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Abstract

We prove existence and uniqueness of strong solutions for a class of semilinear stochas-
tic evolution equations driven by general Hilbert space-valued semimartingales, with drift
equal to the sum of a linear maximal monotone operator in variational form and of the
superposition operator associated to a random time-dependent monotone function defined
on the whole real line. Such a function is only assumed to satisfy a very mild symmetry-like
condition, but its rate of growth towards infinity can be arbitrary. Moreover, the noise is of
multiplicative type and can be path-dependent. The solution is obtained via a priori esti-
mates on solutions to regularized equations, interpreted both as stochastic equations as well
as deterministic equations with random coefficients, and ensuing compactness properties.
A key role is played by an infinite-dimensional Doob-type inequality due to Métivier and
Pellaumail.
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1 Introduction

Let us consider semilinear stochastic evolution equations of the type

dX(t) +AX(t) dt+ β(t,X(t)) dt ∋ B(t,X) dZ(t), X(0) = X0, (1.1)

in L2(D), where D is a smooth bounded domain of Rn. Here A is linear coercive maximal
monotone operator on L2(D), β is a random time-dependent maximal monotone graph every-
where defined on the real line, Z is a Hilbert space-valued semimartingale, and the coefficient B
satisfies a suitable Lipschitz continuity assumption (precise hypotheses on the data are given in
§2 below). Our main result is the existence and uniqueness of a strong solution to (1.1) (in the
sense of Definition 3.1 below), and its continuous dependence on the initial datum in a suitable
topology. Stochastic partial differential equations driven by semimartingales arise naturally in
several fields, such as physics, biology, and finance, where a noise with possibly discontinuous
trajectories can be preferable, for modeling purposes, to the classical Wiener noise (see, e.g.,
[4, 17]). For further possible applications where equations of the form (1.1) are used we refer to
[5, 16] and references therein.

Maximal monotone graphs such as β arise naturally in the study of equations with non-
linearities associated to monotone discontinuous functions. In fact, it is well known that every
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maximal monotone graph γ in R × R arises (in a unique way) from an increasing function
γ0 : R → R ∪ {+∞}, setting γ(r) := [γ0(r−), γ0(r+)] for every r ∈ R, i.e. by the procedure of
“filling the jumps”. Therefore our treatment provides a notion of (strong) solution to stochastic
evolution equations of the type,

dX(t) +AX(t) dt+ β0(t,X(t)) dt = B(t,X) dZ(t), X(0) = X0,

where β0(ω, t, ·) : R → R is an increasing function, with possibly countably many discontinuities,
and with essentially no assumption on its rate of growth at infinity. Stochastic evolution equations
of this type are particularly interesting as they cannot be handled using existing techniques, as
well as for their potential applications (equations with exponentially growing drift appear, for
instance, in mathematical models of Euclidean quantum field theory – see, e.g., [1]). In fact, to the
best of our knowledge, all results currently available in the literature on stochastic equations with
semimartingale noise are obtained under assumptions on the coefficients that are too restrictive to
treat equation (1.1). In particular, after the pioneering results by Métivier [23] for equations with
bounded A and locally Lipschitz continuous drift and diffusion coefficients, the first contribution
to treat “genuine” stochastic evolution equations (i.e., with A unbounded) is probably [8], where
the well-posedness result in the variational setting for equations with Wiener noise of [13, 25] is
extended to the case where the driving noise is a quasi left-continuous locally square-integrable
martingale, although under a rather restrictive growth assumption on the (nonlinear) drift term.
In particular, semilinear equations such as (1.1) can be treated with this approach only if β
is Lipschitz continuous. More recently, nonlinear equations in the variational setting driven by
compensated Poisson random measures have been considered, also under relaxed monotonicity
conditions, in [5]. Semilinear equations with drift A+ β, as in (1.1), can be treated within this
framework under polynomial growth assumptions on β that depend on the dimension of the
domain D ⊂ Rn: the larger n is, the slower (polynomial) growth is allowed for β (cf. [15] for
a discussion of this issue). Our results do not suffer of this drawback, as the growth rate of β
is not limited in any way by the dimension n. Multivalued stochastic equations with possibly
càdlàg additive noise have been studied also in [6], under a linear growth condition on the drift,
so that semilinear equations such as (1.1) can be treated only if β has at most linear growth.
Using semigroup methods, well-posedness for (1.1) in the mild sense is proved in [18, 19], under
the assumptions that β grows polynomially and the noise is the sum of a Wiener process and
a compensated Poisson random measure (one should note, however, that A needs not admit a
variational formulation). The well-posedness result for (1.1) obtained here should be interesting
also in the finite-dimensional setting, i.e. for stochastic (ordinary) differential equations driven
by finite-dimensional semimartingales. In fact, apart of the classical well-posedness results for
equations with locally Lipschitz coefficients (see, e.g., [24, 26]), it seems that the only work dealing
with equations with monotone coefficients is [12], where, however, linear growth is required.

The strong solution to (1.1) is constructed as limit of solutions to approximating equations.
In particular, replacing both A and β with their Yosida approximations, one obtains a family
of approximating equations with bounded coefficients that admit classical solutions in L2(D),
thanks to results by Métivier and Pellaumail (see [23, 24]). This double regularization is nec-
essary because, due to the general semimartingale noise, one cannot simply regularize β and
rely on the classical variational theory in [8, 13, 25]. Since we allow β to be random, care is
needed to make sure that its Yosida approximation is at least a progressively measurable function
(see §2 below for detail on this technical issue). Furthermore, we first consider such regularized
equations with additive noise, i.e. with B possibly random, but not dependent on the unknown,
and with the semimartingale Z satisfying extra integrability conditions that are removed in a
second step. Interpreting such approximating equations either as “true” stochastic equations or
as deterministic evolution equations with random coefficients (cf. [20, 22]), we obtain a priori
estimates for their solutions in various topologies. This idea has already been used in [22] to deal
with the well-posedness of semilinear equations with singular drift and Wiener noise, and later
in [20] to study regularity properties of their solutions. The much more general assumptions on
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the noise in the present situation give rise to several difficulties that require new ideas with re-
spect to [20, 22]. A fundamental tool is an infinite-dimensional maximal inequality for stochastic
integrals with respect to semimartingales due to Métivier and Pellaumail (see [23, 24]). These a
priori estimates imply enough compactness to pass to the limit in the regularized equations, thus
solving a version of (1.1) with additive noise. The assumption that β is everywhere defined plays
here a crucial role, as it allows to use weak compactness techniques in L1 spaces. In order to treat
the general case with multiplicative noise, we proceed as follows: using localization techniques,
we first show the existence of strong solutions on closed stochastic intervals. This technique also
allows to remove the extra integrability assumption on Z. Uniqueness of solutions on closed
stochastic intervals implies that such local solutions form a directed system, so that it is natural
to construct a maximal solution. Finally, the linear growth of B is shown to imply that the
maximal solution can be extended to any compact time interval. One can also show that the
solution depends continuously on the initial datum in the sense of the topology of uniform (in
time) convergence in probability.

Several auxiliary results are needed to carry out the program outlined above, some of which
are interesting in their own right. For instance, we prove a general version of Itô’s formula for
the square of the L2(D)-norm in a variational setting with possibly singular terms. This can be
seen as an extension of the classical formulas by Pardoux, Krylov, and Rozovskĭı [13, 25], as well
as by Krylov and Győngy [9], at least in the case where the variational triple is Hilbertian. We
shall investigate in more detail Itô-type formulas in (generalized) variational settings in a work
in preparation. We also give a characterization of weakly càdlàg processes in terms of essential
boundedness (in time) and a weak càdlàg property in a larger space, extending the classical result
on weak continuity for vector-valued functions by Strauss (see [29]).

The remaining text is organized as follows: in §2 we fix the notation, collect all standing
assumptions, and discuss some notable consequences thereof that are going to be used extensively.
The definition of strong solution, both in the global and the local sense, and the statement of the
main well-posedness result are given in §3. In §4 we recall some elements of the above-mentioned
approach by Métivier and Pellaumail to stochastic integration with respect to semimartingales in
Hilbert space, centered around a fundamental stopped Doob-type inequality. We also prove an
extension to the càdlàg case of a classical criterion for weak continuity of vector-valued function
due to Strauss, as well as a slight generalization of a classical criterion for uniform integrability
by de la Vallé-Poussin. In §5 we prove an Itô-type formula for the square of the L2(D) norm
of a process that can be decomposed into the sum of a stochastic integral with respect to a
(Hilbert-space-valued) semimartingale and of a Lebesgue integral of a singular drift term. This
result is an essential tool to obtain, in §6, an auxiliary well-posedness result for a version of (1.1)
with additive noise. Finally, the proof of the main result is presented in §7.

Acknowledgment. Large part of the work for this paper was done during several stays of the
first-named author at the Interdisziplinäres Zentrum für Komplexe Systeme (IZKS), Universität
Bonn, Germany, as guest of Prof. S. Albeverio. His kind hospitality and the excellent working
conditions at IZKS are gratefully acknowledged. The second-named author was funded by Vienna
Science and Technology Fund (WWTF) through Project MA14-009.

2 Assumptions and first consequences

2.1 Notation

Every Banach space is intended as a real Banach space. For any Banach spaces E and F ,
we shall denote the Banach space of continuous linear operators from E to F by L (E,F ),
if endowed with the operator norm, and by Ls(E,F ), if endowed with the strong operator
topology (i.e. with the topology of simple convergence). If E = F , we shall just write L (E)
in place of L (E,E). The usual Lebesgue-Bochner spaces of E-valued functions on a measure
space (Y,A ,m) will be denoted by Lp(Y ;E), p ∈ [0,∞], where L0(Y ;E) is endowed with the
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(metrizable) topology of convergence in measure. The set of continuous functions and of weakly
continuous functions on [0, T ] with values in E will be denoted by C([0, T ];E) and Cw([0, T ];E),
respectively. Analogously, the symbolsD([0, T ];E) andDw([0, T ];E) stand for the corresponding
spaces of càdlàg functions. A function f : Y → L (E,F ) will be called strongly measurable if it
is the limit in the norm topology of L (E,F ) of a sequence of elementary functions. For every
f ∈ D([0, T ];E) we shall use the symbol f∗ for supt∈[0,T ]∥f(t)∥E .

We shall denote by D a smooth bounded domain of Rn, and by H the Hilbert space L2(D)
with its usual scalar product ⟨·, ·⟩ and norm ∥·∥.

All random elements will be defined on a fixed probability space (Ω,F ,P) endowed with
a filtration (Ft)t∈R+

satisfying the “usual assumptions” of right-continuity and completeness.
Identities and inequalities between random variables will always be meant to hold P-almost
surely, unless otherwise stated. Two (measurable) processes will be declared equal if they are in-
distinguishable. By Z we shall denote a fixed semimartingale taking values in a (fixed) separable
Hilbert space K. The standard notation and terminology of stochastic calculus for semimartin-
gales will be used (see, e.g., [23]).

For any a, b ∈ R we shall write a ≲ b to indicate that there exists a constant c > 0 such that
a ⩽ cb.

2.2 Assumptions

The following hypotheses will be in force throughout the paper.

Assumption (A). We assume that A ∈ L (V, V ′), where V is a separable Hilbert space densely,
continuously and compactly embedded in H, and that there exists a constant c > 0 such that

⟨Au, u⟩ ⩾ c∥u∥2V ∀u ∈ V.

We denote by A2 the part of A in H, i.e. the unbounded linear operator (A2,D(A2)) on H
defined as A2v := Av for v ∈ D(A2) := {v ∈ V : Av ∈ H}. Furthermore, we assume that there
exists a sequence (Tn)n∈N of linear injective operators on L1(D) such that, for every n ∈ N,

(a) Tn : L1(D) → L1(D) is sub-Markovian, i.e., if f ∈ L1(D) with 0 ⩽ f ⩽ 1 a.e. in D, then
0 ⩽ Tnf ⩽ 1 a.e. in D;

(b) Tn is ultracontractive, i.e Tn ∈ L (L1(D), L∞(D)).

Moreover, denoting the restriction of Tn to H by the same symbol, we assume that

(c) Tn ∈ L (H,V ) for every n ∈ N and it can be extended to a continuous linear operator on
V ′, still denoted by the same symbol;

(d) Tn converges to the identity in Ls(E), with E ∈ {L1(D), V,H, V ′}, as n→ ∞;

(e) Tn(H) = Tm(H) for every n,m ∈ N.

Throughout the work, we shall denote by V0 a Hilbert space continuously embedded in V ∩L∞(D)
and dense in V . Thanks to the assumptions on (Tn) such a space always exists, for instance
setting V0 := Tn̄(H), with n̄ an arbitrary (but fixed) natural number. Indeed, V0 is independent
of n̄ thanks to (e), so that for every v ∈ V the sequence (Tnv)n ⊂ V0 converges to v in V thanks
to (d). An arbitrary but fixed terminal time will be denoted by T .

