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Abstract—Prescribed performance control (PPC) has
been widely applied in motion control systems due to its
ability to regulate both transient and steady-state perfor-
mance through well-defined performance functions. How-
ever, its core design ideas, involving error state transfor-
mation or reciprocal nonlinear gain, can lead to invalid re-
sults under certain initial conditions, significantly restrict-
ing its practical application. To address these issues, a
new motion control approach with prescribed performance
is investigated using the control barrier function (CBF)
technique. The tracking control problem is formulated as a
quadratic programming by modifying a baseline controller
subject to the proposed prescribed performance CBF (PP-
CBF) constraints, where the disturbance observer tech-
nique is employed to handle lumped disturbances, such as
unknown friction and load torque. Unlike conventional PPC
methods, this framework allows for initial states outside the
performance envelope and mitigates potential singularity
issues near the boundary. The stability of the optimization-
based control policy is rigorously analyzed. Comparative
experimental tests conducted on a permanent magnet syn-
chronous motor (PMSM) platform illustrate the effective-
ness of the proposed method in achieving the prescribed
performance specifications and its adaptability to nonlocal
initial conditions and suddenly added loads.

Index Terms—Control barrier function, disturbance rejec-
tion, motion control, prescribed performance.

I. INTRODUCTION

H IGH-performance motion control system has been a
critical element in ensuring the efficiency, safety, and

quality of a wide range of practical systems and applications,
e.g., the robotics [1], [2], the unmanned aerial vehicles [3],
[4], and the electrical vehicles [5], [6]. Over the past few
decades, significant efforts have been devoted to developing
advanced control methodologies that enhance the precision and
robustness of control systems against uncertainties, external
disturbances, and unmodeled dynamics [7]–[13]. However,
providing explicit performance guarantees in both the transient
and steady-state phases remains a challenge, but is increasingly
demanded by emerging robotic and autonomous systems,
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such as ensuring the safe operation of manipulators [14],
achieving smooth acceleration in autonomous vehicles [15]
and executing aerial manipulation tasks with drones [16].
Meeting these requirements demands the continued research
and development of controller design with explicit control
performance.

To achieve the desired explicit tracking performance, two
approaches have been proposed: funnel control (FC) [17],
[18] and prescribed performance control (PPC) [19], [20].
These two control methods share the common characteristic
of using a monotonically decreasing performance function to
identify desired performance specifications such as maximum
overshoot, minimum convergence rate, and maximum steady-
state tracking error. While funnel control adjusts the con-
trol gain using a time-varying function that increases when
the output tracking error approaches the predefined funnel
boundary, PPC employs a state transformation technique to
convert constrained control problems into the boundedness of a
transformed variable. The PPC and FC control methodologies
have been applied to different practical motion control systems
[21]–[24]. To be specific, by constructing a friction compen-
sation neural network, an adaptive control with prescribed
performance constraint is proposed for a class of nonlinear
mechanisms and tested on a two-axis turntable servo system
in [21]. In [22], a backstepping-based funnel control approach
is investigated for the position control of permanent magnet
synchronous motors (PMSMs), where the extended state ob-
server (ESO) is used to estimate the lumped disturbances.
Integrating with the terminal sliding mode control, the pre-
scribed performance speed control is developed for the linear
traction system by utilizing the disturbance observer [23]. To
improve the tracking performance in steady-state phase, based
on the dynamic surface control technique, a practical finite-
time funnel control is studied and verified on a two-joint robot
arm [24].

These noteworthy works guarantee the prescribed perfor-
mance tracking tasks for different systems, but they impose a
strict condition on the initial state, which will complicate real-
world implementation. Additionally, the closed-loop system
may become unstable if the states deviate from the interior of
the performance envelope with suddenly added disturbances
or measurement errors. To address these issues, theoretical
advances have been proposed. In [25], an interval theory-
based switching controller is suggested for a class of non-
linear systems, addressing the issue of infinite control energy.
Additionally, [26] introduces a novel prescribed performance
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controller with a flexible performance function mechanism
for nonlinear systems subject to input saturation, where the
performance function increases when input saturation occurs.
This concept is further explored in [27] for a class of nonlinear
systems within the FC framework. However, these innovative
approaches require a redesign of the controller, increasing the
complexity of implementation.

Recently, the control barrier function (CBF)-based control
approach has emerged as an effective tool to achieve formal
safety constraints for safety-critical systems by guaranteeing
the forward invariance of a specified safety set [28]–[30].
In the context of CBF-based control, the desired forward
invariant performance can be achieved by modifying con-
ventional controller with the CBF constraints. Moreover, the
CBF can drive the system asymptotically to the boundary of
the safety set if the initial states are outside that set. These
potentials offer the possibility of developing a new approach to
address the prescribed performance control task. Nevertheless,
there are few works that address the prescribed performance
control for CBF-based motion control systems with rigorous
theoretical stability analysis. Moreover, conventional CBF-
based approaches are also prone to be affected by external
disturbances and unknown dynamics, increasing the difficulty
in controller design and analysis.

