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Abstract—Beam prediction and tracking (BPT) are key tech-
nology for high-frequency communications. Typical techniques
include Kalman filtering and Gaussian process regression (GPR).
However, Kalman filter requires explicit system dynamics equa-
tion, which is challenging to obtain, especially for complicated
environments. In contrast, as a data-driven approach, there is no
need to derive the system dynamics equation for GPR. However,
the computational complexity of GPR is often prohibitive, which
makes real-time application challenging. To tackle this issue, we
propose a novel hybrid model and data driven approach in this
paper, which can exploit simultaneously the advantages of the
two techniques while overcoming their drawbacks. In particular,
the required system dynamics can be obtained via the data-driven
manner. In view that the system dynamics has been available,
we further investigate the long-term behavior and propose two
more efficient algorithms - long-term prediction and beam width
optimization. Our BPT approach enjoys two advantages. First,
the computational complexity is low due to the inherent Kalman
filter, which facilitates real-time implementation. Second, system
performance can be significantly improved thanks to the long-
term prediction and beam width optimization.

Index Terms—Beam prediction, beam tracking, hybrid model
and data driven, stochastic differential equation, Kalman filter-
ing, Gaussian process, millimeter wave communications.

I. INTRODUCTION

Millimeter wave (mmwave) communications, occupying 30-
300 GHz spectrum resources and offering significant under-
utilized bandwidth, have been considered as one of the most
promising solutions to meet high-speed wireless data demands
in the era of 5G and beyond [1]. However, the high frequencies
of mmwave signals lead to a large path-loss, which poses a
severe challenge to mmwave communications. To combat the
large path-loss, an effective solution is beamforming with high
gain, which is realized via large-scale antenna arrays thanks
to the short wave-length. Nevertheless, high-gain but narrow
beams make beam alignment challenging, especially in mobile
applications or dynamic environments [2], [3].

To obtain channel state information in mmwave communi-
cations, different design methodologies have been investigated,
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among which the most widely accepted one is beam training
and tracking [4]–[9]. This scheme consists of two stages,
i.e., initial beam alignment and subsequent beam tracking. In
the first stage, the optimal beam or beam pair is found via
adaptive or hierarchical search [4], [6], [7]. In general, a large
training overhead is involved in this stage. To enable efficient
search, a key task in this stage is to design a codebook that
has desired properties [6], [7], [10], [11]. To avoid frequent
search and thus reduce the training overhead, beam tracking
is invoked in the second stage. Compared to the initial beam
align-ment, the number of beams used for tracking is often
very small, e.g., maybe even only one beam. If beam tracking
fails, the (initial) beam alignment operation should be invoked
again. In industry, beam training or tracking involving beam
measurements is also referred to as beam sounding.

The key of beam tracking is beam prediction, i.e., to predict
a beam subspace that contains the real beam. Apparently, two
challenging issues are closely related to beam prediction. The
first one is success rate and prediction efficiency, i.e., the beam
subspace predicted should contain the real optimal beam, and
meanwhile, the beam subspace should be as small as possible.
The second one is the complexity of prediction, including both
sample complexity and inference complexity. To tackle the two
issues, various temporal and spatial channel correlations have
been excavated and exploited. The existing beam prediction
algorithms roughly fall into two categories, i.e., the classical
Kalman filtering based methods [12]–[15] and recent machine
learning (ML) based methods [16]–[22].

The most important step toward beam prediction is to con-
struct an appropriate prediction model. The Kalman filtering
technique addresses this issue by building a dynamical model
for the underlying physical system. Specifically, two stochastic
differential equations (SDEs), often referred to as state-space
and measurement equations, are established. As long as the
two SDEs are available, the well-known Kalman filter can be
invoked. An appealing advantage of the Kalman filtering based
methods is that they have low computational complexity. In
particular, the scaling of computational complexity for Kalman
filter is linear O(N) (where N is the number of samples), as
opposed to the cubic scaling O(N3) for GPR. This advantage
is attributed to the fact that the underlying system dynamics is
used explicitly. But the dynamics model is obtained via manual
derivation, which fails for complicated environments.

In contrast to Kalman filtering, ML addresses the issue of
prediction modeling by employing the data-driven mode. In
fact, one powerful ability of ML is that it can automatically
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extract meaningful patterns and derive an appropriate model
from observed data directly. The ML-based beam prediction
methods fall into two categories, i.e., reinforcement learning
(RL) based algorithms [19]–[23] and supervised learning (SL)
based algorithms. A salient advantage of the RL-based solu-
tions is that they can collect training samples via interacting
with environments, which enables to implement the algorithms
online [24]. However, since the fundamental of RL is Markov
decision process, it leads to low convergence rate and fails to
achieve good performance on the short term.

Another major category of the ML-based beam prediction
solutions is the SL-based algorithms [9], [16]–[18], [25]–[29].
The SL-based solutions circumvent the difficulty of manually
building models, due to the data-driven design paradigm. But
one drawback of the SL-based solutions is that the number of
training samples required is often very large, so as to achieve
good performance. Moreover, the rapidly fluctuating wireless
environments can also invalidate the deterministic prediction
models established. Among the many SL-based solutions, the
GPR-based algorithms have attracted considerable attentions
[26]–[29], thanks to the abilities of uncertainty calibration and
non-parametric modeling. Unfortunately, their computational
complexity is typically O(N3). Since wireless channels vary
quickly in practice, N can be very large. The large complexity
becomes an obstacle to real-time applications.

To tackle the aforementioned issues, in this paper we pro-
pose a novel hybrid model and data driven based approach,
which is referred to as data-induced intelligent Kalman filter-
ing (DIIKF). Our DIIKF can exploit the advantages of both
Kalman filtering and GPR techniques while overcoming their
drawbacks. In contrast to the existing GPR-based algorithms,
whose scaling is often cubic, the scaling of the computational
complexity of DIIKF is only linear. Compared to the Kalman
filtering methods, there is no need to derive the state-space and
measurement equations manually. Instead, the SDEs required
can be obtained via the data-driven manner, which makes our
approach applicable to more complicated scenarios. Since the
state-space equation is available, we propose to predict long-
term behavior of the underlying beam process, which can
significantly lower the frequency of beam sounding. The main
contributions of this paper are summarized as follows:
• We establish the equivalence (in the sense of probability

law) between two different system modeling methodolo-
gies, namely, the classical SDE-based system dynamics
modeling approach and the recent ML-based modeling
approach (via the neural network and GPR). The equiva-
lence constitutes the theoretical foundation of our DIIKF
approach, which, in fact, addresses the challenging issue
of lacking interpretability in ML methods.

• Based on the equivalence, we propose the DIIKF ap-
proach, which can exploit the powerful modeling ability
from ML and enjoy efficient inference from Kalman filter.
Specifically, we model complicated system dynamics via
GPR (and the deep neural network) while implementing
efficient online inference via Kalman filtering.

• The DIIKF approach consists of two components, i.e.,
implicit system dynamics modeling and explicit dynamics
representation via SDE. We first employ Bayesian multi-

task learning to implicitly extract underlying system dy-
namics. To enable efficient inference, we then convert the
implicit representation into explicit SDE representation,
based on which the Kalman filter can be invoked.

• In view that the SDE characterizing the system evolution
has been available, we further investigate the long-term
behavior of the underlying beam process. In particular,
we propose to lower the frequency of beam sounding by
incorporating long-term prediction via SDE, which can
notably improve system performance.

• We apply our DIIKF approach to the BPT problem and
propose efficient BPT algorithms. Simulation results are
provided to demonstrate the advantages of our algorithms,
which are two-fold. First, due to the powerful modeling
ability, they can be applicable to complicated scenarios.
Second, they have low computational complexity. As a
result, they achieve the state-of-the-art performance. Due
to the Bayesian design methodology, the desired small
sample performance can also be achieved.