Assumption (J). Let j : Ω× [0, T ]×R → R+ be a function satisfying the following conditions:

(a) j(·, ·, x) is progressively measurable for all x ∈ R;

(b) j(ω, t, ·) is convex for every (ω, t) ∈ Ω× [0, T ], with j(·, ·, 0) = 0;
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(c) one has

lim sup
|x|→∞

j(ω, t, x)

j(ω, t,−x)
<∞

uniformly with respect to (ω, t) ∈ Ω× [0, T ].

For every (ω, t) ∈ Ω × [0, T ], the maximal monotone graph β(ω, t, ·) ⊂ R2 is defined as the
subdifferential of j(ω, t, ·), i.e. y ∈ β(ω, t, x) if and only if

j(ω, t, x) + y(z − x) ⩽ j(ω, t, z) ∀z ∈ R.

Seeing the maximal monotone graph β(ω, t, ·) as a multivalued map, condition (b) implies that

(d) β(ω, t, ·) is everywhere defined for every (ω, t) ∈ Ω× [0, T ].

We further assume that

(e) β(ω, t, ·) is bounded on bounded sets uniformly with respect to (ω, t).

The forthcoming assumptions on the coefficient B are formulated in terms of control processes
for semimartingales, whose definition is given in §4.1 below.

Assumption (B). Let B : Ω×[0, T ]×D([0, T ];H) → L (K,H) be a map satisfying the following
conditions:

(a) the process B(·, ·, u) is a strongly predictable L (K,H)-valued process for every adapted
càdlàg H-valued process u;

(b) for every stopping time τ ⩽ T , and for every adapted càdlàg H-valued processes u, v,

u1[[0,τ [[ = v1[[0,τ [[ implies B(·, u)1[[0,τ ]] = B(·, v)1[[0,τ ]];

(c) for every control process C of Z there exists an increasing, nonnegative, right-continuous,
adapted process L such that, for every t ∈ ]0, T ] and every adapted càdlàg H-valued
processes u, v, one has∫ t

0

∥∥B(s, u)−B(s, v)
∥∥2

L (K,H)
dC(s) ⩽

∫ t

0

sup
r<s

∥∥u(r)− v(r)
∥∥2 dL(s),∫ t

0

∥∥B(s, u)
∥∥2

L (K,H)
dC(s) ⩽

∫ t

0

(
1 + sup

r<s

∥∥u(r)∥∥2) dL(s).
Assumptions (a) and (b) are immediately satisfied if B is of the form B(ω, t, u) = B̃(ω, t, u(t−))
for all u ∈ D([0, T ];H) and (ω, t) ∈ Ω × [0, T ], with the convention u(0−) := u(0), where

B̃ : Ω× [0, T ]×H → L (K,H) is strongly measurable with respect to the product σ-algebra of
the predictable σ-algebra and of the Borel σ-algebra of H. A more refined criterion can be found
in [24, §§6.2–6.4].

Finally, the initial datum X0 is an H-valued F0-measurable random variable.

2.3 On assumptions (A) and (J)

Assumptions (A) and (J) have important consequences that will be extensively used in the sequel.
The most important ones are collected in this subsection.

The hypotheses on V and A ensure that (V,H, V ′) is a Hilbertian variational triple and
that the operator A is maximal monotone from V to V ′. Moreover, as it follows by coercivity,
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linearity, and monotonicity, A is bijective form V to V ′. However, in applications it is often
necessary to consider only the weaker coercivity on A

⟨Au, u⟩ ⩾ c∥u∥2V − δ∥u∥2 ∀u ∈ V,

with δ > 0 a constant. This case can be included in our analysis by considering the operator
A+ δI instead of A.

The hypotheses on A are met by large classes of differential operators (second order symmetric
and non-symmetric divergence-form operators, as well as the fractional Laplacian, for example)
– see, e.g., [22] for a detailed list of concrete examples.

The standard example of a family of operators (Tn) that can be shown to satisfy conditions
(a)–(d) above for large classes of operators A is Tn := (I + (1/n)A)−m, with m ∈ N sufficiently
large. We refer again to, e.g., [22] for a discussion of this issue. Moreover, note that for Tn
to belong to L (V ′) it suffices that the commutator Rn := TnA2 − ATn : D(A2) → V ′ can be
continuously extended to a linear bounded operator from V → V ′. In fact, this allows to extend
Tn to a linear bounded operator on V ′ as follows: for any y ∈ V ′, by surjectivity of A one has
y = Au, with u ∈ V . Setting Tny := Rnu+ATnu ∈ V ′, in order to check that this is well defined
it is sufficient to prove that if u ∈ V is such that Au = 0, then Rnu+ ATnu = 0. Let u ∈ V be
such that Au = 0. Then Au ∈ H, hence u ∈ D(A2), and 0 = Au = A2u. Since Tn has already
been defined on H, we have 0 = TnA2u = Rnu+ATnu. Finally, we have

∥Tny∥V ′ ⩽ ∥Rnu∥V ′ + ∥ATnu∥V ′ ⩽ ∥Rn∥L (V,V ′)∥u∥V + ∥A∥L (V,V ′)∥Tn∥L (V )∥u∥V
⩽

(
∥Rn∥L (V,V ′)∥A−1∥L (V ′,V ) + ∥A∥L (V,V ′)∥Tn∥L (V )

)
∥v∥V ′ ,

so that Tn : V ′ → V ′ is also bounded.
The Banach-Steinhaus theorem implies that the sequence of linear operators (Tn) is bounded

in L (H), L (V ), and L (V ′), i.e.

sup
n∈N

∥∥Tn∥∥L (H)
+ sup

n∈N

∥∥Tn∥∥L (V )
+ sup

n∈N

∥∥Tn∥∥L (V ′)
<∞.

The continuity property of the adjoint family (T ∗
n) established next plays an important role in

the proof of the Itô-type formula for the square of the H-norm in §5.

Lemma 2.1. The sequence of adjoint operators (T ∗
n)n∈N ⊂ L (H) is contained in L (V ) and

converges to the identity in Ls(H).

Proof. By the continuity of (Tn) in Ls(H) one has, for every x, y ∈ H,

⟨T ∗
nx, y⟩ = ⟨x, Tny⟩ → ⟨x, y⟩,

hence T ∗
nx converges weakly to x in H for every x ∈ H. Furthermore, for any x ∈ V and y ∈ H,

one has
⟨T ∗

nx, y⟩ = ⟨x, Tny⟩ ⩽
∥∥x∥∥

V

∥∥Tny∥∥V ′ ⩽ N
∥∥x∥∥

V

∥∥y∥∥
V ′ ,

where N := supn∈N∥Tn∥L (V ′). Since H is densely and continuously embedded in V ′, this readily
implies that T ∗

nx ∈ V ′′ ≃ V and∥∥T ∗
nx

∥∥
V
⩽ N

∥∥x∥∥
V

∀x ∈ V, ∀n ∈ N.

Since V is reflexive, for any sequence (n′) ⊂ N, there exist z ∈ V and a subsequence (n′′) ⊂ (n′),
possibly depending on x, and such that T ∗

n′′x converges weakly in V to z as n′′ → ∞. Since V
is compactly embedded in H, T ∗

n′′x converges strongly to z in H. Recalling that T ∗
nx converges

weakly to x as n → ∞, hence that so does T ∗
n′′x, we infer that z = x, i.e., T ∗

n′′x converges
strongly to x in H. By a standard result of classical analysis, this yields the convergence of T ∗

nx
to x in H, that is, along the original sequence, which is independent of x ∈ V . The result can
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finally be extended to x ∈ H by a density argument: let (xk) ⊂ V be a sequence converging to
x in H. The triangle inequality yields∥∥T ∗

nx− x
∥∥ ⩽

∥∥T ∗
nx− T ∗

nxk
∥∥+

∥∥T ∗
nxk − xk

∥∥+
∥∥xk − x

∥∥
⩽

(
1 + supn

∥∥Tn∥∥L (H)

)∥∥xk − x
∥∥+

∥∥T ∗
nxk − xk

∥∥,
from which one easily concludes.

Remark 2.2. In general, the adjunction map T 7→ T ∗ for linear bounded operators on a Hilbert
space is continuous with respect to the uniform and the weak operator topology, but not with
respect to the strong operator topology. The previous lemma thus identifies a (very!) special
subset of linear bounded operators for which the adjunction map is continuous also with respect
to the strong operator topology.

Let us now discuss some consequences of assumption (J). For every (ω, t) ∈ Ω × [0, T ], let
j∗(ω, t, ·) denote the convex conjugate of j(ω, t, ·), defined as

j∗(ω, t, y) = sup
x∈R

(
xy − j(ω, t, x)

)
.

The measurability and continuity hypotheses on j imply that j and j∗ are normal integrands,
or, equivalently, that their epigraphs are progressively Effros-measurable (see, e.g., [11, 27]).
More precisely, let us recall that, given a function ϕ : Ω × [0, T ] × R → R, its epigraph at
(ω, t) ∈ Ω× [0, T ] is given by

epiϕ(ω, t) :=
{
(x, y) ∈ R2 : ϕ(ω, t, x) ⩽ y

}
.

The progressive Effros-measurability of the epigraph of ϕ is then defined as the progressive
measurability of the set {

(ω, t) ∈ Ω× [0, T ] : epiϕ(ω, t) ∩ E ̸= ∅
}

for every open E ⊂ R2.
Moreover, if j is a normal integrand, then β is also progressively Effros-measurable (see

op. cit), which in turn implies that the resolvent (I + λβ)−1 and the Yosida approximation βλ
of β, both real-valued functions on Ω× [0, T ]×R, are measurable with respect to the product of
the progressive σ-algebra and the Borel σ-algebra (see, e,g., [16, Proposition 3.12]).

Assumption (c) can be interpreted by saying that, for any fixed (ω, t), the rates of growth of
j at plus and minus infinity are comparable. For instance, this is satisfied if j(ω, t, ·) is even for
every (ω, t).

Assumption (d) implies that j∗(ω, t, ·) is superlinear at infinity, uniformly with respect to
(ω, t), i.e. that

lim
|y|→+∞

j∗(ω, t, y)

|y|
= +∞ uniformly in (ω, t) ∈ Ω× [0, T ] .

Lastly, taking z = 0 in the definition of β as subdifferential of j, assumption (e) implies that,
for all (ω, t) ∈ Ω × [0, T ], j(ω, t, x) ⩽ yx for all y ∈ β(ω, t, x), that is, j(ω, t, ·) is bounded on
bounded sets uniformly over Ω× [0, T ].

The above measurability conditions are obviously satisfied if β is non-random and time-
independent, i.e. if β is an everywhere defined maximal monotone graph in R×R. Moreover, in
this case the convex function j : R → R+ such that ∂j = β and j(0) = 0 is uniquely determined,
and D(β) = R implies that j∗ is superlinear at infinity.

The boundedness assumption (e) is the natural generalization of the analogous ones commonly
used for time-dependent maximal monotone graphs (see, e.g., [3, p. 4]).

Note that all the conditions assumed to hold for every (ω, t) ∈ Ω × [0, T ] could have been
assumed for almost every (ω, t) ∈ Ω× [0, T ] instead. Indeed, in such a case, if E ⊂ Ω× [0, T ] has
measure 0 and all hypotheses hold outside E, then one can consider the restriction of j to the
complement of E instead of j.
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3 Main result

The concept of solution we are going to work with is as follows. We recall that T ∈ R+ is an
arbitrary but fixed time horizon.

Definition 3.1. Let τ ⩽ T be a stopping time. A strong solution on [[0, τ ]] to (1.1) is a pair
(X, ξ), where X is an adapted càdlàg H-valued process and ξ is an adapted L1(D)-valued process,
such that

(a) 1[[0,τ ]]X ∈ L1(0, T ;V ) and 1[[0,τ ]]ξ ∈ L1([0, T ]×D) P-a.s., with ξ ∈ β(·, X) a.e. in [[0, τ [[×D;

(b) 1[[0,τ ]]B(·, X) is integrable with respect to Z;

(c) one has, as an identity in V ′ ∩ L1(D),

Xτ +

∫ ·∧τ

0

AX(s) ds+

∫ ·∧τ

0

ξ(s) ds = X0 +
(
1[[0,τ ]]B(·, X)

)
· Z.

A strong solution on [0, T ] will simply be called a strong solution.

The main results of the paper are collected in the following theorem. These ensure that
(1.1) admits a strong solution, which is unique within a natural class of processes, and depends
continuously on the initial datum.

Theorem 3.2. Equation (1.1) admits a strong solution (X, ξ), with X optional, and it is the
only one such that

sup
t⩽T

∥X(t)∥2 +
∫ T

0

∥X(s)∥2V ds+
∫ T

0

∫
D

ξ(s)X(s) dx ds <∞ P-a.s.

