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Abstract

Gaussian Processes (GPs) have gained substantial attention within the fields of statis-

tics and machine learning. Rooted in Bayesian principles, their appeal lies in their

ability to provide a robust framework for conducting inference. Particularly, GPs ex-

cel in their ability to capture intricate data dependencies and offer a comprehensive

representation of predictive uncertainty.

However, as datasets grow in size and complexity, Bayesian nonparametric models

employing GPs face notable challenges. A key concern revolves around conducting

inference for models with intractable likelihoods, including cases where the likelihoods

cannot be feasibly evaluated. Furthermore, a practical challenge arises from the

substantial computational demands associated with GPs, characterized by a cubic

time complexity, making them less suitable for large datasets.

Two prominent examples of these challenges are particularly evident. First, in

the case of Poisson process likelihoods used in spatial statistics, where likelihood

computations involve the intractable integration of a random function across the

input space. Secondly, in time series analysis, while GPs generalizes traditional linear

models, their integration into Bayesian change point detection framework (BOCPD)

exposes a notable limitation: a naive implementation incurs O(n5) complexity. In

both these scenarios, the ability to conduct efficient inference, accurately discern

underlying patterns, and seamlessly adapt to scaling demands becomes paramount.

This thesis focuses on advancing efficient and adaptable inference methods us-

ing GPs for spatial data analysis and time series change point detection. A central

emphasis lies in exploring the underutilized potential of reduced-rank GPs, derived

from the spectral properties of their kernel, within these domains. This sparse spec-

tral representation of GPs provides significant computational benefits and introduces

novel perspectives for addressing complex data inference challenges in these fields.
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Chapter 1

Introduction

1.1 Motivation

Statistical learning, at its core, is the process of extracting predictive insights from

data through statistical inference. It forms the foundation for various modern ma-

chine learning techniques, offering a versatile toolkit for data modeling, automating

decision-making, and uncovering valuable insights.

In this landscape, Gaussian processes (GPs) play a crucial role in contemporary

probabilistic machine learning. Publicized widely by Rasmussen and Williams (2005),

GPs represent a form of Bayesian nonparametrics that serve as a flexible alternative

to traditional parametric models. The historical roots of GPs extend nearly a century

back with the pioneering works of Kolmogorov (1941) and Wiener (1949). Over the

years, GPs have found extensive applications across the entire spectrum of machine

learning, encompassing supervised learning (Rasmussen and Williams, 2005), unsu-

pervised learning (Lawrence, 2003), and optimization (Mockus et al., 1978; Jones,

2001). A deeper exploration of these machine learning classes can be found in refer-

ence texts such as MacKay (2002) and Murphy (2012).

One of the key factors contributing to the widespread adoption of GPs is their

inherent flexibility in accommodating increasing model complexity, dictated by the

available data. As non-parametric models, they refrain from imposing rigid assump-

tions on the underlying data’s functional form, enabling them to model a wide range

1



1. Introduction

of functions, thus rendering them adaptable to various problem domains. Moreover,

being rooted in Bayesian principles, GPs offer the capability to seamlessly integrate

prior beliefs into complex tasks. Additionally, GPs provide the essential ability to

quantify uncertainty, which is indispensable for both prediction and decision-making

processes.

GPs have emerged as powerful tools in tackling classical statistical problems,

notably in regression tasks. In regression, every data point in the training set forms

an independent input-output pair, where the input correlates with the output. The

principal hurdle in regression is deducing the underlying function that links input

to output, thereby facilitating predictions for future data points. In this regard,

Bayesian inference serves as the cornerstone, typically achieved through computing a

closed-form posterior distribution.

This thesis is primarily dedicated to addressing the inherent challenges encoun-

tered in conducting efficient Bayesian inference with GPs, especially when dealing

with contemporary complex datasets. The focus lies particularly on spatial data

analysis and time series change point detection, where the conventional assumptions

of independent and identically distributed observations often do not hold.

Temporal data, or time series, comprises a sequence of measurements taken at

specific time intervals, finding prevalence in fields such as economics, finance, meteo-

rology, and environmental science. Time series data introduces temporal dependence,

where values at one time point depend on previous time points, thereby deviating from

the i.i.d. assumption. Furthermore, these datasets often exhibit non-stationarity,

where generative parameters may fluctuate over time, introducing complexity into

the modeling task. In our research, we particularly focus on addressing this issue of

non-stationarity and aim to develop change point (CP) models that can effectively

identify and incorporate shifts in stationarity as an integral part of the inference

process.

