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Abstract. A circle graph is an intersection graph of a set of chords of a circle. We describe the
unavoidable induced subgraphs of circle graphs with large treewidth. This includes examples that are
far from the ``usual suspects."" Our results imply that treewidth and Hadwiger number are linearly
tied on the class of circle graphs and that the unavoidable induced subgraphs of a vertex-minor-closed
class with large treewidth are the usual suspects if and only if the class has bounded rank-width.
Using the same tools, we also study the treewidth of graphs G that have a circular drawing whose
crossing graph is well-behaved in some way. In this setting, we show that if the crossing graph is
Kt-minor-free, then G has treewidth at most 12t - 23 and has no K2,4t-topological minor. On the
other hand, we show that there are graphs with arbitrarily large Hadwiger number that have circular
drawings whose crossing graphs are 2-degenerate.
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1. Introduction. This paper studies the treewidth of graphs that are defined
by circular drawings. Treewidth is the standard measure of how similar a graph is to
a tree and is of fundamental importance in structural and algorithmic graph theory;
see [13, 40, 65] for surveys. The motivation for this study is twofold. See section 2
for definitions omitted from this introduction.

1.1. Theme \#1: Circle graphs. A circle graph is the intersection graph
of a set of chords of a circle. Circle graphs form a widely studied graph class
[19, 21, 23, 32, 36, 47, 50], and there have been several recent breakthroughs concern-
ing them. In the study of graph colorings, Davies and McCarty [21] showed that circle
graphs are quadratically \chi -bounded, improving on a previous long-standing exponen-
tial upper bound. Davies [19] further improved this bound to \chi (G)\in \scrO (\omega (G) log\omega (G)),
which is best possible. Circle graphs are also fundamental to the study of vertex-
minors and are conjectured to lie at the heart of a global structure theorem for
vertex-minor-closed graph classes (see [54]). To this end, Geelen et al. [36] recently
proved an analogous result to the excluded grid minor theorem for vertex-minors us-
ing circle graphs. In particular, they showed that a vertex-minor-closed graph class
has bounded rankwidth if and only if it excludes a circle graph as a vertex-minor. For
further motivation and background on circle graphs, see [20, 54].
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966 HICKINGBOTHAM, ILLINGWORTH, MOHAR, AND WOOD

Our first contribution essentially determines when a circle graph has large
treewidth.

Theorem 1. Let t \in \BbbN , and let G be a circle graph with treewidth at least 12t+
2. Then G contains an induced subgraph H that consists of t vertex-disjoint cycles
(C1, . . . ,Ct) such that for all i < j, every vertex of Ci has at least two neighbors in
Cj. Moreover, every vertex of G has at most four neighbors in any Ci (1\leqslant i\leqslant t).

Observe that, in Theorem 1, the subgraph H has a Kt-minor obtained by con-
tracting each of the cycles Ci to a single vertex, implying that H has treewidth at
least t - 1. Moreover, since circle graphs are closed under taking induced subgraphs,
H is also a circle graph. We now highlight several consequences of Theorem 1.

First, Theorem 1 describes the unavoidable induced subgraphs of circle graphs
with large treewidth. Recently, there has been significant interest in understanding
the induced subgraphs of graphs with large treewidth [2, 3, 4, 5, 6, 7, 8, 14, 51, 62, 72].
To date, most of the results in this area have focused on graph classes where the un-
avoidable induced subgraphs are the following graphs, the usual suspects: a complete
graph Kt, a complete bipartite graph Kt,t, a subdivision of the (t \times t)-wall, or the
line graph of a subdivision of the (t\times t)-wall (see [72] for definitions). Circle graphs
do not contain subdivisions of large walls or the line graphs of subdivisions of large
walls, and there are circle graphs of large treewidth that do not contain large com-
plete graphs or large complete bipartite graphs (see Theorem 22). To the best of our
knowledge, this is the first result to describe the unavoidable induced subgraphs of
the large treewidth graphs in a natural hereditary class when they are not the usual
suspects. Later we show that the unavoidable induced subgraphs of graphs with large
treewidth in a vertex-minor-closed class \scrG are the usual suspects if and only if \scrG has
bounded rankwidth (see Theorem 24).

Second, the subgraph H in Theorem 1 is an explicit witness to the large treewidth
of G (with only a multiplicative loss). Circle graphs being \chi -bounded says that
circle graphs with large chromatic number must contain a large clique witnessing
this. Theorem 1 can therefore be considered to be a treewidth analogue to the \chi -
boundedness of circle graphs. We also prove an analogous result for circle graphs
with large pathwidth (see Theorem 23).

Third, since the subgraph H has a Kt-minor, it follows that every circle graph
contains a complete minor whose order is at least one-twelfth of its treewidth. This
is in stark contrast to the general setting where there are K5-minor-free graphs with
arbitrarily large treewidth (for example, grids). Theorem 1 also implies the following
relationship between the treewidth, Hadwiger number, and Haj\'os number of circle
graphs (see section 5).1

Theorem 2. For the class of circle graphs, the treewidth and Hadwiger number
are linearly tied. Moreover, the Haj\'os number is quadratically tied to both of them.
Both ``linear"" and ``quadratic"" are best possible.

1.2. Theme \#2: Graph drawing. The second thread of this paper aims to
understand the relationship between circular drawings of graphs and their crossing
graphs. A circular drawing (also called convex drawing) of a graph places the vertices
on a circle with edges drawn as straight-line segments. Circular drawings are a well-
studied topic; see [35, 48, 73], for example. The crossing graph of a drawing D of a
graph G has vertex set E(G), where two vertices are adjacent if the corresponding

1For a graph class \scrG , two graph parameters \alpha and \beta are tied on \scrG if there exists a function
f such that \alpha (G) \leqslant f(\beta (G)) and \beta (G) \leqslant f(\alpha (G)) for every graph G \in \scrG . Moreover, \alpha and \beta are
quadratically/linearly tied on \scrG if f may be taken to be quadratic/linear.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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TREEWIDTH, CIRCLE GRAPHS, AND CIRCULAR DRAWINGS 967

edges cross. Circle graphs are precisely the crossing graphs of circular drawings. If
a graph has a circular drawing with a well-behaved crossing graph, must the graph
itself also have a well-behaved structure? Graphs that have a circular drawing with
no crossings are exactly the outerplanar graphs, which have treewidth at most 2. Put
another way, outerplanar graphs are those that have a circular drawing whose crossing
graph is K2-minor-free. Our next result extends this fact, relaxing ``K2-minor-free""
to ``Kt-minor-free.""

Theorem 3. For every integer t\geqslant 3, if a graph G has a circular drawing where
the crossing graph has no Kt-minor, then G has treewidth at most 12t - 23.

Theorem 3 says that G having large treewidth is sufficient to force a complicated
crossing graph in every circular drawing of G. A topological K2,4t-minor also suffices.

Theorem 4. If a graph G has a circular drawing where the crossing graph has
no Kt-minor, then G contains no K2,4t as a topological minor.

Outerplanar graphs are exactly those graphs that have treewidth at most 2 and
exclude a topological K2,3-minor. As such, Theorems 3 and 4 extend these structural
properties of outerplanar graphs to graphs with circular drawings whose crossing
graphs are Kt-minor-free. We also prove a product structure theorem for such graphs,
showing that every graph that has a circular drawing whose crossing graph has no
Kt-minor is isomorphic to a subgraph of H \boxtimes K\scrO (t3), where tw(H)\leqslant 2 (see Corollary
11).

In the other direction, we consider sufficient conditions for a graph G to have a
circular drawing whose crossing graph has no Kt-minor. By Theorems 3 and 4, G
must have bounded treewidth and no K2,4t-topological minor. While these conditions
are necessary, we show that they are not sufficient but that bounded treewidth with
bounded maximum degree is; see Lemma 17 and Proposition 18 in subsection 4.2 for
details.

In addition, we show that the assumption in Theorem 3 that the crossing graph
has bounded Hadwiger number cannot be weakened to bounded degeneracy. In par-
ticular, we construct graphs with arbitrarily large complete graph minors that have a
circular drawing whose crossing graph is 2-degenerate (Theorem 20). This result has
applications to the study of general (noncircular) graph drawings and, in particular,
leads to the solution of an open problem asked by Hickingbotham and Wood [42].

Our proofs of Theorems 1 to 3 are all based on the same core lemmas proved in
section 3. The results about circle graphs are in section 5, while the results about
graph drawings are in section 4.

2. Preliminaries.

2.1. Graph basics. We use standard graph-theoretic definitions and notation;
see [24] for undefined terms, definitions, and notation.

