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Abstract—Video traffic in vehicular communication networks
(VCNs) faces exponential growth. However, different segments
of most videos reveal various attractiveness for viewers, and the
pre-caching decision is greatly affected by the dynamic service
duration that edge nodes can provide services for mobile vehicles
driving along a road. In this paper, we propose an efficient video
highlight pre-caching scheme in the vehicular communication
network, adapting to the service duration. Specifically, a highlight
entropy model is devised with the consideration of the segments’
popularity and continuity between segments within a period
of time, based on which, an optimization problem of video
highlight pre-caching is formulated. As this problem is non-
convex and lacks a closed-form expression of the objective
function, we decouple multiple variables by deriving candidate
highlight segmentations of videos through wavelet transform,
which can significantly reduce the complexity of highlight pre-
caching. Then the problem is solved iteratively by a highlight-
direction trimming algorithm, which is proven to be locally
optimal. Simulation results based on real-world video datasets
demonstrate significant improvement in highlight entropy and
jitter compared to benchmark schemes.

Index Terms—Video pre-caching, duration-adaptive, wavelet
transform, 6G, vehicular communication network.

I. INTRODUCTION

The emerging technology of the 6G wireless system has
been introduced to intelligent transportation, which would
accelerate the development of autonomous driving [1], and
the promising application of autonomous vehicles gives rise
to the prosperity of content services [2]. In particular, video
services, such as short video, video-on-demand (VoD), etc.,
will account for an extremely high ratio of future content
traffic [3]. Moreover, driven by the new video applications,
such as augmented reality (AR) navigation, virtual reality
(VR), and 4K/8K video delivery, video traffic in vehicular
communication networks (VCNs) faces exponential growth
[4]. In this regard, mobile edge caching is proposed to sink
storage resources to close vehicular nodes and cache videos
required by users to edge nodes (e.g., roadside units (RSUs)),
which can significantly reduce the network backhaul traffic and
latency. However, due to the limited cache capacity of RSUs
and the high mobility of vehicles, video pre-caching is still
a challenging problem in vehicular communication networks
[5].

In the literature, there are some related works devoted
to proactive caching in RSUs in vehicular communication

networks. To make intelligent prefetching decisions, a multi-
tier caching mechanism assisted by vehicle mobility prediction
was proposed in [6]. Furthermore, to ensure in-order delivery
of video chunks adapted to the mobility characteristics of con-
nected cars, the authors in [7] proposed a roadside prefetching
in RSUs that optimally caches content chunks required most
at edge nodes. However, when a user on road requests a video
service, the service duration available for the user to watch the
video varies, depending on the distance and speed between
their departure and termination locations. Most of the time
the service duration is too short to finish watching a movie.
Furthermore, users often skip certain segments while watching
some videos [8], and pre-caching whole-file may consume
extra storage resources. The statistical analysis conducted in
[9] has revealed that, on average, only 60 percent of each video
file is actually watched. Hence, conventional whole-file pre-
caching strategies will result in a huge waste of resources. It is
worth noting that the caching performance is greatly affected
by user behaviors of browsing videos/documents, i.e., skip-
ping, switching, dragging, etc., which is seldom considered
in the literature. We provide a summary of user browsing
behaviors and the corresponding video segment pre-caching
strategies when watching different types of videos in Table
I. Indeed, each video segment varies with the popularity that
characterizes its attractiveness, and users tend to jump directly
to segments with higher popularity by dragging or dropping
the progress bar. Additionally, these popular segments often
receive a higher number of bullet-screen comments from
users. Hence, investigating a more realistic video pre-caching
according to video segments’ popularity can not only reduce
resources but also improve cache efficiency.