Spatial data, on the other hand, revolves around observations associated with dis-

tinct geographic locations, proving pivotal in diverse fields such as geography, ecology,

2



1. Introduction

epidemiology, neuroscience, and crime analysis. Spatial data often demonstrates spa-

tial dependence and heterogeneity, showcasing intriguing phenomena like attraction

and repulsion, resulting in unique modeling challenges.

GPs offer a unified and versatile Bayesian framework that proves invaluable for

the analysis of both spatial and temporal data. While they have demonstrated success

in various applications, specific challenges have impeded their widespread adoption,

thus necessitating further research. These challenges include:

� Intractability Issues: In many complex scenarios, the task of making in-

ferences with GPs becomes arduous due to the intricate challenge of deriving

tractable posterior distributions. This issue is particularly pronounced in the

context of spatial data when employed with GPs, where the Poisson likeli-

hood used becomes itself intractable. These models are often referred to as

“doubly-intractable” in the literature, which has led to the development of ap-

proximation methods. These methods encompass Markov Chain Monte Carlo

algorithms (Brooks et al., 2011) or variational inference methods(Beal, 2003),

and will be discussed further in the subsequent sections.

� Scalability Problems: Adapting GPs to handle extensive datasets remains a

persistent challenge. Standard GPs exhibit cubic time complexity, denoted as

O(n3), rendering them impractical for datasets with thousands of observations

or more. This challenge is exacerbated when dealing with the complex datasets

mentioned earlier, necessitating the development of specialized techniques to

reduce computational complexity.

To address these challenges and harness the full potential of GPs while manag-

ing their computational demands, various strategies and techniques have been pro-

posed in the literature. These strategies include sparse approximations (Smola and

Bartlett, 2001; Csató and Opper, 2002; Quiñonero-Candela and Rasmussen, 2005),

variational inference (Titsias, 2009a), and reduced-rank approximations to GP co-

variance functions (Williams and Seeger, 2001a; Rahimi and Recht, 2007). One par-

ticularly promising approach is the use of spectral sparse GPs, which involves the

3



1. Introduction

spectral decomposition of covariance functions. This technique, initially introduced

for kernel methods by Rahimi and Recht (2007), based on the spectral decomposition

by Bochner (1932)r, has been further developed and adopted for GPs in the context

of GP regression (Lázaro-Gredilla et al., 2010). While substantial progress has been

made in the context of regression, there is room for further development, especially

in the context of handling spatial-temporal data.

This thesis sets out to explore and develop advanced methods using the spectral

sparse representation of GPs for both time series data and spatial data. The primary

research objectives encompass the following:

� Establishing a theoretical foundation: At the core of this study, we seek

to establish a comprehensive and coherent theoretical groundwork for the ap-

plication of spectral sparse GPs to time series and spatial data. This includes

the development of a deep understanding of the fundamental principles and

mathematical frameworks governing GPs, spatial data, and time series models.

The elucidation of these theoretical foundations is integral to demonstrating

how spectral sparse GPs constitute an effective instrument for data analysis.

� Addressing computational efficiency challenges: One of the primary

goals is to tackle the computational challenges associated with large datasets.

This involves devising efficient algorithms and methods to ensure that spec-

tral sparse GPs can be applied to substantial datasets without compromising

computational performance.

� Demonstrating practical utility: Through practical applications, this re-

search aims to showcase the real-world utility of spectral sparse GPs. The focus

areas include spatiotemporal forecasting, spatial interpolation, and uncertainty

quantification. These practical demonstrations will illustrate the versatility and

effectiveness of spectral sparse GPs in various contexts.

� Comparative analysis: To provide a comprehensive perspective, a compar-

ative analysis will be conducted to evaluate the advantages of spectral sparse

GPs. This analysis will consider factors such as accuracy and computational

4
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efficiency, highlighting the strengths and benefits of this approach in relation to

alternative methods.