The remainder of this paper is organized as follows. System
model of BPT is described in Section II. In Section III, the
principle of the DIIKF approach is elaborated, and efficient
BPT algorithm is also presented. The principle of long-term
prediction and the derived algorithm are proposed in Section
IV. Simulation results and conclusions are given in Section
V and Section VI, respectively. For completeness, the GPR
is introduced in the appendix. Proofs of propositions are also
deferred to the appendix to improve readability.

Notations: Bold uppercase A and bold lowercase a denote
matrices and column vectors, respectively. To distinguish, the
bold italic uppercase and bold italic lowercase represent matrix
function and vector function, respectively. Without particular
specification, non-bold letters A, a denote scalars. Caligraphic
letters A stand for sets. E(·) and (·)H denote the mathematical
expectation and Hermitian operators, respectively. I{·} and
card(A) stand for the indicator function and the cardinality of
set A, respectively. (·)? represents an optimal quantity, e.g.,
an optimal solution of an optimization problem. CN (m,Σ)
stands for the complex Gaussian random vector with mean m
and covariance matrix Σ. I denotes the identity matrix.

II. SYSTEM MODEL

Consider the mmwave point-to-point communication sys-
tem, which consists of one base station (BS) equipped with
N transmit antennas and a single-antenna user (UE). Typical
scenarios include the high-speed train, outdoor communication
(e.g., a pedestrian walks along a street), vehicle-to-everything
(V2X), and so on. Without loss of generality, we take the V2X
scenario as an example. To facilitate practical system imple-
mentation, we consider the codebook-based analog beamform-
ing, i.e., each beam is chosen from a predefined codebook
C =

{
f1, f2, · · · , fM

}
, where M is the size of codebook C.

Due to the sparsity of mmwave channels, an extended Saleh-
Valenzuela geometric model is considered here. The channel
vector between the BS and the UE is given by

h =
√
N/β

L∑
l=1

αla(φl, ψl), (1)
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where β is the average path-loss, L is the number of paths,
and αl is the complex path gain of the l-th path. In Eq.(1), φl
and ψl represent the elevation angle and azimuth angle of the
l-th path, respectively. If the i-th beam, i.e., fi, is chosen by
the BS, the signal received at the UE is given by

yi =
√
PhHfis+ wi, (2)

where P denotes the transmit power, s with |s| = 1 denotes
the pilot symbol, and wi ∼ CN (0, 1) is the received noise.
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Fig. 1. Frame structure of the typical prediction-and-sweeping based scheme.

The frame structure of the typical prediction-and-sweeping
based beam sounding scheme is shown in Fig. 1. For the beam
sounding scheme, each time-slot consists of three phases, i.e.,
beam prediction, beam sweeping and data transmission. First,
beam prediction module predicts a small beam subspace, i.e., a
small subset of C. Then, the beam sweeping module finds out
an optimal beam within the subspace for the subsequent phase
of data transmission. The effective achievable rate, introduced
to measure the throughput performance, is defined as [9]

Reff = (1− TB/TS) log
(
1 + P |hHfi|2

)
, (3)

where TB and TS denote the duration of beam sounding within
a time-slot and the duration of entire time-slot, respectively.

It can be observed from (3) that to achieve a high through-
put, the time allocated for beam sounding TB should be as little
as possible, so as to reserve more time for data transmission.
To reduce TB, the core is to develop an efficient prediction
model, which can predict a small but correct beam subspace.
However, it is a nontrivial task in practice. In what follows,
we will propose an efficient approach to take this issue.

III. HYBRID MODEL AND DATA DRIVEN APPROACH

It is well-known that Kalman filtering is inference-efficient
but modeling-inefficient, while GPR is modeling-efficient but
inference-inefficient. It is natural to raise the question, namely,
whether we can incorporate the two methods into a novel one,
which can exploit the advantages of them while overcoming
their drawbacks. In this section, we will tackle this issue
by proposing the DIIKF approach. For completeness, a brief
introduction of GPR is provided in Appendix A.

A. Outline of the DIIKF Approach

As shown in Fig. 2, to fully exploit the advantages of both
Kalman filtering and GPR, the DIIKF approach models the
system dynamics via Gaussian process and perform inference
or prediction via Kalman filter, i.e., Gaussian process for mod-
eling and Kalman filtering for inference. The key components
of DIIKF include historical data collection, prior extraction

and implicit representation of system dynamics, model con-
version, explicit SDE representation of system dynamics. The
main role of these components is as follows.
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Fig. 2. The principle of data-induced intelligent Kalman filtering approach.

To train or optimize a learning system or prediction model,
we first collect the training samples. Fortunately, the required
dataset can be collected online. Then, we choose an appropri-
ate learning model, and train the learning model to obtain an
implicit representation of system dynamics. With the implicit
representation available, we can already make decisions when
faced with new tasks, but at the cost of large complexity. To
tackle this issue, we further convert the implicit representation
of system dynamics into an explicit one, namely, the SDE that
describes system evolution, so as to use the Kalman filter.

During this process, we mainly encounter two key challeng-
ing problems. The first one is how to choose an appropriate
learning model and, more difficultly, how to train the learning
model, which makes the learned prior or model applicable to
future/new tasks. The second one is how to convert the implicit
representation of system dynamics into an explicit one. Next,
we proceed to tackle the two challenging issues.

B. Probabilistic ML Modeling for System Dynamics
In practice, the system dynamics is almost always charac-

terized by a system of SDEs, which can be written as

dx(t) = f(x, t)dt+ σ(t)dξ(t), x(0) = 0, (4)

where x(t) and ξ(t) represent the system state and Brownian
motion, respectively. f(x, t) and ξ(t) (modulated by the term
σ(t) referred to as volatility) characterize the deterministic and
stochastic part of system evolution, respectively. It seems that
we can obtain the system dynamics via estimating f(x, t) and
σ(t). However, it is a difficult task, because the data samples
required for f(x, t) and σ(t) are unavailable.

To tackle the above challenging issue, we first investigate a
closely related but simpler SDE, where f(x, t) is absent:

dy(t) = σ(t)dξ(t), y(0) = 0. (5)

To avoid confusion, we shall explicitly point out the underlying
probability space for the above SDEs, which is denoted by
(Ω,F , P ). For SDE (5), we have the following lemma.

Lemma 1. The solution of SDE (5) is a Gaussian process
with mean function 0 and kernel function given by 1

EP
(
x(t)xT(t′)

)
=

∫ min(t,t′)

0

σ(τ)σT(τ)dτ. (6)

1The notation EP is introduced to emphasize that the expectation is taken
with respect to probability measure P .
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Proof: See Appendix B.
The following theorem further establishes the equivalence

between the SDEs in (4) and (5).

Theorem 1. There exists a Borel measurable function F and
a probability measure Q (still defined on (Ω,F)) such that
under the measure Q, x(t) satisfies the following SDE:

dx(t) = σ(t)dξ̃(t), x(0) = 0, (7)

where ξ̃(t) is a standard Brownian motion under the measure
Q. In particular, the Q-law of y(t) is the same as the P -law
of x(t), where y(t) is the solution of SDE (5).

Proof: See Appendix C.
Because the Q-law of y(t) and the P -law of x(t) coincide,

they have the same finite-dimensional distributions. Moreover,
for arbitrary bounded functions {fk}, we have

EP
(
f1(x(t1))f2(x(t2)) · · · fk(x(tk))

)
=EQ

(
f1(y(t1))f2(y(t2)) · · · fk(y(tk))

)
.