Moreover, the solution map X0 7→ X is continuous from L0(Ω;H) to L0(Ω;D([0, T ];H) ∩
L2(0, T ;V )), where D([0, T ];H) is endowed with the topology generated by the supremum norm.

Note that since ξ ∈ β(·, X) we have |ξX| = ξX = j(·, X) + j∗(·, ξ) ⩾ 0, so that Theorem 3.2
ensures that

ξX = j(·, X) + j∗(·, ξ) ∈ L1((0, T )×D) P-a.s.

4 Preliminaries and auxiliary results

We recall those results from the approach to stochastic integration developed by Métivier and
Pellaumail that we need, referring to [23, 24] for details. We also prove two additional lemmata
pertaining to this theory that are indispensable for the proofs in the following sections.

Moreover, we provide a sufficient condition for a process to be weakly càdlàg and a generalized
version of the uniform integrability criterion by de la Vallée Poussin.

4.1 Stochastic integration with respect to Hilbert-space-valued semi-
martingales

Let G be a separable Hilbert space. An L (K,G)-valued process Y is elementary if there exist
n ∈ N, sequences (sk), (tk) ⊆ R+, (Fk) ⊂ F , and (uk) ⊂ L (K,G), k = 1, . . . , n, with sk ⩽ tk
and Fk ∈ Fsk , such that

Y =

n∑
k=1

1]sk,tk]×Fk
uk.

Then the stochastic integral of Y with respect to Z is defined as(
Y · Z

)
t
:=

n∑
k=1

1Fk
uk

(
Ztk∧t − Zsk∧t

)
∀t ∈ R+.
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Definition 4.1. A positive increasing adapted process C is called a control process for Z if, for
every separable Hilbert space G, for every elementary L (K,G)-valued process Y , and for every
stopping time τ , one has

E sup
t<τ

∥∥(Y · Z)t
∥∥2
G
⩽ ECτ−

∫
]0,τ [

∥∥Y (s)
∥∥2

L (K,G)
dC(s).

It turns out that an adapted càdlàg K-valued process is a semimartingale if and only if it
admits a control process. In particular, the set of control processes for a semimartingale Z, that
we shall denote by C (Z), is not empty. One can also show (see [23, Theorems. 23.9–23.14]) that,
writing Z = M + V , with M locally square integrable local martingale and V a finite-variation
process, a control process is given by

C = 8
(
⟨M,M⟩+ [M̌, M̌ ]

)
+ 2

(
2 ∨ |V |

)
,

where ⟨M,M⟩ is the predictable quadratic variation of M , |V | is the variation of V , and [M̌, M̌ ]
is the quadratic variation of the pure-jump martingale part of M , in the sense of [23, Defini-
tion 19.3].

We need to introduce some notation: for any control process C and any strongly measurable
adapted process Y with values in L (K,G), let us define the process λC(Y ) as

λCt (Y ) := Ct

∫ t

0

∥∥Y (s)
∥∥2

L (K,G)
dC(s) ∀t ∈ R+.

For any stopping time τ , let us define the measure mZ
τ on the predictable σ-algebra as

mZ
τ : P 7−→ ECτ−

(
1P · C

)
τ−,

and note that mZ
τ is finite if E|Cτ−|2 < ∞. The space of strongly predictable processes Y with

values in L (K,G) such that EλCτ−(Y ) is finite coincides with the Bochner L2 space with respect
to the measure mZ

τ and values in L (K,G), with norm∥∥Y ∥∥
L2(mZ

τ )
=

(
EλCτ−(Y )

)1/2
=

(
ECτ−

(
∥Y ∥2 · C

)
τ−

)1/2

,

where the norm of Y is taken in L (K,G) (see [23, § 24.1, Lemmata 1–3, and § 26.1]). Denoting
the Banach space of adapted càdlàg processes S with values in G such that ES∗2 < ∞ by S2,
with norm ∥S∥S2 := (ES∗2)1/2, the inequality in the definition of control process can thus be
written as ∥∥(Y · Z)τ−

∥∥
S2 ⩽

∥∥Y ∥∥
L2(mZ

τ )
.

The first step in the construction of the stochastic integral for more general integrands is as
follows: suppose that there exists a stopping time τ such that E|Cτ−|2 < ∞, so that mZ

τ is
a finite measure and the vector space of elementary processes is dense in L2(mZ

τ ). Then the
mapping Y 7→ (Y · Z)τ−, initially defined on elementary processes, admits a unique extension
to a linear continuous map from L2(mZ

τ ) to S2. As a second step, assume that C is a control
process for Z and Y is a process with values in L (K,G) such that the process λC(Y ) is finite,
and introduce the sequence of stopping times (τn) defined as

τn := inf
{
t ⩾ 0 : Ct ∧ λCt (Y ) ⩾ n

}
,

so that E|Cτn−|2 <∞ as well as EλCτn−(Y ) <∞, i.e. Y ∈ L2(mZ
τn). Then, by the previous step,

one has (Y ·Z)τn− ∈ S2 for all n ∈ N. Since τn increases to ∞ as n→ ∞ and it is not difficult to
show that (Y ·Z)τn− = (Y ·Z)τm− on [[0, τn∧τm[[ for all n, m ∈ N, one has a well-defined process
Y ·Z. One then shows that such a process does not depend on the sequence (τn). However, it may
still depend on the control process C. A final step shows that if Y admits two control processes
C1 and C2 such that the processes λC1(Y ) and λC2(Y ) are finite, then the stochastic integrals
constructed in the two possible ways coincide. The following definition is therefore meaningful.
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Definition 4.2. A strongly predictable L (K,G)-valued process Y is integrable with respect to Z
if there exists a control process C for Z such that the process λC(Y ) is finite.

We shall occasionally use the symbol SC(Z) to denote the set of strongly predictable L (K,G)-
valued processes Y such that the process λC(Y ) is finite.

Note that the construction of Y · Z implies that the inequality in the definition of control
processes can be extended as follows: for every C ∈ C (Z), Y ∈ SC(Z), and stopping time τ ,
one has ∥∥(Y · Z)τ−

∥∥
S2 ⩽

(
ECτ−

(
∥Y ∥2 · C

)
τ−

)1/2

.

We shall need a further maximal inequality for stochastic integrals with respect to a semi-
martingale, whose proof relies on the following deep inequality (see [14, Lemma 1.3]).

Lemma 4.3. Let X be a positive real-valued measurable process and A an increasing predictable
process such that, for every finite stopping time σ,

E1{σ>0}X(σ) ⩽ aE1{σ>0}A(σ)

for a constant a > 0. Then for every concave function F : R+ → R and every finite stopping
time τ one has

E1{τ>0}F (X(τ)) ⩽ (a+ 1)E1{τ>0}F (A(τ)).

Let C be a control process for Z and Y ∈ SC(Z), so that

E
(
Y · Z

)∗2
σ− ⩽ ECσ−

(
∥Y ∥2 · C

)
σ−.

Since the process C−
(
∥Y ∥2 ·C

)
− is left-continuous, hence predictable, the previous lemma yields,

taking F (r) =
√
r, r ⩾ 0,

E
(
Y · Z

)∗
τ− ⩽ 2E

(
Cτ−

(
∥Y ∥2 · C

)
τ−

)1/2
.

The following elementary lemma is essential in the last section.

Lemma 4.4. Let C be a control process for the semimartingale Z and τ a stopping time. Then
Cτ− is a control process for the semimartingale Zτ−.

Proof. For every elementary L (K,G)-valued process Y and every stopping time σ one has
Y · Zτ− = (Y · Z)τ−, hence also (

Y · Zτ−)∗
σ− =

(
Y · Z

)∗
(σ∧τ)−,

which in turns implies

E
(
Y · Zτ−)∗2

σ− = E
(
Y · Z

)∗2
(σ∧τ)− ⩽ EC(σ∧τ)−

(
∥Y ∥2 · C

)
(σ∧τ)−,

where C(σ∧τ)− = Cτ−
σ− and

(
∥Y ∥2 · C

)
(σ∧τ)− =

(
∥Y ∥2 · Cτ−)

σ−.

We also recall the following version of the dominated convergence theorem for stochastic
integrals with respect to semimartingales (cf. [23, Theorem 26.3]).

Proposition 4.5. Let (Xn)n∈N, X be predictable L (K,H)-valued processes such that Xn → X
in L (K,H) a.e. in Ω × [0, T ]. If there exists a control process C for Z and ϕ ∈ SC(Z) such
that ∥∥Xn

∥∥
L (K,H)

⩽
∥∥ϕ∥∥

L (K,H)
∀n ∈ N,

then Xn ∈ SC(Z) for every n ∈ N, X ∈ SC(Z), and(
Xn · Z −X · Z

)∗
t
−→ 0

in probability for every t ∈ [0, T ].
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Finally, we recall, for the reader’s convenience, the following stochastic version of Gronwall’s
lemma (cf. [23, Lemma 29.1]).

Lemma 4.6. Let A be an adapted, right-continuous, increasing, positive process defined on a
stochastic interval [[0, τ [[, with ℓ := supt<τ A(t) ∈ R+. Let also ϕ be a real, increasing, adapted
process such that, for every stopping time σ ⩽ τ ,

Eϕ(σ−) ⩽ a+ bE
∫ σ−

0

ϕ(s−) dA(s)

for certain constants a, b ∈ R. Then,

Eϕ(τ−) ⩽ a

[2bℓ]∑
k=0

(2bℓ)k.

4.2 Weak right-continuity of vector-valued functions

Throughout this section E and F denote two Banach spaces, with E reflexive, densely and
continuously embedded in F . A classical result by Strauss (see [29]) states that

L∞(0, T ;E) ∩ Cw([0, T ];F ) = Cw([0, T ];E).

We are going to show that the result continues to hold replacing the spaces of weakly continuous
functions by spaces of weakly càdlàg functions.

Lemma 4.7. One has

L∞(0, T ;E) ∩Dw([0, T ];F ) = Dw([0, T ];E).

Proof. The inclusion of the space on the right-hand side in the space on the left-hand side is
evident. Let u ∈ L∞(0, T ;E)∩Dw([0, T ];F ). Since {T} is negligible with respect to the Lebesgue
measure on [0, T ], it is not restrictive to suppose that u(T ) ∈ E (otherwise, we shall modify the
value of u in T , obtaining a version of u which is still in L∞(0, T ;E) ∩ Dw([0, T ];F )). We
first show that, in order for u to belong to Dw([0, T ];E), it suffices to prove that there exists a
constant M such that ∥u(t)∥E ⩽M for every t ∈ [0, T ].
Step 1. Assuming that u([0, T ]) is bounded in E, let t ∈ [0, T ) and (tn) ⊂ [t, T ) be a sequence
converging to t. Then u(tn) → u(t) weakly in F by assumption, and, since E is reflexive, there
exists a subsequence (tn′) and v ∈ E such that u(tn′) → v weakly in E. Therefore v = u(t) and
u(tn) → u(t) weakly in E, i.e. u is weakly càd with values in E. A completely analogous (in fact
easier) argument shows that u is also weakly làg with values in E.
Step 2. Let (ρn) be a sequence of mollifiers in R whose support is contained in [− 2

n , 0]. Denoting
the extension of u to zero outside [0, T ] by the same symbol, it follows from u ∈ L∞(R;E) that
un := ρn ∗ u ∈ C(R;E). In particular, Minkowski’s inequality yields∥∥un(t)∥∥E ⩽

∫
R

∣∣ρn(s)∣∣∥∥u(t− s)
∥∥
E
ds ⩽

∥∥u∥∥
L∞(0,T ;E)

=:M

for all t ∈ R and n ∈ N. Let t0 ∈ [0, T ) be arbitrary but fixed. By reflexivity of E, there
exist v ∈ E and a subsequence of (un(t0)), denoted by the same symbol for simplicity, such that
un(t0) → v weakly in E. Moreover, for any φ ∈ F ′,

⟨φ, un⟩F = ⟨φ, ρn ∗ u⟩F = ρn ∗ ⟨φ, u⟩F ,

where f := ⟨φ, u⟩F ∈ D([0, T ]) by assumption. In particular, f is right-continuous at t0, i.e. for
any δ > 0 there exists N ∈ N such that |f(t0 − s) − f(t0)| < δ for all s ∈ [−2/N, 0]. Since the
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support of ρn is contained in [−2/n, 0], for n > N we have∣∣⟨φ, un(t0)⟩F − ⟨φ, u(t0)⟩F
∣∣ ⩽ ∫

R
ρn(s)

∣∣f(t0 − s)− f(t0)
∣∣ ds

⩽ δ

∫
R
ρn(s) = δ,

i.e. ⟨φ, un(t)⟩F → ⟨φ, u(t)⟩F as n → ∞. Since this holds for any φ ∈ F ′, we infer that
un(t0) → u(t0) weakly in F . Moreover, as (un(t0)) is bounded in E and E is reflexive, we easily
deduce that un(t0) → u(t0) weakly in E, thus also, by weak lower semicontinuity of the norm,
that ∥∥u(t0)∥∥E ⩽ lim inf

n→∞

∥∥un(t0)∥∥E ⩽M.

