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Abstract—In this paper, we present an innovative symbol-level
precoding (SLP) approach for a wideband multi-user multi-input
multi-output (MU-MIMO) downlink integrated sensing and com-
munications (ISAC) system employing faster-than-Nyquist (FTN)
signaling. Our proposed technique minimizes the minimum mean
squared error (MMSE) for the sensed parameter estimation while
ensuring the communication per-user quality-of-service through
the utilization of constructive interference (CI) methodologies.
While the formulated problem is non-convex in general, we tackle
this issue using proficient minorization and successive convex
approximation (SCA) strategies. Numerical results substantiate
that our FTN-ISAC-SLP framework can increase communication
throughput by up to 20% while reducing sensing MMSE by about
1 dB.

Index Terms—ISAC, dual-functional radar-communication,
faster-than-nyquist, constructive interference, symbol-level pre-
coding

I. INTRODUCTION

INTEGRATED sensing and communications (ISAC) has
emerged as a pivotal enabling technology for next-

generation wireless networks, such as 5G-advanced and 6G.
This technology seeks profound integration between wireless
sensing and communication (S&C) to facilitate the co-design
of both functionalities, thereby enhancing hardware, spectral,
and energy efficiency while obtaining mutual performance
gains [1]. As a result, ISAC has found applications in numer-
ous emerging areas, including vehicular networks, industrial
IoT, and smart homes [2].

Various signaling schemes have been developed for ISAC,
which can be broadly classified into two primary methodolo-
gies: orthogonal resource allocation and fully unified wave-
form design. The former aims to allocate orthogonal or orthog-
onal wireless resources to S&C, thus to prevent interference
between them, namely, time-, spectral-, spatial-, and code-
division methods. However, this approach suffers from poor
resource efficiency. Consequently, it is more advantageous
to create a fully unified ISAC waveform through the shared
utilization of wireless resources between S&C. This strategy is
generally referred to as dual-functional radar-communication
(DFRC) design.
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DFRC systems inherently exhibit conflicting requirements
between radar and communication functionalities concerning
aspects such as antenna placement, power amplifier operation
regions, and signal formats, due to their different and often
contradictory performance metrics and constraints. Thus, the
transmit waveform must be meticulously designed to balance
these requirements and enhance system performance. In gen-
eral, DFRC designs can follow one of three schemes: sensing-
centric design (SCD), communication-centric design (CCD),
and joint design (JD) [3]. The former two schemes prioritize
the sensing or communication capabilities of the ISAC system,
considering the other functionality as ancillary. In contrast, JD
schemes strive to create an ISAC signal from scratch instead of
relying on pre-existing S&C waveforms, resulting in a scalable
tradeoff between S&C [4].

Recently, multi-input multi-output (MIMO) architectures
are extensively employed in DFRC systems to offer wave-
form diversity for radar target detection [5] and beamforming
gains and spatial multiplexing for multi-user communications.
Numerous researchers have focused on transmit precoding
designs in MIMO DFRC systems [6]–[17], where a precoding
matrix is conceived to optimize radar sensing and communi-
cation metrics. Notable radar metrics include radar receiver’s
signal-to-interference-plus-noise ratio (SINR) [7], beampattern
mean squared error (MSE) [8], Cramér-Rao bound [9], and
the similarity between the designed DFRC beamformer and
the its reference radar-only counterpart [10]–[13]. Prevalent
communication metrics encompass achievable rate [14], [15],
communication user’s SINR [10], [12], [16], and multi-user
interference (MUI) [8], [11]. The amalgamation of radar
sensing and communication metrics furnishes a comprehensive
criterion for designing and evaluating DFRC systems.

Although existing DFRC schemes are ingeniously con-
ceived through sophisticated approaches, they generally as-
sume Nyquist pulse shaping implicitly. Our goal in this paper
is to achieve a reasonable communication rate while not
spoiling the sensing performance, thus providing a better
communication-sensing tradeoff. The most intuitive way to
improve data rate under limited bandwidth would be increas-
ing constellation size or utilizing FTN-signaling. However,
increasing the constellation size amplifies the communication
system’s vulnerability to noise, and may also incur perfor-
mance loss in sensing as per the recent research results
on the deterministic-random tradeoff of the ISAC system
[18]. This leaves FTN signaling a more feasible solution.
FTN signaling’s core concept is to enhance the data rate by
accelerating pulse transmission in the temporal dimension.
Moreover, by implementing FTN signaling, the power of the
transmitted waveform at some time slot not only includes
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the power from the transmitted symbols at that time slot
but also the power from the symbols at other time slots. In
this way, the transmitted waveform is amplified, resulting in
a potential to improve sensing performance. However, FTN
signaling violates the Nyquist criterion and brings inter-symbol
interference (ISI) [19]. In a multi-user MIMO (MU-MIMO)
system employing FTN signaling, interference exists in both
spatial and temporal domains, specifically, MUI and ISI due
to non-orthogonality in users’ channels and pulse shaping,
which needs to be carefully coped with through multi-antenna
precoding designs.

In the aforementioned DFRC waveform designs [6]–[17],
conventional linear block-level precoding (BLP) embeds com-
munication symbols into the dual-function waveform. How-
ever, these approaches’ available degrees of freedom (DoFs)
are proven to be limited by the number of users [20]–[22].
More importantly, these methods adopted block-level beam-
pattern, a function of the signal sample covariance matrix,
as a design objective, where the radar sensing performance
may be guaranteed only when the number of transmitted sym-
bols is sufficiently large. Consequently, instantaneous transmit
beampatterns in different time slots might exhibit significant
distortions, leading to severe performance degradation in target
detection and parameter estimation if only a limited number of
samples are collected. Additionally, conventional BLP designs
mitigate MUI and ISI via channel equalization techniques,
such as zero forcing, which overlook the fact that known
interference can be harnessed to enhance useful signal power
[23].

To tackle the issues above, symbol-level precoding (SLP)
has been proposed as a means of exploiting, rather than
merely eliminating, interference in multi-user communication
systems [24]–[29]. Particularly well-suited for ISAC appli-
cations, FTN signaling and SLP form an ideal pairing, as
both spatial and temporal interference can be harnessed to
enhance communication performance without compromising
sensing performance. Unlike conventional BLP, SLP is a
non-linear and symbol-dependent approach, optimizing each
instantaneous transmitted vector based on specific symbols to
be transmitted. From a radar perspective, this method enables
meticulous design of the instantaneous transmit beampattern in
each time slot in a symbol-by-symbol manner, providing more
DoFs for the sensing functionality. From a communication
perspective, SLP can exploit transmitted symbol information
to convert interference into constructive components, thereby
enhancing the quality-of-service (QoS) of multi-user commu-
nications. Given the flexibility of JD-based DFRC waveform
design, SLP can fully exploit constructive interference (CI).
By incorporating FTN signaling and SLP in the ISAC system,
we aim to harness the benefits of both techniques, facilitating
the exploitation of both temporal and spatial interference.
This combination is particularly suitable for ISAC applications
and results in performance augmentation for sensing and
communication from both temporal and spatial dimensions.

Previous research on ISAC has predominantly adopted a
narrowband model, with complex wideband communication
tasks typically addressed through orthogonal frequency divi-
sion multiplexing (OFDM) [30]. However, as our work seeks

to enhance data rates in the time domain as opposed to the
frequency domain, the applicability of OFDM becomes less
evident. This challenge is compounded by the expansion of
the baseband signal’s bandwidth under FTN signaling due to
reduced symbol duration, thereby necessitating the considera-
tion of a wideband communication model in our paper. While
certain basic sensing tasks, such as angle detection, do not de-
mand a wideband radar system, an increasing range of sensing
requirements, including the detection of fast-moving objects
and high-range resolution detection, can only be adequately
addressed using wideband radar systems [31]. Therefore, to
ensure comprehensive applicability and cater to the evolving
requirements of our proposed ISAC system, we have opted to
incorporate a wideband signal model in our research.