(8)

Note that Q can be regarded as a probability measure defined
on the latent or transformed space F (Ω). Theorem 1 implies
that conditioned on measure Q and transformed space F (Ω),
we can equivalently characterize the probabilistic behavior of
SDE (4) by investigating the properties of SDE (5). In contrast
to SDE (4), whose probabilistic characteristics are unknown,
the solution of SDE (5) is a tractable Gaussian process.

Remark 3.1 Theorem 1, in fact, constitutes the theoretical
foundation of the DIIKF approach. First, as a bridge, it links
two different branches of system modeling methodologies. In
particular, it provides an efficient ML model or structure for a
dynamical system, which avoids heuristic (and even) random
selection of the prediction model. Moreover, it guarantees that
the ML model does not cause a systematic error.

The discussion above indicates that a Gaussian process that
incorporates the deep neural networks (DNNs) can completely
characterize the probabilistic behaviors of dynamical system
(4). In fact, the measurable function can be approximated by a
DNN parameterized by ΘT. For simplicity, we consider only
the basic kernel (e.g., the squared exponential kernel) whose
parameters are collected into ΘB. If necessary, the kernel can
also be parameterized and enhanced by a DNN. The overall
prediction model incorporated DNN can be denoted by

x(t) ∼ GP(t, t′|ΘT,ΘB). (9)

Next, we derive an efficient learning method for the prediction
model in (9) in the data-driven manner.

C. Implicit Dynamics Learning via Multi-task Learning

To elaborate on the key idea, we first shed light on single-
task GPR, which mainly consists of two steps. The first one
is to choose an appropriate model, which can characterize and
encode important prior (e.g., domain knowledge). The prior
is updated into a posterior when a dataset is available, which
constitutes the second step. The details are as follows. The
dataset is denoted by S = {(x1, y1), · · · , (xn, yn)}, with xi
and yi denoting input and output, respectively 2. Given S, the

2For simplicity, we assume xi and yi are scalars. But, they can be vectors.

predictive (or conditional) distribution for an unseen input xu
can be calculated explicitly (See (32) - (34)).

In practice, we often have multiple datasets D = S1, · · · ,
Sm from multiple related tasks, where Si corresponds to task
i. As an example, for the BPT problem, Si takes the form

Si = {(t1, a1), (t2, a2), · · · , (tni , ani)}, (10)

where ti and ai represent sampling time and beam direction,
respectively. For intuitive understanding, an example is shown
in Fig. 3, where each Si corresponds to the beam trajectory
of a vehicle. As shown in Fig. 3, the distributions of different
datasets are different because of different system parameters
(e.g., the vehicle speed). Hence, it is problematic to extend the
single-task method directly to the multi-task case, i.e., to train
a single and shared model with D. But note that the datasets
really share many features, e.g., a similar trend, which can be
exploited to improve system performance, typically, the small
sample performance of a learning algorithm 3.
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Fig. 3. An illustration of beam direction trajectories of different vehicles.

We tackle these issues from the perspective of hierarchical
modeling and stochastic process. Specifically, datasets {Si}
are regarded as different realizations of a stochastic process,
which is characterized by a set of parameters. Mathematically,
each Si is obtained by discretizing a continuous-time function
xi(t), while xi(t) is sampled from a stochastic process, e.g.,
GP(t, t′|ΘT,ΘB). Let Θ = {ΘT,ΘB}. Then, we shall optimize
Θ based on D. Note that the prior shared across different
tasks, which is applicable to future and unseen tasks, should
be extracted from D. To this end, the Bayesian perspective
is considered and a prior distribution, denoted by P(Θ), is
imposed on Θ. Without loss of generality, Θ is assumed to be
distributed as N (0, σ2

ΘI), i.e., P = N (0, σ2
ΘI). Given D, it is

sufficient to update the prior P(Θ) into a posterior Q(Θ).
The method to obtain the posterior Q(Θ) is closely related

to the optimization criterion. Note that our design goal is that
the obtained posterior can improve prediction performance on
unseen tasks, more specifically, to maximize the generalization
performance, e.g., to minimize the transfer-error. An effective
posterior Q? has been derived in the following theorem.

3Typically, the size of each dataset Si is very small. We will encounter
this situation in the next section, where long-term prediction is considered.
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Theorem 2. With the aim of minimizing the generalization or
transfer error, an efficient posterior is given by

Q?(Θ)

=
P(Θ) exp

((
1 +

∑m
i=1 n

−1
i

)−1∑m
i=1

1
ni
Z(Si,Θ)

)
EΘ∼P

[
exp

((
1 +

∑m
i=1 n

−1
i

)−1∑m
i=1

1
ni
Z(Si,Θ)

)] ,
where Z(Si,Θ) represents the marginal log-likelihood for Si
and Θ. In particular, Z(Si,Θ) for GPR is calculated as 4

Z(Si,Θ) =− 1

2
aT
i (Ci + σ2

i I)−1ai−
1

2
log det(Ci + σ2

i I)− ni
2

log 2π. (11)

Proof: The basic idea to obtain the posterior Q? is to first
derive an upper bound of the transfer-error and then minimize
the upper bound. See Appendix D for more details.

To facilitate the use of Kalman filter and reduce complexity,
a point estimate of Θ is preferable. The optimal point estimate
is the MAP (maximum a posterior) estimate, i.e.,

Θ? = arg max
Θ

Q(Θ). (12)

The optimal point estimate Θ? can be equivalently obtained
by maximizing the numerator of Q?(Θ), i.e.,

Θ?

= arg max
Θ

lnP(Θ) +

(
1 +

m∑
i=1

1

n i

)−1 m∑
i=1

Z(Si,Θ)

ni
. (13)

The complete procedure to obtain the implicit system dynam-
ics is summarized in Algorithm 1.

Algorithm 1: Implicit System Dynamics Modeling

1: input: empirical datasets D = {S1,S2, · · · ,Sm}
2: construct and initialize mean function network and

GP kernel
3: repeat

(a) sample a small batch of datasets from D

(b) compute loss as per (13) with sampled data
(c) update parameters of both mean and kernel

until current time-frame is terminated

4: output: Θ? - parameters of system dynamics

Once Θ? is available, the implicit system dynamics model
has been obtained, based on which an effective Bayesian
inference can be made when faced with a new task. However,
because it is still based on GPR, it inevitably leads to a large
computational complexity. Next, we tackle this issue.

D. SDE Representation and Efficient Inference

To enable efficient inference, explicit system dynamics, i.e.,
the SDEs that describe system state evolution and measure-
ment are required. To this end, we shall convert the model in
(9) with Θ? obtained based on (13) into an SDE representation.

4For a one-dimension dataset, Si = {(t1, a1), (t2, a2), · · · , (tni , ani )},
where aj = fi(tj) + εi with εi ∼ N (0, σ2

i ). Then, ai takes the form
ai = (a1, a2, · · · , ani )T and Ci is calculated as [Ci]uv = k(tu, tv).

Without loss of generality, the fully-connected neural network
is chosen to parameterize the transform, and the input-output
relationship of the neural network can be written as

z = h(t,ΘT). (14)

Then, the output of the fully-connected DNN is further fed to
the basic kernel (e.g., the squared exponential kernel), which
is denoted by kB(·, · |ΘB) with parameters ΘB. Hence, the
overall GP prediction model can be expressed as

k(t, t′) = kB
(
h(t,ΘT), h(t′,ΘT) |ΘB

)
. (15)

In view that many basic kernels are stationary, it is assumed
here that the basic kernel kB(z, z′|ΘB) is stationary. Then, the
basic kernel can be equivalently written as

kB(z, z′ |ΘB) = kB(z − z′ |ΘB). (16)

To obtain the SDE representation, the spectral factorization
method can be used [30]. The procedure to convert a stationary
kernel into an equivalent SDE representation whose kernel
function coincides with the given kernel is as follows:

1) Step 1: The corresponding spectral density S(ω) can be
obtained by computing the Fourier transform of kB(· |ΘB).