For a tree T , a T -decomposition of a graph G is a collection \scrW = (Wx : x\in V (T ))
of subsets of V (G) indexed by the nodes of T such that (i) for every edge vw \in E(G),
there exists a node x \in V (T ) with v,w \in Wx, and (ii) for every vertex v \in V (G), the
set \{ x \in V (T ) : v \in Wx\} induces a (connected) subtree of T . Each set Wx in \scrW is
called a bag. The width of \scrW is max\{ | Wx| : x \in V (T )\}  - 1. A tree-decomposition is a
T -decomposition for any tree T . The treewidth tw(G) of a graph G is the minimum
width of a tree-decomposition of G.

A path-decomposition of a graph G is a T -decomposition where T is a path. The
pathwidth pw(G) of a graph G is the minimum width of a path-decomposition of G.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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968 HICKINGBOTHAM, ILLINGWORTH, MOHAR, AND WOOD

Let n \in \BbbN . The (n\times n)-grid is the graph with vertex set \{ (i, j) : i, j \in \{ 1, . . . , n\} \} 
and edge set

\{ (i, j)(i+ 1, j) : i\in \{ 1, . . . , n - 1\} , j \in \{ 1, . . . , n\} \} 
\cup \{ (i, j)(i, j + 1): i\in \{ 1, . . . , n\} , j \in \{ 1, . . . , n - 1\} \} .

The (n\times n)-wall is the graph with vertex set \{ (i, j) : i, j \in \{ 1, . . . , n\} \} and edge set

\{ (i, j)(i+ 1, j) : i\in \{ 1, . . . , n - 1\} , j \in \{ 1, . . . , n\} \} 
\cup \{ (i, j)(i, j + 1): i\in \{ 1, . . . , n\} , j \in \{ 1, . . . , n - 1\} , i+ j even\} .

Grids and walls are the canonical examples of graphs with large treewidth.
A graph H is a minor of a graph G if H is isomorphic to a graph obtained from

a subgraph of G by contracting edges. The Hadwiger number h(G) of a graph G is
the maximum integer t such that Kt is a minor of G.

A graph \~G is a subdivision of a graph G if \~G can be obtained from G by replacing
each edge vw by a path Pvw with endpoints v and w (internally disjoint from the rest
of \~G). A graph H is a topological minor of G if a subgraph of G is isomorphic to a
subdivision of H. The Haj\'os number h\prime (G) of G is the maximum integer t such that
Kt is a topological minor of G. A graph G is H-topological minor-free if H is not a
topological minor of G.

It is well known that for every graph G,

h\prime (G)\leqslant h(G)\leqslant tw(G) + 1.

A graph class is a collection of graphs closed under isomorphism. A graph class is
hereditary if it is closed under induced subgraphs. A graph parameter is a real-valued
function \alpha defined on all graphs such that \alpha (G1) = \alpha (G2) whenever G1 and G2 are
isomorphic.

2.2. Drawings of graphs. A drawing of a graph G is a function \phi that maps
each vertex v \in V (G) to a point \phi (v) \in \BbbR 2 and maps each edge e = vw \in E(G) to a
non--self-intersecting curve \phi (e) in \BbbR 2 with endpoints \phi (v) and \phi (w), such that

\bullet \phi (v) \not = \phi (w) for all distinct vertices v and w;
\bullet \phi (x) \not \in \phi (e) for each edge e= vw and each vertex x\in V (G) \setminus \{ v,w\} ;
\bullet each pair of edges intersect at a finite number of points: \phi (e)\cap \phi (f) is finite

for all distinct edge e, f ;
\bullet no three edges internally intersect at a common point: For distinct edges

e, f, g, the only possible element of \phi (e) \cap \phi (f) \cap \phi (g) is \phi (v), where v is a
vertex incident to all of e, f, g.

A crossing of distinct edges e = uv and f = xy is a point in (\phi (e) \cap \phi (f)) \setminus 
\{ \phi (u), \phi (v), \phi (x), \phi (y)\} , that is, an internal intersection point. A graph is planar if it
has a drawing with no crossings. A plane graph is a planar graph G equipped with a
drawing of G with no crossings.

The crossing graph of a drawing D of a graph G is the graph XD with vertex set
E(G), where for each crossing between edges e and f in D, there is an edge of XD

between the vertices corresponding to e and f . Note that XD is actually a multigraph,
where the multiplicity of ef equals the number of times e and f cross in D. In most
drawings that we consider, each pair of edges cross at most once, in which case XD

has no parallel edges.
Numerous papers have studied graphs that have a drawing whose crossing graph

is well-behaved in some way. Here we give some examples. The crossing number

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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TREEWIDTH, CIRCLE GRAPHS, AND CIRCULAR DRAWINGS 969

cr(G) of a graph G is the minimum number of crossings in a drawing of G; see the
surveys [60, 68, 74] or the monograph [67]. Obviously, cr(G) \leqslant k if and only if G
has a drawing D with | E(XD)| \leqslant k. Tutte [75] defined the thickness of a graph G to
be the minimum number of planar graphs whose union is G; see [44, 55] for surveys.
Every planar graph can be drawn with its vertices at prespecified locations [39, 61]. It
follows that a graph G has thickness at most k if and only if G has a drawing D such
that \chi (XD)\leqslant k. A graph is k-planar if G has a drawing D in which every edge is in
at most k crossings; that is, XD has maximum degree at most k; see [28, 29, 37, 59],
for example. More generally, Eppstein and Gupta [34] defined a graph G to be k-
degenerate crossing if G has a drawing D in which XD is k-degenerate. Bae et al. [9]
defined a graph G to be k-gap-planar if G has a drawing D in which each crossing
can be assigned to one of the two involved edges and each edge is assigned at most k
of its crossings. This is equivalent to saying that every subgraph of XD has average
degree at most 2k. It follows that every k-degenerate crossing graph is k-gap-planar
and that every k-gap-planar graph is a 2k-degenerate crossing graph [45].

A drawing is circular if the vertices are positioned on a circle and the edges are
straight-line segments. A theme of this paper is to study circular drawings D in
which XD is well-behaved in some way. Many papers have considered properties of
XD in this setting. The convex crossing number of a graph G is the minimum number
of crossings in a circular drawing of G; see [68] for a detailed history of this topic.
Obviously, G has convex crossing number at most k if and only if G has a circular
drawing D with | E(XD)| \leqslant k. The book thickness (also called page-number or stack-
number) of a graph G can be defined as the minimum taken over all circular drawings
D of G, of \chi (XD). This parameter is widely studied; see [10, 11, 27, 31, 78, 79], for
example.

3. Tools. In this section, we introduce two auxiliary graphs that are useful tools
for proving our main theorems.

For a drawing D of a graph G, the planarization, PD, of D is the plane graph
obtained by replacing each crossing with a dummy vertex of degree 4, as illustrated
in Figure 1. Note that PD depends on the drawing D (and not just on G).

For a drawing D of a graph G, the map graph, MD, of D is obtained as follows.
First, let PD be the planarization of D. The vertices of MD are the faces of PD,
where two vertices are adjacent in MD if the corresponding faces share a vertex. If
G is itself a plane graph, then it is already drawn in the plane, and so we may talk
about the map graph, MG, of G. Note that all map graphs are connected graphs.
Figure 2 shows the map graph MD for the drawing D in Figure 1.

The radius of a connected graph G, denoted rad(G), is the minimum nonnegative
integer r such that for some vertex v \in V (G) and for every vertex w \in V (G), we have
distG(v,w)\leqslant r.

Fig. 1. A drawing and its planarization.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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970 HICKINGBOTHAM, ILLINGWORTH, MOHAR, AND WOOD

v∞

Fig. 2. Map graph MD. v\infty is the vertex corresponding to the outer face: It is adjacent to all
vertices except the unique vertex of degree 10.

In subsection 3.1, we show that the radius of the map graph MD acts as an upper
bound for the treewidths of G and XD. In subsection 3.2, we show that if D is a
circular drawing and the map graph MD has large radius, then XD contains a useful
substructure. Thus, the radius of MD provides a useful bridge between the treewidth
of G, the treewidth of XD, and the subgraphs of XD.

3.1. Map graphs with small radii. Here we prove that for any drawing D of
a graph G, the radius of MD acts as an upper bound for both the treewidth of G and
the treewidth of XD.

Theorem 5. For every drawing D of a graph G,

tw(G)\leqslant 6 rad(MD) + 7 and tw(XD)\leqslant 6 rad(MD) + 7.

Wood and Telle [77, Prop. 8.5] proved that if a graph G has a circular drawing
D such that whenever edges e and f cross e or f crosses at most d edges, then G has
treewidth at most 3d+ 11. This assumption implies that rad(MD) \leqslant \lfloor d/2\rfloor + 1, and
so the first inequality of Theorem 5 generalizes this result.