In this paper, leveraging the benefits of CBF, we introduce a
new prescribed performance motion control (PPMC) approach
for a class of motion control systems with disturbances. To
address the limitations in conventional PPC methods, explicit
performance constraints are interpreted as two compatible pre-
scribed performance CBF (PP-CBF) constraints on the control
input, where the disturbance estimation and compensation
technique [31] is employed to enhance robustness. Based on
the proposed PP-CBFs, an optimization-based control policy is
constructed by modifying the baseline controller to guarantee
the prescribed performance constraint and the precise tracking
performance, simultaneously. Incorporating the sharing CBFs
and piecewise quadratic Lyapunov function techniques [32],
[33], the global stability of the closed-loop system is estab-
lished under certain mild conditions. To validate the effec-
tiveness of the proposed approach, experimental tests are con-
ducted on a permanent magnet synchronous motor (PMSM)
test platform under different initial states and load conditions.
The results showcase the effectiveness of the proposed method
in achieving the prescribed performance objective and its
versatility in handling nonlocal initial conditions and sudden
load changes. The main contributions are concluded as follows

1) Different from the conventional FC or PPC methodology,
an alternative prescribed performance control framework
is developed based on the CBF for a class of motion con-
trol systems, which eliminates the strict initial condition
constraints and addresses potential singularity issues.

2) Incorporating with the sharing CBFs and piecewise
quadratic Lyapunov function techniques [32], [33], suf-
ficient conditions guaranteeing the global stability are
theoretically derived.

3) Comparative experimental tests are conducted on a
PMSM platform with different initial state and load con-
ditions, demonstrating the effectiveness of the proposed

control approach and its adaptability in practical use.
Notation: Sets of real numbers and nonnegative integers

are denoted as R and N. For i, j ∈ N satisfying i ≤ j, define
Ni:j ≜ {i, i+1, · · · , j} as a subset of N. The identity matrix is
denoted as In with size n. Denote λmax(P ) as the maximum
eigenvalue of a given matrix P . Define Om×n as a zero matrix
of order m× n. Denote M ≻ 0, M ⪰ 0, M ≺ 0 and M ⪯
0 for positive-definite, positive semi-definite, negative-definite
and negative semi-definite matrices, respectively. A continuous
function αe : (−b, a) → (−∞,∞) is said to belong to the
extended class K function for some a, b > 0 if it is strictly
increasing and αe(0) = 0. Define ∥x∥ as the 2-norm of vector
x.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, the basic notion of a control barrier function
is first introduced. Then, the mathematical model of the studied
motion control system is presented along with the description
of the prescribed performance tracking task.

A. Control barrier function
Consider the following nonlinear system

ẋ = f(x) + g(x)u, (1)

where x ∈ X ⊆ Rn, u ∈ Rm are the states and the control
inputs, X is the admissible set of state. Nonlinear functions
f : Rn → Rn, g : Rn → Rn×m are Lipschitz continuous
functions. Taking into account a continuously differentiable
function h : Rn → R, we define the following 0-superlevel
set

C = {x ∈ Rn|h(x) ≥ 0}. (2)

Denote ∂C := {x ∈ Rn|h(x) = 0} and Int(C) := {x ∈
Rn|h(x) > 0} as the boundary and interior of the set C.
In the framework of CBF, if there exists a control input u
makes the set C a forward invariant set, i.e., the trajectory
x(t) ∈ C, ∀t > 0, if x(0) ∈ C, then the system is able to
guarantee the constraints specified by C.

Definition 1. [29] Considering the nonlinear system (1),
the continuously differentiable function h(x) is a CBF, if there
exists an extended class K function αe(·) subject to

sup
u∈Rm

{Lfh(x) + Lgh(x)u+ αe(h(x))} ≥ 0, ∀x ∈ X, (3)

where Lfh(x) = ∂h(x)
∂x f(x) and Lgh(x) = ∂h(x)

∂x g(x) are
standard Lie derivatives.

If there exists a CBF h(x), then any Lipschitz continuous
control action u(t) ∈ KCBF := {u ∈ Rm|Lfh(x) +
Lgh(x)u+αe(h(x)) ≥ 0} renders the set C forward invariant.

B. Problem formulation
In this paper, we consider the following nonlinear motion

control system

ξ̇1 = ξ2,

ξ̇2 = g(ξ1, ξ2) + bu+ d,
(4)
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where ξ1, ξ2 are the position and velocity of the motion control
system, g(ξ1, ξ2) is the known nonlinear function, b is the
known control gain, u is the control input and d is the lumped
disturbance containing external load and unknown dynamics.
Without the loss of generality, the control gain b is considered
as a positive value. It should be highlighted that the considered
system (4) includes many practical systems like PMSM [22],
linear traction system [23] and one joint rotary system [34].