2) Step 2: In many cases, S(ω) can be written as a rational
function taking the form

S(ω) =
1

pn(ω2)
, (17)

where pn(·) is a polynomial of nth order. Otherwise, we can
approximate S(ω) with such a function, e.g., via the Taylor
series expansion or Padé approximate.

3) Step 3: A stable rational transfer function H(iω) can be
found, which takes the following form

H(iω) =
σ0

(iω)n + an−1(iω)n−1 + · · ·+ a1(iω) + a0
, (18)

and meanwhile, the spectral density S(ω) can be decomposed
as S(ω) = σ2

0H(iω)H(−iω). 5

With the transfer function H(jω) available, we can obtain
an SDE of nth order, which can be written as

dnu(z)

dzn
+ · · ·+ a1

du(z)

dz
+ a0u(z) = σ0

dξ(z)

dz
,

where ξ(z) denotes the standard Brownian motion. Let x(z)
= (u(z), du(z)/dz, · · · , dn−1u(z)/dzn−1) and V = diag(0,
· · · , 0, σ0). The SDE can be compactly rewritten as

dx(z) = Cx(z)dz + Vdξ(z). (19)

where ξ(z) denotes the standard Brownian motion of dimen-
sion n and matrix C is given by

C =


0 1

. . . . . .
0 1

−a0 −a1 · · · −an−1

 .

5The procedure to find the transfer function is called spectral factorization,
which consists of two steps. First, the roots of the denominator are computed.
Note that the roots always appear in pairs, where one member of the pair is
the complex conjugate of the other one. Then, the denominator polynomial
of H(iω) can be constructed from the positive-imaginary-part roots only.
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We proceed to derive the measurement equation. We define
vector b = [1, 0, · · · , 0]T, whose dimension coincides with
x(z). The measurement equation can be expressed as

b(z) = bTx(z) + η(z), (20)

where η(z) represents the measurement noise. With (19) and
(20) available, the continuous-time Kalman filtering algorithm
can be applied, which is, however, computation-unfriendly. It
is also problematic to use the discrete Kalman filter based on
the simple discretization method, which will explained later.
Next, we propose an efficient discretization method.

IV. LOW-FREQUENCY BEAM SOUNDING VIA LONG-TERM
PREDICTION

In the classical BPT scheme, beam sounding, e.g., the local
beam sweeping or training, is performed in each time-slot, as
shown in Fig. 4-(1). The high frequency of beam sounding
inevitably degrades system performance of interest, e.g., the
effective achievable rate. It is well-known that a (stochastic)
differential equation can characterize the variation tendency
of the underlying physical system. Now, since the SDE that
describes the beam variation has been obtained, we can predict
its long-term variation behavior. As shown in Fig. 4-(2), low
frequency of beam sounding is involved in the long-term BPT
scheme, which can further improve system performance.

Beam Sounding with High Frequency (Each Time-Slot)

(1) Classical High-Frequency Beam Sounding

TS 1  TS 2 TS 3 TS k+1 TS k+2 TS k+3

(2) Long-Term Prediction + Low-Frequency Sounding 

TS 1  TS 2 TS 3 TS k+1 TS k+2 TS k+3

Beam Sounding with Low Frequency

Legend: Prediction and Sounding Prediction but Without Sounding

Fig. 4. The comparison between the classical beam sounding scheme and
the proposed novel long-time beam sounding scheme.

To employ the discrete Kalman filter, the standard assump-
tion used in literature is that typical system parameters (e.g.,
velocity) keep constant within each time-slot, based on which
the discrete-time model takes the following form

x(zk+1) = (I + C∆zk)x(zk) + qk, (21)

where qk denotes the noise random vector. It seems that given
an initial condition of x(z0), the discrete Kalman filter can be
invoked. Unfortunately, the discretization format in (21) does
not hold true in general for our problem concerned. In fact, due
to the nonlinear transform z = h(t,ΘT), ∆zk is non-uniform
and can be very large even for a fixed ∆tk. As a result, the
conventional discretization results in a large error.

To tackle this issue, we propose an equivalent discretization
for the SDE in (19) by investigating the statistics (e.g., the
differential equations that characterize the mean and variance
variations) of the corresponding stochastic process. Note that
the equivalence means that the probability distributions of the

continuous-time SDE and the discrete-time stochastic system
coincide at sampling points {zk}. The equivalent discretization
is formally stated in the following theorem.

Theorem 3. The SDE in (19) is in distribution equivalent to
the following discrete-time stochastic system

x(zk+1) = Tkx(zk) + qk, qk ∼ N (0,Πk), (22)

where Tk and Πk are respectively given by

Tk = exp(C(zk+1 − zk))

Πk =

∫ zk+1

zk

exp(C(zk+1 − s))VVT exp(C(zk+1 − s))Tds.

Proof: The explicit solution to the SDE in (19), which is
a stochastic process (i.e., Gaussian process), is given by

x(z) = exp(C(z − z0))x(z0) +

∫ z

z0

exp(C(z − s))Vdξ(s),

where exp(·) denotes the matrix exponential function. It can
be verified that the mean and covariance functions, denoted
respectively by m(z) and P (z), can be calculated as

m(z) = exp(C(z − z0))m(z0) (23)

P (z) = exp(C(z − z0))P (z0) exp(C(z − z0))T+∫ z

z0

exp(C(z − s))VVT exp(C(z − s))Tds. (24)

Let zk denote the current “time”. The initial condition meets
m(zk) = x(zk) and P (zk) = 0. The transition density (from
zk to z), which is a Gaussian distribution, is given by

p(x(z)|x(zk)) = N (m(z|zk),P (z|zk)), (25)

where m(z|zk) and P (z|zk) are respectively given by

m(z|zk) = exp(C(z − zk))x(zk)

P (z|zk) =

∫ z

zk

exp(C(z − s))VVT exp(C(z − s))Tds.

Hence, the equivalent discrete-time stochastic system takes the
form in (22), which completes the proof.

To invoke the discrete Kalman filter, we still need an initial
distribution for x(t0), which is assumed to be Gaussian. To
find an appropriate distribution, we assume the system starts
from t = −∞ and it is stable at t = 0. Hence, an appropriate
choice is the stable distribution of SDE (19). Equs (23) and
(24) satisfy the following ordinary differential equations

dm(z)/dz =Cm(z)

dP (z)/dz =CP (z) + P (z)CT + VVT.

By letting dm(z)/dz = 0 and dP (z)/dz = 0, we can obtain
the steady-state solution N (0,P0), where P0 is calculated as
follows. Let vec(·) denote the vectorization operator. By vec-
toring both sides of matrix equation CP0+P0C

T+VVT = 0,
we can obtain (C ⊗ I + I ⊗ C)vec(P0) = −vec(VVT). If
C⊗ I + I⊗C is invertible, vec(P0) is calculated as

vec(P0) = −(C⊗ I + I⊗C)−1vec(VVT). (26)

In contrast to the conventional BPT scheme, where ∆tk is
a constant and is almost always equal to TS (i.e., ∆tk = TS),
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in the long-term BPT scheme, ∆tk = tk+1 − tk � TS often
spans across multiple time-slots. Hence, we need the predictive
distribution of beam direction y(t) at any time t. Without loss
of generality, we focus on an arbitrary but fixed time tk and
calculate the distribution of beam b(t) for t > tk.