Since t0 ∈ [0, T ) was arbitrary, this implies that ∥u(t)∥E ⩽ M for all t ∈ [0, T ). Moreover, since
u(T ) ∈ E, we have that u([0, T ]) is bounded in E, as required.

4.3 A criterion for uniform integrability

We shall need a slightly generalized version of the de la Vallée-Poussin criterion for uniform
integrability. For the purposes of this paragraph only, (E,E , µ) will denote a finite measure space,
and m will stand for the product measure of P, the Lebesgue measure, and µ on Ω× [0, T ]×E.
For compactness of notation, we set

Lp(m) := Lp(Ω× [0, T ]× E,F ⊗ B([0, T ])⊗ E ,m)

for any p ∈ [0,∞].

Lemma 4.8. Let F : Ω × [0, T ] × R → [0,+∞] be proper, convex and lower semicontinuous in
the third variable, measurable in the first two, and such that

lim
|x|→+∞

F (ω, t, x)

|x|
= +∞ uniformly in (ω, t) ∈ Ω× [0, T ].

If G ⊆ L0(m) is such that there exists a constant C for which

∥F (·, ·, g)∥L1(m) < C ∀g ∈ G,

then G is uniformly integrable in Ω× [0, T ]× E.

Proof. We need to show that G is bounded in L1(m) and that for every ε > 0 there exist δ such
that, for any measurable set A with m(A) < δ, one has∫

A

|g| dm < ε ∀g ∈ G.

Let M > 0 be a constant. By assumption there exists R such that x ∈ R with |x| > R implies
|F (ω, t, x)| > M |x| for every (ω, t) ∈ Ω× [0, T ]. Then one has, for any g ∈ G,∫

A

|g| dm =

∫
A∩{|g|⩽R}

|g| dm+

∫
A∩{|g|>R}

|g| dm

⩽ Rm(A) +
1

M

∫
F (·, ·, g) dm

⩽ Rm(A) +
C

M
.

Choosing A = Ω× [0, T ]× E it immediately follows that G is bounded in L1(m). Moreover, for
every ε > 0 there existsM such that C

M < ε
2 , hence δ :=

ε
2R satisfies the condition we are looking

for.
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The same argument shows, keeping ω ∈ Ω fixed, that if there exists a finite positive random
variable C : Ω → R+ such that, for P-a.e. ω ∈ Ω,

∥F (ω, ·, g)∥L1([0,T ]×E) < C(ω) ∀g ∈ G,

then G(ω, ·) is uniformly integrable in (0, T )× E for P-a.e. ω ∈ Ω.

5 The Itô formula

In this section we prove an Itô-type formula for the square of the H-norm: this can be seen as
an integration-by-parts formula in a generalized setting. We point out that the framework that
we consider here is is “unusual”, as we work with processes with components in V ′ and L1(D)
simultaneously, for which Itô’s formula is not available using existing techniques. Let us recall
also that the quadratic variation of Z is defined as the process

[Z,Z] := ∥Z∥2 − ∥Z0∥2 − 2Z− · Z.

In the sequel we shall denote [0, T ]×D by DT .

Proposition 5.1. Let C be a control process for Z, G ∈ SC(Z), Y0 ∈ L0(Ω,F0,P;H), and the
adapted processes

Y ∈ L0(Ω;L∞(0, T ;H)) ∩ L0(Ω;L2(0, T ;V ))

v ∈ L0(Ω;L2(0, T ;V ′)),

g ∈ L0(Ω;L1(0, T ;L1(D)))

be such that

Y +

∫ ·

0

v(s) ds+

∫ ·

0

g(s) ds = Y0 +G · Z. (5.1)

Furthermore, assume that there exists a real number a > 0 such that

j(·, aY ) + j∗(·, ag) ∈ L0(Ω;L1(DT )).

Then

1

2
∥Y ∥2 +

∫ ·

0

⟨v(s), Y (s)⟩ ds+
∫ ·

0

∫
D

g(s)Y (s) dx ds

=
1

2
∥Y0∥2 +

1

2

[
G · Z,G · Z

]
+ (Y−G) · Z.

Proof. Let us first show that the stochastic integral (Y−G) ·Z is well defined: it follows from (5.1)
that Y is strongly càdlàg in V ′

0 . Since Y ∈ L∞(0, T ;H), Lemma 4.7 implies that Y is weakly
càdlàg in H, i.e. that, for any h ∈ H, ⟨Y, h⟩ is càdlàg, hence that ⟨Y−, h⟩ is left-continuous,
in particular predictable, or, equivalently, that Y− is weakly predictable. However, since H is
separable, Pettis’ theorem implies that Y− is predictable. Moreover, one has

λCT (Y−G) = C(T )
(∥∥Y−G∥∥2L (K,R) · C

)
T

⩽ C(T ) sup
t<T

∥∥Y (t)
∥∥2(∥∥G∥∥2

L (K,H)
· C

)
T
= sup

t<T

∥∥Y (t)
∥∥2λCT (G) < +∞.

Denoting the action of the operator Tn by a superscript n, we have

Y n +

∫ ·

0

vn(s) ds+

∫ ·

0

gn(s) ds = Y n
0 +Gn · Z,
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as the Bochner integral as well as the stochastic integral commute with linear continuous opera-
tors. Since all integrands on the left-hand side are H-valued processes, the integration-by-parts
formula for H-valued semimartingales yields (cf. [23, §25])

1

2
∥Y n∥2 +

∫ ·

0

⟨vn(s), Y n(s)⟩ ds+
∫ ·

0

∫
D

gn(s)Y n(s) dx ds

=
1

2
∥Y n

0 ∥2 + 1

2

[
Gn · Z,Gn · Z

]
+ (Y n

−G
n) · Z.

We are now going to pass to the limit as n → ∞ in this identity. The continuity of (Tn) in
Ls(H) immediately yields

∥Y n
0 ∥2 −→ ∥Y0∥2,

∥Y n(t)∥2 −→ ∥Y (t)∥2 ∀t ∈ [0, T ],

Gn −→ G in Ls(K,H) a.e. in Ω× [0, T ].

Similarly, since (Tn) is also continuous in the strong operator topology of V , V ′, and L1(D), the
dominated convergence theorem readily implies that

Y n −→ Y in L2(0, T ;V ),

vn −→ v in L2(0, T ;V ′),

gn −→ g in L1(DT ).

In particular, passing to a subsequence if necessary, this implies that gnY n → gY almost every-
where in DT . Therefore, if we show that (gnY n) is uniformly integrable on DT , we can conclude
by Vitali’s theorem that the latter convergence continues to hold also in L1(DT ). Thanks to the
assumptions on the behavior at infinity of j, the sub-Markovianity of Tn, and the generalized
Jensen inequality for positive operators (cf. [10]), we have

±a2gnY n ⩽ j(·,±aY n) + j∗(·, agn) ≲ 1 + j(·, aY n) + j∗(·, gn)
⩽ 1 + Tn

(
j(·, aY ) + j∗(·, g)

)
,

where
Tn

(
j(·, aY ) + j∗(·, g)

)
−→ j(·, aY ) + j∗(·, g) in L1(DT )

as n → ∞, because the right-hand side belongs to L1(DT ) a.s. by assumption. In particular,
Tn

(
j(·, aY ) + j∗(·, g)

)
is uniformly integrable on DT , and so is (gnY n) by comparison. This

implies, as explained above, that∫ ·

0

∫
D

gn(s)Y n(s) dx ds −→
∫ ·

0

∫
D

g(s)Y (s) dx ds.

Let us now consider the quadratic variation term. By definition we have[
Gn · Z,Gn · Z

]
=

∥∥Gn · Z
∥∥2 − 2((Gn · Z)−) · (Gn · Z),

where the stochastic integral on the right-hand side can be written as G̃n · Z, with

G̃n : Ω× [0, T ] → L (K,R), G̃n(ω, t)k := ⟨(Gn · Z)(ω, s−), Gn(ω, s)k⟩, k ∈ K.

Noting that Gn ·Z = Tn(G ·Z), it is immediate that (Gn ·Z)t → (G ·Z)t for all t ∈ [0, T ] P-a.s.
as n→ ∞. Moreover, setting

G̃ : Ω× [0, T ] → L (K,R), G̃(ω, s)k := ⟨(G · Z)(ω, s−), G(ω, s)k⟩, k ∈ K,
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one has

G̃nk − G̃k =
〈
(Gn · Z)−, Gnk

〉
−
〈
(G · Z)−, Gk

〉
=

〈
T ∗
nTn(G · Z)− − (G · Z)−, Gk

〉
⩽

∥∥T ∗
nTn(G · Z)− − (G · Z)−

∥∥∥∥G∥∥
L (K,H)

∥k∥K ,

where ∥∥T ∗
nTn(G · Z)− − (G · Z)−

∥∥ ⩽
∥∥T ∗

nTn(G · Z)− − T ∗
n(G · Z)−

∥∥
+ ∥T ∗

n(G · Z)− − (G · Z)−∥
⩽ sup

n∈N

∥∥T ∗
n

∥∥
L (H)

∥∥Tn(G · Z)− − (G · Z)−
∥∥

+
∥∥T ∗

n(G · Z)− − (G · Z)−
∥∥,

and the right-hand side converges to zero pointwise in time P-a.s. because both Tn and its adjoint
converge to the identity operator in Ls(H). Therefore G̃n converges to G̃ in L (K,R) a.e. in
Ω× [0, T ], and it follows by Proposition 4.5 that[

Gn · Z,Gn · Z
]
t
−→

[
G · Z,G · Z]t ∀t ∈ [0, T ] P-a.s.

Lastly, let us consider the convergence of the term (Y n
−G

n) · Z. Note that the L (K,R)-valued
processes Y n

−G
n and Y−G are defined as

(Y n
−G

n) : k 7−→
〈
TnY−, TnGk

〉
, (Y−G) : k 7−→

〈
Y−, Gk

〉
,

so that ∣∣(Y n
−G

n − Y−G)k
∣∣ = 〈

TnY−, TnGk
〉
−

〈
Y−, Gk

〉
=

〈
T ∗
nTnY− − Y−, Gk

〉
⩽

∥∥T ∗
nTnY− − Y−

∥∥∥∥G∥∥
L (K,H)

∥k∥K ,

which in turn yields∥∥(Y n
−G

n − Y−G)
∥∥

L (K,R) ⩽
∥∥G∥∥

L (K,H)

∥∥T ∗
nTnY− − Y−

∥∥ a.e. in Ω× (0, T ].

Recalling that (Tn)n is uniformly bounded in L (H), hence so is (T ∗
n)n, it follows that∥∥T ∗

nTnY− − Y−
∥∥ ⩽

∥∥T ∗
nTnY− − T ∗

nY−
∥∥+

∥∥T ∗
nY− − Y−

∥∥
⩽ sup

n∈N

∥∥T ∗
n

∥∥
L (H)

∥∥TnY− − Y−
∥∥+

∥∥T ∗
nY− − Y−

∥∥,
where the right-hand side converges to zero a.e. in Ω × (0, T ] thanks to the assumptions on
(Tn) and to Lemma 2.1. Therefore Y n

−G
n converges to Y−G in L (K,R) a.e. in Ω × (0, T ], so

that Proposition 4.5 allows us to conclude that (Y n
−G

n) ·Z converges to (Y−G) ·Z in probability
uniformly in time.

6 Well-posedness with additive noise

The goal of this section is to establish a well-posedness result for the following version of (1.1)
with additive noise:

dX(t) +AX(t) dt+ β(t,X(t)) dt ∋ G(t) dZ(t), X(0) = X0, (6.1)

where G is a strongly predictable L (K,H)-valued process integrable with respect to Z. This is
an essential step towards the proof of the main results in the next section.

We begin with an existence result.
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Theorem 6.1. Let C be a control process for Z and G ∈ SC(Z) such that EλCT−(G) <∞ and
assume that X0 ∈ L2(Ω;H). Then (6.1) admits a strong solution.

The main idea of the proof is to regularize both A and β in (6.1), so that the regularized
equation admits a (unique) strong solution in the classical sense, to obtain uniform estimates on
such solutions, and finally to pass to the limit using compactness and monotonicity arguments.

For any λ ∈ ]0, 1[, let βλ : Ω× [0, T ]×R → R and Aλ ∈ L (H) be the Yosida approximations
of r 7→ β(·, ·, r) and of A2, respectively (see [2] for references). Recall that A2 denotes the part
of A in H and that, setting Jλ := (I + λA2)

−1, by definition of Aλ we have that Aλ = AJλ.
Let us consider the regularized equation

dXλ(t) +AλXλ(t) dt+ βλ(t,Xλ(t)) dt = G(t) dZ(t), Xλ(0) = X0. (6.2)

Since Aλ + βλ is Lipschitz continuous (uniformly over Ω× [0, T ]), the equation admits a unique
strong solution Xλ in the classical sense, i.e. Xλ is an adapted càdlàg H-valued process, with

E sup
t⩽T

∥Xλ(t)∥2 < +∞,

such that

Xλ +

∫ ·

0

AλXλ(s) ds+

∫ ·

0

βλ(s,Xλ(s)) ds = X0 +G · Z

(see [23, Thm. 34.7–35.2]).
We are now going to establish a priori estimates on (Xλ) and functionals thereof.