1.2 Thesis structure

This thesis is organized into two distinct research domains: Gaussian process models

for spatial data analysis and for change point detection for time series data. We

establish a clear division between two parts: Part I and Part II, each tailored to the

specific nature of the data under examination. Part I encompasses Chapters 3 and 4,

delving into point processes and spatial data exclusively. Part II comprises Chapters

5 and 6, dedicated to the analysis of time series data.

Chapter 2 The second chapter of this thesis acts as an informative preamble,

offering motivation and a foundational understanding of GPs. Our main aim is to

establish a robust theoretical framework for Bayesian nonparametrics, with a specific

focus on GPs. We also delve into practical aspects associated with GPs, especially

regarding Gaussian process regression. Lastly, we deliver a comprehensive exploration

of kernels and their intrinsic connections to covariance functions, introducing pivotal

concepts and theorems that will serve as fundamental building blocks for subsequent

chapters.

Part I The initial segment of the thesis, encompassing Chapter 3 and Chapter 4,

focuses on our primary contribution, which revolves around point process models

modulated by GPs for spatial data.

Chapter 3 serves as a comprehensive introduction, providing essential background

information on point processes in the context of spatial data analysis. These mod-

els face two significant challenges: the first is inherent intractability, complicating

Bayesian inference, while the second challenge arises due to the computational costs

involved when handling large datasets. In this chapter, we also conduct a review of

the current state of research concerning spatial models incorporating GPs, shedding

light on their responses to these challenges.

5
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In Chapter 4, we present our first substantial contribution: a novel approach

for Bayesian inference in permanental processes that model the Poisson intensity as

the square of a GP. Permanental processes are known for their inherent tractability,

making them a convenient choice. However, certain limitations persist, particularly

in terms of computational challenges and the restriction of tractability advantages

to Gaussian kernels. Our contribution was inspired by the shortcomings of existing

models. Our approach combines generalized kernels with a Fourier feature-based

representation of the GP, resulting in rapid and efficient inference without the need

for numerical integration across the input space. Furthermore, it permits the design

of versatile kernels and offers linear scalability as the number of events grows.

Part II In the second part of our study, we investigate Bayesian nonparametric in

the context of change point detection for time series data.

Chapter 5 provides a foundation for time series modeling, with a specific focus

on models based on GPs. Unlike conventional methods for time series analysis, GPs

offer significant advantages due to their non-parametric nature. We also introduce

and discuss the Bayesian online change point detection method (BOCPD), along

with its extensions utilizing Gaussian processes, for identifying changes in statistical

characteristics within time series data.

Chapter 6 introduces our contribution, a novel variant of BOCPD featuring a

reduced-rank Student-t process as a nonparametric time series model. This innova-

tive approach combines a Student-t process with dependent Student-t noise to model

time series data, with a Hilbert space reduced-rank kernel approximation to address

computational complexity. The Student-t process extends the flexibility beyond the

traditional Gaussian Process, offering a more versatile alternative. Within the con-

text of BOCPD, Student-t processes also demonstrate a lower likelihood of generating

false alarms when detecting change points caused by outliers. To further enhance

computational efficiency, our approach incorporates a convenient Hilbert space-based

reduced-rank representation of the Student-t process kernel, derived from an eigen-

function expansion of the Laplace operator.
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1. Introduction

1.3 Contribution

In this section, we outlined the key contributions in each main chapter and their

relevance to the central theme of this thesis. Notably, the work presented here,

including data generation and data analysis, was carried out by the author. This

thesis incorporates contributions from two published works, both of which I served

as the primary author:

� Sellier, J. and Dellaportas, P. (2023). Sparse spectral Bayesian permanental

process with generalized kernel. In Proceedings of the 26th International Con-

ference on Artificial Intelligence and Statistics, AISTATS 2023.

� Sellier, J. and Dellaportas, P. (2023). Bayesian online change point detection

with Hilbert space approximate Student-t process. In Proceedings of the 40th

International Conference on Machine Learning, ICML 2023.
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Chapter 2

Bayesian Nonparametrics with

Gaussian processes

In this inaugural chapter, our primary goal is to establish a strong foundational

framework within the field of Bayesian nonparametrics. We will place particular

emphasis on Gaussian processes, recognizing their enduring importance as essential

analytical tools in the upcoming contributing chapters. Within this framework, we

will clarify fundamental concepts and intrinsic properties that are fundamental to the

subject matter and the remainder of this thesis.