In general, the popularity value of video segments exhibits
a positive association with metrics such as playout times, the
number of bullet-screen comments, and ratings provided by
the public or professionals [10]. Recently, there has been an
increase in the generation and accessibility of popularity value
for video segments by various content providers and web
pages. For instance, the popularity value of YouTube segments
can be inferred from their replay frequency, as exemplified
by the utilization of the video activity graph employed by
YouTube [11]. However, only caching the popular segment
may result in great viewing jitter when there is a significant
incoherent plot between two watching segments, as it ignores

ar
X

iv
:2

30
9.

01
94

4v
1 

 [
ee

ss
.I

V
] 

 5
 S

ep
 2

02
3



TABLE I
BROWSING BEHAVIORS OF USERS WATCHING DIFFERENT TYPES OF VIDEOS.

Type Applications Scanning/Browsing behaviors Precached segments Pre-caching strategies

VoD
Mi TV, IQiyi,

YuTube,
Netflix

Fasting forward at N times speed Chunk after a certain interval N-Speed playback
Skipping, playbacking,

sending bullet-screen comments Captivating segments Selecting segments with po
-pularity as high as possible

Short
video

Tik Tok Switching, dragging, dropping,
sending bullet-screen comments

Captivating segments Selecting segments with po
-pularity as high as possible

another important performance indicator, i.e., the continuity
between adjacent segments. Due to the limited storage and
communication resources of RSUs, it is hard to balance the
popularity of segments and the continuity between segments
within a period of time. Furthermore, the pre-caching per-
formance is greatly affected by the dynamic service duration
of vehicles on road, especially for dynamic driving vehicles.
Therefore, there is an urgent need to investigate video segment
pre-caching that takes into account both video segments’
popularity and continuity, adapting to the service duration
on road, which means the composition of each segment is
dynamically determined according to the user’s request or the
service duration.

To provide efficient video services for vehicular commu-
nication networks, we develop a Duration-adaptive Highlight
Pre-Caching (DHPC) scheme. Leveraging the popularity of
video segments, we design a highlight segments pre-caching
method, which dynamically adapts to the varying service
duration. Specifically, a video viewing quality evaluation
model based on video highlight entropy is devised to integrate
popularity and continuity together, based on which, the aver-
age highlight entropy of requested videos is maximized. To
solve the optimization problem, we first propose a highlight
segmentation method by wavelet transform to decouple the
optimized variables, then propose a highlight-direction trim-
ming algorithm to compose optimal pre-caching video files
in RSUs efficiently. The main contributions of this paper are
summarized as follows:

• A duration-adaptive highlight pre-caching scheme according
to video segments’ popularity is proposed to provide effi-
cient video services for vehicular communication networks,
which adapts to dynamic service durations of driving vehi-
cles.

• To balance the popularity of segments and continuity be-
tween segments, a highlight entropy based quality evaluation
model is constructed. Furthermore, we formulate the opti-
mization problem of highlight entropy maximization while
improving the quality of the viewing experience.

• To solve the problem and reduce the computational com-
plexity, wavelet transformation is conducted to obtain the
candidate highlight segments. Then, a highlight-direction
trimming algorithm is proposed to quickly obtain optimal
pre-caching video files in RSUs.

The remainder of this article is organized as follows. Section
II presents the system model and video viewing quality
evaluation model. The DHPC scheme is illustrated in Section
III. In Section IV, the proposed methods are evaluated through
abundant simulations, and finally, we conclude this article and

direct our future work to Section V.

II. SYSTEM MODEL

As illustrated in Fig. 1, considering a duration-adaptive
highlight pre-caching framework for the vehicular communi-
cation network, there are various cloud video content servers, a
macro base station (MBS), and M RSUs deployed along road.
The set of the RSUs and that of the allocated storage sizes
are denoted by M = {1, · · · ,M} and C = {c1, · · · , cM},
respectively. In addition to video caching, the RSU is also
responsible for video transmission for users in a vehicle. The
downlink transmission rate from RSU m to the user can
be expressed as rm. The cloud video servers predict video
segments’ popularity of each video based on the information
on historical user browsing behaviors. The MBS, equipped
with caching, computing, and communication capabilities,
serves as a central controller to manage the resources of RSUs
by determining how to segment and trim highlights pre-cached
to RSUs according to the dynamic service duration.