It is not surprising that treewidth and radius are related for drawings. A classical
result of Robertson and Seymour [66, eq. (2.7)] says that tw(G) \leqslant 3 rad(G) + 1 for
every connected planar graph G. Several authors improved this bound as follows.

Lemma 6 ([12, 29]). For every connected planar graph G,

tw(G)\leqslant 3 rad(G).

We now prove that if a planar graph G has large treewidth, then the map graph
of any plane drawing of G has large radius. A triangulation of a plane graph G is a
plane supergraph of G on the same vertex set and where each face is a triangle.

Lemma 7. Let G be a plane graph with map graph MG. Then there is a plane
triangulation H of G with rad(H)\leqslant rad(MG) + 1. In particular,

tw(G)\leqslant 3 rad(MG) + 3.

Proof. Let F0 be a face of G such that every vertex in MG has distance at most
rad(MG) from F0. For each face F of G, let dist0(F ) be the distance of F from F0 in
MG.

Fix a vertex v0 of G in the boundary of F0, and set \rho (v0) := - 1. For every other
vertex v of G, let

\rho (v) =min\{ dist0(F ) : v is on the boundary of face F\} .

Note that \rho takes values in \{  - 1,0, . . . , rad(MG)\} .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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TREEWIDTH, CIRCLE GRAPHS, AND CIRCULAR DRAWINGS 971

We now construct a triangulation H of G such that every vertex v \not = v0 is adjacent
(in H) to a vertex u with \rho (u)<\rho (v). In particular, the distance from v to v0 in H is
at most \rho (v) + 1\leqslant rad(MG) + 1, and so H has the required radius. For each face F ,
let vF be a vertex of F with the smallest \rho -value. Note that vF0

= v0. Triangulate G
as follows. First, consider one by one each face F . For every vertex v of F that is not
already adjacent to vF , add the edge vvF . Finally, let H be obtained by triangulating
the resulting graph.

By Lemma 6, tw(G)\leqslant tw(H)\leqslant 3 rad(H)\leqslant 3 rad(MG) + 3.

Note that a version of Lemma 7 with rad(MG) replaced by the eccentricity of the
outerface in MG can be proved via outerplanarity.2

We use the following lemma about planarizations to extend Lemma 7 from plane
drawings to arbitrary drawings.

Lemma 8. For every drawing D of a graph G, the planarization PD of D satisfies

tw(G)\leqslant 2 tw(PD) + 1 and tw(XD)\leqslant 2 tw(PD) + 1.

Proof. Consider a tree-decomposition (T,\scrW ) of PD in which each bag has size
at most tw(PD) + 1. Now we prove the first inequality. Arbitrarily orient the edges
of G. Each dummy vertex x of PD corresponds to a crossing between two oriented
edges ab and cd of G. For each dummy vertex x, replace each instance of x in the
tree-decomposition (T,\scrW ) by b and d. It is straightforward to verify that this gives
a tree-decomposition (T,\scrW \prime ) of G with bags of size at most 2 tw(PD) + 2. Hence,
tw(G)\leqslant 2 tw(PD) + 1.

Now we prove the second inequality. Each dummy vertex x of PD corresponds to
a crossing between two edges e and f of G. For each dummy vertex x, replace each
instance of x in (T,\scrW ) by e and f . Also, for each vertex v of G, delete all instances
of v from (T,\scrW ). This gives a tree-decomposition (T,\scrW \prime \prime ) of XD with bags of size at
most 2 tw(PD) + 2. Hence, tw(XD)\leqslant 2 tw(PD) + 1.

We are now ready to prove Theorem 5.

Proof of Theorem 5. Let PD be the planarization of D. By definition, MD
\sim =MPD

.
Lemma 7 implies that

2 tw(PD) + 1\leqslant 2(3 rad(MPD
) + 3) + 1= 6rad(MD) + 7.

Lemma 8 now gives the required result.

3.2. Map graphs with large radii. The next lemma is a cornerstone of this
paper. It shows that if the map graph of a circular drawing has large radius, then
the crossing graph contains a useful substructure. For a, b \in \BbbR , where a < b, let (a, b)
denote the open interval \{ r \in \BbbR : a< r < b\} .

Lemma 9. Let D be a circular drawing of a graph G. If the map graph MD has
radius at least 2t, then the crossing graph XD contains t vertex-disjoint induced cycles
C1, . . . ,Ct such that for all i < j, every vertex of Ci has at least two neighbors in Cj.
Moreover, every vertex of XD has at most four neighbors in any Ci (1\leqslant i\leqslant t).

2Say that a plane graph G is k-outerplane if removing all the vertices on the boundary of the
outerface leaves a (k  - 1)-outerplane subgraph, where a plane graph is 0-outerplane if it has no
vertices. Consider a plane graph G, where v\infty is the vertex of MG corresponding to the outerface.
Then one can show that if v\infty has eccentricity k in MG, then G is (k+1)-outerplane, and, conversely,
if G is k-outerplane, then v\infty has eccentricity at most k in MG. Bodlaender [13] showed that every
k-outerplanar graph has treewidth at most 3k  - 1. The same proof shows that every k-outerplane
graph has treewidth at most 3k - 1 (which also follows from [29]).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/2

2/
24

 to
 1

93
.6

0.
23

8.
99

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



972 HICKINGBOTHAM, ILLINGWORTH, MOHAR, AND WOOD

Proof. Let F \in V (MD) be a face with distance at least 2t from the outer face of
G. Let p be a point in the interior of F . Let R0 be the infinite ray starting at p and
pointing vertically upward. More generally, for \theta \in \BbbR , let R\theta be the infinite ray with
endpoint p that makes a clockwise angle of \theta (radians) with R0. In particular, R\pi is
the ray pointing vertically downward from p and R\theta +2\pi =R\theta for all \theta .

In the statement of the following claim and throughout the paper, ``cross"" means
to internally intersect.

Claim. Every R\theta crosses at least 2t - 1 edges of G.

Proof. Consider moving along R\theta from p to the outer face. The distance in MD

only changes when crossing an edge or a vertex of G and changes by at most 1 when
doing so. Since each R\theta contains at most one vertex of G, it must cross at least 2t - 1
edges.

For each edge e of G, define Ie := \{ \theta : e crosses R\theta \} . Since each edge is a line
segment not passing through p, each Ie is of the form (a,a\prime )+2\pi \BbbZ , where a< a\prime <a+\pi .
Also note that edges e and f cross exactly if Ie \cap If \not =\varnothing , Ie \not \subseteq If , and If \not \subseteq Ie.

For a set of edges E\prime \subseteq E(G), define IE\prime =
\bigcup 
\{ Ie : e \in E\prime \} . We say that E\prime is

dominant if IE\prime =\BbbR and is minimally dominant if no proper subset of E\prime is dominant.
Note that if e, f \in E\prime and E\prime is minimally dominant, then e and f cross exactly if
Ie \cap If \not =\varnothing .

Claim. If E\prime is minimally dominant, then
(i) every R\theta crosses at most two edges of E\prime ;
(ii) E\prime induces a cycle in XD;
(iii) every edge of G crosses at most four edges of E\prime .

Proof. We first prove (i). Suppose that there is some R\theta crossing distinct edges
e1, e2, e3 \in E\prime . Then \theta \in Ie1 \cap Ie2 \cap Ie3 and \theta +\pi \not \in Ie1 \cup Ie2 \cup Ie3 . Hence, we may write

Iei = (ai, a
\prime 
i) + 2\pi \BbbZ , i= 1,2,3,

where \theta  - \pi < ai < \theta < a\prime i < \theta +\pi . By relabeling, we may assume that a1 <a2 <a3 < \theta .
Now if a\prime 3 is not the largest of a\prime 1, a

\prime 
2, a

\prime 
3, then (a3, a

\prime 
3) \subseteq (a1, a

\prime 
1) \cup (a2, a

\prime 
2), and so

Ie3 \subseteq Ie1 \cup Ie2 , which contradicts the minimality of E\prime . Hence, a\prime 3 \geqslant a\prime 1, a
\prime 
2. But then

(a2, a
\prime 
2)\subseteq (a1, a

\prime 
1)\cup (a3, a

\prime 
3), and so Ie2 \subseteq Ie1 \cup Ie3 , which again contradicts minimality.

This proves (i).
We next show that E\prime induces a connected subgraph of XD. If E\prime does not, then

there is a partition E1 \cup E2 of E\prime into nonempty sets such that no edge in E1 crosses
any edge in E2. Since E\prime is minimally dominant, this means that IE1

\cap IE2
= \varnothing .