Lemma 6.2. There exists a constant N > 0 such that, for every λ ∈ ]0, 1[,

E sup
t<T

∥Xλ(t)∥2 + E∥JλXλ∥2L2(0,T ;V ) + E∥βλ(·, Xλ)Xλ∥L1(DT ) < N.

Proof. The integration-by-parts formula for H-valued processes yields

1

2
∥Xλ∥2 +

∫ ·

0

〈
AλXλ(s), Xλ(s)

〉
ds+

∫ ·

0

∫
D

β(s,Xλ(s))Xλ(s) ds

=
1

2
∥X0∥2 +

1

2

[
G · Z,G · Z

]
+ (Xλ−G) · Z,

where Xλ− denotes the process (Xλ)−. Taking the supremum in time over [0, T [, recalling the
identity 〈

AλXλ, Xλ

〉
=

〈
AJλXλ, JλXλ

〉
+ λ

∥∥AλXλ

∥∥2,
one has, by coercivity of A,(

Xλ

)∗2
T− + 2c

∫ T

0

∥∥JλXλ(s)
∥∥2
V
ds+ 2

∫ T

0

∫
D

βλ(s,Xλ(s))Xλ(s) dx ds

⩽ ∥X0∥2 +
[
G · Z,G · Z

]
T− + 2

(
(Xλ−G) · Z

)∗
T−.

We are going to estimate the last two terms on the right-hand side of the last inequality. By
definition of quadratic variation we have

[G · Z,G · Z] = ∥G · Z∥2 − 2(G · Z)− · (G · Z)
= ∥G · Z∥2 − 2G̃ · Z,

where G̃ : Ω × [0, T ] → L (K,R) ≃ K is defined as K ∋ k 7→
〈
(G · Z)−, Gk

〉
. By definition of

control process and by the second inequality for stochastic integrals in §4.1 we thus have

E[G · Z,G · Z]T− ⩽ E
(
G · Z

)∗2
T− + 2E

(
G̃ · Z

)∗
T−

⩽ EλCT−(G) + 4EλCT−(G̃)
1/2,
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where, by elementary inequalities,

EλCT−(G̃)
1/2 = EC(T−)1/2

(
∥G̃∥2K · C

)1/2
T−

⩽ EC(T−)1/2
(∫ T−

0

∥(G · Z)−∥2∥G∥2L (K,H) dC

)1/2

⩽ EλCT−(G)
1/2

(
G · Z

)∗
T−

⩽
1

2
EλCT−(G) +

1

2
E
(
G · Z

)∗2
T− ⩽ EλCT−(G),

so that E[G · Z,G · Z]T− ⩽ 5EλCT−(G). Similarly, one has

E
(
(Xλ−G) · Z

)∗
T− ⩽ 2EC(T−)1/2

(∫ T−

0

∥Xλ∥2∥G∥2L (K,H) dC

)1/2

⩽ 2EλCT−(G)
1/2

(
Xλ

)∗
T−

⩽
1

4
E
(
Xλ

)∗2
T− + 4EλCT−(G),

therefore also

E
(
Xλ

)∗2
T− + E

∫ T

0

∥∥JλXλ(s)
∥∥2
V
ds+ E

∫ T

0

∫
D

βλ(s,Xλ(s))Xλ(s) dx ds

≲ E∥X0∥2 + EλCT−(G),

uniformly over λ ∈ ]0, 1[, as the implicit constant depends only on c, the coercivity constant of
A. We conclude noting that βλ(·, Xλ)Xλ ⩾ 0 by monotonicity of βλ.

We are going to establish an existence and uniqueness result for (6.1) under the additional
assumption that

G : Ω× [0, T ] → L (K,V0). (6.3)

This is only a technical “temporary” assumption that will be dispensed of in the proof of Theo-
rem 6.1.

Proposition 6.3. Assume that the hypotheses of Theorem 6.1 hold and that G satisfies (6.3).
Then (6.1) admits a unique strong solution.

For the proof we need further a priori estimates on the solution to the regularized equation
(6.2).

Lemma 6.4. Let G satisfy (6.3). There exists Ω′ ∈ F with P(Ω′) = 1 such that, for every
ω ∈ Ω′, the following properties hold:

(a)
(
Xλ(ω)

)
is bounded in L∞(0, T ;H);

(b)
(
JλXλ(ω)

)
is bounded in L2(0, T ;V );

(c)
(
λ1/2AλXλ(ω)

)
is bounded in L2(0, T ;H);

(d)
(
βλ(·, Xλ(ω))Xλ(ω)

)
is bounded in L1([0, T ]×D).

Proof. Thanks to assumption (6.3), there exists Ω′ ∈ F , with P(Ω′) = 1, such that

(G · Z)(ω) ∈ L∞(0, T ;V0) ∀ω ∈ Ω′.

17



Let ω ∈ Ω′ be arbitrary but fixed, so that indication of the explicit dependence on ω of the
various processes involved will be suppressed for compactness of notation. By inspection of (6.2)
it follows that Xλ −G · Z ∈ H1(0, T ;V ′), so that we can write

d

dt
(Xλ −G · Z) +AλXλ + βλ(·, Xλ) = 0

as an identity in V ′ which holds for a.a. t ∈ ]0, T [. The (deterministic) integration-by-parts
formula then yields

1

2

∥∥Xλ −G · Z
∥∥2 + ∫ ·

0

〈
AλXλ(s), Xλ(s)−G · Z(s)

〉
ds

+

∫ ·

0

∫
D

βλ(s,Xλ(s))(Xλ(s)−G · Z(s)) dx ds = 1

2
∥X0∥2,

where (i) by the triangle inequality and the elementary inequality (a − b)2/2 ⩾ 1
4a

2 − 1
2b

2, a,
b ∈ R, one has

1

2

∥∥Xλ −G · Z
∥∥2 ⩾

1

2

(
∥Xλ∥ − ∥G · Z∥

)2
⩾

1

4
∥Xλ∥2 −

1

2
∥G · Z∥2;

(ii) one has, for any h ∈ H, ⟨Aλh, h⟩ = ⟨AJλh, Jλh⟩+ λ∥Aλh∥2, so that, by coercivity of A and
Young’s inequality in the form ab ⩽ εa2 + b2/ε, a, b ∈ R, ε > 0, it follows that〈

AλXλ, Xλ −G · Z
〉
=

〈
AλXλ, Xλ

〉
−

〈
AJλXλ, G · Z

〉
⩾ c

∥∥JλXλ

∥∥2
V
+ λ

∥∥AλXλ

∥∥2
− ε

∥∥A∥∥2
L (V,V ′)

∥∥JλXλ

∥∥2
V
+

1

ε

∥∥G · Z
∥∥2
V
;

(iii) one has, for any x ∈ R, slightly simplifying notation,

βλ(x)x = βλ(x)(I + λβ)−1(x) + βλ(x)
(
x− (I + λβ)−1(x)

)
= βλ(x)(I + λβ)−1(x) + λ

∣∣βλ(x)∣∣2,
hence also, recalling that βλ ∈ β ◦ (I + λβ)−1 and that, for any a, b ∈ R, ab = j(a) + j∗(b) if and
only if b ∈ ∂j(a) = β(a),

βλ(Xλ)Xλ ⩾ j
(
(I + λβ)−1(Xλ

)
+ j∗

(
βλ(Xλ)

)
⩾ j∗

(
βλ(Xλ)

)
;

(iv) Young’s inequality in the form

ab ⩽ j∗(εa) + j(b/ε) ⩽ εj∗(a) + j(b/ε), a, b ∈ R, 0 < ε < 1,

implies
−βλ(·, Xλ)(G · Z) ⩾ −εj∗

(
·, βλ(·, Xλ)

)
− j

(
·, (G · Z)/ε

)
.

Choosing ε < 1, it follows from (i)–(iv) that

1

4

∥∥Xλ

∥∥2 + c

∫ ·

0

∥∥JλXλ(s)
∥∥2
V
ds+ λ

∫ ·

0

∥∥AλXλ(s)
∥∥2 ds

+

∫ ·

0

∫
D

j∗
(
s, βλ(s,Xλ(s))

)
dx ds

⩽
1

2
∥X0∥2 +

1

2

∥∥G · Z
∥∥2

+ ε
∥∥A∥∥

L (V,V ′)

∫ ·

0

∥∥JλXλ(s)
∥∥2
V
ds+

1

ε

∫ ·

0

∥∥(G · Z)s
∥∥2
V
ds

+ ε

∫ ·

0

∫
D

j∗
(
s, βλ(s,Xλ(s))

)
dx ds+

∫ ·

0

∫
D

j
(
s, (G · Z)s/ε

)
dx ds.
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First rearranging terms and choosing ε sufficiently small, then taking the essential supremum in
time, one gets∥∥Xλ

∥∥2
L∞(0,T ;H)

+
∥∥JλXλ

∥∥2
L2(0,T ;V )

+ λ
∥∥AλXλ

∥∥2
L2(0,T ;H)

+
∥∥j∗(·, βλ(·, Xλ))

∥∥
L1(DT )

≲
∥∥X0

∥∥2 + ∥∥G · Z
∥∥2
L2(0,T ;V )

+

∫
DT

j
(
s, (G · Z)s/ε

)
dx ds,

where the right-hand side is finite because G · Z ∈ L∞(0, T ;V0). In fact, recalling that V0 is
continuously embedded in V , this immediately implies that G ·Z ∈ L2(0, T ;V ); moreover, there
exists D′

T ⊂ DT , with DT \ D′
T of measure zero, such that the restriction of G · Z to D′

T is
bounded. The finiteness of the last term on the right-hand side then follows by the boundedness
on bounded sets of y 7→ j(ω, t, y) uniformly over (ω, t) ∈ Ω× [0, T ].

The pathwise boundedness properties just proved entail several compactness properties in
suitable topologies.

Lemma 6.5. Let G satisfy (6.3). There exists Ω′ ∈ F with P(Ω′) = 1 such that, for every
ω ∈ Ω′, there exist a subsequence λ′ = λ′(ω) of λ and

X(ω) ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), ξ(ω) ∈ L1([0, T ]×D)

such that

Xλ′(ω, ·) −→ X(ω, ·) weakly* in L∞(0, T ;H),

Xλ′(ω, ·) −→ X(ω, ·) in L2(0, T ;H),

Jλ′Xλ′(ω, ·) −→ X(ω, ·) weakly in L2(0, T ;V ),

βλ′(·, Xλ′(ω, ·)) −→ ξ(ω, ·) weakly in L1([0, T ]×D).

Proof. Let Ω′ be as in Lemma 6.4 and ω ∈ Ω′ arbitrary but fixed (whose indication will still
be omitted). Since (Xλ) is bounded in L∞(0, T ;H), hence also in L2(0, T ;H), there exist X ∈
L∞(0, T ;H) and a subsequence λ′, depending on ω, such that Xλ′ converges weakly* to X in
L∞(0, T ;H) and weakly in L2(0, T ;H). The boundedness of (JλXλ) in L

2(0, T ;V ) implies that
there exists X̄ ∈ L2(0, T ;V ) such that Jλ′Xλ′ converges weakly to X̄ in L2(0, T ;V ). Boundedness
of (

√
λAλXλ) in L

2(0, T ;H) implies that λAλXλ converges to zero in L2(0, T ;H). Writing

JλXλ = Xλ − λAλXλ,

one immediately infers that Jλ′Xλ′ converges weakly to X in L2(0, T ;H). Since it also converges
weakly to X̄ in L2(0, T ;V ), it follows that X̄ = X.

The same argument used in part (iii) of the proof of Lemma 6.4 yields

j∗(t, βλ(t,Xλ)) ⩽ βλ(t,Xλ)Xλ,

where the right-hand side, as a family indexed by λ, is bounded in L1(DT ). The generalized de
la Vallée-Poussin criterion of Lemma 4.8 then ensures that (βλ(·, Xλ)) is uniformly integrable in
DT and hence relatively weakly compact in L1(DT ) by the Dunford-Pettis theorem, i.e. there
exists ξ ∈ L1(DT ) such that βλ′(·, Xλ′) converges weakly to ξ in L1(DT ).