Define the tracking error e(t) = ξ1(t)− ξd(t), where ξd(t)
is the desired reference signal. Then, it is obtained that

ẋ1 = x2,

ẋ2 = f(ξ1, ξ2, ξ̈d) + bu+ d,
(5)

where x1 = e, x2 = ξ2 − ξ̇d, f(ξ1, ξ2, ξ̈d) = g(ξ1, ξ2) − ξ̈d.
The control objective of this study is to design a proper u(t)
to make the tracking error e(t) converge to zero and satisfy
the prescribed performance constraint expressed as follows

−p1(t) ≤ x1(t) ≤ p2(t),∀t > 0, (6)

where p1(t) and p2(t) are pre-defined smooth performance
functions to specify the desired transient and steady-state
performances, e.g., the maximum overshoot, the minimum
settling time and the maximum steady-state tracking error.
In this paper, the exponentially decreasing type performance
functions are considered, which can be uniformly presented as
follows

pi(t) = pi,0e
−ait + pi,∞, i ∈ N1:2, (7)

where pi,0 > pi,∞ > 0 are constants interpreting the perfor-
mance boundary, and ai > 0 are used to regulate the decaying
rate of performance functions.

Assumption 1. The desired position signal ξd(t) and its
derivatives ξ̇d(t) and ξ̈d(t) are assumed to be known smooth
signals. Meanwhile, in this study, the disturbance d is assumed
as an unknown time-varying signal satisfying |d| ≤ δ0 and
|ḋ| ≤ δ1, where δ0 and δ1 are known positive constants.

III. PRESCRIBED PERFORMANCE MOTION CONTROL
DESIGN

In this section, the prescribed performance motion con-
trol policy is adopted by proposing a new CBF encoding
the desired performance specification. Before introducing the
proposed approach, the design of disturbance observer is first
presented.

A. Disturbance observer design and estimation error
quantification

Considering the dynamics of error system (5), the distur-
bance observer employed from [35] is constructed as follows

ż = −L(f + bu+ z + Lx2),

d̂ = z + Lx2,
(8)

where z is the auxiliary state, L > 0 is the observer parameter
to be designed and d̂ is the estimate of d. Defining estimation
error ed = d− d̂, then it is obtained that

ėd = −Led + ḋ. (9)

From the dynamics of (9) and Assumption 1, ed is input-to-
state stable [36] with respect to ḋ(t). By selecting the zero
initial value of d̂(0), the solution of above error dynamics can
be over-estimated as

|ed(t)| = |e−Lted(0) +

∫ t

0

e−L(t−τ)ḋ(τ)dτ |

≤ δ0e
−Lt + δ1

∫ t

0

|e−L(t−τ)|dτ.
(10)

By solving the above integral, the following estimation error
bound is obtained

ϵ(t) =

(
δ0 −

1

L
δ1

)
e−Lt +

1

L
δ1. (11)

In the next section, the d̂ will be used to compensate for the
real disturbance in the dynamics of CBF and the estimation
error bound ϵ(t) will be utilized to dominate the impacts
caused by the estimation error.

B. Prescribed performance CBF design
To achieve the desired tracking constraint in (6), the fol-

lowing two continuously differentiable functions are utilized
to interpret the prescribed performance specification

h1(t, x1) = x1(t) + p1(t),

h2(t, x1) = p2(t)− x1(t).
(12)

Inspired by the virtue of CBFs, if there exists a control
u(t) such that all h1(t, x1) and h2(t, x1) are positive, then
the prescribed performance is achieved. Toward this end, we
define the following auxiliary states

ϕ1 = ḣ1 + l1h1,

ϕ2 = ḧ1 + (l1 + l2)ḣ1 + l1l2h1,

ψ1 = ḣ2 + l1h2,

ψ2 = ḧ2 + (l1 + l2)ḣ2 + l1l2h2,

(13)

where l1, l2 are positive constants to be designed. We further
define the following 0-superlevel sets as

C1,0 = {[x1, x2]T ∈ R2|h1(t, x1) ≥ 0},
C2,0 = {[x1, x2]T ∈ R2|h2(t, x1) ≥ 0},
C1,1 = {[x1, x2]T ∈ R2|ϕ1(t, x1, x2) ≥ 0},
C2,1 = {[x1, x2]T ∈ R2|ψ1(t, x1, x2) ≥ 0}.

(14)

Then, we can present the proposed PP-CBFs design.

Definition 2. (PP-CBFs) Consider the system (5) and the
disturbance observer (8) with Assumption 1. The time-varying
functions h1(t, x1) and h2(t, x1) are the PP-CBFs, if there
exist positive parameters l1 and l2 such that the following set
of control input is not empty

KPP−CBF :={u ∈ R|α1 + β1u ≥ 0 and α2 + β2u ≥ 0},
(15)

for all x := [x1, x2]
T ∈ C̄ and C̄ := C1,0∩C1,1∩C2,0∩C2,1,

where

α1 = f + (l1 + l2)ḣ1 + l1l2h1 + p̈1 + d̂− ϵ, β1 = b

α2 = −f + (l1 + l2)ḣ2 + l1l2h2 + p̈2 − d̂− ϵ, β2 = −b.
(16)
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The following theorem provides the sufficient conditions
that there exists a Lipschitz continuous controller from
KPP−CBF that renders the C̄ forward invariant, i.e., the
prescribed performance constraints can be achieved.

