Middle Iron Age. These consist of a conical-sectioned spindle whorl from pit [A12] (Fig. 4.23, no. 1) and an oval-sectioned spindle whorl from pit A[72] (Fig 4.23, no 2). Both are indicative of textile working at the site during the Early/Middle Iron Age.

Period 3.2 Middle/Late Iron Age

The majority of the fired clay objects from the site came from pit A[74]. This deposit contained a complete triangular weight, (Fig 4.23, no 3). The weight is comparable to the Early Iron Age examples from Bishopstone where similar loomweights were estimated at weighing between 750 and 815g.

Although no definite spindle whorls were found from this period, the presence of the loomweight demonstrates the continuation of textile working at the site during this period.

In addition to the loomweight, fill A[75] also produced four clay sling-shot (Fig 4.23, nos 4-7). Clay slingshot are known from both defended sites (ie Hascombe: Thompson 1979, Fig. 26) and undefended sites (ie Bishopstone: Bell 1977, Fig. 56). It should be noted that a flint pebble weighing 40g was also recovered from this fill and is likely to also be a sling-shot. Two further flint pebbles (weighing 12g and 24g) from fill A[53] are likely to have been used for a similar function.

Pit A[74] also produced two complete fired clay beads/toggles (Fig. 4.23, nos 8 and 9) as well as the remains of a further example which is badly shattered (not illustrated).

CANTERBURY ROAD (SITE C)

Sam Crawt

A total of 1014 fragments (weighing 19.325kg) of burnt and fired clay was recovered from 18 contexts. All of the fired clay in this assemblage is comprised of a low to medium fired silty clay, which is probably naturally occurring on the site. The clay ranges in colour from pale buff-pink through to orange-grey.

The largest quantity was from fill C[146] of pit C[145]. This assemblage contained small undiagnostic fragments as well as large pieces of kiln furniture and triangular weights. The
other contexts were notably less varied consisting of mainly undiagnostic, irregular fragments. There were also deliberately shaped fragments, including daub, kiln furniture and weight fragments, from fill C[36] (of ditch C[35]) and fill C[162] (of pit C[161]) (Table 4.15).

Period 3.1 Early/Middle Iron Age

This period produced the largest assemblage of fired clay recovered from seven contexts dated to the Early/Middle Iron Age. The most notable of these is fill C[146] of pit C[145] containing 647 fragments, weighing 12.65kg (Table 4.16). The assemblage was made up of a diverse range of objects, including several triangular weights and kiln bar fragments.

Other notable assemblages of fired clay, totalling 110 fragments (1,604g) were from pit C[161] and quarry pit C[116]. The majority of the fragments are undiagnostic, irregular pieces. However, there are three weight fragments and nine possible kiln furniture fragments, which came from fill C[162] of pit C[161].

WEIGHTS

Fragments of triangular weights were recovered from three features. Fill C[36] of ditch C[35] contained a fragment weighing 53g which has one pierced corner. It is made in a coarse fabric with organic and iron ore inclusions. Fill C[129] of pit C[135] contained fragments from two weights, neither of which is complete. The first is made up of three pieces weighing 423g. The second consists of nine pieces weighing 363g. Fill C[146] of pit C[145] contained the best examples of three triangular weights and several weight fragments (see Table 4.16) (Fig 4.23, no 10, Fig 4.24, no 11). The first example is complete and weighs 733g (Fig 4.23, no 10). The fragments from the two pits are from triangular loom-weights with piercings on each corner and generally appear to be buff-pink/blue in colour. They appear to be notably different from the piece found in ditch fill C[36] which is made from a coarser fabric. It is interesting to note that the piece found in the ditch appears to be an isolated fragment in terms of the overall distribution on the site. The other weight fragments are associated with two main areas, the first in the northern part of the site and the second is fairly central and associated with pit C[145]. The majority of the fired clay assemblage seems to be focused on these two areas.

KILN FURNITURE

The only feature which contained definite kiln furniture, dating to the Early/Middle Iron Age, is pit C[145]. There are nine separate ‘sets’ of conjoining kiln furniture fragments and several pieces of probable kiln furniture which together weigh 4871g (Table 4.16). These are divided by type and discussed in detail below. It is entirely plausible that some of the undiagnostic fragments of fired clay from the site may be kiln furniture. It is important to note that this concentration of kiln furniture in pit C[145] correlates with the highest quantity of weights and weight fragments (also in this context) but as none of the objects are in situ it is not certain whether they were used together.

<table>
<thead>
<tr>
<th></th>
<th>Late Bronze Age/Eary Iron Age</th>
<th>Early/Middle Iron Age</th>
<th>Late Iron Age</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daub (with wattle impressions)</td>
<td>49/1545g (1 Context)</td>
<td>1/98g (1 Context)</td>
<td>50/1643g</td>
<td></td>
</tr>
<tr>
<td>Loomweights</td>
<td>3/165g (1 Context)</td>
<td>50/2623g (6 Contexts)</td>
<td>50/2623g</td>
<td></td>
</tr>
<tr>
<td>Fire Bars T1</td>
<td>12/1488g (5 Contexts)</td>
<td>26/2120g (4 Contexts)</td>
<td>26/2120g</td>
<td></td>
</tr>
<tr>
<td>Fire Bars T2</td>
<td>26/1263g (1 Context)</td>
<td>1/129g (1 Context)</td>
<td>27/1392g</td>
<td></td>
</tr>
<tr>
<td>Fire Bars (Undiag.)</td>
<td>9/675g (1 Context)</td>
<td>1/4g (1 Context)</td>
<td>1/4g</td>
<td></td>
</tr>
<tr>
<td>Briquetage</td>
<td>19/247g (1 Context)</td>
<td>19/247g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>110/1604g</td>
<td>877/17,222g</td>
<td>27/499g</td>
<td>1014/19,325g</td>
</tr>
</tbody>
</table>

Table 4.15 Quantification of fired clay from Canterbury Road (Site C)
Kiln Furniture - Type 1
The kiln furniture was divided into two distinct types (Table 4.15). Type one tapers to a rounded finish, with one smooth face and one rough face. There appears to be small flint inclusions in the clay with some differential burning on the surface. A good example of this is fragment group A, consisting of two fragments and weighing 607g (Fig 4.24, no 12). The other fragment groups which apply to this type are as follows: group C consisting of 3 pieces weighing 101g, group F, consisting of 2 pieces weighing 397g, group G consisting of 2 pieces weighing 339g and group I, consisting of 3 pieces weighing 44g.

Kiln Furniture - Type 2
The second type was also rounded, but had a less distinct taper and a flatter finish. This particular type of kiln furniture is smoother on both faces, with a curved base and fewer flint inclusions. The best example of this particular type is fragment group B, consisting of 9 fragments, weighing 1243g (Fig. 4.24, no 13). The other fragment groups which apply to this type are as follows: group D, consisting of 10 pieces weighing 136g, group E, consisting of 6 pieces weighing 81g and group H, consisting of 1 piece weighing 660g.

There are 26 fragments weighing 1263g which are almost certainly kiln furniture fragments, but could fit into either category. All the fragments from both types are equally varied in colour, predominantly orange-grey with occasional evidence for differential burning.

DAUB
A small quantity of daub was found to be present in fill C[146] of pit C[145]. The fill produced 49 fragments weighing 1,545g, with wattle impressions (average diameter 11mm).
BRIQUETAGE
A small assemblage of eleven briquetage fragments was recovered from three contexts on the Relief Road site (Site D). The most diagnostic group came from the surface of ditch fill D[124], consisting of four conjoining rim and body sherds from a thin walled vessel (Fig 4.24, no 14). The rim form is everted, measuring 6.6mm thick, and is more reminiscent of a typical Late Iron Age/Early Roman pottery form than the straight sided or conical briquetage forms of the period. The

<table>
<thead>
<tr>
<th>Type of fired Clay</th>
<th>No/weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daub</td>
<td>49/1545g</td>
</tr>
<tr>
<td>Kiln furniture types 1 or 2</td>
<td>26/1263g</td>
</tr>
<tr>
<td>Kiln Furniture type 1</td>
<td>12/1488g</td>
</tr>
<tr>
<td>Kiln Furniture type 2</td>
<td>26/2120g</td>
</tr>
<tr>
<td>Loom-weights</td>
<td>42/1784g</td>
</tr>
</tbody>
</table>

Table 4.16 Quantification of fired clay from pit C[145]
fabric is tempered with coarse chopped grassy inclusions and exhibits the typical lilac/grey ‘salt colours’ of briquetage on the interior surface. Two further wall sherds from the same context are slightly thicker, measuring 7.94mm. Small scrappy probable vessel fragments were also recorded from contexts D[294] and D[297] although these were too abraded for definitive identification. No positive evidence for salt production was identified and it is more likely that these fragments derive from the final stage of drying or from salt imported in containers to the site from one of the nearby salt production areas along the southern coast of Kent.

THE STREET (SITE E)
Charlotte Thompson

OBJECTS
Several fragments from a probable triangular loom weight were recovered from topsoil E[101] and ditch fill E[173]. They are almost certainly from the same object, a triangular weight with a piercing across at least one of the apices. The fabric used has a silty micaceous matrix, moderate medium quartz, rare very coarse flint and is an orange/red colour on the surfaces with a dark grey core. The piercing measures 10.5mm in diameter.

CATALOGUE

1 Conical-sectioned spindle whorl; dark grey/black surface; well-formed piece with a slightly sandy fabric with grog inclusions; wt 20g; pit A[12], fill A[14]
2 Oval-sectioned spindle whorl; dark grey/black externally; fabric tempered with occasional rounded flint grits and clay pellets (to 3mm); wt 28g; pit A[72], fill A[75]
3 Triangular loomweight with corner perforations; fabric contains some clay pellets along with occasional rounded flint grits (to 4mm) and impressions of organic material; dull red orange though one face has surface blackening; wt 860g; pit A[74], fill A[75]
4 Sling shot; incomplete; dull orange brown to light grey clay pit A[74], fill A[75]
5 Sling shot; complete; dull orange brown to light grey clay; wt 36g pit A[74], fill A[75]
6 Sling shot; complete; dull orange brown to light grey; wt 22g pit A[74], fill A[75]
7 Sling shot; complete; dull orange brown to light grey; wt 40g pit A[74], fill A[75]
8 Circular fired clay bead; fired externally to a dark grey/brown with no signs of tempering; wt 10g; pit A[74], fill A[75]
9 Biconical clay bead; fired externally to a dark grey/brown with no signs of tempering; wt approximately 1g; pit A[74], fill A[75]
10 Triangular weight; complete though in five pieces with corner perforations; weighing 733g. Fill C[146] of pit C[145]
11 Triangular weight, incomplete but represented by five main conjoining fragments weighing 733g. Fill C[146] of pit C[145]
12 Kiln furniture type 1; tapers to a rounded finish, with one smooth face and one rough face; wt 607g. Fill C[146] of pit C[145]
13 Kiln furniture type 2; rounded, with less distinct taper and flatter finish; smooth on both faces, with a curved base; 9 fragments, weighing 1243g. Fill C[146] of pit C[145]
14 Briquetage container. Ditch fill D[124]

4.4 REGISTERED FINDS
Due to the timespan over which the various artefact reports were written, assemblages were processed with differing methodologies which results in some variation in presentation in the reports below. From 2005 onwards, all objects were assigned a registered finds number (shown as RF<0>) but artefacts recovered before then were not systematically assigned unique identification numbers. Given only small quantities of objects were recovered, numbers have not been assigned retrospectively.

HAWKINGE AERODROME
Luke Barber

The investigations at Hawkinge Aerodrome produced a small assemblage of metalwork, the majority from Site A, and a single glass pin head. All the metalwork consists of ironwork and there is no copper alloy material. Generally, the ironwork is heavily corroded, with smaller pieces often showing complete mineralisation and most pieces covered with thick corrosion products. All of the ironwork was subjected to x-radiography. Unfortunately, although clarifying the outline of some objects, most remain difficult to identify due to their condition.

PERIOD 3.1 EARLY/MIDDLE IRON AGE
Only a very small assemblage of material is dated to this period, mainly from the clay-lined storage pit A[10]. The majority comes from the main, upper fill A[11] which contained seven strip fragments. The strips have a tapered section, similar to a blade (maximum dimensions fall between 26mm and 32mm wide and 7mm to 10mm thick: lengths 220mm plus), and appear to have narrowed terminals, at least at one end, which have been bent upwards (for example Fig. 4.25, no 2). The material is too heavily corroded to be certain of function, however, it is considered possible they represent iron ‘ingots’ which would have formed the raw material from which the smith would forge functional objects. Whether they were ever used as a form of currency at this time is uncertain, however, the Hawkinge pieces do not closely conform to any one of the main four types of ‘currency bar’ known from later in the period (Allen 1962). It should be borne in mind that these fragments could equally derive from a completely different source and may simply represent fragments from a narrow plough-share or blade. In addition, two pieces of ironwork from primary fill A[40] appear to be chain-links (not illustrated) similar to examples from Bigberry which may have been from cauldron-hangers (Thompson 1983, 273, no. 55).
A plough-share of wide tapering form with winged sockets was recovered from pit fill [85c/4] (Fig. 4.25, no 1). It is noticeably shorter than the narrow plough-shares/ard tips from Bigberry, but longer than the wider untapered plough-shares also from that site (Thompson 1983, 266, nos 1-5). A narrow bladed plough-share of ard-type was also found in topsoil A[1]. This piece is identical in form, though shorter at 330mm long, to a number from Bigberry (Thompson 1983, 266, nos 1-3).

CATALOGUE (FIG 4.25)

1 Iron plough-share The piece weighs c. 2.1kg and is 310mm long and 120mm wide; fill [85c/4]
2 Iron strip; tapered section and narrow terminal which is bent upwards; fill A[11], pit A[10]

PERIOD 3.2 MIDDLE/LATE IRON AGE

This period was represented exclusively by c. 50 objects/fragments of metalwork, a single glass pin head, one probable quern fragment, two shale bracelet fragments, and two quartzite whetstones, all from fill A[75] of large pit A[74]. The more diagnostic pieces are detailed below (Fig. 4.25 and Fig. 4.26):

3 Fragment of a large curving blade, in two pieces, from ?bill-hook or reaping-hook. The blade appears to curve throughout its length rather than having the characteristic sharp curve at the end of the blade more usual in bill-hooks. The apparent lack of a cutting edge on the concave (or convex) side of the blade is odd: the cross section appears to be rectangular in most areas (46 × 9mm). Surviving length of blade: 330mm plus. Similar to examples from Bigberry (Thompson 1983, nos 14, 19-21).

4 Incomplete blade from a reaping-hook with winged socket for hafting. There also appears to be a fixing hole close to the mouth of the socket, presumably for a securing nail. Similar examples have been found at Bigberry (Thompson 1983, nos 9-10) and the type is well known in Iron Age and Roman contexts elsewhere (Manning 1985, F26-27).

5 Reaping-hook similar to no. 4 but with more pronounced hook to the blade; Heavily corroded so no detail can be discerned on socket.

6 Fragment from a hollow-backed cleaver/knife with curving shaped handle ending in a terminal spherical knob. The Hawkinge example closely resembles another Iron Age example from Hod Hill and the type is well represented at a number of Iron Age sites (Manning 1985, Q95).