A. Video Chunk Popularity Model

In the vehicular communication network, the video re-
quested by a user in the vehicle is denoted by f ∈ F =
{1, · · · , F}, and the popularity is assumed to obey the Zifp
distribution in [12]. Then the popularity of video f can be
expressed as pf =

(
1/fβ

)
/
(∑F

i=1 1/i
β
)

, and β is the
Zipf exponent. Since segments’ composition is variable, to
analyze the popularity of segments, the basic unit of segment
composition needs to be modeled. The definition of the basic
segment composition unit is given in the following.

Definition 1: Chunk: A chunk is the smallest divisible video
unit watched by users, and contains τ continuous video frames.

Then, the whole video f can be equally divided into
Xf ordered chunks, and the chunk in video f is indexed
by x ∈ Xf = {1, · · · , Xf}. The value of video chunks’
popularity can be expressed as the ratio of the number of
chunks watched or the ratio of the number of bullet-screen
comments obtained by users’ historical browsing datasets. The
video chunk popularity of video f is a time series and is
denoted by yf (x), where yf (x) ∈ [0, 1] , x ∈ Xf . A video
segment is formed by a sequence of contiguous chunks with
the same caching state, indexed by k ∈ Kf = {1, · · · ,Kf}.
Video segments’ popularity value is the sum of these chunks.

B. Service Duration Model

Suppose the vehicle enters RSU 1 to initiate video service,
and exits RSU M to conclude video service, the service
duration of the vehicle on road can be represented by the
sum of the dwell times in these M RSUs. To model service
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Fig. 1. The illustration of video pre-caching in RSUs scenarios.

duration, the dwell time under each RSU needs to be modeled
first. The dwell time of the vehicle under RSU m is denoted
by tm = dm/vm, where dm ∈ D and vm ∈ V denotes the
coverage ranges and the average vehicle’s speed of RSU the
m. Then, the service duration of the vehicle on road can be
expressed as Td =

∑M
m=1 tm. The transmission traffic of video

chunks in each RSU and the number of playout video chunks
during the service duration can be given by Zr =

∑M
m=1 rmtm

and Zp = Tdzt/τ , where zt denotes the number of video
chunks within one second.

C. Wavelet Transform for Video Chunk Popularity

Due to the noise in users’ historical browsing datasets, the
method of directly sorting the values of video chunks’ popular-
ity may involve many peak values of non-highlight segments,
resulting in inaccurate segmentation of video highlight seg-
ments. Since varying frequencies of video chunks’ popularity
time series in each segment, conventional frequency-domain
analysis methods may not be able to accurately locate the
chunk where the peak value appears. The continuous wavelet
transform (CWT) is the time-frequency analysis method, with
the frequency of the video chunks’ popularity value changes
being observed step by step from coarse to fine, which can
locate the candidate highlight based on the video chunks’ pop-
ularity [13]. As a result, the candidate highlights segmentation
can be obtained. The CWT for video chunk popularity of video
f is as

Wf (b, s) =
1√
|s|

∫ ∞

−∞
yf (x)ψ

∗(
x− b

s
)dx, (1)

where ψ(x) is called the wavelet basis function, s and b
are scale and shift of the wavelet basis function along the
x domain.

D. Highlight Entropy Model

To facilitate effective video pre-caching in the scenario
where users skip some segments, popularity expectation of
users’ viewing segments with different pre-caching chunks
should be evaluated first. Based on video chunks’ popularity,
we define the following evaluation model for highlight pre-
caching strategy.

Definition 2: Highlight Entropy (HE). The average video
segments’ popularity expectation for viewing segments after
each skipped segment when caching chunks of highlight
segments at RSUs.