Theorem 1. Consider the system (5) and a well-designed
disturbance observer (8) with Assumption 1. If the initial con-
ditions of h1(0, x1(0)), h2(0, x1(0)), ϕ1(0, x1(0), x2(0)) and
ψ1(0, x1(0), x2(0)) are positive, and the following conditions
further hold,

l1l2pi(t) + (l1 + l2)ṗi(t) + p̈i(t) ≥ ϵ(t), i ∈ N1:2, (17)

then any Lipschitz continuous controllers belong to (15) ren-
ders the set C̄ forward invariant for the tracking error system
(5).

Proof. As shown in (15), the prescribed performance con-
straints can be expressed as the following two inequalities on
control input

bu ≥ −f − (l1 + l2)ḣ1 − l1l2h1 − p̈1 − d̂+ ϵ,

bu ≤ −f + (l1 + l2)ḣ2 + l1l2h2 + p̈2 − d̂− ϵ.
(18)

It can be obtained that if (17) is satisfied, the set KPP−CBF

is not empty. Then, substituting (18) into the dynamics of ϕ2
and ψ2, we have

ϕ2 ≥ d− d̂+ ϵ,

ψ2 ≥ d̂− d+ ϵ.
(19)

Due to the fact that ϵ(t) ≥ |ed(t)| from (11), it is obtained
that ϕ2(t) ≥ 0 and ψ2(t) ≥ 0,∀t > 0. Rewriting the dynamics
of (13), it is obtained that

ḣ1 =− l1h1 + ϕ1, ϕ̇1 = −l2ϕ1 + ϕ2

ḣ2 =− l1h2 + ψ1, ψ̇1 = −l2ψ1 + ψ2

(20)

Since the initial values of ϕ1 and ψ1 are positive, it is
obtained that ϕ1 and ψ1 are positive such that C1,1 and C2,1

are forward invariant from (13). Similarly, the sets C1,0 and
C2,0 are also forward invariant with h1(0, x1(0)) ≥ 0 and
h2(0, x1(0)) ≥ 0. Therefore, the forward invariant property
of set C̄ is guaranteed such that the prescribed performance
constraints are satisfied.

C. Prescribed performance CBF-based control design
Regarding the specification of the prescribed performance

constraints by PP-CBFs, accurate position tracking is the other
goal that needs to be achieved. To this end, the following
PPMC quadratic programming (PPMC-QP)-based control pol-
icy is proposed by modifying a baseline tracking controller
v(t) with PP-CBFs

u∗ =argmin
u∈R

1

2
(u− v)2, PPMC QP

s.t. α1 + β1u ≥ 0, C1
α2 + β2u ≥ 0. C2

(21)

The robust tracking controller v based on the notion of
disturbance-observer-based control (DOBC) is designed as
follows

v = −1

b
[k1x1 + k2x2 + f(ξ1, ξ2, ξ̈d) + d̂], (22)

𝑝𝑝1 𝑡𝑡  𝑝𝑝2(𝑡𝑡)

Motion control 
system (4)

Disturbance 
observer (8)

Baseline 
controller (22)

𝜉𝜉𝑑𝑑 , ̇𝜉𝜉𝑑𝑑 , ̈𝜉𝜉𝑑𝑑
𝜉𝜉1, 𝜉𝜉2

𝜉𝜉1, 𝜉𝜉2𝑢𝑢∗
PP-CBF Quadratic Programming (21)

�̂�𝑑

�̂�𝑑

𝜉𝜉1, 𝜉𝜉2

𝑣𝑣

Performance 
function (7)

Estimation error 
bound (11)

𝜖𝜖(𝑡𝑡) �̂�𝑑𝜉𝜉1 𝜉𝜉2

PPMC QP

𝜉𝜉1, 𝜉𝜉2
̇𝜉𝜉𝑑𝑑 , ̈𝜉𝜉𝑑𝑑

Fig. 1: The control block of the proposed motion control
approaches.

where k1, k2 are the positive parameters to be designed.
The schematic block of the proposed prescribed performance
motion control approach is presented in Fig. 1. With the
proposed control approach in (21), the prescribed performance
tracking task can be achieved. Moreover, if the initial condition
is located outside the performance boundary, the system will
enter the performance envelope in finite time first and then
converge to the reference. To rigorously demonstrate this, we
present Theorem 2.