In this paper, we propose a novel DFRC precoding tech-
nique referred to as FTN-ISAC-SLP for a MIMO ISAC
system, wherein a multi-antenna BS simultaneously serves
multiple single-antenna communication users and detects tar-
get response matrices for radar sensing. This approach amalga-
mates the strategies discussed above, thus actualizing perfor-
mance enhancement for S&C from both temporal and spatial
dimensions. The existing literature on ISAC predominantly fo-
cuses on narrowband conditions, rendering the devised systems
inapplicable in certain scenarios. In this paper, we extend the
discussion to encompass wideband conditions, and develop
ISAC signaling strategies for wideband systems. The primary
contributions of this work are summarized as follows:

• We develop the system model for wideband DFRC trans-
mission using FTN signaling, and formulate the FTN-
ISAC-SLP waveform design as an optimization problem.

• To efficiently solve the non-convex waveform design
problem, we devise a pair of algorithm frameworks that
employ minorization or SCA methods, which transform
the problem into two solvable second-quadratically con-
strained quadratic programming (QCQP) sub-problems.
The minorization approach demonstrates rapid conver-
gence, while the SCA approach excels in minimizing the
objective function.

• We further propose a more computationally efficient
method, termed binary penalty search (BPS), to solve
the sub-problems in minorization and SCA methods. The
BPS method converts the QCQP into sequential quadratic
programming (QP) problems, which can be readily solved
with significantly reduced computational overheads.

• We provide extensive numerical examples to illustrate
the superiority of the proposed wideband FTN-ISAC-
SLP designs over its Nyquist BLP counterparts, which
demonstrate considerable performance gains in both radar
sensing and multi-user communications.

The remainder of this paper is structured as follows. Section
II introduces the system model, the performance metrics for
multi-user communications, and radar sensing, as well as the
problem formulation. The proposed minorization and SCA
algorithms, in addition to the BPS method, are developed in
Section III. Simulation results are presented in Section IV, and
conclusions are provided in Section V. Lastly, some proofs of
the propositions in the paper are appended in Section VI.
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TABLE I
NOTATION TABLE

Notation Description

Boldface lower-case letter column vector
Boldface upper-case letter matrix
(·)⊤ Transpose operation
(·)H Transpose-conjugate operation
(·)∗ Conjugate of a complex number or matrix
R Set of real numbers
C Set of complex numbers
|a| Absolute value of real scalar a
∥b∥ Magnitude of complex scalar b
∥ · ∥F Frobenius norm of a matrix
ℜ{·} Real part of a complex number or matrix
ℑ{·} Imaginary part of a complex number or matrix
∗ Convolution operation
⊗ Kronecker product
◦ Hadamard product
A ⪰ 0 Matrix A is positive semi-definite
IM M ×M identity matrix
0M,N M ×N matrix with all entries being 0
Diag(a) Diagonal matrix with diagonal entries from vector a
diag(A) Vector with entries being diagonal entries of matrix A
E[A] Expectation matrix of random matrix A
tr(·) Trace of a square matrix
vec(A) Vector obtained by column-wise stacking of entries of matrix A
a ∼ CN (m,R) a obeys a complex Gaussian distribution with mean m and covariance matrix R

II. SYSTEM MODEL

We consider a wideband MIMO ISAC BS equipped with Nt

transmit antennas and Nr receive antennas, which is serving
K downlink single-antenna users while detecting targets as a
monostatic radar. Without loss of generality, we assume K <
Nt. Before formulating the FTN-ISAC-SLP problem, we first
elaborate on the system model and performance metrics of
both radar sensing and communications.

Communication ChannelComm

Sensing Channel

User 1

User 2

User K

Fig. 1. ISAC Downlink System.

A. General Signal Model

Let D = [d1,d2, · · · ,dK ]⊤ ∈ CK×L denote the symbol
matrix to be transmitted, with dk ∈ CL×1 being the symbol
stream intended for the k-th user with a block length L, and
each entry being drawn from a given constellation. Unless oth-
erwise specified, in this paper we consider a PSK constellation,
since the extension to QAM constellations is straightforward
using approaches from the literature, for example, those in

[27]. Moreover, let S = [s1, s2, · · · , sNt ]
⊤ ∈ CNt×L be

the precoded signal matrix, with its entry sn,i at n-th row
and i-th column representing the precoded symbols to be
transmitted from n-th antenna at the i-th time slot. Suppose
that the precoded symbols S are passed through a root-raised-
cosine (RRC) shaping filter φ(t) with a roll-off factor α and a
duration T0. The band-limited signal is transmitted with an
FTN-specific symbol interval T = τT0 where τ ∈ [0, 1].
Under such a setting, the transmitted FTN signal xn(t) at n-th
antenna can be expressed as

xn(t) =

L∑
i=1

φ(t− (i− 1)T )sn,i, (1)

where sn,i is i-th element of sn.
1) Communication Model: Suppose hij(t) denotes the im-

pulse response from the j-th transmitting antenna to the i-
th receiving antenna. In the context of narrowband signaling,
hij(t) may be approximated as an impulse function, due to
the frequency response of the channel being nearly constant
within a narrow frequency range. However, in the case of
wideband signaling, the same assumption becomes untenable,
necessitating the consideration of a more general form for
hij(t). Consequently, the signal received at the i-th receiving
antenna can be expressed as yi =

∑
j h

ij(t) ∗ x(t) + ni(t),
where ∗ represents convolution. Given that hij(t) can no
longer be approximated as an impulse function, the convo-
lution operation cannot be simplified to multiplication by a
constant. Therefore, rather than directly using y = Hx+n, we
propose y(t) = H(t)∗x(t)+n(t) =

∫
H(τ)x(t−τ)dτ+n(t).

Therefore the wideband MIMO input-output relationship in
the communication model is given by

rc(t) = Hc(t) ∗ x(t) + nc(t). (2)
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where nc(t) is the complex-valued AWGN with zero mean and
variance σ2

C , and the element of the channel impulse response
matrix Hc(t), namely, hij

c (t), is the impulse response from
the j-th transmit antenna to the i-th receive antenna.

The received FTN signal after passing through a matched
filter φ∗(−t) is given by

yc(t) = (φ∗(−t)I) ∗ rc(t)
= (φ∗(−t)I) ∗Hc(t) ∗ x(t) + (φ∗(−t)I) ∗ nc(t)

= Hc(t) ∗ (ϕ(t)I) ∗ s(t) + η(t),

(3)

where

ϕ(t) =

∫ ∞

−∞
φ(ζ)φ∗(ζ − t)dζ,

η(t) =

∫ ∞

−∞
nc(ζ)φ

∗(ζ − t)dζ.

(4)

Let XC = [xC,1,xC,2, · · · ,xC,L] and xC,i be the sample of
(ϕ(t)I) ∗ s(t) at t = (i− 1)T .

Then we can discretize (ϕ(t)I) ∗ s(t) with respect to time
as

XC = SΩ⊤
ϕ . (5)

where

Ωϕ =



ϕ(−QT ) 0 · · · 0
... ϕ(−QT )

. . .
...

ϕ(0)
...

. . . 0
... ϕ(0)

. . . ϕ(−QT )

ϕ(QT )
...

. . .
...

... ϕ(QT )
. . . ϕ(0)

...
...

. . .
...

0 0 · · · ϕ(QT )


∈ R(L+2Q)×L.

(6)
By letting HC = [HC,1,HC,2, · · · ,HC,P ] represent the

sampled impulse response of Hc(t) at time t = iT, i =
0, 1, · · · , P − 1, L0 = L+2Q and L1 = L+2Q+P − 1, the
equation (3) can be discretized as

ỸC = HC ∗XC + ÑC , (7)

where the i-th column of HC ∗XC can be expressed as

zC,i =
∑
j

HC,jxC,i−j ,

1 ≤ i ≤ L1, 1 ≤ j ≤ P, 1 ≤ i− j ≤ L0.