Corollary 1. The predictive distribution of b(t) is given by

b(t) ∼ N (m(t), a(t)), (t > tk), (27)

where m(t) = bTT(h(tk), h(t))x(h(tk)) and a(t) = σ2
m +

bTΠ(h(tk), h(t))b, with T(zk, z) and Π(zk, z) given by

T(zk, z) = exp(C(z − zk))

Π(zk, z) =

∫ z

zk

exp(C(z − s))VVT exp(C(z − s))Tds.

σ2
m denotes the variance of the noise caused by η(t) in (20).

Proof: Note that since b(t) is a linear function of x(z),
we can obtain (27) from Theorem 3 immediately.

It is observed that a(t) is monotonously increasing in terms
of t, which indicates that the predicted beam becomes more
inaccurate as t increases. Apparently, this coincides with our
intuition. If a(t) is greater than a predefined threshold value,
there are two methods to handle this situation. The first is to
perform beam sounding to find the optimal beam, e.g., via
the hierarchical search [7] or adaptive local search [19]. The
second is beam width optimization, i.e., to adjust the beam
width in real time, which will be discussed next.

In general, wide beams incur low array gains. We introduce
a function g(w), which characterizes the array gain of a beam
with width w. We further introduce an adjustable parameter
c > 0 to control the beam width. The main-lobe of the beam
to be chosen is denoted by I, which is given by

I = (m(t)− c
√
a(t),m(t) + c

√
a(t)). (28)

Under some mild assumptions (similar to [31]), the posterior
effective achievable rate can be expressed as

R(c) =

∫
I

e−(x−m(t))2/(2a(t))√
2πa(t)

log
(

1 + pHg(2c
√
a(t))

)
dx

=

∫ c

−c

1√
2π
e−x

2/2 log
(

1 + pHg(2c
√
a(t))

)
dx, (29)

where p denotes the transmit power and H is determined by
the channel condition concerned, e.g., the average path gain.
Since R(c) is a unimodal function and has a unique maximal
point [31], it can be efficiently found via classical derivative-
free search methods, e.g., the gold-search method.

For clarity, the complete DIIKF approach is summarized in
Algorithm 2. With the historical datasets D available, a ML
model is first constructed in Step 2 as per Theorem 1, based on
which the implicit system dynamics can be learned in Step 3.
To facilitate efficient inference, the implicit system dynamics
model is converted to the SDE representation in Step 4 and
meanwhile the initial distribution is calculated as per (26) in
Step 5. Then, for a new task, the discrete Kalman filter can
be applied to predict the beams in Step 6.

Algorithm 2: Data-Induced Intelligent Kalman Algorithm

1: input: historical dataset D = {S1, · · · ,Sm}
2: construct machine learning model (as per Theorem 1)
3: learn implicit system dynamics (invoke Algorithm 1)
4: convert implicit model to explicit SDE representation
5: compute initial or prior distribution according to (26)

6: repeat for each time-slot (for a new task)
(a) construct equivalent discrete-time stochastic

system (according to Theorem 3)
(b) predict beam by invoking discrete Kalman filter

until current task (e.g., time-frame) is terminated

V. NUMERICAL RESULTS

In this section, simulation results are provided to demon-
strate the performance of the proposed algorithms. For clarity,
we first describe the experiment environment [24], [26].

A. Simulation Environment

Without loss of generality, the uniform linear array is chosen
in this section. Two cases of antenna array, i.e., N = 64 and
N = 128, are chosen to evaluate different algorithms. The size
of codebook C satisfies M = N (with estimation accuracy
1/N ). For all experiments, the channel model in (1) includes
one LOS path and three NLOS paths. The AoDs of the NLOS
paths are distributed uniformly in [0, 2π). The average power
ratio of the LOS path gain αL and each NLOS path gain
αN is 10dB. The path gain of a NLOS path is distributed as
CN (0, σ2

N), where σ2
N is calculated as per the path gain of the

LOS path. Let a uniform distribution taking values in [a, b] be
denoted by U(a, b). The simulation environment and relevant
system parameters are described below.

Without loss of generality, we focus on the V2X commu-
nication scenario. But compared to the straight road [12], a
more complex road condition, i.e., the typical flyover, chosen
from the real environment, is considered here. As shown in
Fig. 5, three roads, along with the lane directions, are chosen
to evaluated different algorithms. The length of each time-slot,
i.e., transmission time interval, is set to 20 milliseconds. The
widths of Road 1 and Road 2 are both 12m, while the width
of Road 3 is 20m. Moreover, it is allowed to change lane in
Road 3, with probability 1/10. The initial velocity, i.e., the
velocity when the vehicle enters the coverage area, for Road
1 and Road 2 is distributed uniformly as U(54, 80) (km/h),
while the initial velocity for Road 3 is distributed uniformly
as U(54, 108) (km/h). To simulate the scenario more practical,
with probability 0.1, the driver speeds up (or slows down) the
velocity to the maximal (or minimal) speed in each road.

To confirm the effectiveness of our approach, the state-of-
the-art benchmarks are chosen to evaluate our BPT algorithms,
including the conventional hierarchical search (HS) method,
two learning-based solutions proposed recently (i.e., the s-
tochastic bandit learning (SBL) based algorithm [19] and the
classical GPR based (GPR-Only) algorithm [28] 6) and the

6Compared to Algorithm 1 proposed in this paper (named as GPM-GPI in
this section), the classical GPR method fails to learn the system dynamics.
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Road 1
Road 2
Road 3

Base Station

Fig. 5. The road condition of typical flyover chosen from real environment.

oracle aided BPT algorithm. 7 To demonstrate the advantages
of DIIKF, the following algorithms are evaluated:
• GPM-GPI (i.e., Gaussian process modeling and Gaussian

process inference): The implicit system dynamics learn-
ing based on Algorithm 1 is incorporated into the BPT
solution. But GPR is still used to perform prediction.

• DIIKF-TS1: The BPT solution is designed based on the
DIIKF approach, but without the long-term prediction
and beam width optimization techniques. As a result, the
beam sounding is still operated in each time-slot.

• DIIKF-LT: Compared to the DIIKF-TS1 algorithm, the
long-term prediction technique is incorporated. But the
beam width optimization is not considered.

• DIIKF-BWO: In contrast to DIIKF-LT, where the beam
sounding is executed if necessary (e.g., wide beam con-
fidence interval), DIIKF-BWO adjusts the beam width.

For comparison, probability of successful alignment (PSA),
average effective achievable rate (EAR) and running time are
chosen as the performance metrics to evaluate different BPT
algorithms. In view of the definition of EAR, i.e., REAR = (1−
TB/TS) log

(
1+P |hHfi|2

)
, where P |hHfi|2 for different algo-

rithms (except for DIIKF-BWO) is almost the same, EAR also
characterizes equivalently the performance in terms of beam
training overhead. The path gain of the LOS path is assumed
to be distributed as αLOS ∼ CN (m̄, 0.1) with |m̄| = 1.

B. Performance of Beam Prediction and Tracking

First, we evaluate the average EAR performance of different
BPT algorithms, as shown in Fig. 6. It is observed that the
algorithms proposed in this paper (i.e., GPM-GPI, DIIKF-
TS1, DIIKF-LT and DIIKF-BWO) outperform the benchmarks
(i.e., SBL, GPR-Only and HS). The reason for this is that the
underlying environment system dynamics can be efficiently
characterized by the ML model constructed in this paper and
learned by the implicit system dynamics learning method. As
a result, the beam training overhead required is very small.
In particular, the BPT algorithms incorporating the long-term
prediction scheme approach the ideal oracle-aided algorithm,
thanks to the negligible beam training overhead.