The highlight entropy of viewing video f is expressed as

Ef =
pf
Nf

√√√√√√
∑Kf

k=1

(
θsx,k

∑Xf

x=1 θ
c
x,fyf (x)

)2

∑Kf

k=1

∑Xf

x=1

((
1− θsx,kθ

c
x,f

)
yf (x)

)2 , (2)

where the numerator underneath the square root symbol rep-
resents the summation of the squares of the video chunks’
popularity of cached video highlights, and the denominator
in the root sign denotes the sum of the squares of the
video chunks’ popularity of uncached video chunks. Nf =∑Kf

k=1

∑Xf

x=1

∣∣∣θsx,kθcx,f − θsx−1,k−1θ
c
x−1,f

∣∣∣ indicates the num-
ber of skipped segments of video f . θcx,f is a binary variable
that represents the chunk caching decision for video f , and
θcx,f = 1 if chunk x is cached, otherwise, θcx,f = 0. The
segmentation status of video chunk x can be represented by
a binary variable θsx,k, where θsx,k = 1 means chunk x is
in segment k. When viewing video segments that encompass
a greater number of chunks with elevated popularity, the
highlight entropy of the video is higher.

E. Problem Formulation

This work aims to maximize the highlight entropy of
requested videos by optimizing video files pre-caching, subject
to transmission resource, storage resource, and service dura-
tion. Accordingly, the optimization problem can be formulated
as

(P0) : max
θc
x,f∈Θc,θs

x,k∈Θs

∑F
f=1Ef (3)

s.t.
F∑

f=1

Xf∑
x=1

θcx,fzf ≤min

{
Zr,

M∑
m=1

cm,
ZpF∑F
f=1 zf

}
, (3a)

F∑
f=1

θcx,f ≤ 1,∀x ∈ Xf , (3b)

θcx,f , θ
s
x,k ∈ {0, 1} ,∀f ∈ F , k ∈ Kf , x ∈ Xf , (3c)

Kf∑
k=1

θsx,k = θcx,f ,∀f ∈ F ,∀x ∈ Xf , (3d)

θcx,f−θsx,k=θcx′,f−θsx′,k,∀f ∈ F ,k∈ Kf ,{x′,x}∈X f .
(3e)

In problem (P0), constraint (3a) means that the cached chunk
size is limited by service duration, network bandwidth, and
the cache storage capacity, where zf represents the chunk size
of video f . Constraint (3b), (3c), and (3d) denote the binary
pre-caching decision constraints, constraint (3e) implies that if
video chunk x and x′ are in segment k, then the corresponding
chunk cache status must be the same.

Solving (P0) is challenging due to the following reasons.
First, it is non-convex and lacks a closed-form objective
function. Second, the chunk caching decision will impact the
result of highlight segmentation and trimming, further greatly
complicating the problem-solving. Third, the RSU dwelling
time is too short, generally in order of minutes, which requires
the algorithm to operate efficiently. Therefore, a highlight-



direction local optimal algorithm is proposed to reduce the
computation complexity caused by blind segmentation diver-
sity, which makes timely highlight segmentation and trimming
decisions as a vehicle travels along the road.

III. ALGORITHM DESIGN AND ANALYSIS

In this section, the highlight entropy maximization problem
(P0) by the candidate highlights segmentation is reformed.
Then, a highlight-direction trimming algorithm is proposed.
Since this problem couples the chunk caching decisions and
the segment selections of videos complicating the problem-
solving, the wavelet transform is introduced to obtain the ini-
tial segmentation, thereby speeding up algorithm convergence.

A. Problem Transformation and Decomposition

The optimal solution to (P0) is strongly influenced by
video chunks’ popularity, resulting in cached video highlights
containing chunks with larger video chunks’ popularity values.
In this subsection, video candidate highlight segmentations
are obtained by the CWT for video chunk popularity and
transform the (P0) into a step-by-step solvable form and derive
the optimal direction for the subsequent step.