(8)

which is the result of matrix discrete convolution.
Notice that ỸC ∈ CK×L1 . However, we need to recover

D ∈ CK×L from ỸC . To accomplish that, we right multiply
a matrix G ∈ CL1×L to reduce the size of ỸC to obtain the
received symbol stream YC ∈ CK×L:

ỸCG = (HC ∗XC)G+ ÑCG. (9)

One possible choice of G is G1 = [0⊤
P+Q,L, I

⊤
L ,0

⊤
Q−1,L]

⊤,
which means we only take the first L sample points and discard

the rest ones. However, that would result in the incomplete use
of the received signal energy. Another choice of G is

G2 =

 I2L−L1
02L−L1,L1−L

0L1−L,2L−L1
IL1−L

0L1−L,2L−L1
IL1−L

 , (10)

which means we add the last L1 − L sample points to the
previous points. However, that would result in the interference
between consecutive symbols. The design of G may be
adjusted according to different scenarios and in this paper,
we take the first choice.

Moreover, we note that the noise ÑCG =
[η1,η2, · · · ,ηK ]⊤G, with ηk = [ηk(0), ηk(T ), · · · , ηk((L −
1)T )]⊤ being the corresponding received noise vector at the
k-th user, is not independent at each time slot.

Proposition 1: For the noise ηk received at k-th user, we
have

E[ηkη
H
k ] = σ2

CΦ1, (11)

where
Φ1 =

ϕ(0) ϕ(−T ) · · · ϕ(−(L1 − 1)T )
ϕ(T ) ϕ(0) · · · ϕ(−(L1 − 2)T )

...
...

. . .
...

ϕ((L1 − 1)T ) ϕ((L1 − 2)T ) · · · ϕ(0)

 .

(12)
Proof: See section Appendix A.
Thereby E[G⊤ηkη

H
k G] = σ2

CG
⊤Φ1G. To decorrelate

the noise, let the eigenvalue decomposition of G⊤Φ1G be
UϕΛϕU

H
ϕ where Uϕ is a unitary matrix containing eigenvec-

tors and Λϕ is a diagonal matrix composed by eigenvalues.
Right-multiplying Uϕ at both sides of (9) yields

YC = (HC ∗XC)GUϕ +NC , (13)

where YC = ỸCGUϕ and NC = ÑCGUϕ. By doing so,
the covariance matrix for row vectors of NC becomes σ2

CΛϕ,
i.e., a diagonal matrix.

2) Radar Sensing Model: Consider the target response
matrix (TRM) Hr(t) ∈ CNr×Nt that models the sensing
channel. Depending on the sensing scenarios, Hr(t) can be
of different forms.

Consider the target response matrix (TRM) Hr(t) ∈
CNr×Nt that models the sensing channel. Depending on the
sensing scenarios, Hr(t) can be of different forms. In practical
scenarios, the sensing channel HR(η) may be viewed as a
nonlinear function of the parameters η, and the goal is to
estimate the desired parameters η from the received YR.
However, characterizing the MMSE for estimating certain
parameters in a potentially non-linear observation model can
be intractable. In fact, a closed-form MMSE is attainable only
when YR and η are jointly Gaussian, which requires HR(η)
to be a linear transformation of η, which holds only for a
few cases. Moreover, the prior knowledge of targets, e.g.,
the number of scatterers and angle parameters of the to-be-
sensed targets may not be available at the BS. As a result,
there is typically no definitive structure for HR(η), resulting
in significant difficulties in directly optimizing the MMSE of
η.
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An alternative, more practical, general, and robust approach,
in line with the insights provided in [32], is to use a two-stage
process. To ensure the generality of the proposed method,
following [3], we consider a generic Target Response Matrix
(TRM) HR instead of a specific model. This allows us to
initially estimate the overall TRM by minimizing MMSE(H)
to obtain ĤR, which is a more achievable task. Subsequently,
η can be determined by minimizing ∥ĤR − HR(η)∥2F . The
main objective of this paper is to estimate the overall channel,
which is the first stage of the proposed two-stage approach.

At the sensing receiver, we directly sample the received
signal without passing it through the pulse-shaping filter,
yielding the following radar-receiving signal model. Similar
to the equation (3), the received echo signal at the receive
antennas can be written as

yr(t) = Hr(t) ∗ (φ(t)I) ∗ s(t) + nr(t). (14)

where nr(t) is the complex-valued AWGN at the receive
antennas with zero mean and variance σ2

R. We can then
discretize (φ(t)I) ∗ s(t) in the same way with equation (5)
as

XR = SΩ⊤
φ . (15)

where

Ωφ =



φ(−QT ) 0 · · · 0
... φ(−QT )

. . .
...

φ(0)
...

. . . 0
... φ(0)

. . . φ(−QT )

φ(QT )
...

. . .
...

... φ(QT )
. . . φ(0)

...
...

. . .
...

0 0 · · · φ(QT )


. (16)

Then similar to equation (7) we can rewrite equation (14) as

YR = HR ∗XR +NR, (17)

where HR = [HR,1,HR,2, · · · ,HR,P ] and HR,i is the
sampled TRM of Hr(t) at t = (i − 1)T and NR denotes
an AWGN matrix, with zero mean and the variance of each
entry being σ2

R. Here we assume every entry of HR follows
complex Gaussion distribution CN (0, σ2

H).
Remark: In the communication model we attempt to detect

the signal D from rc(t) in the receiver side, thus we pass the
received signal to RRC matched filter to maximize the received
SINR for each precoded symbol. In the sensing model, our
aim is to recover the TRM HR from the raw observation
(14), rather than to recover D. Therefore, we treat XR as
an equivalent transmitted waveform and regard (14) as the
sufficient statistics for estimating HR, which needs not to be
match-filtered by the RRC pulse.

B. Constraints and Objective Function for MIMO Model

1) MIMO Communication Model and CI constraint: The
original form of communication model that contains matrix

convolution is not easy to handle. To that end, we convert ma-
trix convolution to matrix multiplication by rewriting equation
(9) as

YC
⊤ = (GUϕ)

⊤XCHC
⊤ +NC

⊤, (18)

where

XC =



x⊤
C,1 0 · · · 0

x⊤
C,2 x⊤

C,1

. . .
...

... x⊤
C,2

. . . 0

x⊤
C,L0

...
. . . x⊤

C,1

0 x⊤
C,L0

. . . x⊤
C,2

...
...

. . .
...

0 0 · · · x⊤
C,L0


∈ CL1×NP . (19)

Proposition 2: By defining Ep =
[0L0×(p−1), IL0

,0L0×(P−p)]
⊤, we are able to rewrite

equation (18) as

vec(Y⊤
C ) = HCvec(S⊤) + vec(N⊤

C), (20)

where

HC = (HC ⊗ (GUϕ)
⊤)


INt

⊗ (E1Ωϕ)
INt ⊗ (E2Ωϕ)

...
INt

⊗ (EPΩϕ)

 , (21)

and vec(N⊤
C) ∼ CN (0, σ2

CIK ⊗Λϕ).
Proof: See section Appendix B.
This system has two types of interference: temporal in-

terference caused by FTN signaling and wideband signaling,
and spatial interference in MIMO systems between users. By
expressing the communication model as in equation (20), it is
viable to consider both interferences in a unified manner.

Subsequently, we are now able to present our CI constraint
for communication performance. Note that such a constraint
is different from the SINR constraint used in BLP, which
cancels the interference so that the received symbol lies in
the correct region. CI constraint, on the other hand, pushes
the received symbols away from their corresponding detection
thresholds within the modulated-symbol constellation, instead
of canceling the interference. In this way, the symbol is kept
in the desired region, and the power of the interference is also
used to help maintain the symbol in the correct region, thus
contributing positively to the overall use of signal power. In
this paper, we will use PSK modulation for simplicity, as the
CI constraint for a PSK symbol can be represented by two
real linear constraints. Other modulations are also possible
in our system, which may be characterized by more linear
constraints.