Fig. 7 shows the PSA performance of different algorithms.
It can be also observed that our proposed algorithms achieve
better performance than both SBL and HS. In particular, our

7The direct search algorithm searches the optimal beam within the code-
book exhaustively. The oracle aided algorithm is served as a benchmark, which
can always find the optimal beam with training overhead zero.
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Fig. 6. The average EAR performance of different algorithms: N = 128
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Fig. 7. The PSA performance of different algorithms: N = 128 and Road
1.

BPT algorithms outperform SBL, which is also a learning-
based algorithm. The reason for this is that the beam index
difference technique involved in SBL predicts the difference of
successive beams, which therefore fails to capture and exploit
the variation tendency of beam direction function. In contrast,
our algorithms explicitly and fully exploit the prior information
to narrow the beam interval containing the real beam. Due
to the noise effect within beam sounding, if less beams are
swept, better PSA performance can be achieved [19]. Since the
conventional GPR method fails to learn the system dynamics,
its performance is worse than the DIIKF-based solutions. It can
be seen from the two figures that the performance achieved
by DIIKF-TS1 is a bit better than that achieved by GPM-GPI.
The reason for this is that the Kalman filtering technique also
applies to the non-stationary environments.

To intuitively demonstrate the advantage of the long-term
prediction scheme, the PSA performance with respect to the
period of beam sounding is shown in Fig. 8. It can be seen that
compared to the conventional beam sounding scheme whose
sounding period is one, the long-term prediction based beam
prediction algorithms can achieve a high prediction accuracy
even for a relatively large beam sounding period. The reason
for this is that the underlying system dynamics (e.g., the
beam variation tendency) can be efficiently learned from the
multiple beam trajectories. When facing larger uncertainties,
the beam width optimization based method can adjust beam
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Fig. 8. The PSA performance varying with the beam sounding period for
DIIKF-LT and DIIKF-BWO: N = 64 and Road 1.

width adaptively and dynamically, it is not surprising that it
can also achieve better performance.
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Fig. 9. The average accumulative run-time of different algorithms: N = 128
and Road 1.

Another appealing advantage of the DIIKF approach is that
it inherits the property of low computational complexity from
the classical Kalman filtering technique. In particular, thanks to
the linear complexity order, the performance curves in terms of
accumulative run-time of DIIKF-TS1, DIIKF-LT and DIIKF-
BWO increase very slow, as shown in Fig. 9. In contrast, due to
the cubic complexity order, the time-resource and computing
resource required by both GPR-Only and GPM-GPI increase
remarkably. Moreover, thanks to the inherent Kalman filtering
characteristics, DIIKF-TS1, DIIKF-LT and DIIKF-BWO can
well adapt to non-stationary environments, which accounts for
better performance than GPR-Only and GPM-GPI.

In contrast to the other machine learning applications, e.g.,
computer vision or natural language processing, the wireless
environments fluctuate rapidly, which easily invalidates many
machine learning based algorithms. Hence, good small sample
performance is desired in wireless communications. Fortunate-
ly, the good small sample performance can be achieved by our
algorithms, as shown in Fig. 10. It is observed that although
the size of available training curves is small, e.g., m ≤ 4, our
algorithms can still obtain satisfactory EAR performance. The
reason for this is two-fold. First, the Bayesian methodology is
adopted in our algorithms, which has already been shown to
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Fig. 10. The average EAR performance achieved by DIIKF-TS1 models
trained with varying amounts of beam trajectories: N = 128 and Road 1.

help achieve good small performance. More importantly, we
explicitly minimize the transfer error when deriving the loss
function, which improves the generalization performance.

VI. CONCLUSION

To exploit the advantages of both GPR and Kalman filter
while overcome their drawbacks, in this paper we proposed a
novel hybrid model and data driven approach in this paper. In
particular, the system dynamics required can be obtained via
the data-driven manner. Since the system dynamics was avail-
able, we further studied long-term prediction and proposed a
more efficient BPT algorithm along with adaptive beam width
optimization, so as to further enhance system performance.
Typical advantages of our approach include low computational
complexity (due to inherent Kalman filter) and significantly
improved system performance (thanks to long-term prediction
and beam width optimization). Simulation results confirmed
the effectiveness and superiority of our proposal.

APPENDIX A
GAUSSIAN PROCESS REGRESSION

A stochastic process f(x) is a Gaussian process (GP) if and
only if for any finite number of points x1, · · · , xn, the joint
probability density function p(f(x1), · · · , f(xn)) is Gaussian
[32]. A GP is completely characterized by the mean function
m(x) and covariance function k(x, x′), which are similar to
the mean and covariance for a Gaussian vector. The mean and
covariance functions are respectively defined by

m(x) =E[f(x)],

k(x, x′) =E
[(
f(x)−m(x)

)(
f(x′)−m(x′)

)]
.

(30)

The mean function is assumed to be zero next, i.e., m(x) = 0.
GPR is to predict or infer f(xu) for an unseen xu based on

a set of observations S = {(xi, yi) | yi = f(xi) + wi, wi ∼
N (0, σ2), i = 1, · · · , n}, where xi and yi denote input and
output, respectively. In contrast to many parametric regression
methods, GPR is based on Bayesian inference, which gener-
ates a probability distribution, rather than only a point estimate
for the quantity of interest. Given S above, we next derive the
conditional or predictive distribution for f(xu) at xu [33].
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The observed points are stacked into yo = (y1, · · · , yn)T.
Based on the Gaussian assumption, the joint probability dis-
tribution between yo and yu = f(xu) + w is given by[

yo
yu

]
∼ N

(
0,

(
Coo + σ2I cuo

cT
uo cuu

))
, (31)

where the matrix and vector are formed as [Coo]ij = k(xi, xj),
[cuo]j = k(xu, xj) and cuu = k(xu, xu). Then, the conditional
distribution of fu = f(xu) at xu is given by

p(fu|S, xu) ∼ N
(
µ(xu), c(xu)

)
(32)

µ(xu) = cT
uo(Coo + σ2I)−1yo (33)

c(xu) = cuu − cT
uo(Coo + σ2I)−1cuo. (34)

It is referred to [33] for more details about GP and GPR.

APPENDIX B
PROOF OF THEOREM 1

According to the definition of Itô-integral and the Fubini’s
theorem, we can assert that x(t) is a Gaussian process with
mean function is 0. For simplicity, we consider only the one-
dimension case, and the high-dimension case can be proved
similarly. Without loss of generality, we assume t < t′ holds.
The covariance function can be calculated as

E
(
x(t)x(t′)

)
=E
(
x(t)

(
x(t′)− x(t) + x(t)

))
=E
(
x(t)

(
x(t′)− x(t)

))
+ E(x2(t))

(∗)
=E(x2(t)).

where (∗) is due to the fact that random variables x(t′)−x(t)
and x(t) are Gaussian and also independent.

As per the isometry property of Itô-integral, the covariance
function E

(
x(t)x(t′)

)
can be calculated as

E(x2(t)) =E
(∫ t

0

σ(s)dξ(s)

)2

= E
(∫ t

0

σ2(s)ds

)
=

∫ t

0

σ2(s)ds =

∫ min(t,t′)

0

σ2(s)ds,

which completes the proof.

APPENDIX C
PROOF OF THEOREM 1

Without loss of generality, we consider only the scalar case,
and then the SDE can be simplified as dx(t) = f(x, t)dt +
σ(t)dξ(t). The proof consists of three steps.