As a last step, we are going to show that Xλ′ converges to X in the norm topology of
L2(0, T ;H), rather than just in its weak topology. Writing the regularized equation as in
Lemma 6.4, we have

d

dt
(Xλ −G · Z) +AλXλ + βλ(·, Xλ) = 0,

where AλXλ = AJλXλ is bounded in L2(0, T ;V ′) and βλ(·, Xλ) is bounded in L1(DT ). Therefore
d
dt (Xλ−G·Z) is bounded in L1(0, T ;V ′

0), and Simon’s compactness criterion (see [28, Corollary 4,
p. 85]) implies that (Xλ −G · Z) is relatively compact in L2(0, T ;H). Since G · Z ∈ L2(0, T ;H)
is independent of λ, the same conclusion holds for (Xλ) and by uniqueness of the weak limit in
L2(0, T ;H) it immediately follows that Xλ converges to X in L2(0, T ;H).
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The last lemma provides us with a pair (X, ξ) of (potentially non-measurable) processes that
serves as candidate solution to (6.1).

Proof of Proposition 6.3. We split the proof in several steps. We use the same symbols used in
the proofs of the previous lemmata, without recalling their definitions explicitly.

Step 1. We are going to pass to the limit on each trajectory ω ∈ Ω′ in the regularized equation

Xλ +

∫ ·

0

AλXλ(s) ds+

∫ ·

0

βλ(s,Xλ(s)) ds = X0 +G · Z

along the subsequence λ′. Let then ω be fixed and let us omit its explicit indication. By
Lemma 6.5 and the linearity of A, one has∫ t

0

Aλ′Xλ′(s) ds −→
∫ t

0

AX(s) ds weakly in V ′,

hence also weakly in V ′
0 , for every t ∈ [0, T ]. Indeed, for any φ ∈ V the map ψ := s 7→ 1[0,t](s)φ

belongs to L2(0, T ;V ) and〈
φ,

∫ t

0

Aλ′Xλ′(s) ds
〉
=

∫ T

0

〈
AJλ′Xλ′(s), ψ(s)

〉
ds

→
∫ T

0

〈
AX(s), ψ(s)

〉
ds =

〈
φ,

∫ t

0

AX(s) ds
〉
.

The same argument yields, choosing φ ∈ L∞(D) or φ ∈ V0, that∫ t

0

βλ′(s,Xλ′(s)) ds −→
∫ t

0

ξ(s) ds

weakly in L1(D) and weakly in V ′
0 for all t ∈ [0, T ]. Therefore, for every t ∈ [0, T ], there

exists X̃(t) ∈ V ′
0 such that Xλ′(t) converges to X̃(t) weakly in V ′

0 . From this it easily follows
that Xλ′ converges to X̃ weakly* in L∞(0, T ;V ′

0). In fact, for any ψ ∈ L1(0, T ;V0), one has〈
Xλ′(s), ψ(s)

〉
→

〈
X̃(s), ψ(s)

〉
for a.a. s ∈ [0, T ], and∣∣〈Xλ′(s), ψ(s)

〉∣∣ ≲ ∥∥Xλ

∥∥
L∞(0,T ;H)

∥∥ψ(s)∥∥
V0
,

where the right-hand side, as a function of s, belongs to L1(0, T ). Then∫ T

0

〈
Xλ′(s), ψ(s)

〉
ds −→

∫ T

0

〈
X̃(s), ψ(s)

〉
ds

by the dominated convergence theorem. However, sinceXλ′ converges toX weakly* in L∞(0, T ;H),
we infer that X = X̃ in L∞(0, T ;H). Therefore, taking the limit along λ′, we get

X +

∫ ·

0

AX(s) ds+

∫ ·

0

ξ(s) ds = X0 +G · Z in V ′
0 .

This in turn implies that X is càdlàg in V ′
0 , and since it also belongs to L∞(0, T ;H), it follows

by Lemma 4.7 that X is weakly càdlàg in H.

Step 2. We are going to prove that j(·, X)+j∗(·, ξ) ∈ L1(DT ) and ξ ∈ β(·, X) a.e. in DT . Since
βλ′(Xλ′) converges weakly to ξ in L1(DT ), the weak lower semicontinuity of convex integrals
(see, e.g., [7, Theorem 2.3, p. 18]) immediately yields∫

DT

j∗(ξ) dx dt ⩽ lim inf
λ′→0

∫
DT

j∗(βλ′(Xλ′)) dx dt
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where the right-hand side is finite by Lemma 6.4 (here and below we do not explicitly denote
the dependence of j and related maps on ω and t). Writing

λβλ(Xλ) = Xλ − (I + λβ)−1Xλ,

the weak convergence of βλ(Xλ) is L
1(DT ) implies its boundedness, hence the left-hand side of

the previous identity converges to zero in L1(DT ) along λ
′. Moreover, as Xλ′ converges to X in

L2(0, T ;H), it follows that (I+λ′β)−1Xλ′ converges to X in L1(DT ). Therefore, again by lower
semicontinuity of convex integrals,∫

DT

j(X) dx dt ⩽ lim inf
λ′→0

∫
DT

j
(
(I + λ′β)−1(Xλ′)

)
dx dt, (6.4)

where the right-hand side is finite because the integrand is bounded by βλ′(Xλ′)Xλ′ (see part
(iii) of the proof of Lemma 6.4).

Let jλ be the Moreau-Yosida regularization of j, i.e.

jλ : Ω× [0, T ]× R −→ [0,+∞[

(ω, t, r) 7−→ inf
s∈R

( 1

2λ
|r − s|2 + j(ω, t, s)

)
.

Recall that, for every (ω, t) ∈ Ω × [0, T ], jλ(ω, t, ·) is a convex differentiable function, with
derivative equal to βλ(ω, t, ·), that converges pointwise to j(ω, t, ·) from below. By definition of
subdifferential one has, for any measurable set E ⊂ DT ,∫

E

βλ(·, Xλ)(Xλ − z) dx dt ⩾
∫
E

jλ(·, Xλ) dx dt−
∫
E

jλ(·, z) dx dt ∀z ∈ L∞(E).

Since Xλ′ → Xλ′ in L2(0, T ;H), there exists a subsequence of λ′, denoted by same symbol for
simplicity, such that Xλ′ → X a.e. in DT . Therefore, thanks to the Severini-Egorov theorem,
for every η > 0 there exists Eη ⊆ DT , with |DT \Eη| ⩽ η, such that Xλ′ → X uniformly on Eη.
Choosing E = Eη and passing to the limit along λ′ in the last inequality yields∫

Eη

(X − z)ξ dx dt ⩾ lim inf
λ′→0

∫
Eη

jλ′(Xλ′) dx dt−
∫
Eη

j(z) dx dt ∀z ∈ L∞(Eη)

because βλ′(Xλ′) converges weakly to ξ in L1(DT ) and Xλ′ converges to X uniformly on DT ,
and jλ ⩽ j. Moreover, by a well-known identity satisfied by the Moreau-Yosida regularization,
one has

jλ(Xλ) = j
(
(I + λβ)−1Xλ

)
+

1

2
λ
(
Xλ − (I + λβ)−1Xλ

)2
.

Since (Xλ) is bounded in L2(DT ) and (I + λβ)−1 is a contraction on R, it is easily seen that

λ′
∫
DT

(
Xλ′ − (I + λ′β)−1Xλ′

)2
dx dt −→ 0

as λ′ → 0. By (6.4) it then follows∫
Eη

(X − z)ξ dx dt ⩾
∫
Eη

(
j(X)− j(z)

)
dx dt ∀z ∈ L∞(Eη).

By a suitable choice of z, this implies

(X − z)ξ ⩾ j(X)− j(z) a.e. in Eη ∀z ∈ R

(cf. [21] for a detailed argument in a slightly simpler setting), and hence that ξ ∈ ∂j(X) = β(X)
a.e. in Eη. Since η is arbitrary, it follows that ξ ∈ β(X) a.e. in DT .
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Step 3. We are now going to show that the solution pair (X, ξ) constructed in step 1 is unique.
In particular, we claim that if there exist

Xi ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), ξi ∈ L1(DT ), i = 1, 2,

with ξi ∈ β(·, Xi) a.e. in DT and j(·, Xi) + j∗(·, ξi) ∈ L1(DT ) such that

Xi +

∫ ·

0

AXi(s) ds+

∫ ·

0

ξi(s) ds = X0 +G · Z,

then (X1, ξ1) = (X2, ξ2). In fact, setting X := X1 −X2 and ξ := ξ1 − ξ2, one has

X +

∫ ·

0

AX(s) ds+

∫ ·

0

ξ(s) ds = 0,

where Xξ belongs to L1(DT ): in fact, Xξ ⩾ 0 by monotonicity of β and, thanks to the convexity
of j and j∗ and to the hypothesis on their behavior at infinity, one has

1

4
Xξ ⩽ j(X/2) + j∗(ξ/2) = j

(
X1/2−X2/2

)
+ j∗

(
ξ1/2− ξ2/2

)
≲ 1 + j(X1) + j(X2) + j∗(ξ1) + j∗(ξ2) ∈ L1(DT ).

By an argument completely analogous to the one used in the proof of Proposition 5.1 (in fact
easier), one obtains

∥X∥2 +
∫ ·

0

∫
D

X(s)ξ(s) dx ds ⩽ 0.

Since the integrand in the previous identity is positive, it follows that X = 0, which in turn
implies that

∫ t

0
ξ(s) ds = 0 for all t ∈ [0, T ], hence also that ξ = 0, thus proving the claim.

Step 4. The uniqueness result proved in the previous step allows us to show that the collection
of pairs (X, ξ) indexed by ω ∈ Ω′ constructed in step 1 is in fact an optional process with values
in H×L1(D). This is far from obvious, mainly because X and ξ have been constructed, for each
ω ∈ Ω′, as limits along subsequences λ′ that depend themselves on ω. The crucial observation,
which is an immediate consequence of the previous steps, is the following: from any subsequence
of λ one can extract a further subsequence λ′ (depending on ω) such that the convergences of
Lemma 6.5 hold; but since the limits are unique, a classical result of elementary analysis ensures
that the convergences hold along the original sequence λ, which is independent of ω. As Xλ

converges to X in L2(0, T ;H) P-almost surely and (Xλ) is bounded in L2(Ω;L2(0, T ;H)), one
has, passing to a subsequence if necessary, that Xλ converges to X weakly in L2(Ω× [0, T ];H).
Since (Xλ) is also bounded in L2(Ω×[0, T ];V ), it follows that Xλ, again passing to a subsequence
if necessary, converges weakly to X in the latter space as well. Therefore there exists a sequence
in the convex envelope of (Xλ) that converges strongly to X in L2(Ω × [0, T ];V ): since Xλ

is adapted and càdlàg with values in H, hence optional, for every λ > 0, X is an H-valued
optional process. Completely analogously, X is a (measurable) adapted V -valued process. In
order to establish measurability properties of ξ, we need a more involved argument. Setting
ξλ := βλ(·, Xλ) for convenience, let ϕ ∈ L∞(DT ) and define

Ξλ :=

∫
DT

ξλϕdx dt, Ξ :=

∫
DT

ξϕ dx dt,

so that Ξλ converges to Ξ P-a.s. Jensen’s inequality and part (iii) in the proof of Lemma 6.2
imply

j∗(·,Ξλ) ≲|DT |,ϕ

∫
DT

j∗(·, ξλ) dx dt ⩽
∫
DT

ξλXλ dx dt,

where the right-hand side, as a family indexed by λ, is bounded in L1(Ω) by Lemma 6.2.
Lemma 4.8 then implies that (Ξλ) is uniformly integrable in Ω and hence, by Vitali’s theorem,
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that Ξλ converges to Ξ in L1(Ω). Again the estimate j∗(·, ξλ) ⩽ ξλXλ implies, recalling that
the right-hand side, as a family indexed by λ, is bounded in L1(Ω×DT ), that (ξλ) is uniformly
integrable in Ω × DT , hence relatively weakly compact as well, so that, by the Dunford-Pettis
theorem, there exists ξ̃ ∈ L1(Ω×DT ) such that ξλ converges weakly to ξ̃ in L1(Ω× [0, T ];L1(D)),
from which it follows, by a reasoning already used, that ξ̃ is an optional L1(D)-valued process.
For every λ and F ∈ F one has, setting h := 1F ∈ L∞(Ω),

EhΞλ =

∫
Ω×DT

ξλϕh dx dt dP,

hence, passing to the limit as λ→ 0,

EhΞ =

∫
DT

(
Ehξ

)
ϕdx dt =

∫
DT

(
Ehξ̃

)
ϕdx dt.