Consider \BbbR with the topology induced by the Euclidean metric, which is a connected
space. But IE1

and IE2
are nonempty open sets that partition \BbbR . Hence, E\prime induces

a connected subgraph.
We now show that E\prime induces a 2-regular graph in XD, which together with

connectedness establishes (ii). Let e \in E\prime , and write Ie = (a,a\prime ) + 2\pi \BbbZ , where a <
a\prime < a + \pi . Since E\prime is dominant, there are f, f \prime \in E\prime with a \in If and a\prime \in If \prime . If
f = f \prime , then Ie \subseteq If , which contradicts minimality. Hence, f, f \prime are distinct, and so e
has degree at least two in XD. Suppose that e has some neighbor f \prime \prime in XD distinct
from f, f \prime . Since If \prime \prime is not a subset of Ie, it must contain at least one of a,a\prime . By
symmetry, we may assume that If \prime \prime contains a. But then, for some sufficiently small
\varepsilon > 0, all of Ie, If , If \prime \prime contain a + \varepsilon , and so Ra+\varepsilon crosses three edges of E\prime , which
contradicts (i). Hence, e has exactly two neighbors in E\prime , which establishes (ii).
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TREEWIDTH, CIRCLE GRAPHS, AND CIRCULAR DRAWINGS 973

Finally, consider an arbitrary edge e= uv of G. Let Ru be the infinite ray from p
that contains u and Rv be the infinite ray from p that contains v. Observe that every
edge of G that crosses e also crosses Ru or Rv. By (i), at most four edges in E\prime cross
e, which proves (iii).

For a set of edges E\prime \subseteq E(G), say that an edge e \in E\prime is maximal in E\prime if there
is no f \in E\prime \setminus \{ e\} with Ie \subseteq If . Suppose that E\prime is dominant. Let E\prime 

max be the
set of maximal edges in E\prime . Clearly, E\prime 

max is still dominant and so has a minimally
dominant subset. In particular, every dominant set of edges E\prime has a subset E1 that
is minimally dominant and all of whose edges are maximal in E\prime .

Claim. Let E\prime \subseteq E(G) and E1,E2 \subseteq E\prime . Suppose that all the edges of E1 are
maximal in E\prime and that E2 is dominant. Then every edge in E1 crosses at least two
edges in E2.

Proof. Let e1 \in E1, and write Ie1 = (a,a\prime ) + 2\pi \BbbZ , where a < a\prime < a+ \pi . Since E2

is dominant, there are e2, e3 \in E2 with a \in Ie2 and a\prime \in Ie3 . If e2 = e3, then Ie1 \subseteq Ie2 ,
which contradicts the maximality of e1 in E\prime .

By symmetry, it suffices to check that e1 and e2 cross. Note that for some suffi-
ciently small \varepsilon > 0, a+ \varepsilon is in both Ie1 and Ie2 , and so Ie1 \cap Ie2 \not =\varnothing . As a\in Ie2 \setminus Ie1 ,
we have Ie2 \not \subseteq Ie1 . Finally, the maximality of e1 in E\prime means that Ie1 \not \subseteq Ie2 . Hence,
e1 and e2 do indeed cross.

We are now ready to complete the proof. Note that a set of edges is dominant
exactly if it crosses every R\theta . By the first claim, E =E(G) is dominant. Let E1 \subseteq E
be minimally dominant such that every edge of E1 is maximal in E. By part (i) of
the second claim, every R\theta crosses at most two edges of E1 and so, by the first claim,
crosses at least 2t - 3 edges of E \setminus E1. Hence, E \setminus E1 is dominant. Let E2 \subseteq E \setminus E1

be minimally dominant such that every edge of E2 is maximal in E \setminus E1. Continuing
in this way, we obtain pairwise disjoint E1,E2, . . . ,Et \subset E such that for all i,

\bullet Ei is minimally dominant;
\bullet every edge of Ei is maximal in E \setminus (

\bigcup 
i\prime <iEi\prime );

\bullet every R\theta crosses at most two edges of Ei;
\bullet every R\theta crosses at least 2(t - i) - 1 edges of E \setminus (

\bigcup 
i\prime \leqslant iEi\prime ).

By part (ii) of the second claim, every Ei induces a cycle Ci in XD. Let i < j and
E\prime :=E\setminus (

\bigcup 
i\prime <iEi\prime ). Then Ei,Ej \subseteq E\prime , and every edge of Ei is maximal in E\prime . Hence,

by the third claim, every edge in Ei crosses at least two edges in Ej . In particular,
every vertex of Ci has at least two neighbors in Cj .

Finally, by part (iii) of the second claim, every vertex of XD has at most four
neighbors in any Ci.

4. Structural properties of circular drawings. Theorem 5 says that for any
drawing D of a graph G, the radius of MD provides an upper bound for tw(G) and
tw(XD). For a general drawing, it is impossible to relate tw(XD) to tw(G). First,
planar graphs can have arbitrarily large treewidth (for example, the (n\times n)-grid has
treewidth n; see [40]) and admit drawings with no crossings. In the other direction,
K3,n has treewidth 3 and crossing number \Omega (n2), as shown by Kleitman [46]. In
particular, the crossing graph of any drawing of K3,n has average degree linear in
n and thus has arbitrarily large complete minors [52, 53] and so arbitrarily large
treewidth.

Happily, this is not true for circular drawings. Using the tools in section 3, we
show that if a graph G has large treewidth, then the crossing graph of any circular

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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974 HICKINGBOTHAM, ILLINGWORTH, MOHAR, AND WOOD

drawing of G has large treewidth. In fact, the crossing graph must contain a large
(topological) complete graph minor (see Theorems 3 and 10). In particular, if XD is
Kt-minor-free, then G has small treewidth. We further show that if XD is Kt-minor-
free, then G does not contain a subdivision of K2,4t (Theorem 4). Using these results,
we deduce a product structure theorem for G (Corollary 11).

In the other direction, we ask what properties of a graph G guarantee that it
has a circular drawing D where XD has no Kt-minor. Certainly, G must have small
treewidth. Adding the constraint that G does not contain a subdivision of K2,f(t)

is not sufficient (see Lemma 17), but a bounded maximum degree constraint is: We
show that if G has bounded maximum degree and bounded treewidth, then G has a
circular drawing where the crossing graph has bounded treewidth (Proposition 18).

We also show that there are graphs with arbitrarily large complete graph minors
that admit circular drawings whose crossing graphs are 2-degenerate (see Theorem
20).

4.1. Necessary conditions for \bfitK \bfitt -minor-free crossing graphs. This sub-
section studies the structure of graphs that have circular drawings whose crossing
graph is (topological) Kt-minor-free. Much of our understanding of the structure
of these graphs is summarized by the next four results (Theorems 3, 4, and 10 and
Corollary 11).

Theorem 3. For every integer t\geqslant 3, if a graph G has a circular drawing where
the crossing graph has no Kt-minor, then G has treewidth at most 12t - 23.

Theorem 4. If a graph G has a circular drawing where the crossing graph has
no Kt-minor, then G contains no K2,4t as a topological minor.

Theorem 10. If a graph G has a circular drawing where the crossing graph has
no topological Kt-minor, then G has treewidth at most 6t2 + 6t+ 1.

From these, we may deduce a product structure theorem for graphs that have a
circular drawing whose crossing graph is Kt-minor-free. For two graphs G and H, the
strong product G \boxtimes H is the graph with vertex set V (G) \times V (H) and with an edge
between two vertices (v,w) and (v\prime ,w\prime ) if and only if v= v\prime and ww\prime \in E(H), w=w\prime 

and vv\prime \in E(G), or vv\prime \in E(G) and ww\prime \in E(H). Campbell et al. [17, Prop. 55]
showed that if a graph G is K2,t-topological minor-free and has treewidth at most k,
then G is isomorphic to a subgraph of H\boxtimes K\scrO (t2k), where tw(H)\leqslant 2. Thus, Theorems
3 and 4 imply the following product structure result.

Corollary 11. If a graph G has a circular drawing where the crossing graph has
no Kt-minor, then G is isomorphic to a subgraph of H \boxtimes K\scrO (t3), where tw(H)\leqslant 2.

En route to proving these results, we use the cycle structure built by Lemma 9
to find (topological) complete minors in the crossing graph of circular drawings. We
first show that the treewidth and Hadwiger number of XD as well as the radius of
MD are all linearly tied.

Lemma 12. For every circular drawing D,

tw(XD)\leqslant 6 rad(MD) + 7\leqslant 12h(XD) - 11\leqslant 12 tw(XD) + 1.

Proof. The first inequality is exactly Theorem 5, while the final one is the well-
known fact that h(G)\leqslant tw(G)+1 for every graph G. To prove the middle inequality,
we need to show that for any circular drawing D,

rad(MD)\leqslant 2h(XD) - 3.(4.1)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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TREEWIDTH, CIRCLE GRAPHS, AND CIRCULAR DRAWINGS 975

Let t := h(XD), and suppose, for a contradiction, that rad(MD)\geqslant 2t - 2. By Lemma
9, XD contains t - 1 vertex disjoint cycles C1, . . . ,Ct - 1 such that for all i < j, every
vertex of Ci has a neighbor in Cj . Contracting C1 to a triangle and each Ci (i \geqslant 2)
to a vertex gives a Kt+1-minor in XD. This is the required contradiction.