According to [25], for any transmitted PSK symbol d and its
corresponding noise-free received symbol y, the CI constraint
guarantees that

|ℑ {d∗y}| − ℜ{d∗y} tan θ ≤ (−
√
Γ tan θ)σ. (22)

where Γ represents the requisite SINR at the receiver end, θ is
related to the type of constellation and is π/4 for QPSK, and
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σ denotes the standard deviation of the corresponding noise
imposed on y.

Suppose HCvec(S⊤) = [y⊤
C,1,y

⊤
C,2, · · · ,y⊤

C,K ]⊤, where
yC,k and dk represent the symbol stream received by the
k-th user in the absence of noise and the symbol stream
intended for transmission to the k-th user, respectively. Define
ς =

√
diag(σ2

CIK ⊗Λϕ), following the inequality (22), the
CI constraint imposed on the k-th user can be expressed as

|ℑ {d∗
k ◦ yC,k}| − ℜ{d∗

k ◦ yC,k} tan θ ≤ (−
√

Γk tan θ)ς,∀k
(23)

where ◦ denotes the Hadamard product, and Γk is the required
SNR for the k-th user. Subsequently, we aim to consolidate the
k CI constraints and recast them into a single matrix inequality.

Proposition 3: Define Γ = Diag([Γ1,Γ2, · · · ,ΓK ]⊤) and
D = Diag(vec(D⊤)) ; then, the CI constraint for k users can
be formulated as∣∣∣ℑ{D∗

HCvec(S⊤)
}∣∣∣−ℜ

{
D

∗
HCvec(S⊤)

}
tan θ

≤ (−
√
Γ⊗ IL tan θ)ς.

(24)

Proof: See section Appendix C.
2) MIMO Radar Model and MMSE for Sensing: Similar

to the communication model, the radar model can also be
expressed as

YR
⊤ = XRHR

⊤ +NR
⊤, (25)

where XR is defined in the same fashion with equation (19)
as

XR = [E1X
⊤
R,E2X

⊤
R, · · · ,EPX

⊤
R]. (26)

Different from the communication model, we extract vec(H⊤
R)

for the sake of derivation of MMSE. Thus we have

vec(Y⊤
R) = (INr ⊗XR)vec(H⊤

R) + vec(N⊤
R). (27)

Let us assume vec(H⊤
R) = h ∼ CN (0, σ2

HI), then accord-
ing to [32], [33], MMSE with respect to h can be written
as

MMSE = σ2
Rtr

((
σ2
R

σ2
H

I+ (INr
⊗XR)

H(INr
⊗XR)

)−1
)

= σ2
RNrtr

((
σ2
R

σ2
H

I+X
H

RXR

)−1
)

= Nrtr(σ2
HI− σ4

HX
H
(σ2

HXRX
H

R + σ2
RI)

−1XR),
(28)

where the MMSE estimator is expressed as

ĥMMSE = σ2
HX

H

R (σ2
HXRX

H

R + σ2
RI)

−1y. (29)

Upon successful estimation of the TRM, it becomes feasible
to determine the parameters of the sensing channel, utilizing
the resultant TRM matrices.

3) MIMO Energy Constraint: Due to the fact that our
transmitted impulses are no longer orthogonal to each other,
using ∥S∥2F as the energy might not be suitable.

Proposition 4: The energy of the transmitted waveform
xn(t) at n-th antenna is given by∫

∥xn(t)∥2dt = sHn Φsn. (30)

where

Φ =
ϕ(0) ϕ(−T ) · · · ϕ(−(L− 1)T )
ϕ(T ) ϕ(0) · · · ϕ(−(L− 2)T )

...
...

. . .
...

ϕ((L− 1)T ) ϕ((L− 2)T ) · · · ϕ(0)

 .

(31)
Proof: See section Appendix D.
Therefore, the energy constraint under a given budget E

may be written as

Nt∑
n=1

sHn Φsn = tr(SΦSH) ≤ E. (32)

or in the following quadratic form with respect to vec(S⊤)

vec(S⊤)H(INt ⊗Φ)vec(S⊤) ≤ E. (33)

Alternatively, one may also impose a per-antenna energy
constraint, namely

sHn Φsn = tr(SΦSH) ≤ En, ∀n. (34)

We will compare the resultant MMSE performance under both
energy constraints in numerical results.

III. FTN-ISAC SYMBOL-LEVEL PRECODING DESIGN

A. Problem Formulation

Based on the discussion above, the precoding optimization
problem for the MIMO model can be expressed as

min
S

f(S) = tr

((
σ2
R

σ2
H

I+X
H

RXR

)−1
)

s.t.
∣∣∣ℑ{D∗

HCvec(S⊤)
}∣∣∣−ℜ

{
D

∗
HCvec(S⊤)

}
tan θ

≤ (−
√

Γ⊗ IL tan θ)ς,

vec(S⊤)H(INt ⊗Φ)vec(S⊤) ≤ E,

XR = SΩ⊤
φ ,XR = [E1X

⊤
R,E2X

⊤
R, · · · ,EPX

⊤
R].

(35)
By formulating the problem above, we aim to construct the
pre-encoded symbols S corresponding to the given data matrix
D intended for transmission, in such a manner that the
MMSE pertinent to radar detection is reduced to its lowest
possible value, whilst concurrently ensuring the CI constraint
is satisfied in the context of a energy budget E.

B. Minorization Approach for FTN-ISAC-SLP

It is important to acknowledge that the optimization problem
(35) is non-convex in nature. To tackle this challenge, we
devise an optimization framework based on the minorization
approach in this section.
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According to (28), solving problem (35) is equivalent to
solving problem (36).

max
S

fm(S) = tr(X
H

R (σ2
HXRX

H

R + σ2
RI)

−1XR)

s.t.
∣∣∣ℑ{D∗

HCvec(S⊤)
}∣∣∣−ℜ

{
D

∗
HCvec(S⊤)

}
tan θ

≤ (−
√

Γ⊗ IL tan θ)ς,

vec(S⊤)H(INt
⊗Φ)vec(S⊤) ≤ E,

XR = SΩ⊤
φ ,XR = [E1X

⊤
R,E2X

⊤
R, · · · ,EPX

⊤
R].

(36)
The fundamental concept of the proposed framework revolves
around deriving a minorizer for fm(S). More specifically, the
derived minorizers (denoted by gm(S;Sk)) ought to satisfy
the following conditions:

gm(S;Sk) ≤ fm(S), gm(Sk;Sk) = fm(Sk), (37)

According to the work of [33], we can construct a minorizer
using the following inequality

fm(S) = tr
(
X

H

R

(
σ2
HXRX

H

R + σ2
RI
)−1

XR

)
≥ 2ℜ

{
tr(QH

k XR)
}
− tr(Tk(σ

2
HXRX

H

R + σ2
RI))

(38)
where

Qk = σ4
H(σ2

HXR,kX
H

R,k + σ2
RI)

−1XR,k,Tk = QkQ
H
k /σ4

H .
(39)

Proposition 5: By defining

ER =


IN ⊗ (E1Ωφ)
IN ⊗ (E2Ωφ)

...
IN ⊗ (EPΩφ)

 , (40)

we are able to minorize fm(X) by

gm(S;Sk) = ck−2ℜ
{

vec(S⊤)Hbk

}
−vec(S⊤)HBkvec(S⊤).

(41)
where ck = −tr(σ2

RTk), and

bk = −EH
R vec(Qk), (42)

Bk = EH
R (σ2

HI⊗Tk)ER ⪰ 0. (43)

Proof: See section Appendix E.
Then we can express the minorizing problem at k + 1-th

iteration as

min
S

2ℜ
{

vec(S⊤)Hbk

}
+ vec(S⊤)HBkvec(S⊤)

s.t.
∣∣∣ℑ{D∗

HCvec(S⊤)
}∣∣∣−ℜ

{
D

∗
HCvec(S⊤)

}
tan θ

≤ (−
√
Γ⊗ IL tan θ)ς,

vec(S⊤)H(INt
⊗Φ)vec(S⊤) ≤ E.