1) Step 1: We first prove that there exists another probabil-
ity space (Ω,F , Q) such that Q is a Gaussian measure. In fact,
the probability measure desired can be constructed explicitly.
By defining θt = f(x, t)/σ(t) and ξ̃(t) = ξ(t) +

∫ t
0
θsds,

the desired probability measure can be, in fact, constructed as
Q(E) = E(MT 1E), (∀E ∈ F), where Mt is given by

Mt = exp

(
−
∫ t

0

θsdξ̃s +
1

2

∫ t

0

θ2
sds

)
= exp

(
−
∫ t

0

θsdξs −
1

2

∫ t

0

θ2
sds

)
. (35)

Because Q(Ω) = E(MT 1Ω) = E(MT ) = 1 and Mt > 0 hold,
it can be verified that Q is a probability measure.

2) Step 2: We next prove that Q is Gaussian. It is sufficient
to show that for arbitrary n ∈ N , constants λj and (tj , j ≤ n)
partition of [0, T ] with tn = T , the following equation holds

Ẽ
[

exp

( n−1∑
j=0

λj(ξ̃tj+1
− ξ̃tj

)]
= exp

( n−1∑
j=0

λ2
j

2
(tj+1 − tj)

)
,

(36)
where Ẽ is taken with respect to P . Note that (36) means that
the increments are the ones of standard Brownian motion.

Let (Ftj , j ≤ n) be the Brownian filtration at the time of
the partition. The basic idea to prove (36) is by successively
conditioning from tn−1 down to t1. As a first step, we have

Ẽ
[
e
∑n−1

j=0 λj(ξ̃tj+1
−ξ̃tj )

]
=E

[
E
[
e
∑n−1

j=0 λj(ξ̃tj+1
−ξ̃tj )

∣∣∣∣Ftn−1

]]
(∗)
=E
[
Mtn−1 exp

( n−2∑
j=0

λj(ξ̃tj+1 − ξ̃tj )

)
·

E
[
e
∫ tn
tn−1

(−θs+λn−1)dξ̃s+1/2
∫ tn
tn−1

θ2sds
∣∣∣Ftn−1

]]
. (37)

where (∗) is due to the definition of Mtn , i.e., Mtn = Mtn−1
·

exp
( ∫ tn

tn−1
(−θs+λn−1)dξ̃s+ 1

2

∫ tn
tn−1

θ2
sds
)
, and the fact that

Mtn−1
is Ftn−1

-measurable.
Since the integral

∫ tn
tn−1

(−θs + λn−1)dξ̃s only depends on
the increment ξ̃tn − ξ̃tn−1 , it is independent of Ftn−1 . In light
of dξ̃t = dξt + θtdt, we can obtain

E
[
e
∫ tn
tn−1

(−θs+λn−1)dξ̃s+ 1
2

∫ tn
tn−1

θ2sds
∣∣∣Ftn−1

]
=E

[
e
∫ tn
tn−1

(−θs+λn−1)dξs+
∫ tn
tn−1

(−θ2s/2+θsλn−1)ds
∣∣∣Ftn−1

]
(∗)
= exp

(
1

2

∫ tn

tn−1

(
(−θs + λn−1)2 + (−θ2

s/2 + θsλn−1)
)
ds

= exp
(
λ2
n−1(tn − tn−1)/2

)
.

where (∗) is owing to the fact that
∫ tn
tn−1

(−θs + λn−1)dξs is

Gaussian (with mean 0 and variance
∫ tn
tn−1

(−θs + λn−1)2ds,
according to the properties of Itô integral).

Putting this back into Equ.(37), we have shown that

Ẽ
[
e
∑n−1

j=0 λj(ξ̃tj+1
−ξ̃tj )

]
= exp

(
1

2
λ2
n−1(tn − tn−1)

)
E
[
Mtn−1

e
∑n−2

j=0 λj(ξ̃tj+1
−ξ̃tj )

]
(∗)
= exp

(
1

2
λ2
n−1(tn − tn−1)

)
Ẽ
[
e
∑n−2

j=0 λj(ξ̃tj+1
−ξ̃tj )

]
,

where (∗) is due to the martingale property. By conditioning
from Ftn−2

down to Ft1 and repeating the above procedure,
we can prove (36), which shows that Q is Gaussian.

3) Step 3: Under the assumption that σ has no zero points,
the SDE dx(t) = f(x, t)dt+ σ(t)dξ(t) can be rewritten as

dx(t) = σ(t)

(
dξ(t) +

f(x, t)

σ(t)
dt

)
= σ(t)dξ̃(t). (38)
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The solution of SDE in (38) is given by x(t) =
∫ t

0
σ(s)dξ̃(s).

Because the SDEs in (5) and (7) take the same form, their
solutions are, in fact, two (maybe different) solutions of the
same SDE. Hence, we can conclude that the probability laws
of the solutions of the two SDEs coincide, according to the
weak uniqueness property of SDE, although they are defined
on different probability spaces. The proof is completed.

APPENDIX D
PROOF OF THEOREM 2

A. Preliminaries

A learning task is described by an unknown data distribution
D over a domain Z , from which n points S = {zi | zi ∼
D, i = 1, · · · , n} are sampled. Let S ∼ Dn represent the
i.i.d. (independently and identically distributed) sampling of n
samples. In supervised learning, each zi takes the form zi =
(xi, yi), where xi ∈ X and yi ∈ Y denote input feature and
target label, respectively. Given S, the design goal is to find a
function h : X → Y from a function space H which can make
a good prediction on an unseen input feature x∗. The quality of
the prediction is measured by a loss function L : H×Z → R.
The design goal is to minimize the expected error, i.e.,

L(h,D) = Ez∗∼DL(h, z∗). (39)

The empirical counterpart of L(h,D) is defined by

L̂(h,S) =
1

m

m∑
i=1

L(h, zi). (40)

Instead of deterministic predictors, randomized predictors,
i.e., the probability measures on the hypothesis space H, are
considered. LetM(H) represent a set of probability measures
over H. Two probability measures, i.e., the prior P ∈M(H)
and the posterior V ∈ M(H), are particularly important. P
and V also denote their probability densities. The Gibbs error
characterizes the performance of a randomized predictor

L(V,D) = Eh∼V L(h,D). (41)

The empirical counterpart of L(V,D) is defined by

L̂(V,S) = Eh∼V L̂(h,S). (42)

The PAC-Bayesian learning theory bounds the unknown gener-
alization error (GE) L(V,D) based on the empirical error (EE)
L̂(V,S). Specifically, given a prior distribution P ∈M(H), a
confidence level δ ∈ (0, 1), and a positive real number β > 0,
with probability at least 1 − δ over data samples S ∼ Dn,
∀V ∈M(H) the following inequality holds true [34]:

L(V,D) ≤ L̂(V,S)+β−1
(
DKL(V ||P )

− ln δ + Ψ(β, n)
)
, (43)

where DKL(·||·) denotes the Kullback-Leibler (KL) divergence,
and Ψ(β, n) is constant and depends on P and D.

The posterior V ? that yields the lowest GE is of particular
importance. To obtain the optimal posterior V ?, it is natural
to minimize the bound L̂(V,S) + β−1DKL(V ||P ), i.e.,

V ?(h) = arg min
V ∈M(H)

L̂(V,S) + β−1DKL(V ||P ).

The optimal distribution V ?, also known as the optimal Gibbs
posterior [35], has a closed-form expression and is given by

V ?(h) =
P (h) exp

(
− βL̂(h,S)

)
Eh∼P

[
exp

(
− βL̂(h,S)

)] . (44)

Let β = m and the loss function L is chosen as the negative
log-likelihood, i.e., L(h, zi) = − log p(zi |h). The optimal
Gibbs posterior coincides with the Bayesian posterior

V ?P,S(h) =
P (h)

∏m
i=1 p(zi |h)∫

H P (h)
∏m
i=1 p(zi |h)dh

. (45)

Let V : Zn×M(H)→M(H) denote an arbitrary learner,
which takes in a dataset of size n and a prior and outputs a
posterior. For the dataset S and prior P , the resultant posterior
is denoted by V (S, P ). Note that so far, we have considered
only a single learning task with distribution D. However, our
goal is to extract desired information or knowledge shared by
a batch of correlated tasks. All possible tasks are collected into
set T = {νi = (Di, ni,Si)}, where Di, ni and Si represent
the data distribution, the number of samples, and the sampled
dataset of the underlying task, respectively. For simplicity, m
tasks can also be denoted by D = {S1,S2, · · · ,Sm}.