Therefore E1F ξ = E1F ξ̃ in L1(DT ) for every F ∈ F , i.e. ξ = ξ̃ in L1(DT ) P-a.s.
Step 5. With the measurability properties of the processes X and ξ available, we can establish
estimates of their moments. In fact, by the weak convergences of Lemma 6.5 and the estimates
of Lemma 6.2, thanks to the weak and weak* lower semicontinuity of the norms, and to Fatou’s
lemma, it follows, writing ξλ := βλ(·, Xλ), that

E
∥∥X∥∥2

L∞(0,T ;H)
⩽ E lim inf

λ→0

∥∥Xλ

∥∥2
L∞(0,T ;H)

⩽ lim inf
λ→0

E
∥∥Xλ

∥∥2
L∞(0,T ;H)

,

E
∥∥X∥∥2

L2(0,T ;V )
⩽ E lim inf

λ→0

∥∥JλXλ

∥∥2
L2(0,T ;V )

⩽ lim inf
λ→0

E
∥∥JλXλ

∥∥2
L2(0,T ;V )

,

E
∥∥ξ∥∥

L1(DT )
⩽ E lim inf

λ→0

∥∥ξλ∥∥L1(DT )
⩽ lim inf

λ→0
E
∥∥ξλ∥∥L1(DT )

,

where the right-hand sides are all finite. Similarly, the lower semicontinuity inequality∫
DT

(
j(·, X) + j∗(·, ξ)

)
dx dt ⩽ lim inf

λ→0

∫
DT

(
j(·, Xλ) + j∗(·, ξλ)

)
dx dt

yields, taking expectations on both sides and invoking Fatou’s lemma,

E
∫
DT

(
j(·, X) + j∗(·, ξ)

)
dx dt ⩽ E lim inf

λ→0

∫
DT

(
j(·, Xλ) + j∗(·, ξλ)

)
dx dt

⩽ lim inf
λ→0

E
∫
DT

(
j(·, Xλ) + j∗(·, ξλ)

)
dx dt

⩽ lim inf
λ→0

∥∥ξλXλ

∥∥
L1(Ω×DT )

,

where the last term on the right-hand side is finite by Lemma 6.2.

Step 6. To conclude, let us show that the trajectories of X are càdlàg in H. Proposition 5.1
yields

∥X∥2 + 2

∫ ·

0

⟨AX(s), X(s)⟩ ds+ 2

∫ ·

0

∫
D

ξ(s)X(s) dx ds

= ∥X0∥2 + [G · Z,G · Z] + 2(X−G) · Z,
(6.5)

where, by Fubini’s theorem,∫
D

ξX dx ⩽
∫
D

j(·, X) dx+

∫
D

j∗(·, ξ) dx ∈ L1(0, T ),

thus also, taking into account that X ∈ L2(0, T ;V ) and AX ∈ L2(0, T ;V ′),∫ ·

0

⟨AX(s), X(s)⟩ ds+
∫ ·

0

∫
D

ξ(s)X(s) dx ds ∈ C([0, T ]).
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Furthermore, the last term on the right-hand side of (6.5) is càdlàg, being a stochastic integral
with respect to a semimartingale. Recalling the definition of quadratic variation, the same
reasoning applies to the second term on the right-hand side of (6.5). We deduce by inspection of
(6.5) that the real-valued process ∥X∥2 is càdlàg. Since X is also weakly càdlàg in H (see step
1) and H is reflexive, we infer that the trajectories of X are also strongly càdlàg in H. In fact,
let t ∈ [0, T [ and (tn) a sequence converging to t from the right. Then X(tn) → X(t) weakly in
H and ∥X(tn)∥ → ∥X(t)∥ imply that X(tn) → X(t) in H. Similarly, if t ∈ ]0, T ] and (tn) is a
sequence converging to t from the left, X(tn) → X(t−) weakly in H and ∥X(tn)∥ → ∥X(t−)∥
yield X(tn) → X(t−) in H.

In order to prove well-posedness of (6.1) without the extra regularity assumption (6.3) on
the coefficient G, we prove continuity, in a suitable sense, of the map (X0, G) 7→ X.

Proposition 6.6. Let (Xi, ξi), i = 1, 2, be strong solutions to (6.1) with initial conditions
X0i ∈ L2(Ω;H) and coefficients Gi ∈ SC(Z), respectively, where C ∈ C (Z) and EλCT−(Gi) <∞.
Then

E
(
X1 −X2

)∗2
T− + E

∫ T

0

∥∥X1(t)−X2(t)
∥∥2
V
dt

≲ E
∥∥X01 −X02

∥∥2 + EλCT−(G1 −G2),

where the implicit constant depends only on the coercivity constant of A.

Proof. Setting

X := X1 −X2, ξ := ξ1 − ξ2,

X0 := X01 −X02, G := G1 −G2,

one has

X +

∫ ·

0

AX(s) ds+

∫ ·

0

ξ(s) ds = X0 +G · Z.

In analogy to a reasoning already used, the hypotheses on j imply that

1

4
Xξ ⩽ j(X/2) + j∗(ξ/2) ≲ 1 + j(X1) + j(X2) + j∗(ξ1) + j∗(ξ2) ∈ L1(DT ),

so that Proposition 5.1 yields

1

2
∥X∥2 +

∫ ·

0

⟨AX(s), X(s)⟩ ds+
∫ ·

0

∫
D

ξ(s)X(s) dx ds

=
1

2
∥X0∥2 +

1

2
[G · Z,G · Z] + (X−G) · Z.

Proceeding exactly as in the proof of Lemma 6.2, one has

E[G · Z,G · Z]T− ⩽ 5EλCT−(G)

and

E
(
(X−G) · Z

)∗
T− ⩽

1

4
EX∗2

T− + 4EλCT−(G),

which immediately yield the claim by monotonicity and coercivity of A, and monotonicity of
β.

We are now in the position to prove Theorem 6.1.
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Proof. Let us set, for every n ∈ N, Gn := TnG. Then G
n takes values in L (K,V0) and∥∥Gn

∥∥
L (K,V0)

⩽
∥∥Tn∥∥L (H,V0)

∥∥G∥∥
L (K,H)

,

so that Gn satisfies (6.3) for every n ∈ N. Moreover, by the uniform boundedness of (Tn) in
L (H), one has ∥∥Gn

∥∥
L (K,H)

⩽ sup
n∈N

∥∥Tn∥∥L (H)

∥∥G∥∥
L (K,H)

,

so that, setting
C̄ := sup

n∈N

∥∥Tn∥∥L (H)
C ∈ C (Z),

it follows that Gn ∈ SC̄(Z) for every n ∈ N. Proposition 6.3 then ensures the existence and
uniqueness of a strong solution (Xn, ξn) to (1.1) with data (X0, G

n) for every n ∈ N, i.e. such
that

Xn +

∫ ·

0

AXn(s) ds+

∫ ·

0

ξn(s) ds = X0 +Gn · Z. (6.6)

Furthermore, by inspection of the proof of Lemma 6.2 it follows that

E
∥∥Xn

∥∥2
L∞(0,T ;H)

+ E
∥∥Xn

∥∥2
L2(0,T ;V )

+ E
∥∥ξnXn

∥∥
L1(DT )

≲ E∥X0∥2 + EλC̄T−(G
n),

where the implicit constant is independent of n. In particular, since

λC̄T−(G
n) = C̄(T−)

∫ T−

0

∥∥Gn(s)
∥∥2

L (K,H)
dC̄(s)

⩽ sup
n∈N

∥∥Tn∥∥2L (H)
λC̄T−(G) ∈ L1(Ω),

there exists a constant N , independent of n, such that

E
∥∥Xn

∥∥2
L∞(0,T ;H)

+ E
∥∥Xn

∥∥2
L2(0,T ;V )

+ E
∥∥ξnXn

∥∥
L1(DT )

< N.

Moreover, since C̄ does not depend on n, Proposition 6.6 implies that

E
∥∥Xn1 −Xn2

∥∥2
L∞(0,T ;H)∩L2(0,T ;V )

≲ EλC̄T−
(
Gn1 −Gn2

)
∀n1, n2 ∈ N.

By the properties of (Tn)n and the dominated convergence theorem, the right-hand side converges
to zero as n1, n2 → ∞, hence the sequence (Xn) is Cauchy in the space L2(Ω;L∞(0, T ;H)) ∩
L2(Ω;L2(0, T ;V )). As Xnξn = j(·, Xn) + j∗(·, ξn) and j is positive,

(
j∗(·, ξn)

)
is bounded

in L1(Ω × (0, T ) × D), hence, taking Lemma 4.8 into account and arguing as in the proof of
Lemma 6.5, it is easily seen that the sequence (ξn) is relatively compact in L1(Ω × [0, T ] ×D).
Therefore, passing to a subsequence if necessary,

Xn −→ X in L2(Ω;L∞(0, T ;H)) ∩ L2(Ω;L2(0, T ;V )),

ξn −→ ξ weakly in L1(Ω×DT ).

The first convergence implies that∫ ·

0

AXn(s) ds −→
∫ ·

0

AX(s) ds in L2(Ω;C([0, T ];V ′)),

and that
(
Xn −X

)∗
T− → 0 in L2(Ω), because Xn has càdlàg trajectories for each n ∈ N thanks

to Proposition 6.3. In particular, X has càdlàg trajectories as well. The uniform boundedness
of (Tn) in L (H) and the dominated convergence theorem for stochastic integrals yield(

Gn · Z −G · Z
)∗
T− −→ 0 in L2(Ω).
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From ∆Xn(T ) = ∆(Gn · Z)T = Gn
T∆ZT and the above uniform convergences up to T− it

immediately follows that(
Xn −X

)∗
T
−→ 0,

(
Gn · Z −G · Z

)∗
T
−→ 0

in L0(Ω) as n→ ∞. Let ϕ ∈ V0 and F ∈ F . Recalling that ξn → ξ weakly in L1(Ω×DT ), one
has

E1F

〈
ϕ,

∫ t

0

ξn(s) ds
〉
−→ E1F

〈
ϕ,

∫ t

0

ξ(s) ds
〉

∀t ∈ [0, T ].

Taking the duality product of both sides of (6.6) with ϕ ∈ V0 and multiplying by 1F , one readily
infers, passing to the limit as n→ ∞ and taking into account that φ and F are arbitrary, that

X(t) +

∫ t

0

AX(s) ds+

∫ t

0

ξ(s) ds = X0 +
(
G · Z

)
t

∀t ∈ [0, T ]

as an identity in V ′
0 . Since both sides of the equality are immediately seen to be càdlàg (with

values in V ′
0), it follows that equality holds in V ′

0 also in the sense of indistinguishability, not only
in the sense of modifications. By comparison, the identity also holds in V ′ ∩ L1(D). Moreover,
arguing as in step 2 of the proof of Proposition 6.3, we deduce that ξ ∈ β(X) a.e. in Ω×(0, T )×D.
The uniqueness of (X, ξ) follows by an argument completely analogous to the one used in step 3 of
the proof of Proposition 6.3, appealing to the integration-by-parts formula of Proposition 5.1.

Suitably localized versions of the previous results hold.

Proposition 6.7. Let τ ̸= 0 be a stopping time with τ ⩽ T , C a control process for Z, and G
a strongly predictable process such that EλCτ−(G) < ∞. If X0 ∈ L2(Ω;H), then (6.1) admits a
unique strong solution on [[0, τ ]].

Proof. Let us consider the equation

dX̃ +AX̃ dt+ β(X̃) dt ∋ GdZτ−, X(0) = X0, (6.7)

where Zτ− is a semimartingale with control process Cτ− (see Lemma 4.4). Since

λC
τ−

T− (G) = Cτ−
T−

(
∥G∥2 · Cτ−)

T− = Cτ−
(
∥G∥2 · C

)
τ− = λCτ−(G)

where the expectation of the last term is finite by assumption, equation (6.7) admits a unique
strong solution (X̃, ξ̃). In particular,

X̃ +

∫ ·

0

AX̃(s) ds+

∫ ·

0

ξ̃(s) ds = X0 +G · Zτ−,

which implies that ∆X̃τ = 0, because the Lebesgue integrals and the stochastic integral have no
jump at τ . Setting X = X̃ on [[0, τ [[ and Xτ := Xτ− +Gτ∆Zτ , and ξ := 1[[0,τ ]]ξ̃, we are left with

Xτ +

∫ ·∧τ

0

AX(s) ds+

∫ ·∧τ

0

ξ(s) ds = X0 + (G1[[0,τ ]]) · Z,

i.e. (X, ξ) is a strong solution on [[0, τ ]] to (6.1). Since ξ̃ ∈ β(X̃) a.e in Ω× (0, T )×D, we have in
particular that ξ ∈ β(X) a.e. in [[0, τ [[×D. To prove uniqueness it suffices to note that a strong
solution (X, ξ) on [[0, τ ]] to (6.1) coincides on [[0, τ [[ with the restriction to [[0, τ [[ of the unique
strong solution (X̃, ξ̃) to (6.7). Uniqueness on the closed stochastic interval [[0, τ ]] follows by the
definition of Xτ .
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As an immediate consequence of the uniqueness argument just used, one obtains that (strong)
solutions on closed stochastic intervals form a direct system, in the following sense: if (X, ξ) is
a solution on [[0, τ ]] to (6.1) and σ is a stopping time with σ ⩽ τ , it is easily seen that (Xσ, ξσ)
is a solution on [[0, σ]] to (6.1). Such a solution, by the reasoning of the previous remark, is the
unique solution on [[0, σ]]. This also implies that, given (X1, ξ1) solution on [[0, τ1]] and (X2, ξ2)
solution on [[0, τ2]], one can construct a solution (X, ξ) on [[0, τ1 ∨ τ2]] setting

(X, ξ) :=

{
(X1, ξ1) on [[0, τ1]],

(X2, ξ2) on [[0, τ2]].