It can be found that, if
∑Xf

x=1 θ
c
x,f = 1, for any given

video f , the optimal highlight segment x∗ = arg max
x∈Xf

yf (x).

Otherwise, if
∑Xf

x=1 θ
c
x,f > 1, the optimal highlight segments

are highly coupled with the segments’ continuity. Although
optimal highlight segments do not contain all the chunks with
peak values of video chunks’ popularity, these chunks are
able to derive the candidate highlights segmentation for the
optimization problem (P0).

Lemma 1: When
∑Xf

x=1 θ
c
x,f > 1 and

∑b
x=a θ

s
x,k ≥ 1, x ∈

[a, b], for any given video f , ∃ θcxm,f = 1, where xm =
arg max

x∈[a,b]
yf (x).

Proof: Taking a chunk x0 of video f in segment k starting
from chunk a and ending with chunk b, and where xm ̸= x0 ∈
{a, b}, then the number of skipped chunks Nf = Xf − (b −
a + 1) for video f When

∑Xf

x=1 θ
c
x,f > 1 and

∑b
x=a θ

s
x,k ≥

1, x ∈ [a, b]. The sum of video chunks’ popularity for pre-
cached segment k square yields

b∑
x=a

yf (x)− yf (x0))
2 ≥ (

b∑
x=a

yf (x)− yf (xm))2, (4)

which holds for all xm ̸= x0 ∈ {a, b}. And the sum of skipped
video chunks’ popularity square satisfies

(yf (x0))
2 ≤ (yf (xm))2, (5)

which holds for all xm ̸= x0 ∈ {a, b}. Then the highlight
entropy obtained by caching chunk xm yields

Ef (xm)− Ef (x0)

=
pf
Nf

√
If (xm)− pf

Nf

√
If (x0) ≥ 0,

(6)

holds for all k∈Kf , f ∈ F , where function If (x) is expressed
as If (x) = (

∑b
x′=a yf (x

′) − yf (x))
2/(

∑a−1
x′=0(yf (x

′))2 +

∑Xf

x′=b+1(yf (x
′))2 + (yf (x))

2). To maximize the highlight
entropy, the chunk with the maximal peak value of video
chunks’ popularity will be pre-cached. ■

According to Lemma 1, chunks with peak values of video
chunks’ popularity are key initial sets for candidate highlight
segmentations. It has been stated in [13] that the wavelet
modulus maxima of a real wavelet are capable of identifying
all singular points within a specified interval. As the scale
decreases, the lines of maxima converge towards all singular
points within the interval, without being limited to any partic-
ular ones. Then, the relative maximum of the wavelet modulus
satisfies the following requirements at chunk xm with scale s:

|Wf (xm, s+1)|< |Wf (xm, s)|> |Wf (xm, s−1)|, s⊆Z. (7)

The initial number of segments Kf and the value of Θs for
candidate highlight segmentations of video f are obtained by
these chunks through the wavelet transform modulus maxima
method. Then, (P0) can be equivalently transformed into

(P1) : max
θx,k,f∈Θ

E (θx,k,f ) (8)

s.t. (3a) , (3b) , (3f) ,

θx,k,f = θcx,fθ
s
x,k,∀x ∈ Xf , k ∈ Kf , f ∈ F , (8a)

F∑
f=1

θx,k,f ≤ 1,∀x ∈ Xf , k ∈ Kf , f ∈ F , (8b)

θx,k,f = θx′,k,f ,∀x, x′ ∈ Xf , k ∈ Kf , f ∈ F . (8c)

B. Highlight-Direction Trimming Algorithm

In this subsection, a quick local optimal algorithm is pre-
sented to solve the highlight trimming iteratively. Algorithm
1 illustrates the explicit descriptions of the highlight-direction
trimming for adaptive vehicle travel on road.