D. Stability analysis
To analyze the stability of the closed-loop system, we

first solve the explicit form of (21) by using the Karush-
Kuhn-Tucker (KKT) condition in [37]. Consider the following
Lagrangian function,

L =
1

2
(u− v)2 + λ1[−bu− (l1 + l2)ḣ1 − l1l2h1 − p̈1 − f

− d̂+ ϵ] + λ2[bu− (l1 + l2)ḣ2 − l1l2h2 − p̈2 + f + d̂

+ ϵ],
(23)

where λ1 and λ2 are Lagrangian multipliers. Depending on
whether the two performance constraints are active, the opti-
mized controller can be solved as follows

u =


v, x ∈ Ω0

− 1
b [l1l2h1 + (l1 + l2)ḣ1 + p̈1 + f + d̂− ϵ], x ∈ Ω1

1
b [l1l2h2 + (l1 + l2)ḣ2 + p̈2 − f − d̂− ϵ], x ∈ Ω2

,

(24)
with
Ω0 :={x ∈ R2|ET

1 x+ σ1 ≥ 0 and ET
2 x+ σ2 ≥ 0},

Ω1 :={x ∈ R2|ET
1 x+ σ1 ≤ 0 and ET

2 x+ σ2 ≥ 0},
Ω2 :={x ∈ R2|ET

1 x+ σ1 ≥ 0 and ET
2 x+ σ2 ≤ 0},

(25)

where σi = l1l2pi + (l1 + l2)ṗi + p̈i − ϵ, i ∈ N1:2, E1 =
[l1l2−k1, l1+l2−k2]T and E2 = [k1−l1l2, k2−l1−l2]T . Here,
the parameters ki and li satisfy k1 ̸= l1l2 and k2 ̸= l1 + l2.
The switching surfaces ET

i x + σi = 0 are determined based
on whether the constraints C1 and C2 in (21) are active,
respectively. It should be highlighted that

⋃j=2
j=0 Ωj = R2.

Substituting (24) into (5), the closed-loop system can be
rewritten as a piecewise linear systems

ẋ =

 Ax+ a0, x ∈ Ω0

Gx+ a1, x ∈ Ω1

Gx+ a2, x ∈ Ω2

, (26)

with

A =

[
0 1

−k1 −k2

]
,G =

[
0 1

−l1l2 −l1 − l2

]
,
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where a0 = [0, ed]
T , a1 = [0,−σ1+ed]T , a2 = [0, σ2+ed]

T .
Augmenting the state x with σi in different partitions Ωi, it
is obtained that

˙̄x0 = Āx̄0 + δ0, x ∈ Ω0

˙̄xi = Ḡx̄i + δi, x ∈ Ωi

(27)

where x̄0 = [x1, x2, 0]
T , x̄1 = [x1, x2,−σ1]T , x̄2 =

[x1, x2, σ2]
T , δ0 = [0, ed, 0]

T , δ1 = [0, ed,−σ̇1]T , δ2 =
[0, ed, σ̇2]

T and

Ā =

 0 1 0
−k1 −k2 0
0 0 0

 , Ḡ =

 0 1 0
−l1l2 −l1 − l2 1
0 0 0

 .
Define

F 0 =

[
−k 0
I2 02×1

]
,F i =

[
−l 1
I2 02×1

]
,kT =

[
k1
k2

]
,

lT =

[
l1l2
l2 + l2

]
, Ē1 =

[
−E1 1
01×2 −1

]
, Ē2 =

[
−E2 −1
01×2 1

]
.

Then, the stability of the closed-loop system is concluded in
the following theorem.

Theorem 2. Consider the system (5) and the disturbance
observer (8) with Assumption 1. Given that the PP-CBFs
h1(t, x1) and h2(t, x1) satisfy the following conditions

k1pi(t) + k2ṗi(t) + p̈i(t) > (1 +m)ϵ(t), i ∈ N1:2, (28)

where m ≥ 4λmax(PG)
√

(l1l2 − k1)2 + (l1 + l2 − k2)2 and
PG is a symmetric positive definite matrix satisfying GTPG+
PGG = −I2. If there exist symmetric matrix T and positive
definite matrices M i and N i satisfying

P 0 ≻ 0, Ā
T
P 0 + P 0Ā ≺ 0, (29a)

P i ≻ Ē
T
i N iĒi, Ḡ

T
i P i + P iḠi ≺ −Ē

T
i M iĒi, (29b)

and P j = F T
j TF j , j ∈ N0:2, then the prescribed perfor-

mance tracking task will be achieved and the tracking error
will globally converge to a compact set around the origin.

For the sake of readability, the details of the stability
analysis are given in the Appendix.

Remark 1. Due to the space limit, only the case of l1l2 ̸= k1
and l1 + l2 ̸= k2 is discussed, the other cases, e.g. l1l2 = k1
or l1 + l2 = k2, can be analyzed following a similar way
by constructing corresponding Lagrangian functions under
certain conditions.

Remark 2. It should be highlighted that the proposed
approach is capable of ensuring the strictly prescribed perfor-
mance constraint with external torque that satisfies Assump-
tion 1. In the presence of abnormal working conditions, such
as sudden load changes, the tracking error may cross the
performance boundary. The reason is that the error bound ϵ(t)
in (11) decreases with time and cannot dominate the estimation
error with a noncontinuous change. However, such an error
will quickly decay and the position tracking error will renter
the performance envelope following the results in Theorem 2.