7 Fragment of tool with winged socket and fixing hole for a nail; very heavily corroded; possibly part of a small plough-share.

Another similar to no. 7 but totally obscured by corrosion products and no detail showing on x-ray; (not Illustrated).

Two fragments of a large curving blade from a bill-hook or reaping-hook similar to no. 3 but with a blade width of between 55 and 65mm; (not Illustrated).

Sheeting fragment some 2mm thick, with traces of four 1.5mm diameter holes visible on the x-ray. Possibly part of a sheet iron strainer? Alternatively the holes may simply be for fixing the sheeting to another part of the object; (not Illustrated).

Tip from the blade of a curving bill-hook or reaping-hook (not Illustrated).

8 Circular ring in c. 10mm diameter round-sectioned wire; possibly from a chain.

9 Crude elongated ?chain-link formed from rectangular sectioned (11 × 5mm) wire.

10 Fragment from a latch-lifter from a door; a similar example has been found from Mount Caburn in East Sussex (Curwen & Curwen 1927, No. 28) and they are well known from other Late Iron Age and Roman sites (Manning 1985, O3 and O5).

11 Large cleat similar to those illustrated by Manning (1985, R54-55).

Single spherical dark blue glass pin head (diameter 15.4mm) with traces of two

Fig 4.25 Illustrated ironwork nos 1–11
2.3mm diameter round-sectioned iron wires set into the glass which would have formed the pin shank (not illustrated).

12 Fragment of shale bracelet, small with flat D-shaped cross section; partial remains of a small drilled hole on its flat surface

13 Fragment of shale bracelet, D-shaped cross section

14 Quartzite whetstone made from water-worn beach material; complete (weight 90g); circular suspension hole with hour-glass section

The character of the assemblage from pit fill A[75] contains a range of objects fairly typical of what might be expected from an agricultural settlement and it contains a number of items which can be easily paralleled at both contemporary defended and undefended sites alike. The presence of reaping-hooks strongly points toward arable cultivation whereas items such as the latch-lifter and possible cauldron fragments hint at typical Late Iron Age domestic life. Perhaps the most puzzling aspect is the whereabouts of the associated settlement. The large quantity of material in pit A[74], particularly pottery, suggests the source to be close by though no domestic structures were noted within at least 15m of the pit. The number and combination of objects found together in pit A[74] is more unusual and it is likely highly that this material formed part of a structured deposit within pit A[74].

Fig 4.26 Illustrated finds nos 12–18
CANTERBURY ROAD

Luke Barber

Only two registered finds were recovered from Site C.

A single spindle whorl was recovered from fill C[160] of pit C[159]. The roughly-circular piece (~56mm dia.) was crudely fashioned from a grog-tempered pottery vessel with combed/furrowed decoration (Fig. 4.26, no 15).

A badly corroded copper-alloy Roman brooch was recovered from within urned cremation burial C[70] (burial C[69]). The brooch is of a Langton Dow type with wide flat bow, decorated with profuse fluting, with the upper part of the head rolled over to create the housing for the copper-alloy spring (Fig. 4.26, no 16). A virtually identical brooch, though with slightly more decoration on the head, is shown by Hattatt (1987, No. 769). A pre-Flavian 1st century date is probable which concords with the dating of the associated pottery vessels.

PAGE ROAD

Trista Clifford

A copper-alloy Colchester two-piece bow brooch (Hull type T93A) was recovered from fill F[164], the single fill of pit F[163] (Fig 4.26, no 17). The brooch is complete. It measures 58.36mm in length which concords with group Bi of the Richborough corpus (Bayley & Butcher 2004, 86). The cross bar is asymmetric, having one open end and one end closed, and semi-circular; likewise the junction between the bow and the crossbar is stepped on the open side and a smooth curve on the closed side. The crossbar measures 23mm in length. The pin is complete with a spring of seven turns. Perhaps unusually it appears to be formed from rolled sheet, rather than drawn wire, with the edge-to-edge seam visible along the reverse of the pin. The external chord has a row of incised transverse lines along the top, possibly resulting from this method of manufacture. The bow exhibits a central incised groove flanked by a row of stamped triangular ‘teeth’ either side, which extends along the upper part of the bow. This manner of decoration is very similar to smaller examples from Richborough (ibid). The catch plate has a large triangular perforation.

The Colchester two-piece is a native brooch style, based on the earlier one piece styles. It has a broadly Claudio-Neronian date range and is associated with Conquest-era features at Sheepen and St Albans, as well as Richborough (ibid), although Crummy suggests a slightly later post-Boudican date based on their absence from Camulodunum (Crummy 2015). The form is widespread in the south of Britain, being particularly prevalent in small towns and higher status rural sites (Clifford 2013, 203).

RELIEF ROAD

Trista Clifford

An iron knife of Late Iron Age/early Roman type (RF<D1>) was retrieved from an environmental sample collected from ditch fill D[142] (FS2 period 4.1) sample <1000>. The object consists of the detached blade and a handle formed from two bone plates of semi-circular section riveted using two dome headed rivets to the scale tang of the blade (Fig 4.26, no 18).

The handle is decorated with panels of incised cross-hatched decoration either side of the rivets. The remains of the terminal loop projects from the end of handle. The form of the blade resembles Manning’s type 7d (Manning 1985, 112 Q22), having a less distinct angle than the other, more common, types of this group (although it is possible that this part of the blade is missing since the two pieces do not conjoin). The type has parallels in Britain from both London and Hod Hill, Dorset as well as numerous examples from Germany (ibid).

CATALOGUE (FIG 4.26)

15 Ceramic spindle whorl; roughly-circular piece (~56mm dia.); fill C[160] of pit C[159].
16 Copper-alloy Roman brooch Langton Dow- type; (from inside cremation urn C[70] of burial C[69]).
17 RF<F1> Copper alloy brooch; Complete. Hull Type T93A Colchester two piece bow brooch; bow decorated with incised groove flanked by triangular punched ‘teeth’. Pin formed from rolled sheet metal. Cf. Cat 183, Richborough (Butcher & Bayley 2004, 86). L58.36mm W23mm; pit fill [F164]
18 RF<D1> Composite knife; Incomplete. Iron blade fragment and bone handle from a scale tanged knife of Manning type 7d; 1st-2nd century AD (Manning 1985, 112). Handle L55.11mm W20.45mm Th16.44mm; Blade L67.28mm W17.66mm Th5.92mm Ditch fill [D142] Sample <1000>.

4.5 METALWORKING WASTE

HAWKINGE AERODROME (SITES A & B)

Luke Barber

PERIOD 3.2 MIDDLE/LATE IRON AGE

A very small assemblage was recovered from features within this period, with only four pieces (200g) of iron-forging slag recovered from fill A[75] of pit A[74].

PERIOD 4.2 ROMAN

The assemblage from this period consisted of 205 pieces (3.8kg) and is dominated by probable iron-forging slag. None of the slag recovered was in its primary context, being recovered from pit and ditch fills. The largest assemblages come from pit [B15] (1.3kg of forging slag, 32g of fuel ash slag and 36g of hearth lining), pit [B34] (0.45kg forging slag, 84g fuel ash slag and 3g of hearth lining) and ditch recut [B112] (1.34kg of forging slag). These three features lie to the south of several features identified as possible hearths and could represent
waste from them. However, only one of these ‘hearth’ ([B44]) contained slag: 0.37kg of forging slag and 16g of hearth lining. Whatever the case, the presence of the slag in this area of the site clearly demonstrates the presence of small scale iron forging in the immediate vicinity. One probable forge bottom, with diameter of 80-90mm was also recovered from ditch fill [B113] of ditch [B112].

CANTERBURY ROAD

Sarah Paynter

INTRODUCTION

The excavation identified a number of pits, which contained suspected crucible fragments, slag, semi-vitrified pottery, fired clay, burnt sandstone and charcoal. The metalworking waste, comprising crucible fragments and slag, has been examined and is described below.

The metalworking waste includes 1.4kg of iron-smelting slag, and a large nodule of ironstone that would be suitable as an ore, from period 3.1 Early/Middle Iron Age features. The smelting slag was probably allowed to cool within the furnace. Fragments of a number of small, triangular-plan crucibles and probably one large crucible, also triangular in plan, used for melting copper alloys, were recovered from Late Iron Age, and possibly Early Iron Age, contexts. Alloys of copper and tin (bronze) were melted, often with significant quantities of arsenic present, typical of Iron Age copper alloys. Traces of lead were occasionally detected in the copper alloy.

The iron-working debris from Canterbury Road has been categorised according to the characteristics in Table 4.17 (Bayley et al. 2001). The final two columns of Table 4.17 indicate whether this type of waste would be produced by primary iron-working, secondary iron-working or both.

ANALYTICAL METHOD

An EDAX Eagle II X-ray fluorescence (XRF) system was used to analyse the metalworking waste. The advantage of this technique is that it is rapid and no sampling is required. The object is bombarded with X-rays, which are directed via a fibre optic cable onto an area less than 0.5mm in diameter. The primary X-rays are absorbed causing the atoms in the excited area to emit secondary X-rays whose energies are characteristic of the elements present, and in this way the composition of small, selected areas of the sample can be determined. The disadvantages of the XRF technique are that only the surface of the object is analysed, which is invariably badly corroded or weathered. The analysis obtained is rarely representative of the composition of the uncorroded material beneath. Prior to each set of analyses the machine was calibrated using an aluminium copper alloy. The analysis conditions were 40kV and the current was adjusted so that a deadtime of approximately 30% was obtained.

Copper and its alloys are prone to corrosion. Although XRF analysis provides compositional information on the surface analysed, the composition of a corroded surface can differ greatly from the composition of the original metal beneath. For example, tin-rich corrosion crusts are often formed on high tin bronzes as a result of tin oxide being insoluble, and therefore immobile, relative to copper ions, which are highly mobile (Cronyn 1990). Therefore analytical data must be interpreted with caution.

RESULTS

The waste was systematically examined, to identify the different types present, and sorted into categories. The amount of material in each category was then weighed for each context and some examples were subjected to XRF analysis.

Copper alloy working debris from fill C[125] of pit C[124]

This context contained fragments of small crucibles, 11 of which were rims (mass 96g) and 17 body fragments (mass 76g). The fragments are likely to be sherds from the small triangular-plan crucibles typical of the Iron Age (Wainwright 1979, 125-149 & Gregory 1991, 139, type B). Fragments such as that shown in Fig 4.27, no 1 are from the vertices of the crucible, which are pouring lips, whereas straight fragments are from the crucible sides (Fig 4.27, no 2). The crucibles are likely to have been about 70mm deep and 70mm wide. All of the fragments were heavily vitrified throughout, indicating that the clay had been fired to high temperatures.

The inner surfaces of the crucible sherds were reduced-fired grey whereas the outside surfaces were often vitrified where the clay had reacted with the ashes from the fuel used for heating, and frequently red-coloured because of the presence of copper. Analysis of the outer surface detected copper, varying levels of tin and very small traces of lead. Analysis of droplets of metal adhering to the inside of one crucible fragment detected copper and tin with some arsenic and traces of lead.

This context also contained 16 fragments from larger ceramic vessels, 11 of which could be reassembled to form three larger sherds (eg Fig 4.27, nos 3 and 4). It is likely that all of these sherds derive from a type of large, triangular-plan crucible with a fairly flat base and a capacity of about 1000cc, known from other sites of this period (Wainwright 1979, 125-149 & Gregory 1991, 139, type C). These large crucibles are about
18cm across and 11cm deep. The inside surfaces of the sherds were grey and reduce-fired, whereas the outside surfaces were reduced-fired black in some areas and oxidised-fired orange in others. The friable surfaces of the sherds are heavily abraded but on two fragments a vitrified, red layer survived on the inside surface. There also appears to be a small area of rim with a pouring lip on one of the sherds, where XRF analysis detected copper and traces of tin, arsenic and lead. The composition of the clay, determined by XRF analysis, was similar to that used for the smaller crucibles.

The large crucible fragments are only vitrified on the surface, rather than throughout their thickness like the small crucibles, indicating that the smaller crucibles were re-used more frequently or heated more strongly. At Hawkinge, the majority of the crucibles and at Thetford small crucibles also outnumbered large ones at a ratio of 6:1 (Gregory 1991, 136-143). This is consistent with Wainwright’s comment (1979, 125-149) that few cast objects of this date would require more than a fraction of the large amount of copper alloy that the bigger crucibles could hold.

In addition, 102g of vitrified clay with an oxidised inner surface (therefore not from a crucible), 19g of fuel ash slag and 13g of vitrified copper alloy working slag were also recovered from this fill. A droplet trapped within the slag was analysed and high concentrations of tin and copper, with significant levels of arsenic, were detected.

CATALOGUE (FIG 4.27)

1 Pouring lip rim fragment of small triangular crucible; detail showing Inner surface of crucible sherd, with one of the metal droplets; C[125]

2 Typical crucible rim, thinning towards the rim; C[125]

3 Reassembled sherds, possibly from a large crucible; C[125]

4 Large crucible fragment, showing a vitrified layer on the inner surface; C[125]

Copper alloy working debris from fill [C129] from pit [C135]

Ten fragments of small crucibles, 4 with rims (96g) and 6 without (26g) were also recovered from pit fill C[129]. Analysis of the red vitreous layer on the crucibles detected copper and a trace of lead. One sherd (15g) from a large crucible, very similar to those described for context 125, was also recovered from this context. Pit C[124] containing fill C[125] cut pit fill C[129], and the crucible fragments in C[129] maybe intrusive.

Iron-working Debris

Several blocks of dense, well-consolidated slag, likely to be the product of smelting activity, were recovered from fill C[58] of pit C[57] and fill C[117] of quarry pit C[116]. Large lumps of charcoal were preserved in outline inside the block from pit fill C[58] and fired clay still adhered to some surfaces of the lumps. The slag appears to have solidified in the base of a furnace. Quarry pit fill C[117] contained a large module of concretionary hydrous ferric oxides, goethite and lepidocrocite (confirmed by XRD analysis). These are common weathering products of iron bearing minerals (Deer, Howie & Zussman 1992). XRF analysis of the nodule detected a high iron oxide (FeO) content, on average 85wt%, making the nodule a good ore for smelting. The nodule also contained 0.6wt% manganese oxide, 4wt% alumina and 10wt% silica. XRF analysis of the slag blocks detected between 70 and 75wt% of iron oxide (FeO), 0.5wt% manganese oxide and between 1.7 and 2.4wt% phosphorous pentoxide.