Proposition 1: Given the selected chunk xt−1
m of video f

at (t− 1)th iteration, a local optimal video chunk selection at
the iteration is given by

xt ∈
{
xt−1
m − 1, xt−1

m + 1, xtm
}
, (9)

where xtm is the tth iteration highlight segmentation chunk
obtained according to Lemma 1 and equation (7) and xtm ≤
xt−1
m holds for all xtm, x

t−1
m ∈ Xf .

Proof: If the highlight entropy of selecting adjacent chunks{
xt−1
m − 1, xt−1

m + 1
}

satisfies

(yf (x
t−1
m ) + yf (x

t−1
m ± 1))2∑Kf

k=1

∑Xf

x=1 y
2
f (x)− y2f (x

t−1
m )− y2f (x

t−1
m ± 1)

≥
y2f (x

t−1
m ) + y2f (x

t
m)∑Kf

k=1

∑Xf

x=1 y
2
f (x)− y2f (x

t−1
m )− y2f (x

t
m)
,

(10)

then selecting adjacent chunks to ensure the segment inner
continuous according to the restriction (8c) will obtain max-
imal video highlight entropy at step t, otherwise if the first
greater than or equal to symbol is false, a chunk xtm with
higher video chunks’ popularity value according to Lemma 1
will be selected to attain maximal highlight entropy. ■



Proposition 1 implies the selection of chunk caching for
the next iteration directed towards obtaining optimal video
chunks for highlight trimming. The use of candidate highlight
segmentation based on CWT significantly reduces the traversal
number in each iteration to optimize video file pre-caching.

The complexity of the highlight-direction trimming algo-
rithm is O(Nf (Kfn)), in which Nf ,Kf , n is the number of
videos, chunks, and iterations. The iteration converges quickly
with only a few iterations since it starts from the peak value
of the video chunks’ popularity.

Algorithm 1 Highlight-direction Trimming Algorithm
Input: R, C, video chunks’ popularity y(x), vehicle speed v

1: Initial: y (xm) by CWT according to Eq.(1) and Eq.(7)
2: while θx,k,f meet the constraints do
3: Update the next selection set xt by Eq.(9)
4: Caculate

∑F
f=1Ef according to Eq.(2)

5: Update θx,k,f by solving problem (P1)

IV. SIMULATION RESULTS AND ANALYSIS

To verify the functionality and feasibility of our proposed
pre-caching scheme, the subjective experiment is conducted
to analyze QoE, subjective jitter, and highlight level. The
performance of the proposed pre-caching scheme will be
verified through three criteria in the objective experiment,
including the highlight entropy, objective jitter, and cache hit
ratio. These experiments are based on video datasets in the
real world. The baseline algorithms for comparison are briefly
described as follows respectively.

• N-Speed Playback (NSP) [14]: Skips N − 1 chunks every
time viewing a chunk. This mechanism, a basic feature of
most video players, is designed for fast-forwarding users.

• Selecting segments with popularity As High As Possible
(AHAP): Selects highlights by greedy algorithm for tending-
to-skip users [15].

• Elitism-Based Compact Genetic Algorithms (EGA) [16]:
Making sure that the best individuals are not discarded, by
transferring them directly into the next generation.

A. Simulation Setup

To analyze the effectiveness of our proposed caching
scheme and its impact on QoE, jitter, and highlight level,
a week-long experiment is conducted, which involves many
participants who were asked to watch nine video clips and
rate the clips. The video clips are obtained from three different
caching schemes with three different playback durations.

In the objective simulation, a 20 km long freeway with 4
RSUs is considered. The coverage range of each RSU is 5
km. The video chunks’ popularity comes from video frames’
popularity according to user browsing behaviors’ datasets of
video providers such as YouTube, iQIYI, etc [17]. According
to the works of [5] and taking into consideration the specific
context of our work, we set the chunk duration τ to 10∗30 with
a video frame rate of 30fps. The parameters for simulations
are given in Table II.