(44)
Assume that a solution Sk has been obtained upon the
completion of the k-th iteration. Subsequently, by solving
problem (44) at the (k + 1)-th iteration, an optimal solution
S⋆ is acquired. We can confidently assert that fm(S⋆) ≥
gm(S⋆;Sk) ≥ gm(Sk;Sk) = fm(Sk), which implies that a
superior solution for minimizing MMSE can be attained at the

(k + 1)-th iteration. This process can be iteratively repeated
to continuously optimize the solution until the convergence is
achieved.

We are now ready to present Algorithm 1 to solve the prob-
lem (35) based on the discussion above. The detail concerning
solving the problem (44) is elaborated in section III-D.

Algorithm 1 Minorization Method for Solving (35)
Require: Nt, L, σ2

C , σ2
R, σ2

H , D, HC , Γ, the execution
threshold ϵ and the maximum iteration number imax.

Ensure: S⋆

1: initialize S0 ∈ Q by picking up S−1 randomly and solving
problem (44), k = 0.

2: repeat
3: Calculate the bk and Bk by equation (42) and (43).
4: Solve problem (44) to obtain S⋆.
5: k = k + 1.
6: until ∥Sk − Sk−1∥2F ≤ ϵ or i = imax.
7: S⋆ = Sk

C. SCA Approach for FTN-ISAC-SLP

In this section, we will develop another optimization scheme
to solve the problem (35) by the idea of SCA. To proceed with
the SCA algorithm, we approximate the objective function by
its first-order Taylor expansion near a given point Sk (and
hence XR,k) as

f(S) ≈ f(Sk) + ℜ

{
vec
(

∂f

∂XR

)H

vec
(
XR −XR,k

)}
(45)

where
∂f

∂XR

= −2XR,k

(
X

H

R,kXR,k

)−1 (
X

H

R,kXR,k

)−1

(46)

stands for the gradient at the point Sk. By using the fact that
vec(XR) = ERvec(S⊤) and define

tHR,k = vec
(

∂f

∂XR

)H

ER, (47)

we are able to approximate f(S) around Sk by

gl(S;Sk) ≈ ℜ
{
tHR,kvec(S⊤)

}
+ f(Sk)−ℜ

{
vec
(

∂f

∂XR

)H

vec
(
XR,k

)}
.

(48)
Then we proceed to solve the following sub-problem (49) in
(k + 1)-th iteration.

min
S

ℜ
{
tHR,ivec(S⊤)

}
s.t.

∣∣∣ℑ{D∗
HCvec(S⊤)

}∣∣∣−ℜ
{
D

∗
HCvec(S⊤)

}
tan θ

≤ (−
√

Γ⊗ IL tan θ)ς,

vec(S⊤)H(INt
⊗Φ)vec(S⊤) ≤ E.

(49)
Suppose that a solution Sk has been procured at the k-th itera-
tion. By subsequently solving problem (49) during the (k+1)-
th iteration, an optimal solution S⋆ is obtained. When S⋆ is
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in close proximity to Sk and the SCA approximation holds,
it follows that f(S⋆) ≤ gl(S

⋆;Sk) ≤ gl(Sk;Sk) = f(Sk).
Albeit S⋆ is not necessarily adjacent to Sk, the difference
S⋆ − Sk provides a decent direction for the optimization of
f(S). By iteratively taking small steps along the direction of
S⋆−Sk, it is possible to successively obtain superior solutions
that minimize MMSE prior to reaching convergence.

With a properly chosen step size t ∈ [0, 1], one may get the
(k + 1)-th iteration point as

Sk+1 = Sk + t(S⋆ − Sk) = (1− t)Sk + tS⋆. (50)

Since Sk,S
⋆ ∈ Q by the definition of convexity, we have

Sk+1 ∈ Q, which is a feasible solution to problem (35).
We are now ready to present Algorithm 2 to solve the prob-

lem (35) based on the discussion above. The detail concerning
solving the problem (44) is elaborated in section III-D.

Algorithm 2 SCA Method for Solving (35)
Require: Nt, L, σ2

C , σ2
R, σ2

H , D, HC , Γ, the execution
threshold ϵ and the maximum iteration number imax.

Ensure: S⋆

1: Initialize S0 ∈ Q by picking up S−1 randomly and solving
problem (49), k = 0.

2: repeat
3: Calculate the tR,k by equation (46) and (47).
4: Solve problem (49) to obtain S⋆.
5: Update the solution by Sk+1 = Sk+t (S⋆ − Sk), where

t is determined by using the exact line search.
6: k = k + 1.
7: until ∥Sk − Sk−1∥2F ≤ ϵ or i = imax.
8: S⋆ = Sk

D. Efficient Algorithm for Solving Sub-problems (44) and (49)

Notice that both problems (44) and (49) can be written in
the form of

min
S

2ℜ
{

vec(S⊤)Hak
}
+ vec(S⊤)HAkvec(S⊤)

s.t.
∣∣∣ℑ{D∗

HCvec(S⊤)
}∣∣∣−ℜ

{
D

∗
HCvec(S⊤)

}
tan θ

≤ (−
√
Γ⊗ IL tan θ)ς,

vec(S⊤)H(INt ⊗Φ)vec(S⊤) ≤ E.
(51)

which is a QCQP with linear inequality constraint and
quadratic energy constraint. Specifically, for problem (49),
Ak = 0. This problem is convex and can be solved using
the popular PDIP algorithm. However, we are looking for a
more efficient way to solve this type of QCQP. There have
been many efficient techniques developed to solve real QP
with linear inequality constraints, such as problem (52), for
both small and large problems, such as active set methods and
the Mehrotra predictor-corrector algorithm.

min
x

x⊤Ax+ 2x⊤a s.t. Bx ≤ b. (52)

Therefore, in order to enhance the efficiency of our algorithm,
which involves solving QCQP problems of the form (51), we
aim to develop an algorithm that can transform the process

of solving QCQP into solving QP problems with only linear
inequality constraints. Following this idea, we develop the
BPS algorithm, which can convert solving (51) into iteratively
solving a small amount of (52).

By letting Pℜ = ℜ
{
D

∗
HC

}
, Pℑ = ℑ

{
D

∗
HC

}
, sℜ =

ℜ
{

vec(S⊤)
}

and sℑ = ℑ
{

vec(S⊤)
}

, the inequalities (62)
can be decomposed to

(Pℑ −Pℜ tan θ)sℜ + (Pℜ +Pℑ tan θ)sℑ

≤ (−
√
Γ⊗ IL tan θ)ς,

(−Pℑ −Pℜ tan θ)sℜ + (−Pℜ +Pℑ tan θ)sℑ

≤ (−
√
Γ⊗ IL tan θ)ς,

(53)

or in single matrix inequality form[
Pℑ −Pℜ tan θ Pℜ +Pℑ tan θ
−Pℑ −Pℜ tan θ −Pℜ +Pℑ tan θ

] [
sℜ
sℑ

]
≤
[
(−

√
Γ⊗ IL tan θ)ς

(−
√
Γ⊗ IL tan θ)ς

]
.

(54)

Taking

Ψ =

[
Pℑ −Pℜ tan θ Pℜ +Pℑ tan θ
−Pℑ −Pℜ tan θ −Pℜ +Pℑ tan θ

]
,

ŝ =

[
sℜ
sℑ

]
,γ =

[
(−

√
Γ⊗ IL tan θ)ς

(−
√
Γ⊗ IL tan θ)ς

]
Âk =

[
ℜ{Bk} −ℑ{Bk}
ℑ {Bk} ℜ {Bk}

]
, âk =

[
ℜ{bk}
−ℑ{bk}

]
,

Υ =

[
INt

⊗Φ 0
0 INt ⊗Φ

]
,

(55)

we can rewrite problem (44) as

min
ŝ

ŝ⊤Âkŝ+ 2ŝ⊤âk

s.t. ŝ⊤Υŝ ≤ E, Ψŝ ≤ γ.
(56)

We then try to remove the energy constraint in (51) by
introducing the penalty factor ρ ≥ 0 and the penalty problem
(57).