Remark 3. In this paper, the disturbance observer from [35]
is employed due to its ability to directly estimate the lumped
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Fig. 2: Configuration of the experimental test platform.

disturbance and its ease of design. Generally, this observer
can be substituted with other estimation techniques such as the
extended state observer (ESO) [38], uncertainty disturbance
estimator (UDE) [39], and equivalent-input-disturbance (EID)
[40]. However, it is important to note that the correspond-
ing estimation error quantization would require modification
through the construction of a new Lyapunov function.

Remark 4. The control parameters for the baseline con-
troller can be adjusted using classical disturbance observer-
based control principles. Specifically, k1 and k2 can be chosen
through methods such as pole placement or linear quadratic
regulation, and L can be set to balance convergence rate
and noise attenuation. Regarding the l1 and l2 derived from
the PP-CBF, increasing l1 expands the set C̄ and thus eases
the constraint on initial states according to Theorem 1. On
the other hand, reducing l2 prevents the tracking error from
approaching the performance boundaries too closely. The
estimation error bound ϵ has a direct impact on the active
set of the baseline controller and can be adjusted following
the condition (29).

IV. EXPERIMENTAL TESTS ON PMSMS

In this section, to verify the effectiveness of the proposed
approach, comparative experimental tests are conducted on a
PMSM platform.

A. Mathematical model of PMSM

During the verification study in experiments, we only con-
sider the control design of position and speed loops. The
quick tracking dynamics of current loops (i.e., from current
reference i∗q to real current iq) is ignored here by assuming that
the current controllers are already well designed. Meanwhile,
to obtain the maximum torque-to-current ratio, the reference
value of the d-axis current i∗d is set to zero. The PMSM system
can be written as follows

θ̇ = w,

ẇ = −B
J
w + 1.5

npψf

J
iq −

TL
J
,

(30)
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Fig. 3: Experimental results of Case I (prescribed performance tracking test). The performance functions are p1(t) = 2πe−6t+
0.1 rad and p2(t) = 0.4πe−6t + 0.1 rad, and load torque is TL = 0.1 + 0.05 sin(2πt) N ·m.

where θ is the angular position, w is the angular velocity, np
is the number of pole pairs, ψf is the rotor flux linkage, TL
is the load torque, J is the rotor inertia and B is the viscous
frictional coefficient and iq is the current of q-axis.

B. Experiment setup

The test platform, as shown in Fig. 2, is constructed
based on the Texas Instruments C2000 development board
(TSM320F280039C), and two low-voltage 3-phase sinusoidal
permanent magnet motors (ASM200-36-2500) with embedded
encoders, which are coupled in a dyno setup. One of the
motors is controlled using the designed approach, while the
other operates in torque control mode, serving as an external
load. The switching frequency of the pulse width modulation
(PWM) and the sampling frequency of the digital signal
processor (DSP) are set at 20 kHz and 1 kHz, respectively.
The electrical and mechanical parameters of the motors are
ψf = 1.2 × 10−2 Wb, J = 3.2 × 10−5 kg ·m2, B =
1.3× 10−3 N ·m · s/rad and np = 5.

To fully examine the explicit desired tracking performance,
the position reference is set as θd(t) = 1.5π cos(π2 t)rad in the
following tests. Besides, the uncertainties consisting of both
internal inertia perturbation (i.e., a variation of 10% percent
below the nominal value) and external disturbance are imposed
on the PMSM, which aims to investigate the robustness of
the closed-loop system. Three cases are considered where the
proposed controller is compared with the baseline as (22) and

the traditional PPC developed in [21] as follows

u =
1

b

{
−1

r
[kS + λη̇ + ṙ(x2 − a1x1 + a2x

2
1)]− f − d̂

+ ȧ1x1 + a1x2 − ȧ2x
2
1 − 2a1x1x2

}
,

(31)

with

S = η̇ + kη, η = ln

(
1 + x1

p1

1− x1

p2

)
, r =

p1 + p2
(p1 + x1)(p2 − x1)

,

a1 =
p21ṗ2 + p22ṗ1
p1p2(p1 + p2)

, a2 =
p2ṗ1 − p1ṗ2
p1p2(p1 + p2)

,

where η is the transformed state and k, λ are control param-
eters to be designed. The time-varying variables ṙ, ȧ1 and ȧ2
are relative derivatives. The performance functions are set as
p1(t) = 2πe−6t+0.1 rad and p2(t) = 0.4πe−6t+0.1 rad. The
saturation bound of the reference current i∗q is set as 10 A. The
control parameters of three control approaches are k1 = 1600,
k2 = 80 for the baseline controller, l1 = 2000, l2 = 50 for PP-
CBFs, k = 65, λ = 65 for the PPC controller, and L = 1200
for disturbance observer. These parameters are adjusted to
achieve a comparable initial control effort and settling time.