Clearly, the Haj\'os number of a graph is at most the Hadwiger number. Our next
lemma implies that the Haj\'os number of XD is quadratically tied to the radius of MD

and to the treewidth and Hadwiger number of XD.

Lemma 13. For every circular drawing D,

rad(MD)\leqslant h\prime (XD)2 + 3h\prime (XD) + 1.

Proof. Let t= h\prime (XD)+1, and suppose, for a contradiction, that rad(MD)\geqslant t2+t.
By Lemma 9, XD contains (t2+ t)/2 vertex disjoint cycles C1, . . . ,C(t2+t)/2 such that
for all i < j, every vertex of Ci has a neighbor in Cj . For each i \in \{ 1, . . . , t\} , let vi \in 
V (Ci). We assume that V (Kt) = \{ 1, . . . , t\} and let \phi : E(Kt)\rightarrow \{ t+ 1, . . . , (t2 + t)/2\} 
be a bijection. Then for each ij \in E(Kt), there is a (vi, vj)-path Pij in XD whose
internal vertices are contained in V (C\phi (ij)). Since \phi is a bijection, it follows that
(Pij : ij \in E(Kt)) defines a topological Kt-minor in XD, a contradiction.

We are now ready to prove Theorems 3 and 10.

Proof of Theorem 3. Let D be a circular drawing of G with h(XD) \leqslant t - 1. By
(4.1), rad(MD)\leqslant 2t - 5. Finally, by Theorem 5, tw(G)\leqslant 12t - 23.

Proof of Theorem 10. Let D be a circular drawing of G with h\prime (XD)\leqslant t - 1. By
Lemma 13, rad(MD)\leqslant t2 + t - 1. Finally, by Theorem 5, tw(G)\leqslant 6t2 + 6t+ 1.

We now show that the bound on tw(G) in Theorem 3 is within a constant factor of
being optimal. Let Gn be the (n\times n)-grid, which has treewidth n (see [40]). Theorem
3 says that in every circular drawing D of Gn, the crossing graph XD has a Kt-minor,
where t = \Omega (n). On the other hand, let D be the circular drawing of Gn obtained
by ordering the vertices R1,R2, . . . ,Rn, where Ri is the set of vertices in the ith row
of Gn (ordered arbitrarily). Let Ei be the set of edges in Gn incident to vertices
in Ri; note that | Ei| \leqslant 3n  - 1. If two edges cross, then they have end-vertices in
some Ei. Thus, (E1, . . . ,En) is a path-decomposition of XD of width at most 3n. In
particular, XD has no K3n+2-minor. Hence, the bound on tw(G) in Theorem 3 is
within a constant factor of optimal. See [70, 71] for more on circular drawings of grid
graphs.

Now we turn to subdivisions and the proof of Theorem 4. As a warm-up, we give
a simple proof in the case of no division vertices.

Proposition 14. For every k \in \BbbN , for every circular drawing D of K2,4k - 1, XD

contains Kk,k as a subgraph.

Proof. Let the vertex classes of K2,4k - 1 be X and Y , where X = \{ x, y\} and
| Y | = 4k - 1. Vertices x and y split the circle into two arcs, one of which must contain
at least 2k vertices from Y . Label these vertices x, v1, . . . , vs, y, where s\geqslant 2k in order
around the circle. For every i \in \{ 1, . . . , k\} , define the edges ei = yvi and fi = xvk+i.
The ei and fi are vertices in XD, and for all i and j, edges ei and fj cross, as
required.

We now work toward the proof of Theorem 4.
A linear drawing of a graph G places the vertices on the x-axis with edges drawn

as semicircles above the x-axis. In such a drawing, we consider the vertices of G to be

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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976 HICKINGBOTHAM, ILLINGWORTH, MOHAR, AND WOOD

elements of \BbbR given by their x-coordinates. Such a drawing can be wrapped to give
a circular drawing of G with an isomorphic crossing graph. For an edge uv \in E(G),
where u < v, define Iuv to be the open interval (u, v). For a set of edges E\prime \subseteq E(G),
define IE\prime :=

\bigcup 
\{ Ie : e \in E\prime \} . Two edges uv,xy \in E(G), where u < v and x < y, are

nested if u< x< y < v or x< u< v < y.

Lemma 15. Let a, b \in \BbbR , where a < b, and let D be a linear drawing of a graph
G, where G consists of two internally vertex-disjoint paths P1 = (v1, . . . , vn) and P2 =
(u1, . . . , um) such that u1, v1 \leqslant a < b\leqslant um, vn. Then there exists E\prime \subseteq E(G) such that
(a, b) \subseteq IE\prime and E\prime induces a connected graph in XD. Moreover, for x \in \{ a, b\} , if
x \not \in V (P1)\cap V (P2), then x\in IE\prime .

Proof. We first show the existence of E\prime . Observe that (a, b)\subseteq IE(P1)\cup \{ v1, . . . , vn\} .
If G contains an edge uv, where u\leqslant a< b\leqslant v, then we are done by setting E\prime = \{ uv\} .
So assume that G has no edge of that form. Then there is a vertex v \in V (P1) such that
a < v < b. Each such vertex v is not in V (P2), implying that v \in IE(P2). Therefore,
(a, b) \subseteq IE(G). Let E\prime be a minimal set of edges of E(G) such that (a, b) \subseteq IE\prime . By
minimality, no two edges in E\prime are nested. We claim that XD[E\prime ] is connected. If
not, then there is a partition E1 \cup E2 of E\prime into nonempty sets such that no edge in
E1 crosses any edge in E2. Since E\prime is minimal, this means that IE1

\cap IE2
=\varnothing . Con-

sider (a, b) with the topology induced by the Euclidean metric, which is a connected
space. But IE1 \cap (a, b) and IE2 \cap (a, b) are nonempty open sets that partition (a, b), a
contradiction. Hence, XD[E\prime ] is connected.

Finally, let x \in \{ a, b\} , and suppose that x \not \in V (P1)\cap V (P2). Then G has an edge
uv such that u< x< v. If x\in IE\prime , then we are done. Otherwise, E\prime contains an edge
incident to x. Since a < u < b or a < v < b, it follows that uv crosses an edge in E\prime .
So adding uv to E\prime maintains the connectivity of XD[E\prime ] and now x\in IE\prime .

Lemma 16. Let G be a subdivision of K2,3, and let x, y \in V (G) be the vertices
with degree 3. For every circular drawing D of G, there exists a component Y in XD

that contains an edge incident to x and an edge incident to y.

Proof. Let P1, P2, P3 be the internally disjoint (x, y)-paths in G. Let \scrU =
(u1, . . . , um) be the sequence of vertices on the clockwise arc from x to y (exclud-
ing x and y). Let \scrV = (v1, . . . , un) be the sequence of vertices on the anticlockwise arc
from x to y (excluding x and y). Say that an edge uv \in E(G) is vertical if u\in \scrU and
v \in \scrV .

Suppose that no edge of G is vertical. By the pigeonhole principle, we may assume
that V (P1)\cup V (P2)\subseteq \scrU \cup \{ x, y\} . The claim then follows by applying Lemma 15 along
the clockwise arc from x to y.

Now assume that E(G) contains at least one vertical edge. Let e1, . . . , ek be an
ordering of the vertical edges of G such that if ei is incident to ui\prime and ei+1 is incident
to uj\prime , then i\prime \leqslant j\prime . In the case, when ui\prime = uj\prime , ei and ei+1 are ordered by their
endpoints in \scrV .

Claim. For each i\in \{ 1, . . . , k - 1\} , there exists Ei \subseteq E(G) such that Ei \cup \{ ei, ei+1\} 
induces a connected subgraph of XD.

Proof. Clearly, the claim holds if ei and ei+1 cross or if there is an edge in G that
crosses both ei and ei+1. So assume that ei and ei+1 do not cross and that no edge
crosses both ei and ei+1. Assume that ei = u\prime v\prime and ei+1 = u\prime \prime v\prime \prime , where u\prime , u\prime \prime \in \scrU and
v\prime , v\prime \prime \in \scrV . Let j \in \{ 1,2,3\} . If Pj does not contain ei, then Pj contains neither endpoint
of ei. Since ei separates x from y in the drawing, Pj contains ei or an edge that crosses
ei. Likewise, Pj contains ei+1 or an edge that crosses ei+1. Let P \prime 

j = (p1, . . . , pm) be

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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TREEWIDTH, CIRCLE GRAPHS, AND CIRCULAR DRAWINGS 977

a vertex-minimal subpath of Pj such that p1p2 is ei or crosses ei and pm - 1pm is ei+1

or crosses ei+1. By minimality, no edge in E(P \prime 
j) \setminus \{ p1p2, pm - 1pm\} crosses ei or ei+1.