In Section 2.1, we provide a formal definition and characterization of stochastic

processes, with a specific focus on Gaussian processes. In Section 2.2, we cover the

Bayesian nonparametrics formalism and explain the use of Gaussian distributions

as priors. Section 2.3 shifts our attention to the practical application of Gaussian

processes, particularly in the context of regression, while also addressing its limita-

tions. This section is designed to provide readers with a clear understanding of how

to apply Gaussian processes to real-world problems. Finally, in Section 2.4, we offer

a comprehensive overview of kernel methods, exploring the interconnections between

kernels and covariance functions within the context of Gaussian processes. Addition-

ally, Section 2.4 will introduce an overview of various kernels commonly found in the

literature, each accompanied by concise explanations.

While we strive to make this thesis as self-contained as possible, we assume that
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2. Bayesian Nonparametrics with Gaussian processes

readers have a foundational understanding of measure theory. For an in-depth discus-

sion of standard formulation of probability in terms of measure theory, we recommend

referring to established texts such as Billingsley (1995a) or Capinski and Kopp (2013).

It is worth noting that while measure theory plays a pivotal role throughout the ma-

jority of this chapter, Sections 2.3 and 2.4 do not require measure theory and should

be of standalone interest.

2.1 Stochastic processes

Stochastic processes serve as versatile mathematical framework for modeling and un-

derstanding random phenomena and systems. This section will provide a concise

introduction to stochastic processes, with a focus on their application in defining

Gaussian Processes. For a deeper understanding of stochastic processes, we recom-

mand consulting references such as Doob (1991) or Brémaud (2020).

In our pursuit of comprehending stochastic processes, we delve into two funda-

mental methods of characterization, each offering unique insights into their intrinsic

properties. In Section 2.1.1, we will discuss the characterization of stochastic pro-

cesses through their finite-dimensional distributions and the Kolmogorov extension

theorem. This method plays a pivotal role in defining Gaussian processes, laying the

foundation for our discussion in Section 2.1.3 where we establish a formal definition

of Gaussian processes.

In Section 2.1.2, we introduce the Karhunen-Loève theorem, which provides a rig-

orous framework for representing stochastic processes as infinite series comprised of

orthogonal functions. This theorem not only offers deeper insights into the inherent

characteristics of stochastic processes but also paves the way for valuable perspectives

on Gaussian processes, as discussed in Section 2.4.3. Through these methodical ex-

plorations, we aim to provide a structured foundation for comprehending stochastic

processes and, in particular, their application – Gaussian processes.

A stochastic process is defined as a collection of random variables, each indexed

by a set X . The formal definition is as follows:

9



2. Bayesian Nonparametrics with Gaussian processes

Definition 2.1.1 (Stochastic process). Let (Ω,F ,P) be a probability space and

(R,B(R)) be a mesurable state space. Let X be an indexed set defined on the standard

Borel space (X ,B(X )). A stochastic process is a collection f = {f(x, ·) : x ∈ X} such

that for each fixed x ∈ X , the function f(x, ·) : Ω → R is a random variable from

(Ω,F ,P) to (R,B(R)).

In simpler terms, a stochastic process f defined on X is a collection of random

variables f(x, ·) : x ∈ X , where we often use the notation f(x) as a shorthand for

f(x, ω). The index set X can take on various forms, including finite, countably in-

finite, or uncountably infinite. In the literature, it is frequently represented as T

because stochastic processes are often defined as random functions over time. For

example, T could be a subset of the real line, either countable (for discrete-time

stochastic processes) or uncountable (for continuous-time stochastic processes). How-

ever, here, we take a more general approach and consider X as a multi-dimensional

index, specifically X = Rn for n ∈ N.

Furthermore, a stochastic process can be interpreted as a random function f :

X × Ω → R that assigns the value f(x, ω) for every pair (x, ω) ∈ X × Ω. When

ω is fixed, the function f(·, ω) : X → R represents a deterministic sample function,

commonly referred to as a trajectory or realization.