B. Proof of Theorem 2

Given n tasks, i.e., D = {S1,S2, · · · ,Sm}, the problem to
be addressed boils down to extracting the domain knowledge
shared by the n tasks. To this end, we can impose a probability
measure onM(H), denoted byM(M(H)). Since each task is
associated to a probability measure, i.e., an element ofM(H),
the domain knowledge shared by different tasks should be an
element ofM(M(H)). Similar to ordinary Bayesian learning,
the prior of the domain knowledge, referred to as hyper-prior,
is represented by P ∈ M(M(H)), i.e., a distribution over
priors P . Given m datasets {S1,S2, · · · ,Sm} from m tasks,
the design or optimization goal is to update the hyper-prior P
into hyper-posterior Q, another element of M(M(H)).

The update or optimization criterion is to minimize the GE
from the available datasets {S1,S2, · · · ,Sm} of m tasks to
future unseen tasks. The GE here, which is also referred to as
transfer-error, is measured by the expected Gibbs error:

L(Q, T ) = E
P∼Q

E
(D,n)∼T

E
S∼Dn

[L(V (S, P ),D)]. (46)

Because L(Q, T ) is unknown in practice, the empirical multi-
task error is utilized instead, which is defined as

L(Q,S1, · · · ,Sm) = E
P∼Q

[
1

m

m∑
i=1

L̂(V (Si, P ),Si)

]
. (47)

To obtain an objective function, we shall derive a tractable
upper bound of L(Q, T ), which consists of four steps.

1) Step 1: We bound the GE of each task νi = (Di, ni,Si)
with Si ∼ Dni

i . Note that given a prior distribution P and the
dataset Si, the learner V generates a posterior distribution V =
V (Si, P ). To derive the GE bound via the important inequality
(43) [36], the hypothesis space, prior and loss function should
be appropriately redefined. A “tuple hypothesis” is defined
as g = (P, h), where P ∈ M(H) and h ∈ H. The “prior
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over hypothesis” π = (P, P ) is defined as a distribution over
M(H)×H, in which P is first sampled from P and h is then
sampled from P . The “posterior over hypothesis” is defined
similarly. In particular, for ρ = (Q, V (Si, P )), P is sampled
first from Q and h is then sampled from V = V (S, P ).

The KL divergence between ρ and π is calculated as

DKL(ρ||π) = E
g∼ρ

(
log

ρ(g)

π(g)

)
= E
P∼Q

E
h∼V (Si,P )

(
log
Q(P )V (Si, P )(h)

P(P )P (h)

)
= E
P∼Q

(
log
Q(P )

P(P )

)
+ E
P∼Q

E
h∼V (Si,P )

(
log

V (Si, P )(h)

P (h)

)
=DKL(Q||P) + E

P∼Q
DKL(V (Si, P )||P ).

Similar to the derivation of (43) and letting β = ni, we can
obtain the inequality in (48), for confidence level δ1,i ∈ (0, 1].

2) Step 2: In this step, we further bound the GE of the
task-environment level. In particular, {νi = (Di, ni,Si)} are
tasks drawn i.i.d. from the task-environment distribution T . In
this case, P , P and Q respectively play the roles of g, π and
ρ, i.e., g = P , π = P and ρ = Q. Given the hyper-prior P
and hyper-posterior Q, for confidence level δ2, we can obtain
similarly a probability inequality, which is given by

P
{
L(Q, T ) ≤ 1

m

m∑
i=1

L(Q,Di) +
1

m

(
DKL(Q||P)

− ln δ2 + Ψ(m,m)

)}
≥ 1− δ2. (49)

3) Step 3: We define m+2 events A1, A2, · · · , Am, B and
C, which are given in (50) - (52). Note that δ ∈ (0, 1) in (50)
- (52) is a small positive real number. For these events, from
Step 1 and Step 2, we have obtained P(Ai) ≥ 1−δ/(2m) and
P(B) ≥ 1 − δ/2. Note that C holds if {Ai} and B all hold,
which implies that

(
∩mi=1 Ai

)
∩ B ⊂ C holds. According to

the union bound formula (of probability), we can obtain

P(C) ≥P(A1 ∩A2 ∩ · · · ∩Am ∩B)

=1− P(Ac1 ∪Ac2 ∪ · · · ∪Acm ∪Bc)
≥1− P(Ac1)− P(Ac2)− · · ·P(Acm)− P(Bc) ≥ 1− δ.

The above inequality implies that with probability at least 1−δ,
the transfer-error is upper bounded by U(Q,S1, · · · ,Sm) +
C(m, {ni}, δ), with U(Q,S1, · · · ,Sm) given in (53). In view
that C(m, {ni}, δ) is a constant, to minimize the transfer-error
we should minimize U(Q,S1, · · · ,Sm).

4) Step 4: Note that since the Gibbs posterior minimizes
PAC-Bayesian error bound, it is naturally chosen here. In this
case, V (Si, P ) (for Si) takes the form

V (Si, P )(h) =
P (h) exp

(
− niL̂(h,Si)

)
Eh∼P

[
exp

(
− niL̂(h,Si)

)] . (54)

Given V (Si, P ), the summation of the first and third terms

of U(Q,S1, · · · ,Sm) can be simplified as

L(Q,S1, · · · ,Sm) +
1

m

m∑
i=1

1

ni
E

P∼Q

[
DKL(V (Si, P )||P )

]
=

1

m

m∑
i=1

E
P∼Q

(
L̂(V (Si, P ),Si) +

1

ni
DKL(V (Si, P )||P )

)
=

1

m

m∑
i=1

E
P∼Q

E
h∼V

(
L̂(h,Si) +

1

ni
ln
V (Si, P )(h)

P (h)

)
(∗)
=

1

m

m∑
i=1

− 1

ni
E

P∼Q
ln

(
E
h∼P

[
exp

(
− niL̂(h,Si)

)])
, (55)

where (∗) is due to (54). As a result, mU(Q,S1, · · · ,Sm)
can be simplified as

mU(Q,S1, · · · ,Sm) =

(
1 +

m∑
i=1

1

ni

)
DKL(Q||P)

−
m∑
i=1

1

ni
E

P∼Q
ln

(
E
h∼P

[
exp

(
− niL̂(h,Si)

)])
.

Note that the use of mU(Q,S1, · · · ,Sm) as the optimiza-
tion objective does not affect the optimality. By minimizing
mU(Q,S1, · · · ,Sm) with respect to Q and similar to (44),
we can obtain the optimal posterior Q? given by

Q?(P )

=
P(P ) exp

((
1 +

∑m
i=1 n

−1
i

)−1∑m
i=1

1
ni
Z(Si, P )

)
EP∼P

[
exp

((
1 +

∑m
i=1 n

−1
i

)−1∑m
i=1

1
ni
Z(Si, P )

)] ,
where Z(Si, P ) = ln

(
E
h∼P

[
exp

(
− niL̂(h,Si)

)])
is intro-

duced for convenience. When the GP regression is chosen as
the learner V , Z(Si, P ) is, in fact, the marginal log-likelihood
given in (11). We have completed the proof.
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