K(ρ) : min
ŝ

ŝ⊤(Âk + ρΥ)ŝ+ 2ŝ⊤âk

s.t. Ψŝ ≤ γ
(57)

The key idea here is to introduce a regularization term,
ρŝ⊤Υŝ, into the objective function to ensure that the energy
term ŝ⊤Υŝ does not become excessively large. However,
it is important to note that if ρ is too large, the optimal
solution of problem (57) would primarily minimize ŝ⊤Υŝ,
consequently leading to inadequate reduction of the original
objective function ŝ⊤B̂kŝ + 2ŝ⊤b̂k. Conversely, if ρ is too
small, the optimal solution would not sufficiently consider the
term ŝ⊤Υŝ, potentially resulting in violation of the constraint
ŝ⊤Υŝ ≤ E. To address this issue, we propose a binary penalty
search (BPS) algorithm, which aims to identify an appropriate
value for ρ and effectively solve the problem (56).

Suppose we now have two penalty factors, ρr > ρl > 0,
such that solving K(ρr) results in a solution ŝr that satisfies the
energy constraint ŝr

⊤Υŝr ≤ E, while solving K(ρl) yields a
solution ŝl that violates the energy constraint. We can infer that
there may exist a ρ in the interval (ρl, ρr), for which solving
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K(ρ) provides a solution that more effectively minimizes the
objective function than solving K(ρr), while still adhering to
the energy constraint.

By realizing the fact above, we set the penalty factor
ρ = (ρr + ρl)/2, which is the mid-point of the interval
(ρl, ρr). If solving K(ρ) yields a new solution that violates
the energy constraint, we set ρl = ρ. Otherwise, we set
ρr = ρ. This approach progressively narrows the search range.
By iteratively applying this process, we eventually reach a
sufficiently small search range where ρr ≈ ρl. The most
appropriate penalty factor would then be ρr. Consequently,
the Binary Penalty Search (BPS) algorithm can be presented
in Algorithm 3.

Proposition 6: The solution derived by this algorithm is the
optimal solution of the problem (56).

Proof: See section Appendix F.

Algorithm 3 Binary Penalty Search

Require: Âk, âk, E, Ψ, Υ, γ, execution threshold ϵ.
Ensure: optimal solution ŝ⋆

1: Initialize ρl = 0, ρr = ρmax.
2: repeat
3: ρ = (ρl + ρr)/2;
4: Solve problem (57) by active-set method to obtain ŝ⋆.
5: if ŝ⊤⋆ Υŝ⋆ ≤ E then
6: ρr = ρ;
7: else
8: ρl = ρ;
9: end if

10: until ρr − ρl ≤ ϵ

Comparison of Time Complexity between Primal-Dual Inte-
rior Point and BPS Algorithm: The computational complexity
of the Primal-Dual Interior Point Method (PDIP) algorithm for
addressing problem (51) typically falls within the bounds of
O((4NL + 1)3.5 log(1/ϵ)) to O((4NL + 1)4 log(1/ϵ)). This
signifies a marginal elevation in computational complexity in
contrast to the problem (57), which exhibits a time complexity
of O((4NL+ 1)3.5 log(1/ϵ)).

When employing the BPS approach to solve the problem
(51), the procedure necessitates the resolution of log(ρmax)
instances of the problem (57). Consequently, the algorith-
mic time complexity for the BPS approach escalates to
O(log(ρmax/ϵ)(4NL)3.5 log(1/ϵ)). In essence, this indicates
that the BPS algorithm’s computational complexity surpasses
that of the PDIP algorithm when the constraints imposed by
the energy limit are less stringent, signified by a comparably
diminished ρmax.

Regarding problem (57), various efficacious algorithms for
QP can be adapted to accommodate a diversity of situations.
For example, when operating within a relatively small-scale
problem space, the active-set strategy can be implemented to
lower the practical computational complexity effectively.

IV. NUMERICAL RESULTS

In this section, we provide numerical results to verify
the superiority of the proposed FTN-ISAC-SLP approaches.

Without loss of generality, we consider an ISAC BS that is
equipped with Nr = 8 antennas for its receiver. The noise
variances are set as σ2

C = σ2
R = 0 dBm. The quantity of µh

has minimal impact on the optimization discussed in this paper
and is therefore set to 0. The variance of TRM fluctuations is
set as σ2

H = 20 dBm, with each element of HR drawn from
CN (0, σ2

H). Symbol duration T0 is set to 1 ms. Each element
of HC independently is drawn from CN (0, σ2

C). Without loss
of generality, all the communication users are imposed with
the same worst-case QoS, i.e., Γk = Γ,∀k.

Fig. 2 presents the constellation plot of the received symbols
of the FTN-ISAC-SLP system before noise imposition. Gener-
ally, the symbols are distanced from the detection thresholds,
namely, the x and y axes. However, some symbols are observed
to be closer to the thresholds. This occurrence can be attributed
to the noise vec(N⊤

C) ∼ CN (0, σ2
CIK ⊗ Λϕ), which is

imposed on the symbols and possesses varying variances.
Consequently, certain symbols are more susceptible to noise
interference, while others remain unaffected. The system
adapts by allocating more power to the received symbols
subjected to noise with higher variance.

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

Fig. 2. Constellation plot of the received symbols without noise. Here we
take τ = 0.9. The green dots are the nominal constellation points.

In Fig. 3, we compare the convergence behavior of Al-
gorithm 1 (minorization approach) and Algorithm 2 (SCA
approach) by illustrating how MMSE changes with the number
of iterations. It is observed that the minorization approach
reaches a better sensing performance in the early iterations,
while the SCA approach ultimately achieves better results after
more iterations. The slower convergence of the SCA approach
can be due to the fact that the SCA approximation requires
the solution to take only small steps along the optimization
direction to ensure that the approximation remains valid. This
leads to more iterations being needed for the SCA approach
to converge to the ultimate solution. However, it is worth
noting that despite its slower convergence, the SCA approach
eventually results in better sensing performance, which could
be advantageous in scenarios where the final performance is
of higher importance than the speed of convergence.

In Fig. 4, we compare the performance of the minorization
and SCA approaches under different energy budgets E and
fixed communication and sensing conditions, using 1000 initial
data points for each method. Subsequently, we compute the
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Fig. 3. MMSE versus minorization/SCA iteration in case of Nt = 3,
K = 2, L = 15, P = 3, Q = 3, Γ = 15 dBm, E = 30 dBm.

Fig. 4. MMSE versus E in case of Nt = 3, K = 3, L = 20, P = 3,
Q = 3, Γ = 15 dBm, τ = 0.9.

mean and standard deviation of the MMSE generated by
distinct initial points. The 2σ region denotes the area encom-
passing points situated within a distance of twice the standard
deviation from the mean. As the energy budget E increases,
both methods exhibit better sensing performance and approach
the lower bound of MMSE. This is expected, as a higher
energy budget allows for more flexibility in satisfying both
the communication and sensing requirements. It is observed
that the minorization approach exhibits a larger fluctuation in
the results compared to the SCA approach, as indicated by the
wider 2σ region. This suggests that the SCA approach might
be more robust and consistent in terms of its performance
across different initial data points.