Proposition 6.8. Let (Xi, ξi) be strong solutions on [[0, τi]], i = 1, 2, to (6.1) with initial condi-
tions X0i ∈ L2(Ω;H) and coefficients Gi ∈ SC(Z), respectively, where C is a control process for
the semimartingale Z and EλCτi−(Gi) <∞. Setting τ := τ1 ∧ τ2, one has

E
(
X1 −X2

)∗2
τ− + E

∫ τ

0

∥∥X1(t)−X2(t)
∥∥2
V
dt

≲ E
∥∥X01 −X02

∥∥2 + EλCτ−(G1 −G2).

Proof. By the above discussion about strong solutions on closed stochastic intervals forming a
direct system, it is immediately seen that (X1, ξ1) and (X2, ξ2) are strong solutions on [[0, τ ]], as
well as that (Xτ−

i , ξτ−i ) = (X̃τ−
i , ξ̃τ−i ), where (X̃i, ξ̃i) is the unique strong solution to

dX̃i +AX̃i dt+ β(·, X̃i) dt ∋ Gi dZ
τ−, X̃i(0) = X0i.

Since EλCτ−

T−
(
G1 −G2

)
= EλCτ−(G1 −G2) and C

τ− is a control process for Zτ− by Lemma 4.4,
Proposition 6.6 yields

E
(
X1 −X2

)∗2
τ− + E

∫ τ

0

∥∥X1(t)−X2(t)
∥∥2
V
dt

≲ E
∥∥X01 −X02

∥∥2 + EλCτ−(G1 −G2).

7 Well-posedness with multiplicative noise

This section is devoted to the proof of Theorem 3.2. We begin showing that strong solutions on
closed stochastic intervals exist.

Proposition 7.1. There exists a stopping time τ ̸= 0 and a strong solution on [[0, τ ]] to (1.1).

Proof. Let α ∈ ]0, 1[ be a constant to be chosen later, C a control process for Z, and τ0 the
stopping time defined as

τ0 := inf
{
t ∈ [0, T ] : Ct(Lt − L0) ⩾ α

}
∧ T.

Note that τ0 is well-defined and not identically 0 as the process C(L − L0) starts from 0 and
is right-continuous. Let R ∈ R+ be such that the event {∥X0∥ ⩽ R} has strictly positive
probability, and set τ := τ01F . Since F ∈ F0, it is easily seen that τ is a stopping time. Let
S2(T−) denote the vector space of adapted càdlàg processes Y : Ω× [0, T [ → H such that

∥Y ∥2 :=
(
EY ∗2

T−
)1/2

<∞.

It is not difficult to see that S2(T−), endowed with the norm ∥·∥2, is a Banach space. For every
Y ∈ S2(T−) one has

λC
τ−

T−
(
B(Y )

)
= Cτ−

T−

∫ T−

0

∥∥[B(Y )](s)
∥∥2

L (K,H)
dCτ−

s

⩽ Cτ−(Lτ− − L0)
(
1 + Y ∗2

T−
)
⩽ α

(
1 + Y ∗2

T−
)
∈ L1(Ω),
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so that the equation

dX̃(t) +AX̃(t) dt+ β(X̃(t)) dt ∋ B(Y ) dZτ−
t , X(0) = X0,

admits a unique strong solution (X̃, ξ̃) by Theorem 6.1 (by the definition of the stopping time
τ , the latter result is indeed applicable). In particular, the map Y 7→ X̃ is a homomorphism of
S2(T−). Moreover, for any Y1, Y2 ∈ S2(T−), Proposition 6.6 yields, with obvious meaning of
the notation, ∥∥X̃1 − X̃2

∥∥2
2
+ E

∥∥X̃1 − X̃2

∥∥2
L2(0,T ;V )

≲ EλC
τ−

T−
(
B(Y1)−B(Y2)

)
,

where, by the Lipschitz assumption on B,

λC
τ−

T−
(
B(Y1)−B(Y2)

)
= Cτ−

T−

∫ T−

0

∥∥[B(Y1)](s)− [B(Y2)](s)
∥∥2

L (K,H)
dCτ−

s

⩽ C(τ−)

∫ T−

0

(
Y1 − Y2

)∗2
s− dL

τ−(s) ⩽ α
(
Y1 − Y2

)∗2
T−,

which implies ∥∥X̃1 − X̃2

∥∥2
2
+ E

∥∥X̃1 − X̃2

∥∥2
L2(0,T ;V )

≲ α
∥∥Y1 − Y2

∥∥2
2
.

Choosing α small enough, Y 7→ X̃ is a contraction of S2(T−), hence it admits a unique fixed
point X̃ ∈ S2(T−) (the abuse of notation is harmless). Setting X := X01{τ=0} + X̃ in [[0, τ [[,

Xτ := Xτ−+[B(X̃)]τ∆Zτ , and ξ := ξ̃1[[0,τ ]], it is immediately seen that (X, ξ) is a strong solution
on [[0, τ ]] to (1.1).

Once existence of solutions on stochastic intervals is established, we establish their uniqueness
in a local sense.

Lemma 7.2. Let (X1, ξ1) and (X2, ξ2) be strong solutions to (1.1) on [[0, τ1]] and [[0, τ2]], respec-
tively. Then, setting τ := τ1 ∧ τ2, one has X1 = X2 and ξ1 = ξ2 on [[0, τ ]].

Proof. Setting X := X1 −X2 and ξ := ξ1 − ξ2, one has

Xτ +

∫ ·

0

1[[0,τ ]]AX(s) ds+

∫ ·

0

1[[0,τ ]]ξ(s) ds =
(
1[[0,τ ]](B(X1)−B(X2)

)
· Z, (7.1)

where B(X1) ∈ SC1
(Z), B(X2) ∈ SC2

(Z), with C1 and C2 control processes for Z. Recalling
that C := C1 + C2 is a control process for Z, let us set, for every k ∈ N,

τ0k := inf
{
t ∈ [0, T ] : C(t)(L(t)− L(0)) ⩾ k

}
∧ τ

and τk := τ0k1Fk
, where Fk is the event {∥X0∥ ⩽ k}. By the hypotheses on B it follows that

λCτk−
(
B(Xi)

)
= Cτk−

∫ τk−

0

∥∥[B(Xi)](s)
∥∥2

L (K,H)
dCs

⩽ Cτk−

∫ τk−

0

(
1 + (Xi)

∗2
s−

)
dLs

⩽ Cτk−(Lτk− − L0)
(
1 + (Xi)

∗2
τk−

)
⩽ k

(
1 + (Xi)

∗2
τk−

)
∈ L1(Ω).

Hence, for every stopping time σ ⩽ τk, Proposition 6.6 yields

EX∗2
σ− + E

∫ σ

0

∥X(s)∥2V ds ≲ EλCσ−
(
B(X1)−B(X2)

)
,
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thus also, by the Lipschitz continuity of B,

E
(
X1 −X2

)∗2
σ− ≲ kE

(
(X1 −X2)

∗2 · L
)
σ−,

which implies, by Lemma 4.6, that E
(
X1 − X2

)∗2
τk−

= 0 for every k ∈ N. Since τk tends

monotonically to τ as k → ∞, it immediately follows that X1 = X2 on [[0, τ [[. This implies that
B(X1) = B(X2) on [[0, τ ]], hence the jumps at τ of X1 and X2 are both equal to [B(X1)]τ∆Zτ ,
so that X1 = X2 on [[0, τ ]]. Finally, by comparison in (7.1), one gets

∫ ·
0
ξ(s) ds = 0, which implies

also ξ1 = ξ2.

Let us now come to the core of the proof of Theorem 3.2. The idea is simply to iterate
the construction of Proposition 7.1, to obtain a solution on a sequence of stochastic intervals
[[τn, τn+1]], n ∈ N, and to show that P(τn < T ) tends to zero as n→ ∞. Calling τ1 the stopping
time given by Proposition 7.1, let us define the increasing sequence of stopping times (τn)n∈N
defined as

τn+1 :=

{
τn, if ∥X(τn)∥ > n,

inf
{
t ⩾ τn : Ct(Lt − Lτn) > α

}
∧ T, if ∥X(τn)∥ ⩽ n,

where α is a constant as chosen in the proof of Proposition 7.1. Note that τn+1 is indeed a
stopping time because the event {∥X(τn)∥ > n} belongs to Fτn . Proposition 7.1 yields the
existence of a strong solution on [[τn, τn+1]] to equation (1.1) started at τn. A standard patching
argument shows that one thus obtains a strong solution (Xn, ξn) on [[0, τn]] for every n ∈ N.

We are going to show that P(limn τn < T ) = 0. Assume, by contradiction, that P(limn τn <
T ) > 0. One can rule out that τn+1 ̸= τn occurs only a finite number of times. In fact, if it were
the case, then there would exist n̄ ∈ N such that ∥X(τn̄)∥ is larger than every natural number
on an event of positive probability. This is impossible, because Xτn is a well-defined H-valued
random variable for all n ∈ N. This implies that, on an event F of strictly positive probability,
Lτn+1 − Lτn > 0 for every n belonging to an infinite subset N′ of N. Since C is increasing, one
has

Lτn+1
− Lτn >

α

Cτn

⩾
α

CT
∀n ∈ N′,

hence denoting the variation of L by |L| and recalling that L is also increasing,

|L| ⩾
∑
n∈N′

∣∣Lτn+1
− Lτn

∣∣ = ∞ on F.

This contradicts the hypotheses on L, therefore τn → T P-a.s. as n → ∞. The solution
constructed above is thus defined on the whole interval [0, T ]. Furthermore, such a solution is
also unique, thanks to Lemma 7.2.

An argument entirely analogous to the one used in the proof of Lemma 7.2 yields, bearing in
mind the definition of τn,

EX∗2
τn− + E

∫ τn

0

∥X(s)∥2V ds+ E
∫ τn

0

∫
D

ξ(s)X(s) dx ds ≲ n2 ∀n ∈ N,

hence, in particular,

X∗2
τn− +

∫ τn

0

∥X(s)∥2V ds+
∫ τn

0

∫
D

ξ(s)X(s) dx ds

is finite P-a.s. for all n ∈ N. Since X∗
τn ⩽ X∗

τn− + ∥∆X(τn)∥ and, for all ω in an event of
probability one, there exists n̄ such that τn(ω) = T for all n ⩾ n̄, it follows that

X∗2
T +

∫ T

0

∥X(s)∥2V ds+
∫ T

0

∫
D

ξ(s)X(s) dx ds <∞
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with probability one.
Let us now turn to the continuity with respect to the initial datum. Let (X0n) be a sequence

of F0-measurable random variables such that X0n → X0 in probability, and let Xn be the unique
solution to (1.1) with initial datum X0n. Then there exists a subsequence (X0n′) converging to
X0 P-almost surely. Setting

Sk :=
⋂

n′⩾k

{
∥X0n′ −X0∥ ⩽ 1

}
,

it is clear that (Sk) is an increasing sequence of elements of F0 whose limit as k → ∞ is an event
of probability one. In fact,

P(Sk) = P
(
∥X0n′ −X0∥ ⩽ 1 ∀n′ ⩾ k

)
,

which converges to one as k → ∞ by definition of almost sure convergence. Moreover, (X0n −
X0)1Sk

obviously converges to zero in probability as n→ ∞ for every k, and∥∥(X0n −X0)1Sk

∥∥ ⩽ 1 ∀n ⩾ k.

Therefore, by the dominated convergence theorem, (X0n−X0)1Sk
converges to zero in L2(Ω;H)

as n → ∞ for each k. Let (τk) be an increasing sequence of stopping times converging to T ,
for instance as the one constructed above, and define a new sequence of stopping times (σk)
as σk := τk1Sk

. Then a (by now) familiar reasoning using Itô’s formula for the square of the
norm, stopping at σk−, and applying the stochastic Gronwall lemma, much as in the proof of
Lemma 7.2, yields

E
(
X −Xn

)∗2
σk−

+ E
∫ σk

0

∥(X −Xn)(s)∥2V ds ≲ E
∥∥X0 −X0n

∥∥21Sk
,

where the right-hand side converges to zero as n→ ∞ for every k. We have thus shown that Xn

converges to X prelocally in S2(T ). Since T was arbitrary and all results continue to hold if T
is replaced by, e.g., T + 1, Xn converges to X prelocally also in S2((T + 1)), which implies that
(Xn −X)∗T converges to zero in probability (see, e.g., [26, p. 261]). The proof of Theorem 3.2 is
thus completed.
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