TABLE II
PARAMETERS AND VALUES

Parameter Value
F,M, τ 10, 4, 10 ∗ 30
Td 30, 45, 60 min

rm, zf , dm, C 1.8 Mbps, 2.25 MB, 5 km, 64 Gb
vm {120, 60, 40, 30, 24, 20, 17, 15} km/h

B. Simulation Results

In Fig. 2, the subjective video viewing performance are
illustrated respectively under different playback durations (de-
noted by Td) for all the pre-caching schemes. The QoE is
denoted by the average rating according to volunteers. The
subjective jitter represents the incoherence of lines, actions,
background music, etc. The highlight level indicates whether
all the popular segments of a video that volunteers want to
watch are included. Specifically, two major insights can be
seen in Fig. 2(a). First, watching video segments obtained
using our strategy yields high QoE scores for all playback
durations. Then, when the playback duration is short, our
strategy for watching video segments achieves much higher
QoE compared to others. The main reason is that the candi-
date highlight segmentation is optimized by highlight entropy
considering not only video segments’ popularity but also the
continuity of segments within a period of time for viewing
experience improvement. As the playback duration approaches
the full length of the video, the advantage becomes less
prominent, as all the segments have been watched and the
highlight level tends to saturate, while the jitter tends to zero.
Fig. 2(b) demonstrates that our strategy effectively reduces the
jitter of viewing video segments, with a decrease in jitter as the
playback duration increases, since the number and duration of
playout segments increase. Fig. 2(c) shows that the viewing
highlight level of the proposed scheme is no less than that
of benchmark schemes as playback duration increases since
video highlights are watched.

The objective viewing video performances obtained by
different strategies at different service durations are shown
in Fig. 3. The objective jitter is the ratio of the average
interval chunk number between adjacent viewing segments
to the total chunk number of a video. The cache hit ratio
is the sum of watched segments’ popularity. As illustrated in
Fig. 3(a), our proposed method can achieve higher highlight
entropy for short service durations. This is because that
DHPC pre-caches more consecutive segments with higher
video chunks’ popularity. However, as all popular chunks have
been selected, there have minimal differences in the highlight
entropy between AHAP and DHPC. In Fig. 3(b), it can be
observed a significant reduction in overall jitter as the service
duration increases. This is because our strategy aims to reduce
the jitter between highlights and enhance continuity during a
highlight. In general, our proposed DHPC pre-caches highlight
segments with great improvement in the quality of users’
viewing experience. Fig. 3(c) illustrates that our proposed pre-
caching scheme outperforms the EGA and NSP methods and
drops behind the AHAP in terms of cache hit ratio across



(a) Subjective QoEs under different playback dura-
tions.

(b) Subjective jitter degrees under different play-
back durations.

(c) Subjective highlight levels under different play-
back durations.

Fig. 2. Achievable subjective evaluation parameters.

(a) HEs under different service durations. (b) Jitters under different service durations. (c) Cache hit ratios under different viewing ratios.
Fig. 3. Evaluation parameters of the different pre-caching strategies.

different ratios of service duration to video duration. The main
reason is that to improve overall viewing experience quality,
the proposed scheme, EGA, and NSP fail to maintain higher
video segments’ popularity while ensuring the continuity of
the highlight segments.

V. CONCLUSION AND FUTURE WORKS

To enable mobility vehicles to view video with high quality
on road, we proposed a duration-adaptive highlight video pre-
caching scheme in this paper. To balance the popularity and
continuity between segments within a period of time, we
constructed a highlight entropy based quality evaluation model
and formulated a highlight entropy maximization problem with
the limitation of resources and service duration constraints.
Based on wavelet transform we proposed a highlight-direction
trimming algorithm. Theoretical analysis indicated that the
proposed algorithm can achieve local optimum. Subsequently,
the algorithm is evaluated on a real dataset, and the simulation
results verify that our proposed algorithm improves the video
viewing highlight entropy and jitter. For future work, we
will focus on the design of dynamic pre-caching with joint
optimization of viewing highlight segments and global balance
to enhance the system’s adaptivity.
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