In Fig. 5, we compare the results of solving the mi-
norization problems using the BPS algorithm and the Primal-
Dual Interior Point (PDIP) algorithm directly. The purpose of
this comparison is to evaluate the effectiveness of the BPS
algorithm in solving minorization problems, as compared to a
well-established optimization algorithm like PDIP. The figure
shows that the BPS algorithm and the PDIP algorithm provide
essentially the same results at each iteration of the algorithms.
Moreover, as proved in the later section of the study, the
BPS algorithm yields the optimal solution for the energy-
constrained QP problem akin to the PDIP algorithm.

Fig. 6 delineates the relationship between the Central Pro-
cessing Unit (CPU) execution time and frame length L. The
iterations are curtailed once the MMSE reaches a threshold of
−15; dBm. As anticipated, an augmentation in L corresponds
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to an expansion in the problem size, leading to a heightened
demand for CPU time. The BPS exhibits a more efficient
performance in terms of CPU time when juxtaposed with the
PDIP method. Moreover, the minorization approach manifests
superior convergence speed towards a reasonably low MMSE
threshold compared to the SCA approach.

Fig. 7 delineates the comparative analysis between the per-
antenna and total energy constraints. For the sake of simplic-
ity, we set each antenna’s energy budget as En = E/Nt.
The results indicate a negligible discrepancy between the
two constraints. Generally, the MMSE, when applied to the
per-antenna energy constraint, is marginally higher than its
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counterpart under the total energy constraint.
In Fig. 8, the impact of SNR threshold for communication

users on the radar estimation MMSE is depicted. It can be
observed that with an elevated communications SNR, the
estimation performance deteriorates, signifying an intrinsic
tradeoff between communication and sensing performance.
Concurrently, it is observed that as τ increases, the MMSE
exhibits a decline. This phenomenon can be ascribed to the
fact that interference in FTN signaling is harnessed to generate
a positive impact on sensing performance. The smaller the
value of τ , the greater the extent to which one pulse can con-
tribute its energy to adjacent pulses. In communication, such
interference may lead to challenges in recovering the correct
constellation. However, in sensing, a larger energy contribution
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often corresponds to enhanced sensing performance.
In Fig. 9, we demonstrate the impact of the SNR threshold

for communication on communication throughput. Inspired by
the computation of the bit error rate (BER) in [34], we develop
a way to calculate throughput from the constellation that
guarantees fair comparison under FTN signaling. Let’s denote
the symbol stream received sans noise as y. In the context of
QPSK, the probability of an individual symbol y ∈ y being
received with an incorrect in-phase sign, under Gaussian noise,
is represented as p1 = Q(|ℜ(y)|/

√
σ2
n/2). Concurrently, the

probability for an incorrect quadrature sign is given by p2 =
Q(|ℑ(y)|/

√
σ2
n/2), where σ2

n signifies the noise variance
imposed on the symbol y and Q(·) denotes the Q-function.
Accordingly, the probability for the correct transmission of
the two bits encapsulated within this symbol is calculated as
(1−p1)(1−p2), and the probability for the correct transmission
of a single bit is derived as (1 − p1)p2 + p1(1 − p2). The
expected number of successfully transmitted bits is quantified
as 2(1 − p1)(1 − p2) + (1 − p1)p2 + p1(1 − p2), which is
also 2(1− Pe) where Pe is the calculation of BER in [34]. It
is important to note that under FTN signaling, this symbol
occupies only τT0 time. To ensure a fair comparison, we
normalize the expected number of successfully transmitted bits
by τ , which furnishes us with the formula for computing the
throughput from a given constellation:

1

KL

∑
y∈y

(2(1− p1)(1− p2) + (1− p1)p2 + p1(1− p2)) /τ.
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It is observed that as the SNR threshold for communication
increases, the communication throughput increases, which is
essentially a result of received symbols being pushed further
from the detection thresholds in the constellation plot. At the
same time, it is observed that as τ increases, the throughput
increases, which is due to the fact that the same amount
of symbols are transmitted in less time. This highlights the
effectiveness of FTN signaling in achieving higher through-
put for communication while maintaining a balance between
communication and sensing performance.

Fig. 10 illustrates the relationship between radar estimation
MMSE and throughput. It can be observed that as MMSE
increases, the throughput also increases. This indicates an
inherent tradeoff between communication and sensing per-
formance. When MMSE is sufficiently large, the throughput
converges to the maximum transmission rate, signifying a
bit error rate of zero. In this scenario, the system primarily
emphasizes communication performance. Furthermore, it is
noted that when throughput diminishes, the MMSE converges
to a specific value, representing the lower bound of MMSE
when the system is solely focused on sensing performance.

In Fig. 11, the influence of frame length L on radar
estimation performance is illustrated. It is observed that as the
frame length increases, the estimation performance improves,
even though communication performance constraints become
more stringent. Additionally, in the case of SCA with τ = 0.8,
the MMSE displays a convergence trend as L increases,
indicating that the sensing performance is limited by the
energy constraint.

In Fig. 12, we demonstrate the impact of the communication
user number K on radar estimation performance. Unlike
increasing the frame length L, which also increases the number
of symbols to be transmitted, the estimation performance
worsens as K increases. This is because when we increase
L by 1, we only tighten the communication constraint on
K more symbols. However, when we increase K by 1, we
tighten the communication constraint on L more symbols. In
the two cases illustrated by Fig. 11 and 12, L in Fig. 12 is
significantly larger than K in Fig. 11, resulting in different
trends of MMSE.

V. CONCLUSION

In conclusion, this paper introduces a novel wideband FTN-
ISAC-SLP precoding technique for MIMO DFRC systems,
adeptly combining FTN signaling and SLP to enhance sensing
and communication performance across temporal and spatial
dimensions. To tackle the complex non-convex waveform
design problem, we develop two algorithm frameworks based
on minorization and SCA methods, transforming the problem
into solvable QCQP sub-problems. Additionally, we propose
a computationally efficient BPS method to solve these sub-
problems. Extensive simulation results validate the effective-
ness of the proposed FTN-ISAC-SLP design in both radar
sensing and multi-user communication performance. The fu-
ture research may consider to look into not only utilizing
the ISI but also the inter-carrier interference (ICI) in the
context of multi-carrier transmission, thus to further enhance

the performance of the FTN-ISAC-SLP system. Additionally,
one may also attempt to develop a more computationally
efficient algorithm using the concept of sequential FTN SLP
to improve the system’s effectiveness.

APPENDIX A: PROOF OF PROPOSITION 1
For any i, j that 1 ≤ i, j ≤ L, we have

E[ηk(iT )η(jT )∗k]

= E
[∫

nc(t)φ
∗(t− iT )dt

∫
n∗
c(t)φ(t− jT )dt

]
= E

[∫ ∫
nc(t1)nc(t2)

∗φ∗(t1 − iT )φ(t2 − jT )dt1dt2

]
=

∫ ∫
E[nc(t1)nc(t2)

∗]φ∗(t1 − iT )φ(t2 − jT )dt1dt2

=

∫ ∫
σ2
Cδ(t1 − t2)φ

∗(t1 − iT )φ(t2 − jT )dt1dt2

=

∫
σ2
Cφ

∗(t− iT )φ(t− jT )dt

=

∫
σ2
Cφ

∗(t)φ(t− (i− j)T )dt

= σ2
Cϕ((i− j)T ) = σ2

CΦi,j .
(58)

Thus E[ηkη
H
k ] = σ2

CΦ.

APPENDIX B: PROOF OF PROPOSITION 2
We can express XC as

XC = [E1X
⊤
C ,E2X

⊤
C , · · · ,EPX

⊤
C ], (59)

which yields a way to vectorize XC with respect to vec(S⊤)

vec(XC) =


vec(E1X

⊤
C)

vec(E2X
⊤
C)

...
vec(EPX

⊤
C)

 =


INt ⊗E1

INt ⊗E2

...
INt

⊗EP

 vec(X⊤
C)

=


INt

⊗ (E1Ωϕ)
INt

⊗ (E2Ωϕ)
...

INt ⊗ (EPΩϕ)

 vec(S⊤).