Therefore, by the ordering of the vertical edges, no edge in E(P \prime 
j)\setminus \{ p1p2, pm - 1pm\} is

vertical. As such, either \{ p2, . . . , pm - 1\} \subseteq \scrU or \{ p2, . . . , pm - 1\} \subseteq \scrV . By the pigeonhole
principle, without loss of generality, V (P \prime 

1)\cup V (P \prime 
2)\subseteq \scrU . Since V (P \prime 

1) and V (P \prime 
2) have

distinct endpoints, the claim then follows by applying Lemma 15 along the clockwise
arc between u\prime and u\prime \prime .

It follows from the claim that all the vertical edges are contained in a single
component Y of XD. Now consider the three edges in G incident to x. By the
pigeonhole principle, without loss of generality, two of these edges are of the form
xui, xuj , where i < j. Let ua be the vertex in \scrU incident to the vertical edge e1. If
a < j, then e1 crosses xuj . If a = j, then by the ordering of the vertical edges, the
path Pi that contains the edge xui also contains an edge that crosses both e1 and
xuj . Otherwise, j < a, and applying Lemma 15 to the clockwise arc between uj and
ua, it follows that xuj is also in Y . By symmetry, there is an edge incident to y that
is in Y , as required.

We are now ready to prove Theorem 4.

Proof of Theorem 4. Let G be a subdivision of K2,4t, and let D be a circular
drawing of G. We show that XD contains a Kt-minor. Let x, y be the degree 4t
vertices in G. Let \scrU = (u1, . . . , um) be the sequence of vertices on the clockwise arc
from x to y (excluding x and y). Let \scrV = (v1, . . . , un) be the sequence of vertices on
the anticlockwise arc from x to y (excluding x and y). Say that an edge uv \in E(G) is
vertical if u\in \scrU and v \in \scrV .

Let \ell be the number of vertical edges in G. Let k :=min\{ \ell , t\} , and let d := t - k.
Then G contains 4d paths P1, . . . , P4d that contain no vertical edge. We say that Pi

is a \scrU -path (resp., \scrV -path) if it contains an edge incident to a vertex in \scrU (\scrV ). By the
pigeonhole principle, without loss of generality, P1, . . . , P2d are \scrU -paths. By pairing
the paths and then applying Lemma 15 to the clockwise arc from x to y, it follows
that XD contains d vertex-disjoint connected subgraphs Y1, . . . , Yd in XD, where each
Yi contains an edge (in G) incident to x and an edge incident to y. Consider distinct
i, j \in \{ 1, . . . , d\} . Let xui\prime \in V (Yi) and xuj\prime \in V (Yj), and assume that i\prime < j\prime . Since
xuj\prime separates ui\prime from y in the drawing and P1, . . . , P2d are internally disjoint, it
follows that there is an edge in V (Yi) that crosses xuj\prime . So Y1, . . . , Yd are pairwise
adjacent, which form a Kd-minor in XD.

Let \~E := \{ e1, . . . , ek\} be any set of k vertical edges in G. Since t = d+ k, there
are 4k internally disjoint (x, y)-paths distinct from P1, . . . , P4d, at least 3k of which
avoid \~E. Grouping these paths into k sets each with three paths, it follows from
Lemma 16 that there exists k vertex-disjoint connected subgraphs Z1, . . . ,Zk in XD,
where each Zi contains an edge (in G) incident to x and an edge incident to y. Since
each e \in \~E separates x and y in the drawing, it follows that each V (Yi) and V (Zj)
contains an edge (in G) that crosses e. Thus, by contracting each Yi into a vertex and
each Zj \cup \{ ej\} into a vertex and then deleting all other vertices in XD, we obtain the
desired Kt-minor in XD.

4.2. Sufficient conditions for \bfitK \bfitt -minor-free crossing graphs. It is natural
to consider whether the converse of Theorems 3 and 4 holds. That is, does there exist
a function f such that if a K2,t-topological minor-free graph G has treewidth at most
k, then there is a circular drawing of G whose crossing graph is Kf(t,k)-minor-free?
Our next result shows that this is false in general. A t-rainbow in a circular drawing
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978 HICKINGBOTHAM, ILLINGWORTH, MOHAR, AND WOOD

of a graph is a noncrossing matching consisting of t edges between two disjoint arcs
in the circle.

Lemma 17. For every t \in \BbbN , there exists a K2,4-topological minor-free graph G
with tw(G) = 2 such that for every circular drawing D of G, the crossing graph XD

contains a Kt-minor.

Proof. Let T be any tree with maximum degree 3 and sufficiently large pathwidth
(as a function of t). Such a tree exists, as the complete binary tree of height 2h has
pathwidth h. Let G be obtained from T by adding a vertex v complete to V (T ), so
G has treewidth 2. Since G  - v has maximum degree 3, it follows that G is K2,4-
topological minor-free.

Let D be a circular drawing of G, and let DT be the induced circular drawing of
T . Since T has sufficiently large pathwidth, a result of Pupyrev [64, Thm. 2] implies
that XD has large chromatic number or a 4t-rainbow.3 Since the class of circle graphs
is \chi -bounded [38],4 it follows that if XD has large chromatic number, then it contains
a large clique, and we are done. So we may assume that DT contains a 4t-rainbow.
By the pigeonhole principle, there is a subset \{ a1b1, . . . , a2tb2t\} of the rainbow edges
such that aibi topologically separates v from aj and bj whenever i < j. As such,
aibi crosses the edges vaj and vbj in D whenever i < j. Therefore, XD contains
a Kt,2t subgraph with bipartition (\{ a1b1, . . . , atbt\} ,\{ vat+1, vbt+1, . . . , va2t, vb2t\} ), and
this contains a Kt-minor.

Lemma 17 is best possible in the sense that K2,4 cannot be replaced by K2,3.
An easy exercise shows that every biconnected K2,3-topological minor-free graph is
either outerplanar or K4. It follows (by considering the block-cut tree) that every
K2,3-minor-free graph has a circular 1-planar drawing, so the crossing graph consists
of isolated edges and vertices.

WhileK2,k-topological minor-free and bounded treewidth is not sufficient to imply
that a graph has a circular drawing whose crossing graph is Kt-minor-free, we now
show that bounded degree and bounded treewidth is sufficient.

Proposition 18. For k,\Delta \in \BbbN , every graph G with treewidth less than k and
maximum degree at most \Delta has a circular drawing in which the crossing graph XD

has treewidth at most (6\Delta + 1)(18k\Delta )2  - 1.

Proof. Refining a method from [25, 76], Distel and Wood [26] proved that any
such G is isomorphic to a subgraph of T \boxtimes Km, where T is a tree with maximum
degree \Delta T := 6\Delta and m := 18k\Delta . Since the treewidth of the crossing graph does not
increase when deleting edges and vertices from the drawing, it suffices to show that
T \boxtimes Km admits a circular drawing in which the crossing graph XD has treewidth at
most (\Delta T + 1)m2  - 1. Without loss of generality, assume that V (Km) = \{ 1, . . . ,m\} .
Take a circular drawing of T such that no two edges cross (this can be done since T
is outerplanar). For each vertex v \in V (T ), replace v by ((v,1), . . . , (v,m)) to obtain a
circular drawing D of T \boxtimes Km. Observe that if two edges (u, i)(v, j) and (x,a)(y, b)
cross in D, then \{ u, v\} \cap \{ x, y\} \not = \varnothing . For each vertex v \in V (T ), let Wv be the set
of edges of T \boxtimes Km that are incident to some (v, i). We claim that (Wv : v \in V (T ))
is a tree-decomposition of XD with the desired width. Clearly, each vertex of XD

is in a bag, and for each vertex e \in V (XD), the set \{ x \in V (T ) : e \in Wx\} induces a

3The result of Pupyrev [64] is in terms of stacks and queues but is equivalent to our statement.
4A class of graphs \scrG is \chi -bounded if there is a function f such that for every graph G \in \scrG ,

\chi (G)\leqslant f(\omega (G)).
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TREEWIDTH, CIRCLE GRAPHS, AND CIRCULAR DRAWINGS 979

a1 a2 a3 a4 an−1 an

. . . . . .

Fig. 3.

graph isomorphic to either K2 or K1 in T . Moreover, by the above observation, if
e1e2 \in E(XD), then there exists some node x \in V (T ) such that e1, e2 \in Wx. Finally,
since there are

\bigl( 
m
2

\bigr) 
intra-Km edges and \Delta T \cdot m2 cross-Km edges, it follows that

| Wv| \leqslant (\Delta T + 1)m2 for all v \in V (T ), as required.