<table>
<thead>
<tr>
<th>Waste Category</th>
<th>Description</th>
<th>Primary</th>
<th>Secondary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dense slag block (smelting)</td>
<td>Large lumps of dense slag, with only a few larger bubbles, and with no particular shape.</td>
<td>v</td>
<td>x</td>
</tr>
<tr>
<td>Slag-lined clay (smelting and smithing):</td>
<td>Clay that formed part of a furnace or hearth lining, with a surface that has reacted with the slag or the ash from the fuel at high temperatures and has developed a dark-coloured, slag-like or glassy surface. The furnace or hearth is hottest near the blowing hole, and pieces of vitrified clay from a furnace or hearth wall with the outline of the blowing hole are sometimes found.</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Fired clay (smelting, smithing and other high temperature processes):</td>
<td>Clay that has reached sufficiently high temperatures to be fired, but that has no diagnostic vitrified or slagggy surface.</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Ore (smelting):</td>
<td>When roasted it commonly has a bright red colour, where it has become oxidised.</td>
<td>v</td>
<td>x</td>
</tr>
<tr>
<td>Hammerscale (smithing):</td>
<td>Small flakes or spheres of slag and iron oxide expelled or detached from the bloom during consolidation.</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Smithing hearth bottom slag or SHB (smithing):</td>
<td>Spongy lumps of slag, with many small pores, characteristic convex bottom surfaces and concave upper surfaces, produced in the smiths hearth when the bloom is consolidated or when an object is being produced.</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Undiagnostic slag:</td>
<td>Iron-rich slag that does not possess enough diagnostic features for it to be categorised.</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Iron offcuts (smithing):</td>
<td>Small off-cuts from iron rods or bars, often with cut ends, where the smith has used the bulk of the object and discarded the remainder.</td>
<td>x</td>
<td>v</td>
</tr>
<tr>
<td>Fuel ash slag (smelting, smithing and other high temperature processes):</td>
<td>Produced predominantly by reaction of ash from charcoal fuel with clay. It is spongy, lighter coloured and less dense than the other slags, as it contains less iron. It is produced when a mixture of plant ashes and clay reach high temperatures, and so alone is not diagnostic of iron-working.</td>
<td>v</td>
<td>v</td>
</tr>
</tbody>
</table>

Table 4.17 Description of iron working waste from Site C
This iron content falls within the range detected in Iron Age smelting slags from other sites (Tylecote 1986, 146). A high iron concentration is necessary in the slag to make it fluid enough to separate from the iron at the temperatures used.

From pit fill C[125], shallow fragments of slag were recovered with convex lower surfaces and flat top surfaces, several of which were porous, and these are probably iron-smithing slags. Others pieces of slag were very well-consolidated and full of large crystals, which are indicative of slow cooling. These characteristics are typical of smelting slag, but the distinctive shape of the fragments raises the possibility that they may be well-consolidated smithing slags. In the absence of conclusive evidence of Early Iron Age smelting, these fragments have been allocated to the smithing hearth bottom category (Table 4.18). This context also contains 0.6kg of undiagnostic slag, amongst which are rusty agglomerates of charcoal and slag with rare hammerscale flakes (a by-product of smithing activity) and probably some metallic iron. Many small, heat-fractured quartz pebbles were incorporated into the undiagnostic slag in this context.

CONCLUSIONS
Iron-smelting took place at the site in the earlier Iron Age (Period 3.1). The types of furnace in use were non-tapping furnaces, producing blocks of well-consolidated slag, which probably accumulated in the base of the furnace. Since small discreet areas of this site were excavated and no furnace remains were found it is not possible to estimate the scale or precise location of the iron working activity. A nodule of concretionary hydrous ferric oxide recovered with the smelting slag would be a rich ore and was probably available locally to the site. In addition, the iron-working slag from pit fill C[125] is likely to be waste from iron-smithing. Two types of triangular plan crucible were also found, one small and one large. A small amount of arsenic and traces of lead were also present in the bronze, which is typical of Iron Age copper alloys.

4.6 COINS
IRON AGE POTIN COINS
HAWKINGE AERODROME
David Rudling
Overview
The 1998 excavations at Hawkinge Aerodrome (Site A) yielded one complete, one broken and three fragments of Late Iron Age chill-cast high-tin bronze (Cu/Sn) Class 1 potin coins. All the examples were recovered from the fill ([A75]) of a large pit [A74]. Class 1 potin coins, which are of a broad (c. 17-20mm diameter), thin module, were first defined by Allen (1936; 1971). They are amongst the earliest coins produced in Britain and are thought to date to the late 2nd or early 1st century BC (Haselgrove 1987; 1988; Hobbs 1996, 17). The dating of
this small group of at least three, and probably five different
coins, is provided by coin 2; Allen Type L potins being present
in hoards which appear to date to the mid/late 1st century BC
(Allen 1971, 141).

The origin of the designs on British potins, ie a crude
head facing either to the right or left on the obverse and lines
representing a bull butting either to the left or right on the
reverse, can be traced back ultimately to 2nd century BC
struck bronze coins of the Greek colony of Massalia (Marseilles
in southern France). The surfaces of Class I potins appear
to have been deliberately enriched with tin in order to give
them a more silvery appearance. Their weight ranged from
1-2.8g, and no strict weight standard appears to have been
adhered to (Hobbs 1996, 16). Although the precise function
of potin coins is not known, they may have been used as a
token coinage for exchange purposes (Allen 1971, 143; Van
Ardell 1989, 54) or as a store of wealth (Collis 1974, 3 and 7),
possibly initially as an alternative to gold coinage (Haselgrove
1987, 119). The hoarding of these coins implies that they were
thought to have intrinsic value.

The distribution of Class I potin coin finds in southern
Britain indicates that they were principally a north Kentish
and Lower Thames region coinage (Allen 1971, 137: Fig. 33;
Haselgrove 1987, 111: Fig. 5). The clustering of find spots of
potins suggests six separate circulation areas, including two
areas (i.e. East Kent and the Lower Thames) in the principal
zone (Haselgrove 1987, 110-111).

Discussion

As outlined above, the purpose of potin coins is not known,
and it is possible that the precise function(s) of Class I potin
coins may have varied from area to area. Thus whilst such coins
may have been produced in Kent as ‘special purpose money’
(Haselgrove 1987, 100), uses may have ranged from exchange
‘in a restricted sphere of conveyencing’, hoarding (of wealth) or
votive offerings. A consideration of the stratified contexts which
have yielded potin coins may be of great help in trying to
establish some of the functions of such coins. The discovery of
hoards of potin coins may indicate that the coins were either a
form of wealth for the living, or were used for votive purposes.

What then of the context at Hawkinge where the potins
were recovered from a large rectangular pit which also yielded
large assemblages of pottery and metalwork, burnt animal
bones, and miscellaneous finds including a glass pin head and a
complete triangular loomweight found on the bottom of
the pit? Do all these finds (including the potins) from this pit

<table>
<thead>
<tr>
<th>Ctx</th>
<th>Vitrified Clay</th>
<th>Dense Slag Block</th>
<th>Smithing</th>
<th>Undiagnostic</th>
<th>Fuel Ash</th>
<th>Stone (incl. possible ore)</th>
<th>Fired clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>C[125]</td>
<td>53g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C[58]</td>
<td>804g (large dense slag block in 3 pieces, clay adhered, reddish in areas, large voids inside, crystalline, contains charcoal.)</td>
<td>10g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C[154]</td>
<td>14g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C[150]</td>
<td>28g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C[81]</td>
<td>6g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C[144]</td>
<td>29g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C[87]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10g</td>
</tr>
<tr>
<td>C[146]</td>
<td>121g stone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C[117]</td>
<td>221g</td>
<td>606g (includes 534g large crystalline slag, with adhered clay)</td>
<td>101g</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Table 4.18 Identification of iron-working waste from Site C

...
represent a large quantity of domestic refuse, or might there be a ritual dimension to this unusual collection of material? (note, the loomweight which may have been placed on the bottom of the pit).

Similar circumstances of the deposition of potin coins in pits have been noted elsewhere, and the author has recently reviewed the 20 such coins which have been recovered from archaeological excavations in East Sussex (Rudling 1999). The majority of these coins (17) were found at two sites: Mount Caburn near Lewes (12) and a Late Iron Age settlement at St Anne’s Road, Eastbourne (5). At both sites most of the stratified coins were recovered from the fills of pits. Thus in the case of Mount Caburn, eleven of the potins were found in pits, the other example being an unstratified find (Hazelgrove 1987, 464-5). Hamilton has undertaken a study of the contents of pits on Mount Caburn, and has suggested that there is evidence for ‘intensive structured deposition..... in pits and gateway entrance areas’ (Hamilton 1998, 38). She further suggests that ‘highly special deposits’ include such things as wild animal bones, human remains, tools, weapons and coins (ie the Caburn potins). The recent excavations at the Eastbourne site have also recovered one Class I potin coin from each of four Iron Age pits (Doherty 2016). In at least one case the potin was recovered from a primary fill. The fifth potin at the Eastbourne site was found in an Anglo-Saxon grave. Some of the Iron Age pits at Eastbourne had similarities to the pits excavated at Mount Caburn, and were found to contain finds (human bones, metal objects, quern stones, etc) which are thought to be ritual deposits. The stratified potin coin finds from the Hawkinge Aerodrome and Eastbourne sites may thus, as at Mount Caburn, be votive deposits.

PAGEROAD

Trista Clifford

A Late Iron Age potin coin of the Primary Kentish or ‘Thurrock’ Series (ABC120; VA1402; BMC660-663) was recovered from fill F[164], the single fill of pit F[163].

Potins of this series are an insular type originating in Kent during the 2nd century BC (Holman 2005a, 3) and are the forerunner of the later Allen type A, Class I and II potins (Hazelgrove 1995, 120). The type is thought to be based on a Gaulish copy of a struck bronze issue of Massalia (modern Marseille), itself a rare type (Hazelgrove 1995, 118) and was named after the 1987 discovery of a hoard containing over 2000 coins (Van Arsdell 1989). A series of analyses have demonstrated the type to be a likely production of the Cantiaci (for example, Hazelgrove 1995 & Holman 2005a) although Van Arsdell argues for a production site north of the Thames associated with the Trinovantes (Van Arsdell 1989).

XRF analysis carried out on coins from the Thurrock hoard suggests a British origin for the metal from which they are made (Northover 1992, 261), and the size of the hoards and widespread distribution both within Kent and beyond suggest they were produced in high numbers.

A number of smaller hoards, including one from nearby Folkstone, have now been published (Holman 2005b, 384) although finds from stratified deposits recovered during archaeological excavations are relatively rare. These include a Thurrock type potin from a pit deposit at Maiden Castle, where there is some confusion as to which phase the feature may derive from (Hazelgrove 1995, 120); however a placement date between the 2nd and late 1st century BC is certain. The deliberate placement of coins within settlement features during the Iron Age has become more widely documented (Hazelgrove 2005, 130) and it is tempting, therefore, despite the lack of contextual information for this pit, to attribute an intentionality to the deposition of the objects from pit fill F[164] that would include them within the wider regional traditions evident across the south-east at this time.

CATALOGUE (FIG 4.28)

1 Allen (1971) Type F. 18 mm diameter; 1.54 g. Traces of both sprues. Obverse: Outline head left, the central circular eye contains no trace of a compass point. All within a drawn outer circle. Reverse: Lines representing a bull butting to the left. The body of the bull is marked by a single curved line drawn in one stroke from tail to head, to which the four legs are appended. The ground is a separate line. All within a drawn outer circle. Fill [A75] of pit [A74].

2 Allen (1971) Type L. 18 mm diameter, but broken and a piece missing. Obverse: Outline head left, the central eye contains a pellet. All within a drawn outer circle. Reverse: Lines representing a bull butting right, pellet in centre, line representing the ground below. All within a drawn outer circle. The bull is made up of straight lines. Fill [A75] of pit [A74]. Small fragment. Type and diameter uncertain. (Allen Type F-L). Obverse: Parts of the outline head and the drawn outer circle. Reverse: Parts of the line representing the ground and the drawn outer circle, Fill [A75] of pit [A74]. Small fragment. Type and diameter uncertain. (Allen Type F-L). Obverse: Part of the drawn outer circle. Reverse: Part of the drawn outer circle and one of the two crescents forming part of the bull. Fill [A75] of pit [A74]. Small fragment. Type and diameter uncertain. Obverse: Part of the outline head. Reverse: Illegible. Fill [A75] of pit [A74].

4.7 ANIMAL BONE

Hayley Forsyth-Magee

A faunal assemblage of 1,147 bone fragments was recovered from four of the excavation sites: Site A (HAF98); Site F (HPH00); Site C (CRH99) and Site D (MRR06 & BLH05),
No faunal remains were recovered from Site E (TSH06). The majority of the assemblage was dominated by mammal bone and was mostly recovered from period 3.1 Early/Middle Iron Age features.

The assemblage was recorded onto an Excel spreadsheet in accordance with the zoning system outlined by Serjeantson (1996). Where possible, bone fragments were identified to species and the skeletal element represented. If specimens could not be confidently identified to taxa, such as long-bone fragments, they have been recorded according to their size and categorised as that of 'large mammal' or 'medium mammal'. Where observable, age at death data was collected for each specimen. Equid dentition measurements were recorded according to Levine (1982). The state of epiphyseal bone fusion was recorded where visible; bones were recorded as 'fused' when the fusion line around the epiphyses was no longer visible and 'fusing' when the fusion line was still visible. Bones that were recorded as fusing have been classed as fused for the purpose of analysis.

Mammalian metrical data was taken in accordance with Von den Driesch (1976), using an osteometric board and digital callipers. Horse withers heights were calculated according to May (1985). Specimens have also been studied for signs of butchery, recording the location and direction of butchery marks, burning, recording the degree of burning as charred or calcined as well as gnawing and pathology.

The Number of Identified Specimen count (NISP) was calculated where possible from the unpublished site reports. Due to the fragmentary nature of the assemblage the Minimum Number of Elements count and Minimum Number of Individuals count was not attempted. All primary data and faunal remains are available within the site archive.

The total faunal assemblage contains 1,147 fragments from eleven contexts, weighing 4,241g, of which 539 fragments have been identified to taxa. The assemblage is in moderate condition with signs of surface erosion and contains mostly fragments, although a small number of complete bones are also present. The highly-acidic soil in the area was not conducive to bone survival. The assemblage was hand-collected with no faunal bone identified from the bulk samples (Table 4.19).

Mammal bone dominated the assemblage (Table 4.20) and the taxa identified are cattle, sheep/goat, pig, dog and horse. The bird bone assemblage comprised a single specimen from a domestic fowl; *Gallus gallus*. The negligible quantity of small mammal and bird remains as well as the absence of fish and herpetofauna from the assemblage may be due in part to the poor preservation levels within the burial environment, rather than being absent entirely from the sites. The robusticity of the large and medium-sized mammals within the assemblage has meant that these remains, although fragmented, have survived within the assemblage to a greater degree.

AERODROME (SITES A)

The faunal assemblage from site A was retrieved from thirteen contexts. The remains from ten of these are highly fragmentary and in a moderate to poor state of preservation, and given the limited information obtained from them, are not worthy of further discussion (Sibun 2003). The remainder of the assemblage was comprised of calf burial A[159] (period 3.1) and from pit A[74] (period 3.2).

A partially-truncated articulated calf skeleton ([A159]), representing an Associated Bone Group (ABG), had been placed in specially-dug grave [A158]. This type of structured deposit is not uncommon in this period (Hill, 1995; Morris, 2008; 2010; 2011).
Fill A[75] of large pit A[74] produced the majority of the bone from site A (80%). Although highly fragmentary, of the 845 fragments recovered, 338 bone fragments were identified to taxa and included cattle, sheep/goat, pig, dog, small mammal and bird; domestic fowl (Gallus gallus). Cattle dominate this context, followed by sheep/goat and pig respectively, represented by all skeletal elements although the majority are meat-bearing bones. Both adult and juvenile remains were present for the main domesticates, as well as dog.