The concept of finite-dimensional distribution is a fundamental aspect of stochas-

tic processes, offering insights into the joint marginal distributions of a finite number

of indices within the process. Consider a finite set of indices {xi}ni=1 ∈ X , where

n ∈ N. The collective joint marginal distributions of these indices constitute the

finite-dimensional distributions of the stochastic process.

Definition 2.1.2 (Finite dimensional distribution). Let (Ω,F ,P) be a proba-

bility space and let f : X × Ω → Y be a stochastic process. The finite-dimensional

distributions of a stochastic process is the family distributions of the random variables

(f(x1), · · · , f(xn)) for all choices of {xi}ni=1 ∈ X and n ∈ N.
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2. Bayesian Nonparametrics with Gaussian processes

2.1.1 Kolmogorov extension theorem

Representing stochastic processes as a function-valued random variable offers the

advantage of treating them as single random objects rather than collections of random

variables. This perspective can be achieved by considering the stochastic process

f : X × Ω → R as a measurable mapping from a probability space (Ω,F ,P) to the

space of functions X → R along with its associated σ-algebra. Alternatively, we can

express this as f belonging to the product space RX , allowing us to view functions

as vectors with elements indexed by members of X .

However, this approach presents a challenge when defining probability distribu-

tions over infinite-dimensional objects. To address this challenge, the Kolmogorov

extension theorem asserts that, under specific conditions, the finite-dimensional dis-

tributions of a stochastic process can be used to uniquely determine its infinite-

dimensional distributions. Furthermore, it enables us to extend a family of distribu-

tions defined for finite subsets of X to uniquely define a stochastic process across the

entire space.

In this section, we closely follow the presentation outlined by Matthews (2016)

and adopt some of their notation. To introduce the σ-algebra associated with the

infinite-dimensional space RX , we need to establish several definitions. Let V and U

be two finite-dimensional subspaces of X such that V ⊆ U ⊂ X . The Borel σ-algebra

of RV is denoted by B(RV). The sub-collection of random variables indexed by U ,

represented as fU , is defined as fU = {f(x) : x ∈ U}.

Additionally, we consider a projection map, denoted as πU :V , from U onto V defined

as follows:

πU :V : RU → RV

fU → πU :V(fU ) = fV . (2.1)

In particular, the projection map πX :V(f) results in fV . For simplicity, we use πV(f)

to denote πX :V(f).

11



2. Bayesian Nonparametrics with Gaussian processes

We define a cylinder set for a finite V as the pre-image of πX :V , i.e.

π−1
X :V(E) = {f ∈ RX : πX :V(f) ∈ E}, (2.2)

where E is a set belonging to B(RV).

The σ-algebra generated by all cylinder sets, denoted as G, is referred to as the

product σ-algebra. In other words, G is generated from all sets of the form π−1
X :V(E),

where V is a finite subset of X and E is an element of B(RV). The product σ-algebra

serves as the underlying σ-algebra for the measurable space of the probability measure

over functions, as defined in the Kolmogorov theorem.

With the product σ-field G now defined, we can proceed to state the Kolmogorov

extension theorem as follows:

Theorem 2.1.3 (Kolmogorov extension Theorem). Let X be an indexed set. Let

{PV : V ⊂ X} be a family of probability distributions each defined on their respective

measurable space (RV ,B(RV)). If for every finite sets V and U such that V ⊂ U ⊂ X ,

we have

PU (π
−1
U :V(E)) = PV(E), ∀ E ∈ B(RV) (2.3)

then there exists a unique probability measure PX on the product σ-algebra with the

property

PX (π
−1
X :V(E)) = PV(E), ∀ E ∈ B(RV). (2.4)

A detailed proof of this theorem can be found in Billingsley (1995b, Chapter 7).

If the set of distributions {PV : V ⊂ X} satisfies the marginalization condition

outlined in Equation (2.3), it implies the existence of a unique probability measure

on the product σ-field G that has these distributions as its marginal distributions.

Alternatively, we can express this as the existence of a unique stochastic process f

with probability distribution PX and finite-dimensional distributions {PV : V ⊂ X}.

In this context, PV can be defined as:

PV(E) := P(fV ∈ E), ∀ E ∈ B(RV) (2.5)
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2. Bayesian Nonparametrics with Gaussian processes

for any V ⊂ X . In the subsequent sections, we will refer to PV as Pf,V for any V ⊂ X to

indicate its association with the process f . Moreover, we will simplify the notation

further by writing Pf,X as simply Pf .