C. Experiment results
1) Case I (prescribed performance tracking test): In this

case, the prescribed performance tracking task is tested in the
presence of load torque satisfying TL = 0.1+0.05 sin(2πt) N·
m.

The experimental results are shown in Fig. 3 containing
the curves of tracking error, angular velocity, and reference
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Fig. 4: Experimental results of Case II (nonlocal initial position error test). The performance functions are p1(t) = p2(t) =
0.4πe−6t + 0.1 rad, and load torque is TL = 0.1 + 0.15 sin(2πt) N ·m.
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Fig. 5: Experimental results of Case III (suddenly added disturbance test). The performance functions are same as Case I, and
load torque is set as TL = 0.05+0.15 sin( 3π2 t−

π
2 ) N ·m, and it is changed to TL = −0.05− 0.05 cos( 3π2 t) N ·m at t = 10s.

current. It is obtained that the proposed control scheme is
able to achieve the desired tracking task with the prescribed
performance constraint and presents similar accuracy as the
traditional PPC scheme. Compared with the baseline approach,
both the proposed approach and the PPC exhibit improved

tracking error trajectories in both transient and steady-state
phases, demonstrating their capability to regulate overshoots
as they approach the performance boundary.

2) Case II (nonlocal initial position error test): To show the
effectiveness of the proposed approach in relaxing the strictly
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initial state condition, the performance functions are selected
as p1(t) = p2(t) = 0.4πe−6t + 0.1 rad, and a more intense
load torque is set as TL = 0.1+0.15 sin(2πt) N ·m. Since the
conventional PPC control does not work when x(0) ≤ −p1(0)
or x(0) ≥ p2(0), we only compare the tracking performances
of the proposed and baseline approaches in this case.

The experimental results including tracking error, velocity,
and reference currents are shown in Fig. 4. When the initial
error is outside the performance envelope, it is obtained that
the proposed controller first drives the tracking error into the
performance boundary, then it achieves the prescribed perfor-
mance tracking task. Compared with the baseline controller,
the proposed controller regulates the tracking performance in
both the transient and steady-state phases.

3) Case III (suddenly added disturbance test): The pres-
ence of suddenly added load torque exists widely in PMSM-
based applications. The following experiments are evaluated
to show the control performances of the proposed method
towards suddenly added disturbances. The load torque is set
as TL = 0.05 + 0.15 sin(3π2 t−

π
2 ) N ·m, and it is changed to

TL = −0.05− 0.05 cos( 3π2 t) N ·m at t = 10s.
The experimental results are shown in Fig. 5. In Fig. 5c, in

the presence of suddenly added loads, the error of the baseline
approach crosses the prescribed performance regions, while
the proposed approach shows better control performance,
since one of the constraints in PPMC-QP has become active.
However, the closed-loop system under the PPC controller
is not stable once the tracking error crosses the performance
boundary, as the transferred state η becomes ill-defined in this
situation.

V. CONCLUSION

In this paper, a new control methodology has been devel-
oped to achieve the prescribed performance motion control
for a class of nonlinear motion systems. This new frame-
work has provided an alternative but easier way to regulate
the tracking performance with a relaxed condition on initial
states and improved adaptability to suddenly added loads. To
realize this goal, a quadratic programming problem has been
constructed by modifying a baseline tracking controller with
two compatible PP-CBFs designed to interpret the specified
prescribed performances. The effectiveness of the proposed
method has been verified through rigorous theoretical analysis
and experimental tests of position control for PMSMs.

APPENDIX

A. Proof of Theorem 2
Proof. The proof is divided into two parts. We first show
that if the initial conditions of x(0) are within the set C̄,
the prescribed performance constraints can be achieved and
the tracking error converges to a compact set around the
origin. Then, the stability of the closed-loop system is analyzed
∀x(0) ∈ R2/C̄. To briefly illustrate the dynamic behavior of
the system, the state trajectories under the proposed controller
(21) in the phase plane with constant performance functions
p1(t), p2(t) are shown in Fig. 6a. It should be highlighted that
the depicted error state trajectories in Fig. 6 apply to the case

x2

h1 = 0 φ1 = 0
h2 = 0 ψ1 = 0

Switching surface generated by

Switching surface generated by Prescribed performance set

x2

Ω0 Ω1 Ω2

x(0) ∈ C̄ x(0) ∈ R2/C̄

C1
C2 C̄

(a) State trajectories in phase plane

Ω̃1 (−p1(t),−ṗ1(t))

(p2(t), p2(t

Zoomed figure around (−p1(t),−ṗ1(t)) Zoomed figure around (p2(t), ṗ2(t))

(b) Geometry relationships between Ω̃1, Ω̃2 and switching surfaces C1,C2

Fig. 6: Illustration of error states in phase plane with constant
performance functions.

where l1l2 − k1 > 0 and l1 + l2 − k2 > 0. Similar analyses
can be conducted for other cases.

Part 1: From the results of Theorem 1, if x(0) ∈ C̄, it
can be obtained that the prescribed performance constraints
are achieved ∀t ≥ 0.