A large quantity of this assemblage exhibited signs of burning, with bone both charred and calcined.

CANTERBURY ROAD (SITE C)

The faunal assemblage recovered from Site C is small, fragmented and in a poor state of preservation (Sibun 2000). The only identifiable elements were fragments of cattle dentition from pit fill [C108] (period 3.1) and small quantity of horse bone, including mandible fragments and adult dentition from a 7-8 year old animal from hearth [158] (Levine 1982).

PAGE ROAD (SITE F)

The faunal assemblage from Site F contained 87 fragments of bone, of which 61 fragments were identifiable to species. The bones were hand-collected from pit fill F[164] and cremation burial F[151] and are in a moderate state of preservation. The taxa identified include cattle, horse, dog, large mammal and medium mammal fragments. The assemblage is dominated by the large and medium mammal bones due to the high levels of bone fragmentation and the robust nature of the elements represented.

PERIOD 4.1 LATE IRON AGE/EARLY ROMAN

The majority of the faunal assemblage was recovered from pit fill F[164], which also contained a large quantity of Roman pottery and high-status items including a La Tène brooch and a potin coin. The faunal remains, although dominated by large and medium mammals, also contained a quantity of cattle and horse, as well as a single dog bone.

Both adult and juvenile remains were present amongst the cattle bones, also evident from the size difference between two cattle astragalii. The horse and single dog were represented by adult bones only. Three loose horse teeth (Davis 1980) have produced age estimates of two young individuals; 5-6 years and 8-9 years and an older individual (Levine 1982). A complete horse metatarsal produced a withers height of 1.25m, approximately 12.1-12.2 hands high.

Meat-bearing bones were present in greater numbers than non-meat-bearing bones, although only three, two large mammal long bone fragments and a horse metatarsal, exhibited any signs of butchery marks. The large mammal long bone fragments had been split vertically, suggesting marrow extraction. Consuming horse-meat in the Roman period was thought of as taboo (Johnstone 2004) and it is more common for horse remains to be recovered as partial skeletons (Sykes 2014). The only butchery marks observed on this bone were small, fine, repetitive cuts near to the articulation joint, suggestive of dismemberment of the carcass for disposal rather than butchery for consumption. However, the horse bone was deposited as a disarticulated specimen alongside other domestic refuse, making the consumption of horse-meat a possibility (Johnstone 2004).

A small amount of burnt bone, calcined greyish-white and identified as medium mammal long bone fragments

Table 4.19 Quantity of (NISP) Number of Identifiable Specimens of hand collected bone from each site, context and period.

<table>
<thead>
<tr>
<th>Site</th>
<th>Context</th>
<th>NISP</th>
<th>Weight</th>
<th>Period</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site A</td>
<td>A15</td>
<td>209*</td>
<td>2554g*</td>
<td>3.1</td>
<td>EIA/MIA</td>
</tr>
<tr>
<td></td>
<td>A75</td>
<td>845</td>
<td>2554g*</td>
<td>3.2</td>
<td>MIA/LIA</td>
</tr>
<tr>
<td></td>
<td>A159</td>
<td>209*</td>
<td>2554g*</td>
<td>3.1</td>
<td>EIA/MIA</td>
</tr>
<tr>
<td>Site C</td>
<td>C108</td>
<td>>1***</td>
<td>8g*</td>
<td>3.1</td>
<td>EIA/MIA</td>
</tr>
<tr>
<td></td>
<td>C158</td>
<td>>3</td>
<td>134g</td>
<td>4.1</td>
<td>LIA/ER</td>
</tr>
<tr>
<td>Site F</td>
<td>F164</td>
<td>76</td>
<td>1521g</td>
<td>4.1</td>
<td>LIA/ER</td>
</tr>
<tr>
<td></td>
<td>F151</td>
<td>11</td>
<td>4g</td>
<td>4.1</td>
<td>LIA/ER</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>1147</td>
<td>4241g</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Total weight for combined contexts. **Total count for combined contexts. >Based on text description no NISP count available. ***NISP count not included as data not known

Table 4.20 Number of Identifiable Specimens (NISP) count by taxa and site.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Site</th>
<th>HAF98</th>
<th>CRH99</th>
<th>HPH00</th>
<th>MRR06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle</td>
<td>152</td>
<td>>1</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep/goat</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pig</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horse</td>
<td>>3</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog</td>
<td>24</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Mammal</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium Mammal</td>
<td>21</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small Mammal</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bird – Domestic fowl</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>338*</td>
<td>>4</td>
<td>61</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

*Plus 134 identified specimens with no species count available
was retrieved from cremation burial F[151] from Cremation Cemetery 3 (period 4.1).

DISCUSSION
Limited information regarding animal husbandry and diet can be gathered from the Hawkinge sites due to the levels of preservation, bone fragmentation and burial environment. These taphonomic factors have affected the surviving faunal remains making any site interpretations difficult.

The presence of the three main domesticates: cattle, sheep/goat and pig suggests that these sites have a domestic function in common, spanning the Early Iron Age to the early Roman period. The faunal remains are not present in large quantities and minimal butchery evidence has been observed. The majority of the faunal remains were retrieved from pit fills, suggesting the assemblage comprises domestic refuse.

The presence of the ABG articulated calf burial from the Hawkinge Aerodrome site is not an uncommon feature on a site of this period, as domestic animals dominate ABG pit burials in the Early Iron Age (Morris 2011). Context A[75] from the Hawkinge Aerodrome site includes a high proportion of burnt bone, the colouration of which implies this was a single activity with discarded bone being thrown onto a fire and then dumped into a refuse pit (Sibun 2003). The presence of cut marks on a single horse bone from the Page Road site is not conclusive evidence that horse-meat was consumed (Maltby 2014).

4.8 HUMAN BONE
Paola Ponce

The human bone assemblage, which includes both cremated and non-cremated bone, was recovered from four sites: Canterbury Road (Site C), the Aerodrome (Sites A & B), Page Road (site F) and The Street (site E). The results of analysis for each site have been discussed separately below, with an overall discussion encompassing the information from all sites.

METHODS
Cremation vessels recovered from Canterbury Road and The Street were subjected to careful recording and excavation in spits of approximately 20mm. Each bone fragment was bagged separately, numbered consecutively and labelled with the relevant spit number. Accurate plans were drawn at each stage of the excavation. The excavated fill underwent flotation and bone fragments from the environmental samples were separated in sieve fractions of 2-4mm, 4-8mm and >8mm. All additional bone fragments were included in the analysis. The remaining cremation deposits were recovered and processed as environmental samples, as outlined above.

The total of weight of the cremated bone assemblage was established and the assemblage then examined to record the degree of fragmentation and fragment colour. The presence and weight of fragments from all skeletal areas (skull, axial skeleton, upper limb, and lower limb) was noted.

The assessment of the human cremated bone was undertaken according to standard guidelines (McKinley 2004). Age and sex were assessed from the stage of skeletal and tooth development along with sexually dimorphic traits of the skeleton following Ubelaker (1989) and Buikstra & Ubelaker (1994).

All recognisable finds were recorded and removed during the processing stage but the assemblage was scanned for the presence of possible staining on bone. Any non-human bone was analysed to see if it was possible to identify the taxa and element.

The disarticulated fragments were identified to skeletal element, which part or parts of the bone were present, left or right if relevant. Standard sex and age assessment were carried out according to Buikstra and Ubelaker (1994) and Bass (2005). The assessment and diagnosis of basic nature of gross pathology on the bones was carried out following the diagnostic criteria described in Auferheide and Rodriguez-Martin (1998) and Ortner (2003).

RESULTS
AERODROME
The evaluation recovered a single human cremation (Trench [80b/3]) dating to the early 2nd century AD. Four pottery vessels were associated with the burial but cremated bone was recovered from only one. The total amount of burnt bone recovered from [80b/3] was 443.00 grams (Sibun 2003). Fragment size ranged from 3mm to 83mm but the majority of the fragments were between 30-50mm. However, some noticeably larger fragments, 78% of the material (346 grams) were identified.

Bone colour
With regards to the degree of oxidation of the organic component of bone, it was noted that 100% of the material was fully oxidised white (> e 600˚ C) which suggests a highly efficient cremation process (Holden et al 1995a, b).
Demographic data
A greyware pot appeared to contain the remains of a single individual ([80b/3]), with no repeated elements noted. Identifiable fragments from all skeletal areas were present.

Fragments that provided age at death information suggested that the individual was an adult and on the basis of the presence of both auricular surfaces, aged 40–45 years old. The sexually dimorphic fragments of the pelvis such as both right and left sciatic notches suggested a possible female. No bone fragments with evidence of pathological changes were found.

CANTERBURY ROAD (SITE C)
Buried bone was recovered from two contexts: urned burials C[70] and C[56] (CC1; period 4.1 Late Iron Age/Early Roman).

The total amount of burnt bone recovered from burial C[70] was 323.9g (McKinley 2000a). The vessel from which C[70] was recovered, was complete but fragmentary within the depth of the grave cut and it showed signs of plough damage.

The weight of bone from this cremation burial represents a maximum of ε 34% of the expected bone from an adult cremation (McKinley 1993). This places it in the median range of average weights recovered from burials in Roman cemeteries (McKinley 2000b). Despite the plough damage fragments from all skeletal areas were represented. The maximum fragment size from the burial was relatively low at 31mm and the majority of the bone was recovered from the 4–8mm sieve fraction (McKinley 2000b). The burial C[56] contained only a few fragments of bone (<5 grams) that could not be conclusively identified as human.

Bone colour
With regards to the degree of oxidation of the organic component of bone, it was noted that nearly 100% of the material was fully oxidised white (> c 600˚ C) which suggests a highly efficient cremation process (Holden et al 1995a, b).

PAGE ROAD (SITE F)
A considerable amount of burnt bone was recovered from cremation burials F[145], F[147], F[149], F[151], F[156] and F[158] (CC3; periods 4.1 and 4.2). Unburnt disarticulated human bone and unidentified burnt bone was also recovered from fill F[164] of pit F[163] (period 4.1).

Bone fragmentation and weight of cremated materials
The total amount of cremated bone recovered from the six burials analysed was 954.35g (Table 4.21). The quantity and condition of the bone varied between the contexts, the smallest quantity not surprisingly, was recovered from a probably disturbed cremation deposit F[156] (11.45g) and the largest from F[145] (407.20g). Fragment size did not vary considerably between the bone assemblages but the 4–8mm fraction size appears to be the most represented of the group.

Identifiable fragments were found in every context analysed apart from F[164] (pit F[163]). For this reason, it was not possible to assess whether the cremated bone from this context represented humans or animals. However, although no identifiable fragments were obtained from this context, non-cremated human bone was also present in large pit F[163].

The identified cremated fragments from the remaining contexts included the olecranon of an un-sided ulna within burial F[147], and the right supra-orbital margin of the skull.

<table>
<thead>
<tr>
<th>Context</th>
<th>Weight (grams)</th>
<th>Type</th>
<th>Identifiable</th>
<th>Age</th>
<th>Sex</th>
<th>S</th>
<th>A</th>
<th>U</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>F[145]</td>
<td>32.90 200.30 174.00 407.20</td>
<td>Human</td>
<td>A</td>
<td>? yes yes - yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F[147]</td>
<td>3.15 13.80 18.20 35.15</td>
<td>Human</td>
<td>A</td>
<td>? - yes yes -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F[149]</td>
<td>52.20 76.45 42.90 171.55</td>
<td>Human</td>
<td>A</td>
<td>? yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F[151]</td>
<td>95.70 109.45 59.45 264.60</td>
<td>Human</td>
<td>A</td>
<td>? yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F[156]</td>
<td>1.05 10.40 11.45</td>
<td>Human</td>
<td>A</td>
<td>? yes yes -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F[158]</td>
<td>1.40 30.30 20.45 52.15</td>
<td>Human</td>
<td>A</td>
<td>? yes yes yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F[164]</td>
<td>6.35 5.90 - 12.25</td>
<td>Human</td>
<td>?</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>191.70 437.25 325.40 954.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.21 Summary of results on cremated human bone analysis from Page Road. Note: (S= skull, A = axial, U= upper limb, L = lower limb)
and fragments of humerus, tibia and fibula shafts in burial F[149]. A mix of human and possibly animal bone were present in burial F[151]. The former consisted of fragments of the distal end of the left humerus and an un-sided scapula, which showed signs of metal staining. Burial F[156] produced fragments of an un-sided radial shaft and F[158], those of un-sided fibular shafts and scapula.

Bone colour
With regards to the degree of oxidation of the organic component of bone, it was noted that 80-100% of the assemblage was fully oxidised white (\(>600^\circ C\)) which suggests a highly efficient cremation process. A combination of grey and blue hues were identified in a small percentage (20%) of the total fragments present.

Demographic data
From the analysis of these cremated assemblages it would appear that each vessel contained the remains of a single individual as no repeated elements were noted. Sex could not be identified in any of the cremated bone studied as no dimorphic features of the skull or pelvis were preserved.

Fragments that provide age at death information were present in six of the seven assemblages and these suggested that all individuals were adults. More accurate age estimates were not possible. No evident pathology was observed in the whole assemblage of cremated bone.

Non-Burnt Bone
A large refuse pit F[163] measuring at least 4.3m in diameter and at least 1m deep produced, among other finds, three fragments of disarticulated human bone from fill F[164]. These consisted of the mid-distal end diaphysis of a right humerus and a fragment of the left pelvis that included the sciatic notch and part of the acetabulum.

The bones appeared to belong to one adult individual, but no more specific age category could be assigned. On the basis of the narrow sciatic notch and the robusticity of the deltoid tuberosity it could be suggested that the individual was a possible male. No evidence of pathology was observed.

THE STREET (SITE E)
The four urned cremation burials E[118] (pit E[116]), E[130] (pit E[128]), E[144] and E[121] (pit E[120]) (CC2; period 4.1) and E[148] (pit E[147]) (CC5; period 4.3) produced a large amount of burnt bone.

RESULTS
Bone fragmentation and weight of cremated materials
The total amount of bone recovered from the five contexts analysed was 2367.15g but the quantity varied considerably between cremations (Table 4.22). From the group of recorded burials, the smallest amount of burnt bone (336.7g) was, not surprisingly recovered from E[118], the most truncated, with the largest quantity from E[144] (855.55g).

Fragment size did not vary considerably between the bone assemblages with fragments measuring between approximately 5 and 40mm. However, some noticeably larger fragments (<110mm) were recovered from the fill of E[130].

Bone colour
With regards to the degree of oxidation of the organic component of bone, it was noted that the bone from E[118], E[144] and E[148] was almost (80-100%) fully oxidised white (\(>600^\circ C\)) which suggests a highly efficient cremation process. The exception was E[130] where several fragments recovered throughout the vessel appear to be unburnt. The remaining bone (20%) presented a combination of grey and blue hues suggestive of an incomplete oxidised process (up to \(600^\circ C\)).

Demographic data
Each vessel contained the remains of a single individual, with no repeated elements noted. Identifiable fragments were present in every burial and they contained fragments from all skeletal areas.

Fragments that provide age at death information were present in all contexts and these suggested that all individuals were adults, although more accurate age estimates were not possible. Similarly, sexually dimorphic fragments of the skull and pelvis were identified in all contexts. Due to the to the degree of fragmentation and preservation of the assemblage, the sexually dimorphic features identified were not accurate or sufficiently reliable to assign a ‘definite’ sex to these individuals and for this reason they all remained as ‘probable’.