We conclude this subsection with the following open problem.

Open Problem 19. Does there exist a function f such that every K2,k-minor-free
graph G has a circular drawing D in which the crossing graph XD is Kf(k)-minor-free?

4.3. Circular drawings and degeneracy. Theorems 3 and 10 say that if a
graph G has a circular drawing D, where the crossing graph XD excludes a fixed
(topological) minor, then G has bounded treewidth. Graphs excluding a fixed (topo-
logical) minor have bounded average degree and degeneracy [52, 53]. Despite this, we
now show thatXD having bounded degeneracy is not sufficient to bound the treewidth
of G. In fact, it is not even sufficient to bound the Hadwidger number of G.

Theorem 20. For every t \in \BbbN , there is a graph Gt and a circular drawing D of
Gt such that

\bullet Gt contains a Kt-minor;
\bullet Gt has maximum degree 3;
\bullet XD is 2-degenerate.

Proof. We draw Gt with vertices placed on the x-axis (x-coordinate between 1
and t) and edges drawn on or above the x-axis. This can then be wrapped to give a
circular drawing of Gt.

For real numbers a1 < a2 < \cdot \cdot \cdot < an, we say that a path P is drawn as a
monotone path with vertices a1, . . . , an if it is drawn as follows, where each vertex has
x-coordinate equal to its label.

In all our monotone paths, a1, a2, . . . , an will be an arithmetic progression. We
construct our drawing of Gt as follows (see Figure 4 for the construction with t= 4).

First, let P0 be the monotone path with vertices 1,2, . . . , t. For s\in \{ 1,2, . . . , t - 1\} ,
let Ps be the monotone path with vertices

s+ 2 - s, s+ 3 \cdot 2 - s, s+ 5 \cdot 2 - s, . . . , t - 2 - s.

Observe that these paths are vertex-disjoint. For 0 \leqslant r < s \leqslant t  - 1, let Ir,s be the
interval

[s+ 2 - r  - 2 - s, s+ 2 - r].

Note that the lower endpoint of Ir,s is a vertex in Ps and that the upper endpoint is
a vertex in Pr. Also note that no vertex of any Pi lies in the interior of Ir,s. Indeed,
for i > s, the vertices of Pi have value at least s+2 - r, and for i\leqslant s, the denominator
of the vertices of Pi precludes them from being in the interior. Hence, for all r < s,
we may draw a horizontal edge er,s between the endpoints of Ir,s.

Graph Gt and the drawing D are obtained as a union of the Ps together with all
the er,s. The paths Ps are vertex-disjoint, and edge er,s joins Pr to Ps, so Gt contains
a Kt-minor. We now show that the Ir,s are pairwise disjoint. Note that Ir,s \subset (s, s+1],
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980 HICKINGBOTHAM, ILLINGWORTH, MOHAR, AND WOOD

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4
Fig. 4. G4 built up path by path, where P0 is purple, P1 is blue, P2 is red, P3 is green, and the

er,s are black.

so two I with different s values are disjoint. Next, note that Ir,s \subset (s+2 - (r+1), s+2 - r]
for r \leqslant s - 2, while Is - 1,s = [s+ 2 - s, s+ 2 - (s - 1)], and so two I with the same s but
different r values are disjoint. In particular, any vertex v is the endpoint of at most
one er,s and so has degree at most three. Hence, Gt has maximum degree three.

Each edge er,s is horizontal and crosses no other edges and so has no neighbors
in XD. Next, consider an edge aa\prime of Ps. We have a\prime = a+2 \cdot 2 - s. Exactly one vertex
in V (P0) \cup V (P1) \cup \cdot \cdot \cdot \cup V (Ps) lies between a and a\prime : their midpoint, m = a+ 2 - s.
Vertex m has at most two nonhorizontal edges incident to it, and so in XD, every
aa\prime \in E(Ps) has at most two neighbors in E(P0) \cup E(P1) \cup \cdot \cdot \cdot \cup E(Ps). Thus, XD is
2-degenerate, as required.

4.4. Applications to general drawings. This section studies the global struc-
ture of graphs admitting a general (not necessarily circular) drawing. In particular,
consider the following question: If a graph G has a drawing D, then what graph-
theoretic assumptions about XD guarantee that G is well structured? Even 1-planar
graphs contain arbitrarily large complete graph minors [28], so one cannot expect G
to exclude a fixed minor.

The following definition works well in this setting. Eppstein [33] defined a graph
class \scrG to have the treewidth-diameter property, more recently called bounded local
treewidth, if there is a function f such that for every graph G \in \scrG , for every vertex
v \in V (G) and for every integer r \geqslant 0, the subgraph of G induced by the vertices at
distance at most r from v has treewidth at most f(r). If f is linear (polynomial),
then \scrG has linear (polynomial) local treewidth.

Lemma 6 shows that planar graphs have linear local treewidth. More gener-
ally, Dujmovi\'c, Morin, and Wood [29] showed that k-planar graphs have linear local
treewidth (in fact, k-planar graphs satisfy a stronger product structure theorem [30]).
On the other hand, Hickingbotham and Wood [42] showed that 1-gap planar graphs
do not have polynomial local treewidth. They also asked whether k-gap planar graphs
have bounded local treewidth. We show that this is false in a stronger sense.
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TREEWIDTH, CIRCLE GRAPHS, AND CIRCULAR DRAWINGS 981

Dawar, Grohe, and Kreutzer [22] defined a graph class \scrG to locally exclude a
minor if for each r \in \BbbN , there is a graph Hr such that for every graph G \in \scrG , every
subgraph of G with radius at most r contains no Hr-minor. Observe that if \scrG has
bounded local treewidth, then \scrG locally excludes a minor.

By Theorem 20, for each t \in \BbbN , there is a graph Gt that contains a Kt-minor
and has a circular drawing D such that XD is 2-degenerate. Let G\prime 

t be the graph
obtained from Gt by adding a vertex into the outer face of D that is complete to
V (G\prime 

t). So the graph G\prime 
t is a 2-degenerate crossing, has radius 1, and contains a Kt-

minor. Thus, graphs that are 2-degenerate crossing do not locally exclude a minor,
implying that they do not have bounded local treewidth, thus answering the above
question of Hickingbotham and Wood [42]. Since every graph that is 2-degenerate
crossing is 2-gap-planar, we conclude that 2-gap-planar graphs also do not locally
exclude a minor (and do not have bounded local treewidth). This result highlights
a substantial difference between k-planar graphs and k-gap-planar graphs (even for
k = 2). We now prove the following stronger result. A star-forest is a forest where
each component is a star.

Proposition 21. For every t\in \BbbN , there is a graph G and a drawing D of G such
that

\bullet G has radius 1;
\bullet G contains a Kt+1-minor;
\bullet XD is a star-forest.

Thus, the graph G is a 1-degenerate crossing and 1-gap-planar.

Proof. Let \phi : E(Kt)\rightarrow \{ 1, . . . ,
\bigl( 
t
2

\bigr) 
\} be a bijection. As illustrated in Figure 5, for

each ij \in E(Kt), draw vertices at (\phi (ij), i), (\phi (ij), j) \in \BbbR 2 together with a straight
vertical edge between them (blue edges in Figure 5).

For each i \in \{ 1,2, . . . , t\} , draw a straight horizontal edge between each pair of
consecutive vertices along the y= i line. Let G0 be the graph obtained. Let Pi be the
subgraph of G0 induced by the vertices on the y = i line. Then Pi is a path on t - 1
vertices (green edges in Figure 5).

For each vertex v in P1 \cup \cdot \cdot \cdot \cup Pt, add a ``vertical"" edge from v to a new vertex v\prime 

drawn with y-coordinate t+ 1 (brown edges in Figure 5).
For i= 1,2, . . . , t, complete the following step. If two vertical edges e and f cross

an edge g in Pi at points x and y, respectively, and no other vertical edge crosses g
between x and y, then subdivide g between x and y, introducing a new vertex v, and

P1

P2

Pt

Pt+1

Fig. 5. The graph G1 in the proof of Proposition 21.
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982 HICKINGBOTHAM, ILLINGWORTH, MOHAR, AND WOOD

add a new vertical edge from v to a new vertex v\prime with y-coordinate t+ 1 (red edges
in Figure 5).