(60)

By using the fact that vec(AXB) = (B⊤ ⊗ A)vec(X), we
have

vec(Y⊤
C ) =(HC ⊗ (GUϕ)

⊤)vec(XC) + vec(N⊤
C)

=HCvec(S⊤) + vec(N⊤
C),

(61)

APPENDIX C: PROOF OF PROPOSITION 3
Define Γ = Diag([Γ1,Γ2, · · · ,ΓK ]), D = Diag(vec(D⊤))

and ς =
√
diag(σ2

CIK ⊗Λϕ); then, the CI constraint for k
users can be formulated as∣∣∣ℑ{D∗

HCvec(S⊤)
}∣∣∣−ℜ

{
D

∗
HCvec(S⊤)

}
tan θ

≤ (−
√
Γ⊗ IL tan θ)ς.

(62)

We first stack the k linear inequalities

|ℑ {d∗
k ◦ yC,k}| − ℜ{d∗

k ◦ yC,k} tan θ ≤ (−
√
Γk tan θ)σ

(63)
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in a column to form a united equality:∣∣∣∣∣∣∣∣∣ℑ


d1

d2

...
dk


∗

◦


yC,1

yC,2

...
yC,k



∣∣∣∣∣∣∣∣∣−ℜ



d1

d2

...
dk


∗

◦


yC,1

yC,2

...
yC,k


 tan θ

=
∣∣ℑ{vec(D⊤) ◦HCvec(S⊤)

}∣∣
−ℜ

{
vec(D⊤) ◦HCvec(S⊤)

}
tan θ ≤


(−

√
Γ1 tan θ)ς

(−
√
Γ2 tan θ)ς

...
(−

√
Γk tan θ)ς

 .

(64)
Notice that for Hardmard product of two vectors we have a ◦
b = Diag(a)b. Thus we can rewrite (64) as∣∣ℑ{Diag(vec(D⊤))HCvec(S⊤)

}∣∣
−ℜ

{
Diag(vec(D⊤))HCvec(S⊤)

}
tan θ

=
∣∣∣ℑ{D∗

HCvec(S⊤)
}∣∣∣−ℜ

{
D

∗
HCvec(S⊤)

}
tan θ

≤


(−

√
Γ1 tan θ)ς

(−
√
Γ2 tan θ)ς

...
(−

√
Γk tan θ)ς

 = (−
√

Γ⊗ IL tan θ)ς.

(65)

APPENDIX D: PROOF OF PROPOSITION 4

∫
∥xn(t)∥2dt =

∫ ∥∥∥∥∥
L∑

i=1

φ(t− (i− 1)T )sn,i

∥∥∥∥∥
2

dt

=

∫ (L−1∑
i=0

φ(t− iT )sn,i+1

)(
L−1∑
i=0

φ(t− iT )∗s∗n,i+1

)
dt

=

∫ L∑
i=1

L∑
j=1

(
φ(t− (i− 1)T )φ(t− (j − 1)T )∗sn,is

∗
n,j

)
dt

=

L∑
i=1

L∑
j=1

(∫
φ(t− (i− 1)T )φ(t− (j − 1)T )∗dt

)
sn,is

∗
n,jdt

=

L∑
i=1

L∑
j=1

(∫
φ(t)φ(t− (i− j)T )∗dt

)
sn,is

∗
n,jdt

=

L∑
i=1

L∑
j=1

ϕ((i− j)T )sn,is
∗
n,j = sHn Φsn.

(66)

APPENDIX E: PROOF OF PROPOSITION 5

Similar to the vectorization of XC , we are able to vectorize
X as

vec(XR) = vec([E1X
⊤
R,E2X

⊤
R, · · · ,EPX

⊤
R])

=


IN ⊗ (E1Ωφ)
IN ⊗ (E2Ωφ)

...
IN ⊗ (EPΩφ)

 vec(S⊤) = ERvec(S⊤).
(67)

Using the fact that tr(AHB) = vecH(A)vec(B) and
tr(ABCD) = vec⊤(D)(A⊗C⊤)vec(B⊤), we have

tr(QH
k XR) = vecH(Qk)vec(XR)

= vecH(Qk)ERvec(S⊤) = −bH
k vec(S⊤),

(68)

tr(TkXRX
H

R ) = tr(ILX
H

RTkXR)

= vec⊤(XR)(IL ⊗T∗
k)vec(X

∗
R)

= vec(S⊤)⊤E⊤
R(IL ⊗T∗

k)E
∗
Rvec(S⊤)∗

= vec(S⊤)HEH
R (IL ⊗Tk)ERvec(S⊤)

= vec(S⊤)HBkvec(S⊤)/σ2
H .

(69)

Thus we have

2ℜ
{

tr(QH
k XR)

}
− tr(Tk(σ

2
HXRX

H

R + σ2
RI))

= tr(σ2
RTk) + 2ℜ

{
tr(QH

k XR)
}
− σ2

H tr(TkXRX
H

R )

= ck − 2ℜ
{

vec(S⊤)Hbk

}
− vec(S⊤)HBkvec(S⊤).

(70)

APPENDIX F: PROOF OF PROPOSITION 6

The proof of the convergence of the BPS algorithm to the
optimal solution is presented below. Consider the following
convex problem:

min
x

fo(x)

s.t. x ∈ S, fp(x) ≤ E .
(71)

where fo and fp are convex functions and S is a convex
region. Also consider the penalty problem, which eliminates
the energy constraint

P(ρ) : min
x

fo(x) + ρfp(x)

s.t. x ∈ S.
(72)

Initially, we will prove that as ρ increases, the optimal solution
of P(ρ), x⋆, exhibits a larger fo(x

⋆) and a smaller fp(x
⋆).

Subsequently, we will establish that the optimal solution of
problem (71) is also the optimal solution of problem P(ρ) for
a certain ρ.

fo(x
⋆
1) + ρ2fp(x

⋆
1) ≥ fo(x

⋆
2) + ρ2fp(x

⋆
2), (73)

fo(x
⋆
1) + ρ1fp(x

⋆
1) ≤ fo(x

⋆
2) + ρ1fp(x

⋆
2). (74)

Then we rearrange the inequality (74) as

fo(x
⋆
1) + ρ2fp(x

⋆
1) + (ρ1 − ρ2)fp(x

⋆
1)

≤ fo(x
⋆
2) + ρ2fp(x

⋆
2) + (ρ1 − ρ2)fp(x

⋆
2).

(75)

According to inequality (73) and (75) we have

0 ≤ (fo(x
⋆
1) + ρ2fp(x

⋆
1))− (fo(x

⋆
2) + ρ2fp(x

⋆
2))

≤ (ρ1 − ρ2)(fp(x
⋆
2)− fp(x

⋆
1)),

(76)

which yields
fp(x

⋆
1) ≤ fp(x

⋆
2). (77)

Then combining inequality (73) and (77) we have

fo(x
⋆
1) ≥ fo(x

⋆
2) (78)

Inequality (77) and (78) reveal that an increase in the penalty
factor results in an increment of the objective function and a
reduction in the penalty function. The objective of the BPS
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algorithm is to identify the minimal penalty factor such that
the penalty function fp does not surpass E .

We now prove that the optimal solution x⋆ of problem (71)
corresponds to the optimal solution of problem P(ρ) for a
particular ρ. Assuming x⋆ is not constrained by fp(x) ≤ E , it
is evident that x⋆ represents the optimal solution of P(0). If
it is constrained, in accordance with the KKT complementary
slackness condition, we ascertain that for certain values of µ
and ν:

∂fo
∂x

(x⋆) + µ
∂fp
∂x

(x⋆) +
∂LS(ν)

∂x
(x⋆) = 0, (79)

where LS and ν denote the Lagrange augmentation function
and dual variables for the constraint x ∈ S. Consequently, we
deduce that this condition also represents the KKT comple-
mentary slackness condition for problem P(µ). Therefore, x⋆

serves as the optimal solution of P(µ).
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