In burial E[118] the sexually dimorphic traits included a fairly robust right posterior zygomatic and a fairly thick left supra-orbital margin, indicating a possible male individual. In burial E[130] a fragment of a fairly robust left ischial tuberosity and a fragment of relatively narrow, un-sided sciatic notch could possible belong to a male individual. Dimorphic traits observed in burial E[144] included a fairly sharp left supra orbital margin suggestive of a possible female. Finally, in burial E[149] both right and left supraorbital margins were found,
which looked fairly sharp in appearance, and a wide, un-sided sciatic notch, thus suggesting a possible female individual.

Bone fragments with evidence of pathological changes were found in context E[130] only. These consisted of two vertebrae, possibly thoracic or lumbar that exhibited marginal osteophytes at their end plates suggestive of being affected by a degenerative condition such as osteoarthritis. In addition to this, a fragment of a lumbar vertebra that also presented marginal osteophytes was wedge-shaped. No vertebral fracture was evident and for this reason this abnormal shape can be attributed to an underlying degenerative process due to ageing.

DISCUSSION

Funerary Practice

The burnt human bone recovered from the Hawkinge sites was recovered from urned cremations burials. Small quantities of burnt bone were also recovered from pits and ditches, but only one such assemblage could be identified as human. No

<table>
<thead>
<tr>
<th>Context 2-4mm</th>
<th>Weight (grams)</th>
<th>Type Age</th>
<th>Identifiable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4-8mm</td>
<td>>8mm</td>
<td>Total</td>
</tr>
<tr>
<td>E118</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spilt 1</td>
<td>3.20</td>
<td>46.80</td>
<td>92.40</td>
</tr>
<tr>
<td>Spilt 2</td>
<td>1.35</td>
<td>12.90</td>
<td>36.80</td>
</tr>
<tr>
<td>Spilt 3</td>
<td>0.85</td>
<td>4.65</td>
<td>4.45</td>
</tr>
<tr>
<td>Spilt 4</td>
<td>3.95</td>
<td>20.95</td>
<td>28.25</td>
</tr>
<tr>
<td>Spilt 5</td>
<td>9.45</td>
<td>6.20</td>
<td>15.10</td>
</tr>
<tr>
<td></td>
<td>21.30</td>
<td>107.80</td>
<td>207.60</td>
</tr>
<tr>
<td>E121</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spilt 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spilt 2</td>
<td>3.20</td>
<td>4.45</td>
<td>19.25</td>
</tr>
<tr>
<td>Spilt 3</td>
<td>3.10</td>
<td>11.85</td>
<td>52.10</td>
</tr>
<tr>
<td>Spilt 4</td>
<td>1.00</td>
<td>4.00</td>
<td>31.40</td>
</tr>
<tr>
<td>Spilt 5</td>
<td>1.10</td>
<td>2.60</td>
<td>21.85</td>
</tr>
<tr>
<td>Spilt 4-5</td>
<td>1.10</td>
<td>5.70</td>
<td>61.80</td>
</tr>
<tr>
<td>Spilt 5-6</td>
<td>1.95</td>
<td>3.20</td>
<td>29.45</td>
</tr>
<tr>
<td>Spilt 5-6</td>
<td>2.00</td>
<td>4.25</td>
<td>1.20</td>
</tr>
<tr>
<td>Spilt 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18.55</td>
<td>45.50</td>
<td>371.30</td>
</tr>
<tr>
<td>E130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spilt 1</td>
<td>3.20</td>
<td>4.45</td>
<td>19.25</td>
</tr>
<tr>
<td>Spilt 2</td>
<td>0.10</td>
<td>0.60</td>
<td>28.85</td>
</tr>
<tr>
<td>Spilt 3</td>
<td>1.10</td>
<td>2.60</td>
<td>21.85</td>
</tr>
<tr>
<td>Spilt 4</td>
<td>0.55</td>
<td>1.50</td>
<td>50.35</td>
</tr>
<tr>
<td>Spilt 4-5</td>
<td>1.00</td>
<td>3.15</td>
<td>21.85</td>
</tr>
<tr>
<td>Spilt 5</td>
<td>1.10</td>
<td>5.70</td>
<td>61.80</td>
</tr>
<tr>
<td>Spilt 5-6</td>
<td>1.95</td>
<td>3.20</td>
<td>29.45</td>
</tr>
<tr>
<td>Spilt 6</td>
<td>3.45</td>
<td>4.25</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>188.50</td>
<td>45.50</td>
<td>371.30</td>
</tr>
<tr>
<td>E144</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spilt 1</td>
<td>3.65</td>
<td>4.15</td>
<td>10.45</td>
</tr>
<tr>
<td>Spilt 2</td>
<td>25.65</td>
<td>52.05</td>
<td>141.75</td>
</tr>
<tr>
<td>Spilt 3</td>
<td>2.60</td>
<td>11.60</td>
<td>30.10</td>
</tr>
<tr>
<td>Spilt 4</td>
<td>19.90</td>
<td>43.35</td>
<td>122.50</td>
</tr>
<tr>
<td>Spilt 5</td>
<td>7.07</td>
<td>5.75</td>
<td>29.80</td>
</tr>
<tr>
<td>Spilt 4-5</td>
<td>27.50</td>
<td>33.15</td>
<td>89.30</td>
</tr>
<tr>
<td>Spilt 5</td>
<td>107.60</td>
<td>26.30</td>
<td>49.30</td>
</tr>
<tr>
<td></td>
<td>188.50</td>
<td>181.25</td>
<td>485.80</td>
</tr>
<tr>
<td>E148</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spilt 6-7</td>
<td>5.00</td>
<td>12.50</td>
<td>37.45</td>
</tr>
<tr>
<td>Spilt 8</td>
<td>8.80</td>
<td>15.80</td>
<td>37.40</td>
</tr>
<tr>
<td>Spilt 9</td>
<td>23.50</td>
<td>57.50</td>
<td>134.50</td>
</tr>
<tr>
<td>Spilt 10</td>
<td>21.95</td>
<td>43.75</td>
<td>140.60</td>
</tr>
<tr>
<td>Spilt 11</td>
<td>14.20</td>
<td>38.50</td>
<td>68.85</td>
</tr>
<tr>
<td>Spilt 12</td>
<td>9.05</td>
<td>12.10</td>
<td>57.30</td>
</tr>
<tr>
<td></td>
<td>82.50</td>
<td>179.75</td>
<td>476.10</td>
</tr>
</tbody>
</table>

Table 4.22 Summary of results on cremated human bone analysis from The Street. Note: (S= skull, A = axial, U= upper limb, L = lower limb)
inhumation burials were reported at any of the Hawkinge sites. The evidence at Hawkinge suggests that in some cases the urned cremation burials appear in groups that can be categorised as small cemeteries such as the case of CC2, CC5 and CC3.

Inhumation burials have been reported in other contemporary sites such as the Late Iron Age-Roman cemetery of Pepper Hill, in Saltwood Tunnel, Kent (Booth 2011) but in line with the findings from Hawkinge, urned cremation burials appeared to be more prevalent.

Demographic information was only obtainable from the urned cremations. According to McKinley (2008) cremated bone placed inside a ceramic vessel has the advantage of protection from the aggressive burial environment over urned cremated bone. Indeed, the weight of burnt bone recovered from cremation burials E[144] and E[149] from The Street Hawkinge (CC2) were relatively close to the range expected of 1001.5g to 2422.5g that corresponds to a modern adult cremation (McKinley 1993).

It was also possible to establish other aspects of funerary practice from urned cremation F[150] (CC3): a mix of human with possible animal remains were identified within the vessel and some of the human fragments from a left humerus and an unsided scapula showed evidence of iron staining. According to McKinley (2013) the presence of animal remains, food offerings or artefacts are indicative of pyre goods.

Pyre Technology and Ritual
With regards to the pyre technology, the consistent trend observed across all sites of Hawkinge was the white colour of bone. This is, according to Holden (1995a, b) indicative of a full oxidation process and can only be achieved when pyre temperatures exceed 600°C. The efficiency of oxidation depends on a number of intrinsic and extrinsic variables (McKinley 2008). At Hawkinge, it can be hypothesised that the temperature maintained across the pyres was fairly constant, or that the wood supply used to build the pyre was sufficient. It can also be suggested that the duration of the pyre was sufficiently long to achieve this result or that the weather (wind, rain) was favourable.

Although in less quantities, a combination of grey and blue hues suggestive of an incomplete oxidation process at lower temperatures (Holden 1995a, b) were also observed across the Hawkinge sites. Bone fragments from a single vessel E[130] were largely unburnt, presenting a distinctive orange/brown colour. These represent poor oxidation at very low temperatures (ibid). This diversity can result from variables such as the arrangement of the body, whether the individuals were laid on an ad-hoc built bed, wrapped up and bound, extended with skeletal elements on the periphery of the pyre or crouched (McKinley 2008).

Demographic Data
In terms of demographics, the analysis of the burnt bone recovered from all sites at Hawkinge revealed that all urned cremation burials contained the remains of a single adult individual and the apparent under-representation of sub-adult individuals has been noted on elsewhere, for example at Pepper Hill (McKinley 2006). While this may be due to the inherent problem of fragility of such remains or cultural factors, too little of the cemeteries were seen and too few burials excavated at Hawkinge to comment to whether this lack is a real. Similarly, the results from three sites revealed that both sexes were represented in the assemblages. However too few individuals were present to warrant analysis.

All areas of the skeleton were represented across the Hawkinge sites. In line with this and despite the variation, McKinley (2008) has found that in Roman cremations even where the overall quantity of bone was small, all skeletal areas are likely to be found. Despite this however, there were specific bones such as the small of the hands and feet that were not recovered. This may reflect the mode of recovery of the bone from the pyre site for burial; hand collection results in a bias towards larger pieces. An alternative explanation is that the under-represented areas are part of the ‘unidentifiable’ fragments of the assemblage although, as indicated above, differences in the degree of preservation, natural fragmentation, disturbance, truncation and erosion should be considered.

Finally, with regards to pathology, the only evidence came one individual E[130] suggesting osteoarthritis of the mid-lower spine, which can be attributed to an underlying degenerative process due to ageing.

4.9 PLANT REMAINS
Mariangela Vitolo
INTRODUCTION
This report summarises the results of the analysis of the charred plant remains from The Street and from the Relief Road, carried out by the author, and draws in data from the final archive reports on Canterbury Road (Hinton 2000) and Hawkinge Aerodrome (Hinton 2003). This will allow a discussion on changes in agriculture economy at Hawkinge through time, looking at the range of crops grown, crop
husbandry practices, agrarian economy and any plant use. Finally, the gathered evidence will be compared to that from other sites in the region, in order to contribute to our knowledge of agriculture, diet and environment in modern day Kent from the prehistory to the Roman period.

The majority of the samples produced only a small amount of charred plant remains, which were picked out at assessment stage and identified and quantified during analysis. Only sample <1020> from the Relief Road (Site D) produced enough crop remains to require sorting. The flot was passed through graded sieves and then fully sorted under a stereozoom microscope at 7-45x magnifications. Identifications of macrobotanical remains have been made through comparisons with published reference atlases (Cappers et al 2006; Jacomet 2006; NIAB 2004) and modern botanical reference collections held at Archaeology South-East and Historic England. Nomenclature used follows Zohary and Hopf (1994) for the cereals and Stace (1997) for the wild plants. Species are listed using their scientific and common names in Tables 4.23 and 4.24 and they are subsequently referred to only by their English common names in the text.

RESULTS

The Street (Site E)

A number of Iron Age and Roman period contexts from The Street site produced a scatter of charred cereal remains, including grains, chaff and a number of crop weeds. The remains were fragmented and corroded and identification was not always possible. Hulled barley and glume wheats were the most frequent cereal taxa. Glume bases were mostly unidentifiable apart from a possible spelt from the fill of late 3rd century cremation E[148]. Only one oat grain was recorded from the site; however the diagnostic floret basis was missing and it was not possible to tell whether it was a cultivated or a wild species. The recorded wild remains are mostly seeds of weeds that are typical of grassland or open ground, although wild radish and black bindweed occur on waste ground and the sedges could be indicative of wet environments or marshland.

Relief Road (Site D)

One poorly preserved cereal caryopsis, identified as wheat/barley shows sporadic activity in the Neolithic period. By the early Roman period, the archaeobotanical evidence increases slightly, though still representing in general a background signature. Poor preservation, including frequent corrosion and abrasion, was common. Despite their paucity and poor preservation, the plant remains give us a rough idea of the range of crops that were in use. Glume wheats and hulled barley occur with a similar frequency. Wheat cannot be reliably identified to the species level on the basis of the caryopses alone, however diagnostic chaff reveals the presence of spelt. Possible oats occur in small amounts and it is likely that they did not represent a crop, but a weed that, alongside the brome and the large indeterminate grasses, was perhaps tolerated.

The seeds of wild plants recorded are all fairly common weeds of crops and are not suggestive of particular environments or soil conditions, although the wild legumes could be a sign of nitrogen depletion. Fragments of hazelnut shells suggest the presence of shrubs in the local vegetation; nuts, alongside other wild foods, might have contributed to the human diet.

The Late Roman samples are much richer in plant remains and, although some samples yielded scattered charred cereal remains, in others they are present in considerably higher amounts than in the earlier features. All of the productive contexts originated from slots dug into D[117]. Hulled barley and glume wheats, namely spelt, are frequent. Oats appear more sporadically and the presence of twisted awns suggests a wild species which, like in the earlier Roman period, might have been a tolerated crop weed. Fill D[182] stands out significantly for the very large number of remains present. The sample from this context yielded a large number of glume bases, some identified as spelt. One hexaploid rachis internode also belongs to spelt. Glume wheat caryopses were lower in number in comparison. Hulled barley grains outnumbered wheat caryopses. Despite the absence of twisted grains, the presence of six row barley is suggested by one identifiable compact rachis. All the other barley rachis was unfortunately unidentifiable. The weed assemblage comprises a similar range of taxa to those encountered in the early Roman period, suggesting that conditions of the soils under cultivation remained substantially unchanged. In particular, the low nitrogen level in the soil might have persisted and no sign of manuring or other ways of restoring fertility is apparent from the archaeobotanical evidence. A large number of detached coleoptiles as well as a few swollen, detached cereal embryos were recovered. Cereal grains develop coleoptiles (or sprouts) during germination, which is used to make ale. Sprouts were visible on the dorsal side of three wheat and four barley grains, suggesting that, if the grains were indeed germinated on purpose, possibly both cereals were used for beer brewing. In addition, three cereal grains presented boring holes, signs of a small infestation by the grain weevil (Sitophilus granarius).
DISCUSSION

The archaeobotanical evidence from Hawkinge and comparisons with other sites

Archaeobotanical data from all the sites at Hawkinge allows to examine changes in diet and crop husbandry through time. During all the phases and at all sites cereals appear to have played an important role as plant food. Other crops, for example pulses, occurred more sporadically, although this could be due to the inherent biases of a charred archaeobotanical assemblage. In addition, some of them might originate from a wild species, rather than a crop.