As shown in (26), the closed-loop system has three potential
attractors, i.e., [−p1(t),−ṗ1(t)]T , [p2(t), ṗ2(t)]T and [0, 0]T ,
in different partitions. In the following, we first show that
there exists a compact set around the origin, which is the
unique attraction region of the closed-loop system. This can be
verified by comparing the distances from [−p1(t),−ṗ1(t)]T
and [p2(t), ṗ2(t)]

T to the switching surfaces ET
i x + σi =

0, i ∈ N1:2 and the ultimate bound of ∥hi∥. To this end,
according to (26), the dynamics of hi(t, x) can be rewritten
as

ḣi = Ghi + µi, x ∈ Ωi, (32)

where hi = [hi, ḣi]
T , µ1 = [0, ϵ+ d− d̂]T and µ2 = [0, ϵ−

d+ d̂]T . Selecting a candidate Lyapunov function as Vh(hi) =
hT
i PGhi, its time derivative along the system (32) is

V̇h =hT
i (G

TPG + PGG)hi + 2hT
i PGµi

≤− ∥hi∥2 + 4ϵλmax(PG)∥hi∥.
(33)

Thus, the states hi converge to the compact sets Ω̃i := {h ∈
R2|∥hi∥ ≤ 4ϵλmax(PG)}. According to [41], the distances
di from [−p1(t),−ṗ1(t)]T and [p2(t), ṗ2(t)]

T to the switching
surfaces ET

i x+ σi = 0 are

di =
k1pi(t) + k2ṗi(t) + p̈i(t)− ϵ√
(l1l2 − k1)2 + (l1 + l2 − k2)2

. (34)

Considering the conditions (28), it can be concluded that Ω̃i

is located in the set Ω0. The geometry relationships between
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the Ω̃i and the switching surfaces are demonstrated in Fig.
6b. Meanwhile, considering a candidate Lyapunov function
Va = xTPAx with ATPA + PAA = −I2, its derivative
along the subsystem of (26) when x ∈ Ω0 is

V̇a =xT (ATPA + PAA)x+ 2xTPAa0. (35)

Then, since a0 = [0, ed]
T is ultimately bounded, there exists

a sublevel set Ω̃0 = {x ∈ R2|xTPAx ≤ l, l > 0} such that
once the states enter this set, they will not escape from it.

Next, to analyze the stability of the closed-loop system,
the following piecewise quadratic Lyapunov functions are
constructed

V (x̄) =

{
x̄T
0 P 0x̄0, x ∈ Ω0

x̄T
i P ix̄i, x ∈ Ωi,

. (36)

It can be verified that the selected Lyapunov function (36)
is continuous on the switching surfaces ET

i x + σi = 0, i.e.,
F 0x̄i = F ix̄i when ET

i x+ σi = 0. Its time derivative along
the augmented system (27) is

V̇ (x̄) =

{
x̄T
0 (Ā

T
P 0 + P 0Ā)x̄0 + 2x̄T

0 P 0δ0, x ∈ Ω0,

x̄T
i (Ḡ

T
P i + P iḠ)x̄i + 2x̄T

i P iδi, x ∈ Ωi

.

(37)
The perturbation terms δj , j ∈ N0:2 in (37) are ultimately
bounded, whose amplitude is determined by the estimation
error ed and the exponentially decaying functions σ̇i. Since
the condition (29) is satisfied, there exist positive constants
ηj , j ∈ N0:2, such that

V̇ (x̄) ≤ −ηi∥x̄i∥2 + 2x̄T
i P iδi, ∀x ∈ Ωi, (38)

Similar to analysis in (33), it is obtained that V̇ (x̄) ≤ 0, ∀x̄ ∈
Ωi × R/Υi, where Υi := {x̄ ∈ R3|∥x̄∥ ≤ 2λmax(P i)

ηi
∥δi∥}.

It should be noted that these sets can be adjusted as small as
possible by properly increasing the observer gain L such that
sets Υi are the subsets of Ω0 × R. If x ∈ Ω0, it is obtained
that

V̇ (x̄) ≤ −η0∥x̄0∥2 + 2x̄T
0 P 0δ0, ∀x ∈ Ω0, (39)

Then, we have V̇ (x̄) ≤ 0, ∀x̄ ∈ Ω0 × R/Υ0, where Υ0 :=

{x̄ ∈ R3|∥x̄∥ ≤ 2λmax(P 0)
η0

∥δ0∥}.
Thus, it can be concluded that V̇ (x̄) ≤ 0, ∀x̄ ∈ R3/Υ0

such that the tracking error will converge to a compact set
around zero.

Part 2: Following the above analysis that the state of the
error system will converge to a compact set around the origin
for all the x ∈ R2, then there exists tc > 0 such that x(tc) ∈
∂C̄ if the initial values of states are not located in the set
C̄. Thus, once the state enters the set C̄ when t ≥ tc, the
prescribed performance tracking tasks are achieved following
the results in Part 1. This completes the proof.
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