Finally, add a path Pt+1 through all the vertices with y-coordinate t + 1. We
obtain a graph G1 and a drawing D1 of G1. Each crossing in D1 is between a vertical
and a horizontal edge, and each horizontal edge is crossed by at most one edge. Thus,
XD1

is a star-forest.
By construction, no edge in Pt+1 is crossed in D1, and every vertex has a neighbor

in Pt+1. Thus, contracting Pt+1 to a single vertex gives a graph G with radius 1 and
a drawing D of G in which XD

\sim = XD1
. Thus, the graph G is 1-degenerate crossing

and 1-gap-planar. Finally, G contains a Kt+1-minor, obtained by contracting each
horizontal path Pi into a single vertex.

5. Structural properties of circle graphs. Recall that a circle graph is the
intersection graph of a set of chords of a circle. More formally, let C be a circle in \BbbR 2.
A chord of C is a closed line segment with distinct endpoints on C. Two chords of C
either cross, are disjoint, or have a common endpoint. Let S be a set of chords of a
circle C such that no three chords in S cross at a single point. Let G be the crossing
graph of S. Then G is called a circle graph. Note that a graph G is a circle graph if
and only if G\sim =XD for some circular drawing D of a graph H, and in fact, one can
take H to be a matching.

We are now ready to prove Theorems 1 and 2. While the treewidth of circle
graphs has previously been studied from an algorithmic perspective [47], to the best
of our knowledge, these theorems are the first structural results on the treewidth of
circle graphs.

Theorem 1. Let t \in \BbbN , and let G be a circle graph with treewidth at least 12t+
2. Then G contains an induced subgraph H that consists of t vertex-disjoint cycles
(C1, . . . ,Ct) such that for all i < j, every vertex of Ci has at least two neighbors in
Cj. Moreover, every vertex of G has at most four neighbors in any Ci (1\leqslant i\leqslant t).

Proof. Let D be a circular drawing of a graph such that G\sim =XD. Let MD be the
map graph of D. Since tw(XD) = tw(G)\geqslant 12t+ 2, it follows by Theorem 5 that MD

has radius at least 2t. The claim then follows from Lemma 9.

Theorem 2. For the class of circle graphs, the treewidth and Hadwiger number
are linearly tied. Moreover, the Haj\'os number is quadratically tied to both of them.
Both ``linear"" and ``quadratic"" are best possible.

Proof. Let G be a circle graph, and let D be a circular drawing with G \sim = XD.
By Lemma 12,

tw(G)\leqslant 6 rad(MD) + 7\leqslant 12h(G) - 11\leqslant 12 tw(G) + 1.

So the Hadwiger number and treewidth are linearly tied for circle graphs. This in-
equality and Lemma 13 imply that

h\prime (G) - 1\leqslant h(G) - 1\leqslant tw(G)\leqslant 6 rad(MD) + 7\leqslant 6h\prime (G)2 + 18h\prime (G) + 13.

Hence, the Haj\'os number is quadratically tied to both the treewidth and the Had-
wiger number for circle graphs. Finally, Kt,t is a circle graph which has treewidth
t, Hadwiger number t + 1, and Haj\'os number \Theta (

\surd 
t). Hence, ``quadratic"" is best

possible.

We now discuss several noteworthy consequences of Theorems 1 and 2. Re-
cently, there has been significant interest in understanding the unavoidable induced
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TREEWIDTH, CIRCLE GRAPHS, AND CIRCULAR DRAWINGS 983

subgraphs of graphs with large treewidth [2, 3, 4, 5, 6, 7, 8, 51, 62, 72]. Obvious candi-
dates of unavoidable induced subgraphs include complete graphs, complete bipartite
graphs, subdivision of large walls, and line graphs of subdivision of large walls. We
say that a hereditary class of graphs \scrG is induced-tw-bounded if there is a function f
such that for every graph G\in \scrG with tw(G)\geqslant f(t), G contains Kt, Kt,t, a subdivision
of the (t\times t)-wall, or a line graph of a subdivision of the (t\times t)-wall as an induced
subgraph.5 While the class of all graphs is not induced-tw-bounded [3, 14, 18, 63, 72],
many natural graph classes are. For example, Aboulker et al. [1] showed that every
proper minor-closed class is induced-tw-bounded, and Korhonen [49] recently showed
that the class of graphs with bounded maximum degree is induced-tw-bounded. We
now show the following.

Theorem 22. The class of circle graphs is not induced-tw-bounded.

Proof. We first show that for all t\geqslant 50, no circle graph contains a subdivision of
the (t\times t)-wall or a line graph of a subdivision of the (t\times t)-wall as an induced subgraph.
As the class of circle graphs is hereditary, it suffices to show that for all t\geqslant 50, these
two graphs are not circle graphs. These two graphs are planar (so K5-minor-free) and
have treewidth t \geqslant 50. However, Lemma 12 implies that every K5-minor-free circle
graph has treewidth at most 49, which is the required contradiction.

Now consider the family of couples of graphs ((Gt,Xt) : t\in \BbbN ) given by Theorem
20, where Xt is the crossing graph of the drawing of Gt. Then (Xt : t\in \BbbN ) is a family
of circle graphs. Since (Gt : t\in \BbbN ) has unbounded treewidth, Theorem 3 implies that
(Xt : t\in \BbbN ) also has unbounded treewidth. Moreover, since Xt is 2-degenerate for all
t\in \BbbN , it excludes K4 and K3,3 as (induced) subgraphs, as required.

While the class of circle graphs is not induced-tw-bounded, Theorem 1 describes
the unavoidable induced subgraphs of circle graphs with large treewidth. To the
best of our knowledge, this is the first theorem to describe the unavoidable induced
subgraphs of a natural hereditary graph class that is not induced-tw-bounded. In
fact, it does so with a linear lower bound on the treewidth of the unavoidable induced
subgraphs.

Theorem 1 can also be used to describe the unavoidable induced subgraphs of
circle graphs with large pathwidth.

Theorem 23. There exists a function f such that every circle graph G with
pw(G)\geqslant f(t) contains

\bullet a subdivision of a complete binary tree with height t as an induced subgraph,
\bullet the line graph of a subdivision of a complete binary tree with height t as an
induced subgraph, or

\bullet an induced subgraph H that consists of t vertex-disjoint cycles (C1, . . . ,Ct)
such that for all i < j, every vertex of Ci has at least two neighbors in Cj.
Moreover, every vertex of G has at most four neighbors in any Ci (1\leqslant i\leqslant t).

Proof. If tw(G) \geqslant 12t+ 2, then the claim follows from Theorem 1. Now assume
that tw(G)< 12t+2. Hickingbotham [41] showed that there is a function g(k, t) such
that every graph with treewidth less than k and pathwidth at least g(k, t) contains a
subdivision of a complete binary tree with height t as an induced subgraph or the line
graph of a subdivision of a complete binary tree with height t as an induced subgraph.
The result follows with f(t) :=max\{ g(12t+ 2, t),12t+ 2\} .

5This definition is motivated by analogy to \chi -boundedness; see [69]. Note that while the language
of `induced tw-bounded' is original to this paper, Abrishami et al. [6] previously used this definition
under the guise of ``special,"" and Abrishami et al. [2] used it under the guise of ``clean.""
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984 HICKINGBOTHAM, ILLINGWORTH, MOHAR, AND WOOD

We now discuss applications of Theorem 1 to vertex-minor-closed classes. For
a vertex v of a graph G, to locally complement at v means to replace the induced
subgraph on the neighborhood of v by its complement. A graph H is a vertex-minor
of a graph G if H can be obtained from G by a sequence of vertex deletions and
local complementations. Vertex-minors were first studied by Bouchet [15, 16] under
the guise of isotropic systems. The name ``vertex-minor"" is due to Oum [56]. Circle
graphs are a key example of a vertex-minor-closed class.

We now show that a vertex-minor-closed graph class is induced-tw-bounded if and
only if it has bounded rank-width. Rank-width is a graph parameter introduced by
Oum and Seymour [58] that describes whether a graph can be decomposed into a tree-
like structure by simple cuts. For a formal definition and surveys on this parameter,
see [43, 57]. Oum [56] showed that rank-width is closed under vertex-minors.

Theorem 24. A vertex-minor-closed class \scrG is induced-tw-bounded if and only
if it has bounded rankwidth.

Proof. Suppose that \scrG has bounded rankwidth. By a result of Abrishami et
al. [6], there is a function f such that every graph in \scrG with treewidth at least
f(t) contains Kt or Kt,t as an induced subgraph. Thus, \scrG is induced-tw-bounded.
Now suppose that \scrG has unbounded rank-width. By a result of Geelen et al. [36], \scrG 
contains all circle graphs. It therefore follows by Theorem 22 that \scrG is not induced-tw-
bounded.

We conclude with the following question.

Open Problem 25. Let \scrG be a vertex-minor-closed class with unbounded rank-
width. What are the unavoidable induced subgraphs of graphs in \scrG with large treewidth?

The cycle structure (or variants thereof) in Theorem 1 must be included in the
list of unavoidable induced subgraphs.
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