Excavations of Late Bronze to Early/Mid Iron Age features at Hawkinge Aerodrome (Hinton 2003) and Canterbury Road (Hinton 2000) provided a wealth of information on the crops used at the site. The bulk of the information derives from the larger assemblage arising from the Aerodrome, although the amount of charred remains recovered is not enough to establish, for example, the relative importance of single cereals. These combined assemblages confirm the presence of glume

<table>
<thead>
<tr>
<th>Sample number</th>
<th>27</th>
<th>23</th>
<th>26</th>
<th>22</th>
<th>30</th>
<th>21</th>
<th>29</th>
<th>-</th>
<th>7</th>
<th>28</th>
<th>11</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context number</td>
<td>288</td>
<td>200</td>
<td>222</td>
<td>194</td>
<td>234</td>
<td>183</td>
<td>245</td>
<td>145</td>
<td>121</td>
<td>243</td>
<td>129</td>
<td>153</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Taxonomic identification</th>
<th>English name</th>
<th>Habitat codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop Cereals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triticum dicoccum/spelta</td>
<td>emmer/spelt wheat caryopses</td>
<td>C* 2</td>
</tr>
<tr>
<td>Triticum sp.</td>
<td></td>
<td>1 2</td>
</tr>
<tr>
<td>Hordeum vulgare L.</td>
<td>barley caryopses</td>
<td>C* 7 1 1 1</td>
</tr>
<tr>
<td>Triticum/Hordeum spp.</td>
<td>wheat/barley</td>
<td>1</td>
</tr>
<tr>
<td>cf. Avena sp.</td>
<td>oat caryopses</td>
<td>AC* 1</td>
</tr>
<tr>
<td>Avena sp.</td>
<td>oat caryopses</td>
<td>AC* 1</td>
</tr>
<tr>
<td>Cerealia indet.</td>
<td>indeterminate cereal caryopses</td>
<td>C* 1 1 2 2</td>
</tr>
<tr>
<td>Chaff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triticum cf. spelta</td>
<td>possible spelt glume base</td>
<td>C* 1</td>
</tr>
<tr>
<td>Triticum dicoccum/spelta</td>
<td>emmer/spelt glume base</td>
<td>C* 5 5 2 1 1</td>
</tr>
<tr>
<td>Wild grasses, arable weeds and waste ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poaceae</td>
<td>Large caryopses</td>
<td>AHG 1 2</td>
</tr>
<tr>
<td>Bromus sp.</td>
<td>2 1</td>
<td></td>
</tr>
<tr>
<td>Poa/Phleum spp.</td>
<td>meadow grasses/cattails</td>
<td>AHG 1</td>
</tr>
<tr>
<td>Polygonum cf. aviculare L.</td>
<td>knotgrass</td>
<td>AD 1 3 1</td>
</tr>
<tr>
<td>Polygonum/Rumex sp.</td>
<td>Knotgrasses/docks</td>
<td>3</td>
</tr>
<tr>
<td>Rumex sp.</td>
<td>sorrel/dock</td>
<td>ADHSWow 1</td>
</tr>
<tr>
<td>Chenopodium sp.</td>
<td>goosefoots</td>
<td>CDY 1</td>
</tr>
<tr>
<td>Raphanus raphanistrum L.</td>
<td>wild radish/charlock fruit</td>
<td>A 1 3</td>
</tr>
<tr>
<td>Carex sp.</td>
<td>sedges lenticular</td>
<td>EGMRw 2</td>
</tr>
<tr>
<td>Inteterminate or Unidentified Plant parts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unidentified weed seed</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample number</th>
<th>1007</th>
<th>1001</th>
<th>1008</th>
<th>1010</th>
<th>1000</th>
<th>1006</th>
<th>1020</th>
<th>1002</th>
<th>1003</th>
<th>1004</th>
<th>1005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut number</td>
<td>259</td>
<td>149</td>
<td>278</td>
<td>275</td>
<td>141</td>
<td>160</td>
<td>171</td>
<td>181</td>
<td>171</td>
<td>171</td>
<td>198</td>
</tr>
<tr>
<td>Feature number</td>
<td>104</td>
<td>121</td>
<td>124</td>
<td>121</td>
<td>117</td>
<td>117</td>
<td>117</td>
<td>117</td>
<td>117</td>
<td>117</td>
<td>117</td>
</tr>
<tr>
<td>Context fill number</td>
<td>260</td>
<td>150</td>
<td>279</td>
<td>276</td>
<td>142</td>
<td>122</td>
<td>182</td>
<td>180</td>
<td>183</td>
<td>177</td>
<td>199</td>
</tr>
</tbody>
</table>

Taxonomic Identification	**English name**	**Habitat codes**
Crop Cereals | | |
Triticum dicoccum/spelta | emmer/spelt wheat caryopses | C* |
Triticum dicoccum/spelta | sprouted | C* |
Triticum aestivum sl. | bread wheat caryopses | C* |
cf. Triticum sp. | wheat caryopses | C* |
Triticum sp. | | C* |
Hordeum vulgare | barley caryopses | C* |
Hordeum vulgare | sprouted | C* |
Hordeum sp. | barley caryopses | C* |
cf. Hordeum sp. | | C* |
Triticum/Hordeum spp. | wheat/barley | C* |
cf. Avena sp. | oat caryopses | AC* |
Avena sp. | oat caryopses | AC* |
Avena sp. | awns | A C* |
Cerealia indet. | indeterminate cereal caryopses | C* |
Cerealia indet. | detached embryo | C* |
Cerealia indet. | coleoptile | C* |

Chaff

Triticum sp. (hexaploid) | basal/tough rachis | C* |
Triticum sp. | basal rachis node | C* |
Triticum sp. | basal/tough rachis | C* |
Triticum spelta | spelt wheat glume base | C* |
Triticum cf. spelta | possible spelt glume base | C* |
Triticum dicoccum/spelta | emmer/spelt glume base | C* |
Triticum dicoccum/spelta | emmer/wheat spikelet fork | C* |
Hordeum vulgare ssp vulgare | 6 row barley rachis | C* |
Hordeum vulgare | barley rachis | C* |
Hordeum vulgare | barley internode fragment | C* |

Indet stem frags (cf Poaceae) | possible grass stem fragments | AC* |

Non-cereal crops

<table>
<thead>
<tr>
<th>Habitats codes</th>
<th></th>
</tr>
</thead>
</table>

Table 4.24 Species List from the Relief Road (Site D)
<table>
<thead>
<tr>
<th>Sample number</th>
<th>1007</th>
<th>1001</th>
<th>1008</th>
<th>1010</th>
<th>1000</th>
<th>1006</th>
<th>1020</th>
<th>1002</th>
<th>1003</th>
<th>1004</th>
<th>1005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut number</td>
<td>259</td>
<td>149</td>
<td>278</td>
<td>275</td>
<td>141</td>
<td>160</td>
<td>171</td>
<td>181</td>
<td>171</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td>Feature number</td>
<td>104</td>
<td>121</td>
<td>124</td>
<td>121</td>
<td>117</td>
<td>117</td>
<td>117</td>
<td>117</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Context fill number</td>
<td>260</td>
<td>150</td>
<td>279</td>
<td>276</td>
<td>142</td>
<td>122</td>
<td>182</td>
<td>180</td>
<td>183</td>
<td>177</td>
<td>199</td>
</tr>
</tbody>
</table>

Taxonomic Identification

<table>
<thead>
<tr>
<th>English name</th>
<th>Habitat codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indet Fabaceae</td>
<td>AC^G</td>
</tr>
<tr>
<td>Vicia/Lathyrus sp.</td>
<td>CDG</td>
</tr>
<tr>
<td>Corylus avellana L.</td>
<td>HSW</td>
</tr>
<tr>
<td>Poaceae</td>
<td>AHG</td>
</tr>
<tr>
<td>Bromus sp.</td>
<td>brome</td>
</tr>
<tr>
<td>Lolium/Festuca spp.</td>
<td>Rye-grass/feescue</td>
</tr>
<tr>
<td>Poa/Phleum spp.</td>
<td>meadow grasses/ cattails</td>
</tr>
<tr>
<td>Polygonum cf. aviculare L.</td>
<td>knotgrass</td>
</tr>
<tr>
<td>Polygonum/Rumex sp.</td>
<td>Knotgrasses/dock</td>
</tr>
<tr>
<td>Polygonum sp.</td>
<td>knotgrasses</td>
</tr>
<tr>
<td>Fallopia convolvulus (L.) Á Love</td>
<td>black bindweed</td>
</tr>
<tr>
<td>Rumex sp.</td>
<td>sorrel/dock</td>
</tr>
<tr>
<td>Chenopodium sp.</td>
<td>goosefeet</td>
</tr>
<tr>
<td>Stellaria media (L.) Vill</td>
<td>common chickweed</td>
</tr>
<tr>
<td>cf. Galium/ Asperula sp.</td>
<td>bedstraws/cleavers</td>
</tr>
<tr>
<td>cf. Euonymus europaeus L.</td>
<td>spindle tree</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>Compositae/daisy family</td>
</tr>
<tr>
<td>Lapsana communis L.</td>
<td>nipplewort</td>
</tr>
<tr>
<td>Tripleurospermum inodorum (L.) Sch. Bip.</td>
<td>scentless mayweed</td>
</tr>
<tr>
<td>Ranunculus acris/ repens/bulbosus</td>
<td>meadow/creeping/ bulbous buttercups</td>
</tr>
<tr>
<td>Inteterminate or Unidentified Plant parts</td>
<td></td>
</tr>
<tr>
<td>Unidentified weed seed</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.24 Continued
wheats, especially spelt. However a small amount of tentative identifications suggest that it is possible that emmer and freethreshing wheats were either grown as secondary wheat crops, alongside spelt, or occurred as contaminants. This evidence however does not mirror that of other contemporary sites. For example at Brisley Farm, Ashford, emmer seems to have been the main cereal destined to human consumption, and spelt was less frequent, despite perhaps being better suited to the local heavy clay soils (Carruthers 2013). On the A2 emmer also dominated the Iron Age samples (Smith 2012). Hulled barley and oats also occurred frequently at Hawkinge Aerodrome, although oats grains and awns fragments occurred in low numbers in most features. The absence of diagnostic floret bases means that it is not possible to tell whether they represent a crop or a weed. Peas were the only type of non-cereal crop attested at the site. Pulses can be used in crop rotation systems to restore fertility to the soil. Most of the weeds occurring in contexts from this period were either ruderals or taxa indicative of grassland. The presence of wetter or maybe less well drained environments is suggested by the few occurrences of sedges and sweet-grass. Autumn sowing was suggested by the presence of cleavers and rye brome.

For the Late Iron Age and Early Roman period, assemblages from The Street and Middle Relief Road yielded a scatter of poorly preserved remains, showing the presence of glume wheats and hulled barley. The Late Roman samples yielded many more charred remains, suggesting the presence of spelt and six-row barley. By this time the use of spelt is quite widespread and this cereal has also taken over emmer at other local sites (eg Smith 2012).

There is some evidence for brewing at Middle Relief Road and elsewhere in Kent. Although in some cases, for example at A2 sites, the remains were too limited to suggest deliberate germination (Smith 2012), evidence for brewing in Roman Kent is available from other sites, such as Springhead and Northfleet Villa (Campbell 1998 and Smith 2011, in Smith 2012).

4.10 WOOD CHARCOAL

Mariangela Vitolo

INTRODUCTION AND METHODS

Two samples from excavations at sites in Hawkinge produced enough charcoal to warrant analysis work (Table 4.25). The samples originated from a Late Bronze Age/Early Iron Age pit at The Street and an Iron Age/Roman cremation at Hawkinge Aerodrome Page Road. This analysis aims to look at the range of taxa arising from these samples, drawing in evidence from the archive report of excavations carried out at the Hawkinge Aerodrome (Seel 2003). This evidence will help looking into vegetation environment, fuel selection and use, cremation and ritual practices and woodland management techniques. Finally, the results from this study will be compared to the charcoal data from other contemporary sites in modern Kent.

Charcoal fragments were extracted from the flots and residues of both samples. Fragments >4mm were considered suitable for analysis as, in general, fragments of this size provide sufficient surface area once fractured for identification. However, whenever possible, a number of fragments from the 4-2mm fractions were also identified. Due to its small fragment numbers, the assemblage from pit D[227] was entirely analysed, whilst one hundred charcoal fragments were selected at random from cremation fill F[158]. The fragments were fractured along three planes (transverse, tangential longitudinal and radial longitudinal sections) following standardised procedures (Gale & Cutler 2000; Leney & Casteel 1975) and viewed under a stereozoom microscope for initial sorting and an incident light microscope (at 50, 100, 200 and 400x) to allow identification of the woody taxa. Anatomical features visible in the archaeological specimens were compared with modern reference material held at Archaeology South-East and with those documented in reference atlases (Hather 2000; Schoch et al 2004; Schweingruber 1990) in order to provide taxonomic identifications. Where possible identifications have been made to species level, however genera, family or sub-family names are given where anatomical differences between taxa are insufficient to enable satisfactory identification. These distinctions are made with reference to Schweingruber 1990. For some of the taxa such as oak, where there are only two native deciduous trees, identifications can be refined due to the limited range of native species within Britain. Cf., denoting ‘compares with’ is used as a prefix to the species or generic name where identifications are uncertain as a result of poor preservation or limited size of the charcoal specimens. Nomenclature used follows Stace (1997).

RESULTS

THE STREET (SITE D)

Pit D227] was the only context from The Street to produce enough charcoal to warrant analysis and it was deemed to have the potential to provide information on fuel selection at the site during the Late Bronze Age/Early Iron Age period of site occupation. The assemblage was dominated by oak (*Quercus* sp.), whilst a smaller amount of fragments were identified as cherry/blackthorn (*Prunus* sp.), possible hazel (cf *Corylus*...
possible reasons, which will be explored below. The small
sites showed a rather low species diversity, for a few different
prehistoric and Roman Kent.

provide a picture of the vegetation environment and fuel use in
assemblages to those from other sites in the same area to
together the evidence from the above samples and that from
Hawkinge Aerodrome (Seel 2003) comparing all the Hawkinge
In addition, a small number of oak fragments presented radial
cracks, which indicate presence of moisture in the wood and
suggest the possible use of freshly cut wood (Fiorentino &
D’Oronzo 2010).

The dominance of oak is not surprising, as it makes an
excellent fuel, although it is a versatile wood that could for
example also have been used for timber or joinery (Taylor 1981).
Its wood might have been particularly sought after, although it
is also possible that nearby deciduous woodland constituted a
reliable source of oak wood and that local availability played a
decisive role in fuel selection. The other identified taxa indicate
that shrubs and hedgerows were also present in the local
vegetation environment and exploited for fuel.

PAGE ROAD (SITE F)
Cremation fill F[158] produced a charcoal assemblage that
was entirely dominated by ash (Praxinus excelsior), except two
unidentified knot wood fragments. Cremations require the use of
woody taxa that can produce a high level of heat and ash wood,
being an excellent fuel, works very well and is therefore not an
uncommon choice, although it does not occur as commonly as
for example oak does. Vitrification was noted also in fragments
from this context; it is possible that in the case of cremations
other factors (e.g. fat leaking from bones) might concur with
high temperatures and prolonged burning to cause vitrification.

DISCUSSION
The following discussion will be thematic and will bring
together the evidence from the above samples and that from
Hawkinge Aerodrome (Seel 2003) comparing all the Hawkinge
assemblages to those from other sites in the same area to
provide a picture of the vegetation environment and fuel use in
prehistoric and Roman Kent.

SUMMARY OF ALL HAWKINGE SITES
All sites showed a rather low species diversity, for a few different
possible reasons, which will be explored below. The small
assemblage from The Street was dominated by oak, with a
smaller number of fragments originating from taxa typical of
woodland margins or hedgerows. The larger charcoal assemblage
from Hawkinge Aerodrome (Seel 2003) showed a similarly low
species diversity. Here, pits and a ditch from Early to Late Iron
Age yielded mostly oak and field maple (Acer campestre), with a
smaller amount of ash, Maloideae, hornbeam (Carpinus betulus)
and willow family (Salicaceae). The presence of one taxon in
the Roman cremation from Hawkinge Aerodrome Page Road is
clearly the result of fuel selection for a specific purpose.

Local vegetation environment
In general, a high degree of fuel selection seems to have been in use
at all the sites. Therefore, these assemblages are likely to represent
only a small part of the woody taxa that were growing in the area.

Oak was dominant at two out of the three sites under
analysis. It is possible that this tree was fairly abundant in
the deciduous woodland near the site and that there was
not much pressure on woodland resources, as the evidence
from other Kentish sites also shows. For example, at Brisley
Farm, Ashford, despite a degree of woodland clearance, the
dominance of oak in the scarce woodland in the area in the
Iron Age was supported both by the pollen data and by the
charcoal assemblage (Gale 2013).

Other habitats that were tapped into for fuel in the Bronze
Age and Early Iron Age appear to be deciduous woodland,
woodland margins and scrub. Hazel would have provided
both wood for fuel and edible nuts. By the Early to Middle
Iron Age and later, evidence from the Aerodrome and Page
Road shows that taxa typical of more open conditions tend to
appear, probably due to woodland clearance being in operation.
Although oak is still abundant in some of the contexts, the
presence of maple and ash, both light demanding species,
suggests the presence of open woodland. Indeed, if the oak
in the assemblage is Q. robur (pedunculated oak), which is
more suited to the heavier clay soils of southern England, this
would also suggest more open ecological conditions, which
this species tends to prefer (Seel 2003). Damp soil conditions
are suggested by the presence of hornbeam (Carpinus betulus)
and willow/poplar (Salicaceae) in a Late Iron Age feature from
the Aerodrome. However, hornbeam is also shade-bearing and
as such it does not tend to grow near light demanding species.
This suggests that damp woodland species were also growing in
the area, maybe next to watercourses (Seel 2003).

Fuel selection and woodland management
The limited range of taxa found at all three sites could be due
to different reasons. Biases due to deliberate human selection
could account for most of it and certainly did for the Roman cremation. However it is noticeable that an Early Iron Age ring ditch from the Aerodrome site also yielded only three different taxa, making cultural biases less likely to be the cause. The species composition at Hawkinge, particularly at the Aerodrome, could provide a different explanation (Seel 2003). Woodland management techniques, such as coppicing, have been in use in southern England at least since the Neolithic (Hooke 2010). The most common coppiced woodland since the Middle Iron Age included oak, as the main standard, and ash and maple, as high and low coppice (Rackham 1971). In an assemblage deriving from this sort of managed woodland, other taxa that would not make good coppices would not be greatly represented (Seel 2003). Therefore, although no direct evidence of coppicing was provided by the charcoal analysis, it is possible that the local woodland was managed using techniques to maintain supply.

Comparison with other sites

The small size of the charcoal assemblage from Hawkinge does not allow for a discussion on changes in the local vegetation environment and fuel selection strategies through time. Additionally, for some of the periods only evidence from a single feature is present. However, the evidence from other contemporary Kentish sites shows strong similarities in fuel selection strategies.

The Bronze Age pit produced an assemblage that included oak and various woodland margins/hedgerow taxa. A similar assemblage was produced by a late Bronze Age context on the A2 (Challinor 2012), where the use of mixed types of wood, with the stress on hedgerow species, was linked to common domestic fuel practices at the time.

The Iron Age period has provided the largest charcoal assemblage at Hawkinge. The presence of sparse woodland and generally more open conditions, consistent with farming, as well as the exploitation of damp environments for fuel procurement seen at the Aerodrome site, are mirrored elsewhere in Kent (eg Gale 2013).

The Roman cremation assemblage was entirely dominated by ash. This taxon, alongside oak, was a common choice for cremations in the Roman period. Both ash and oak possess excellent burning qualities and they would have provided timber for the bier (Challinor 2012). Examples of oak and ash dominated Roman cremations are found at different locations in Kent, such as at sites along the A2 (Challinor 2012) and elsewhere in south-east England, for example at sites on the A120 in Essex (Challinor 2007).

4.11 RADIOCARBON DATING

A sample of charred hazelnut shell from pit fill D[629] was submitted for AMS radiocarbon dating at the Scottish Universities Environmental Research Centre (SUERC). The purpose of submitting the sample was to help refine the date of some of the earliest occupation identified at Hawkinge.

Details of the radiocarbon date are given in Table 4.26 quoted in accordance with the international standard, Trondheim convention (Stuiver & Kra 1986), and are given as conventional radiocarbon ages (Stuiver & Polach 1977). 2 Sigma calibrated dates, obtained using IntCal13 (Reimer et al 2013), are also given at the 95% confidence level.

<table>
<thead>
<tr>
<th>Lab code</th>
<th>Context</th>
<th>Material</th>
<th>Conventional Radiocarbon Age (BP)</th>
<th>Delta C13</th>
<th>2 Sigma calibrated date (95% confidence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUERC-68629 (GU41527)</td>
<td>D629</td>
<td>Charred hazelnut</td>
<td>3701 ± 27</td>
<td>-24.3‰</td>
<td>2197-1984 Cal BC</td>
</tr>
</tbody>
</table>

Table 4.26 Radiocarbon dating results
5.1 FUNERARY MONUMENTS IN THE EARLY PREHISTORIC LANDSCAPE

Prior to the creation of Ring Ditch 1, there was no evidence for anything other than an occasional human presence at Hawkinge in the earlier prehistoric period. The ring ditch (RD1) is likely to represent the negative element of a barrow: a type of prehistoric funerary monument well represented in the Kentish landscape (Fig 5.1).

However, as outlined earlier, there are problems with our understanding of this feature arising from the limited amount of hand excavation undertaken during the fieldwork and any attempt at a detailed discussion of the ring ditch's character, use and wider interpretation is curtailed by the limited amount of information recovered. What can be ventured is that the ring ditch appeared to be an unbroken circuit built in a single episode, representing what has been termed an ‘impermeable’ barrow (Bradley & Fraser 2010). Attempts have been made to interpret the difference between ‘impermeable’ (with unbroken circuits) and ‘permeable’ (with broken) barrows. The former are seen as emphasising the individual and less concerned with the past, and the latter were more connected with the contemporary domestic world (ibid).

Other examples of this ‘monumentalisation’ of the landscape are still upstanding, as mounds or tumulus in the wider environs around Hawkinge (Fig 5.1). In addition, many more undoubtedly await discovery by excavation in the area, having been denigrated by ploughing and erosion, surviving now only as negative feature ring ditches. Most of the known examples are bowl barrows: named because they resemble an up-turned bowl, with the mound usually encircled by a ditch. In the Hawkinge area they often occur in pairs or threes, and while Ring Ditch 1 was apparently isolated, others may lie undiscovered in the vicinity. Many of the barrows occupy prominent locations in the local landscape, with the crest of the steep southern slope of the North Downs particularly abundant.

The North Downs around Folkestone and Dover form one of the densest concentrations of barrows in the south-east of England, although not on par with areas such as the Isle of Thanet and the South Downs (Field 1998). This discrete pattern of clusters has been interpreted as a reflection of differing social and economic activity, possibly representing borders and marginal land away from settlement (ibid).

Another suggestion is that this area was some form of boundary was the possible deliberate ‘pairing’ of Beaker vessels in gully [137a/8] and pit B[47] (see Figs 2.4, 2.5 & 5.2, periods 1.2/2.1).

However, far less well known around Hawkinge are the contemporary non-funerary sites, representing the use of resources and occupation of the landscape by early prehistoric inhabitants. This presence is often represented only by isolated find-spots, consistent with the rest of southern England, where evidence for settlement and economy are sparse (Brück 2000, 273-274). Brück has suggested that this is a result of a lack of desire for economic exploitation and land-holding rights being invested in community groups, rather than in individual households (ibid, 273–287).

The only other notable early prehistoric feature, although likely to be later than the barrow (RD1), was the inverted Middle Bronze Age urn in pit AA[7] which may have been a truncated cremation burial or a form of structured deposit (Figs 2.9, 2.10 & 5.2, periods 1.2/2.1). Its distance from Ring Ditch 1 (over 350m) suggest it was not located respecting the barrow but was placed in what appears to have been open land.

5.2 LATER PREHISTORIC SETTLEMENT AT HAWKINGE

There was abundant evidence for settlement throughout the later prehistoric period, initially focused on the Late Bronze Age ‘aggrandised enclosure’ (F[603]) at the Terlingham III site. Elsewhere during the Late Bronze Age, very little archaeological evidence was identified, with only a series of relatively small pits identified at the Aerodrome (Fig 2.11) and The Street sites (Fig 2.13; Fig 5.2, period 2.2).

By the Early Iron Age, the ‘aggrandised enclosure’ (F[603]) had fallen out of use, and occupation shifted to the Aerodrome and Canterbury Road sites, representing potentially component parts of a larger dispersed zonally-organised settlement (Fig 5.2, period 3.1). In terms of both the archaeological features and ceramic finds, the Early/ Middle Iron Age (period 3.1) seems to represent the height of prehistoric settlement activity at Hawkinge.
Fig 5.1 Location of barrows in the vicinity of Hawkinge
Fig 5.2 Evolution of land-use at Hawkinge from the Early Neolithic to Middle Iron Age (periods 1.1 to 3.1)
The settlement evidence from Canterbury Road was particularly significant as it included evidence of both iron and copper-alloy working (see Chapter 4.5). Although the precise location of the metalworking activity was not identified, with no in situ features found, the assemblage does indicate that all stages of metalworking were being undertaken in the vicinity. The Canterbury Road site may have been a specialised metalworking facility using locally available ores and utilising non-tapping furnaces.

By the Late Iron Age (period 3.2), whilst there were less finds and features overall, there was still evidence of settlement with abundant domestic finds from pit A[74] at the Aerodrome, and possible occupation at The Street (EN1), indicating a shifting but still dispersed settlement pattern (Fig 5.3, period 3.2). Importantly, during the Iron Age (period 3.1 and 3.2) the land was divided (FS1) for agricultural use for the first time, and there was clear evidence of arable cultivation with five reaping-hooks recovered from pit A[74], and an iron ard tip from pit [85c/4]. The importance of this organized agricultural landscape, initiated by Field System 1, is emphasised by its durability, surviving with multiple adaptions, expansions and contractions for around 800 years until the late Roman period.

Pits similar to A[74] containing abundant purposefully selected domestic items in addition to coins, agricultural and other metal finds have been recorded elsewhere in the southeast, most notably at three sites in Sussex. At Slonk Hill near Shoreham, crucibles, a brooch, and agricultural tools including a tip of a plough were recovered from pits in a small unenclosed settlement (Harridge, 1978, 69-141). Further east at Mount Caburn, an Iron Age hillfort also had over a dozen pits with various metal agricultural tools, and weapons deposited along with various other domestic items (Hamilton, 1998, 23-39). Finally, at St Anne’s Road, Eastbourne a reaping hook, potin coins and other agricultural tools were recovered from several grain-storage pits (Doherty & Greathorex, 2016, 189-190). The association of agricultural and other metal finds together has been interpreted as being used by authorities as a metaphor of fertility, transformation and death to underline social power and authority (Giles 2007, 395-413).

The significance and meaning of the finds deposited in pit A[74] are difficult to interpret. The presence of significant quantities of iron metalwork implies a meaningful act carried out at cost to the depositor, given that broken and worn-out objects would usually be recycled rather than discarded as rubbish. The inclusion of agricultural implements such as bill-hooks and reaping hooks, implies strong symbolic associations with the fertility of soil and the production of agricultural surplus (Barrett 1989, 315; Hingley 2006, 214–18). The glass pin head and shale bracelets are personal items, as may be the ceramic beads/toggles. The loomweight is associated with weaving and again as a complete object is unlikely to have been discarded as rubbish unless broken. Weaving is typically associated with domestic settlement and the latch-lifter is also a domestic item. Intriguing these agricultural, personal and domestic objects were found alongside a number of ‘sling-shots’ (both stone and ceramic). Although identified as ‘sling-shots’ and interpreted as projectiles, they are in fact not found disproportionately on sites with other evidence of warfare, and their association with other domestic and agricultural items may suggest the use was most common in food procurement, for hunting rather than warfare (Doherty, 2016, 15).

The recovery of up to five potin coins from fill A[75] is also highly significant (see Chapter 4.6). Study of the depositional context of potin coins from East Sussex indicates almost all of the stratified examples found were recovered from pits and more generally well-stratified examples from Britain and the Continent are found disproportionately in contexts with a ritual dimension (Haselgrove, 2005, 130–1). Therefore, the presence of the potin coins in pit A[74] may support a ritual interpretation for the deposit. Whether the purpose of the deposit was to ritually ‘close’ a structure as might be implied by the large amount of pottery, daub and range of artefacts or reflects a feasting event, as might be implied by the inclusion of the animal bone assemblage, or uncertain and other meanings are undoubtedly possible.

5.3 LATE IRON AGE/ROMAN FARMSTEADS AND FIELDS
This period saw several important changes in the landscape, principally an abandonment of the earlier dispersed farms and the foundation of a large enclosed settlement with a shrine at Terlingham III (AOC Archaeology 2006). This settlement, by far the largest so far identified at Hawkinge for any period, included a square-ditched shrine with central timber structure, as well as plentiful evidence for domestic occupation, such as ovens (Fig 5.3, period 4.1). Significantly, Early Roman field systems both pre- and post-dated the settlement, suggesting its occupation was fleeting and that the settlement focus shifted elsewhere. The amount of re-organisation of the settlement layout at Terlingham III in such a short space of time is unusual and not easily explained. These modifications also appear to broadly mirror the re-organisation seen in Field System 2,
Fig 5.3 Evolution of land-use at Hawkinge from Middle Iron Age to Late Roman (periods 3.2 to 4.3)
although imprecision in the dating evidence does not allow close comparison.

While a field system pre-dated the Terlingham III settlement, its foundation seems to have been accompanied by a significant expansion in the amount of enclosed agricultural land (FS2; Fig 5.3, period 4.1). This expanded field system (FS2), is likely to have encircled the entire Terlingham III site, with embedded routeways (D1-2 and holloway? G22; Fig 5.3, period 4.1). Unfortunately, the relatively small and piecemeal nature of the investigations did not allow exposure of enough of the fields to attempt anything other than a basic interpretation and no field was seen in its entirety. In addition, recent re-appraisal has demonstrated how understanding the use and abandonment of field systems is fraught with difficulty (Rippon et al 2015). This is largely due to the limitations of dating using pottery assemblages, the paucity of Late Roman finds, and changes in agricultural practise, such as arable to pasture, not being reflected in the archaeological record (ibid).

Our land-use interpretations (FS1, FS2 etc), while necessary, inevitably simplifies a much more complex process of change, adaption and abandonment. Nevertheless, the best conclusion that can be reached for Hawkinge, is that there was an extensive field system in the 1st century AD that fell out of use in stages, until being entirely abandoned during the later Roman period.

While none of the routeways could be traced for more than a few metres, they did seem to be orthogonally aligned (north-west to south-east and north-east to south-west). They probably represent a small proportion of the tracks radiating out from, what seems to be, the principal settlement in the locale. Evidence of a routeway network is generally associated with forms of more complex farmsteads (Smith et al 2016, 117). It has been suggested that changes in the layout of routeways may reflect new property ownership, and that could be tentatively suggested for Hawkinge, with the new settlements appearing to develop new routes (ibid). However, due to the lack of refinement in the dating evidence, this must be viewed with caution.

There was limited evidence for outlying farmsteads, with Building 2 hard to interpret and accompanied by few features typical of settlement. The best evidence for further occupation are the more distant cremation cemeteries (CC1 and CC2), which are likely to be associated with outlying satellite farms (Fig 5.3, period 4.1). On the other hand, Cremation Cemetery 3 was located only a couple of hundred metres from the Terlingham III site and is the best candidate for representing the burials of its inhabitants. The straggling line of the cremation burials may reflect a nearby routeway heading out north-east from the settlement. Overall, the evidence from this period indicates a highly-organised landscape of fields, routeways and small burial plots with the Terlingham III settlement at its centre.

THE CREMATION CEMETERIES

Cremation was the only burial practise identified in all of the cemeteries excavated, despite a chronological span from the 1st century until the later 3rd century. As inhumation became the dominant burial practise in Roman Britain from the mid 2nd century, its apparent absence at Hawkinge is notable and may indicate a persistent local preference for cremation burial (Philpott 1991, 53).

Where location was recorded, the cremated remains were all interred in urns, and in most cases accompanied by a number of accessory vessels. Other possible grave goods were animal remains ([F151]) and a copper-alloy brooch (C[69]). There was no evidence from the burials of anything other than, at best a middle-ranking social and economic status for the individuals, and this is entirely in-keeping with what is known of the character of the rural settlement in the area. The lack of diversity in the selection of accessory vessels can be seen as a local continuation of burial practises pre-dating the Claudian invasion, and the more typical burial set of drinking vessel, flagon and platter was not adopted until the 2nd century.

The cemeteries were characterised by discrete small cluster of cremation burials peppering the landscape without any obvious pattern. Only Cremation Cemetery 3 had evidence of re-use after a prolonged hiatus, indicating some form of physical markers or retained memory of the site. The re-use at The Street, where Cremation Cemetery 5 started at least 150 years after Cremation Cemetery 2 had ended, seems to be merely a co-incidence of geography. These cemeteries are perhaps best interpreted as family plots, used for a generation or two and associated with a few dispersed farmsteads, such as at Terlingham III, located in the surrounding area.

CONTINUED USE AND EVENTUAL ABANDONMENT: THE LATER ROMAN AND POST-ROMAN PERIODS

After the abandonment of the Terlingham III site in the early 2nd century, the focus of settlement shifted north to the southern end of Haven Drive, on what is now The Churchill School (Site B; Figs 3.16–3.17 & Fig 5.3, period 4.2). Although no structures were identified, there was limited evidence for iron working associated with a cobble surface and hearths. Cremation cemeteries 3 and 4, located within the
vicinity, are also likely to be associated with this occupation. The only route way identified (TD3) clearly radiated from the settlement and maintained the same alignment of the earlier routes. The earlier routes may have continued in use, although there was no associated archaeological dating evidence. The overall exploitation of the agricultural land seems to have reduced with Field System 3 an apparent adaption of the earlier fields (FS2) on a smaller scale.

From the 2nd century onwards, the Roman occupation and exploitation of the land declined markedly, until its eventual abandonment probably at the end of the 3rd century (Fig 5.3, period 4.3). Subsequently, there was an absence of substantial settlement in this part of Hawkinge until the modern period. While the place name indicates an early medieval presence at Hawkinge, there is still no accompanying archaeological evidence, and other than some minor activity in the 13th/14th century, the site remained apparent open ground until the 20th century.
CHAPTER 6 CONCLUSIONS

6.1 SUMMARY CONCLUSION
The process of writing this volume has served to illustrate the difficulties in understanding fieldwork undertaken in the relative distant past (~15-25 years ago). The principal problems stem from the limitations of fieldwork undertaken by numerous individuals over an extended period with different excavation and sampling methods, in areas determined by redevelopment rather than by archaeological research agendas. Furthermore, data remaining unpublished and sites excavated by other commercial companies are inevitably harder to understand and synthesise into a narrative. This is all, of course, the 'nature of the beast' of commercial archaeology at the end of the 20th and beginning of the 21st century.

However, the number and extent of excavations do allow us to propose preliminary models of overall land-use, including settlement and agriculture over a very long period. This is largely possible, through identifying features and finds for all the main periods (up until the late Roman). Equally important is the identification of large amounts of 'negative' space (that is, absent of finds and features), allowing us to more confidently verify concentrations of activity and important nodes in the landscape.

6.2 RESOURCES AND OUTSIDE INFLUENCES
Hawkinge lies in a ‘wind gap’: a valley no-longer bearing its former river. This creates a natural corridor south-west to north-east, connecting the southern coast to the Weald and to the north-east of Kent. Connections to the coast and the wider world were clearly apparent in the continental influences visible in the Iron Age pottery assemblage. These stylistic similarities suggest fairly frequent cross-channel contact, and this pottery assemblage represents one of the most important aspects of the findings. The evidence from Hawkinge was included in a re-appraisal of the later Iron Age evidence from Sussex and Kent, which defined the area as culturally distinct (termed the 'British Eastern Channel Area') and characterised by an active readiness to adopt concepts from both the Continent and southern Britain (Hamilton 2007, 81-106).

6.3 LATER PREHISTORIC AND ROMAN SETTLEMENT IN EASTERN KENT
Settlement evidence from east Kent during this period is not abundant. However, it is clear from the few published examples, that coastal locations were favoured, and in particular, the Isle of Thanet having a notable density of settlement. Most of these sites comprise unenclosed clusters of roundhouses, typical of much of the settlement of southern England during this period (Champion 2007, 106-107). Inland sites are far less common, and Champion has remarked on the absence of Iron Age settlement from areas with Bronze Age field systems (ibid, 102-103).

Compared to Sussex, Surrey and the Isle of Thanet, the evidence of Middle Iron Age occupation in south-east Kent is sparse, and it has been suggested that the lacunae reflected a regional socio-economic collapse at the end of the Late Bronze Age/Early Iron Age (Bradley 2007, 226-252; Yates 2007; Stevenson 2013, 4). While the reduction in archaeological activity during this period at Hawkinge certainly suggests a contraction in occupation, there is continuation of settlement into the Middle Iron Age and beyond.

In the immediate locale of Hawkinge there are no other known settlements, with the nearest at Saltwood, ~10kms down the coast (Fig 5.4). Other Middle Iron Age sites, such as Mill Hill (Parfitt 1995), Bigbury (Thompson 1983) and Brisley Farm (Stevenson 2010) are more than 20 kms away, indicating a dispersed, low-density settlement of the eastern North Downs and environs during this period.

In a wider landscape context, the Late Iron Age and Roman occupation at Hawkinge became part of the agricultural hinterland economically linked to the villas and small towns (Fig 5.4). Of these, the closest were two villas at Folkestone, ~8kms to the south-east and the large roadside settlement of Westhawk Farm, ~18kms to the west (Black 1987; Booth et al 2008). Although the intensity of occupation at Hawkinge fluctuated, there was arguably an unbroken continuum from the Iron Age, until the 2nd century, when the vitality of the settlement declined. The overall amount of Roman settlement in Kent and the south-east, declined rapidly from the 2nd century onwards, with very high abandonment towards the end of 4th century, during a period of increasing political and social instability with the waning of the Roman administration (Smith et al 2016, 83). Booth has suggested that
Kent experienced a major change in settlement patterns from the late 2nd to mid 3rd centuries, coinciding with a significant overall decrease in the rural population (Booth 2011, 338).

After the Roman occupation, the best candidate for a relocated settlement focus is the site of the Norman settlement centred on parish church of St Michael on the higher ground c 800m to the east, which may well have started to attract occupation from the Early Anglo-Saxon period (Newman 2013, 394-395). This church remained the heart of the settlement that existed throughout the medieval period, subsequently developing into the modern village of Hawkinge.

Fig 6.1 Location map showing Hawkinge in relation to prehistoric and Roman Kent
BIBLIOGRAPHY

Gibson, A. 1986 Neolithic and Early Bronze Age pottery
Gibson, A. 1992 The Beaker from Cortonking Hill, Ebbsfleet, Ramsgate, Archaeol Canziana, 110, 283–86

Hamilton, S. 1977 The Iron Age pottery, in Bell, M, Excavations at Bishopstone SAC, 115, 83–117

Hamilton, S. 1987 Late Bronze Age pottery, in D, Rudling, The excavation of a Late Bronze Age site at Yapton, West Sussex, 1984, SAC, 125, 53–63

Hamilton, S. 1997a East Sussex later Bronze Age pottery traditions, in D, Rudling, The excavation of a Late Bronze Age site at Yapton, West Sussex, 1984, SAC, 135, 31–42

Hamilton, S. 1997b Late Bronze Age pottery traditions in West Sussex: the Knapp Farm assemblage and its regional context, in M, Gardiner, S & Hamilton, Knapp Farm, Bosham. A significant find of Bronze Age Pottery, SAC, 135, 75–85

Hamilton, S. 2001 A review of the early 1st millennium BC pottery from Chanctonbury Ring; a contribution to the study of Sussex hillforts of the Late Bronze Age/Early Iron Age transition, in D, Rudling, Chanctonbury Ring revisited, SAC, 139, 89–100

Hamilton, S. 2004 Early first millennium pottery of the West Sussex coastal plain, in C, Place, Excavations at Ford Airfield, Yapton, West Sussex, 18–44

Hamilton, S., & Seager Thomas, M. 2005 Neolithic and Bronze Age pottery, in Bishop, B and Bagwell, M, Idae: occupation of a north Kent village from the Mesolithic to the medieval period, PCA monogr, 3, 20–38

Hamilton, S. 2007 Cultural choices in the ‘British Eastern Channel Area’ in the Late Pre-Roman Iron Age, in C, Haselgrove & T, Moore, The Later Iron Age in Britain and Beyond

Hartridge, R. 1978 Excavations at the prehistoric and Romano-British site on Slonk Hill, Shoreham, Sussex, SAC, 116, 89–141

Haselgrove, C. 1987 Iron Age coinage in south east England: the archaeological context, BAR Brit Ser, 174

Haselgrove, C. C. 1995 Potin coinage in Iron Age Britain Archaeology and Chronology in Gaulle–Archéologie de la France antique, 52, 117–27

Haselgrove, C. C. 2005 A new approach to analysing the circulation of Iron Age coinage, Numism Chron 65, 129–74

Hattatt, R. 1987 Brochles of Antiquity

Hawkes, C. 1940 The Marnian pottery and La Tène I brooch from Worth, Kent, Antiq J, 20, 117–121

Heeringen, van, R. 1989a The Iron Age in the western Netherlands III, BROB, 44, 7–68

Heeringen, van, R. 1989b The Iron Age in the western Netherlands IV, BROB, 44, 69–156

Heeringen, van, R. 1989c The Iron Age in the western Netherlands V, BROB, 44, 157–268

Hill, J. D. 1995 Ritual and Rubbish in the Iron Age of Wessex; A study on the formation of a specific archaeological record, BAR Brit Ser, 242

Hingley, R. 1990 Iron Age currency bars: the archaeological and social context, Arch J, 147, 91–117

Hingley, R. 2006 The deposition of iron objects in Britain during the later prehistoric and Roman periods: contextual analysis and the significance of iron, Britannia, 37, 213–57

Hinton, P. 2003 The Plant Remains, in S, Stevens Archaeological Investigations at Hawkinge Aerodrome, Hawkinge, Kent, ASE unpup rep

Hobbs, R. 1996 British Iron Age Coins in the British Museum

Hobbs, R. 2015 Late Iron Age Coins, in M, Atkinson & S J, Preston, Heybridge, A Late Iron Age and Roman Settlement, Excavations at Elms Farm 1993-5, Internet Archaeology, 40 http://dx.doi.org/10.11141/ia.40.1.hobbs

Holman, D. 2005a Iron Age Coinage and Settlement in East Kent, Britannia, 36, 1–54

Holman, D. 2005b The Folkstone Potin Hoard, Archaeol Canziana, 75, 384–86

Hooke, D., 2010 Trees in Anglo-Saxon England

Hurtrelle, J, Monchy, E, Roger, S, Rossignol, P, & Villes, A. 1990 Les débuts du second âge du fer dans le Nord de la France, Les Dossiers de Gauheria, 1

Inizan, M-L., Reduron-Ballinger, M, Roche, H, & Tixier, J. 1999 Technology and Terminology of Knapped Stone, Tome 5, Cercle de Recherches et d’Etudes Préhistoriques (CREP), Nanterre

INS, University of Nottingham website, http://keep.nottinhgam.ac.uk/map/place/Kent/Hawkinge

Jacomet, S. 2006 Identification of Cereal Remains from Archaeological Sites

Kenny, J. 1985 Excavations at Rummagles Barn, Biddenton, SAC, 123, 61–72

Lambrich, G, Robinson, M, & Allen, T. 2009 The Thames through Time, The Archaeology of the Gravel Terraces of the Upper and Middle Thames, The Thames Valley in Late Prehistory: 1500 BC - AD 50, Oxford Archaeology, Thames Valley Landscapes Mono, 29

investigations at 75 The Street, Hawkinge, Kent: post-excavation assessment and project design for publication, ASE unpub rep

Thompson, C, 2007 The pottery, Riccoboni, P, Archaeological investigations along the Hawkinge Relief Road, Hawkinge, Kent: post-excavation assessment and project design for publication, ASE unpub rep

Thorne, A, 2006 Archaeological Investigations at 75 The Street, Hawkinge, Kent: Post-Excavation Assessment and Project Design for Publication, ASE unpub rep

Timby, J, 1996 The pottery, in Bell, C, An archaeological on land adjacent to Snowy Fielder Way, Isleworth, London Borough of Hounslow, Middlesex, Trans LAMAS, 47, 35–60

Tylecote, R F, 1986 The Prehistory of Metallurgy in the British Isles

Ubelaker, D, 1989 Human Skeletal Remains

Van Arsdell, R, 1989 Celtic Coinage of Britain

White, G, 1934 Prehistoric remains from Selsey Bill, Antiq J, 14, 40–52

Woltering, P, 2001 The occupation history of Texel, IV, BROB, 44, 9–397

Worsfold, F, 1948 An Early Iron Age site at Borden, Archaeol Cantiana, 66, 148–55

Zohary, D, & Hopf, M, 1994 Domestication of Plants in the Old World