In essence, the Kolmogorov extension theorem provides a systematic way to ex-

tend these partial probability distributions to a unique probability measure defined

over the entire sample space. This measure represents the comprehensive probability

distribution for the stochastic process.

2.1.2 Karhunen–Loève theorem

Another pivotal aspect of stochastic processes lies in their representation through

the Karhunen–Loève theorem (Loeve, 1978). This theorem offers a method to ex-

press a stochastic process as an infinite series of orthogonal functions, akin to the

representation of deterministic functions via Fourier analysis.

To apply the Karhunen-Loève theorem, we need to determine two key statistical

moments of the process. The first is the mean function m : X → R, defined as

m(x) := EP[f(x)]. The second is the covariance function c : X × X → R, defined as

c(x,x′) := EP [(f(x)−m(x))(f(x′)−m(x′))].

Let L2(X ) represent the space of square-integrable functions defined on X . The

Karhunen-Loève theorem can be formulated as follows :

Theorem 2.1.4 (Karhunen Loève theorem). Let f be a zero mean square in-

tegrable stochastic process defined over a probability space (Ω,F ,P) with continu-

ous covariance function c : X × X → R. Let {Φi}∞i=1 and {λi}∞i=1 be the or-

thonormal eigenfunctions and non-negative eigenvalues of the Hilbert-Schmidt op-

erator Tk : L2(X ) → L2(X ) defined as Tk[f ] =
∫
X k(x,x′)f(x′)dx′. Then f can be

represented as:

f(x) =

∞∑
i=1

wiΦi(x) (2.6)

whith convergence in L2(X ,P) and

wi =

∫
X
f(x)Φi(x)dx. (2.7)
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2. Bayesian Nonparametrics with Gaussian processes

Furthermore, the random variables wi have zero-mean, are uncorrelated and have

variance λi i.e.

E [wi] = 0 and E [wiwj ] = δi,jλi ∀i, j ∈ N. (2.8)

For detailed definitions, please refer to Berlinet and Thomas-Agnan (2004, section

3.2) and Steinwart (2017, Lemma 3.3 and 3.7). The requirement of f being square

integrable is equivalent to f ∈ L(X ,P) or EP[f(x)
2] < ∞ for all x ∈ X . Such

processes are also referred to as second-order stochastic processes.

The Karhunen-Loève theorem (KL) asserts that any square-integrable stochastic

process can be expressed as a linear combination of uncorrelated random variables

with a mean of 0. The coefficients of this linear combination, represented by {wi}∞i=1,

are orthogonal in the probability space, while the deterministic functions, {Φi}∞i=1,

are orthogonal in L2(X ).

The KL eigenfunctions and eigenvalues can be employed to define a unique rep-

resentation of the random process, which is often simpler and more amenable to

analysis than the original process. The KL theorem is closely intertwined with the

spectral theorem for compact self-adjoint operators. For a deeper understanding of

this relationship and its connections to other relevant concepts, such as the Mercer

theorem, please refer to section 2.4.2.

One of the primary applications of the KL representation is its ability to reduce the

dimensionality of the random process. This is achieved by considering only the most

significant eigenfunctions and eigenvalues, as the eigenvalues are ranked in decreasing

order. This process is commonly known as Principal Component Analysis (PCA) and

finds extensive utility in signal processing and image analysis.

2.1.3 Gaussian Processes

In this section, we delve into the formal definition of Gaussian processes (GPs)

through their finite-dimensional distribution and the Kolmogorov theorem (2.1.3).

The Kolmogorov theorem establishes a fundamental characterization of GPs. Essen-
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2. Bayesian Nonparametrics with Gaussian processes

tially, a GP is a real-valued stochastic process, denoted as f : X × Ω→ R, where all

its finite-dimensional distributions follow Gaussian distributions.

Definition 2.1.5. Let (X ,G) be a measurable space and f = f(x)x∈X be a stochastic

process defined on this space. Then, f is a Gaussian process if and only if for any finite

set of points x1, . . . ,xn ∈ X , the corresponding random variables f(x1), . . . , f(xn)

have a joint Gaussian distribution.

In other words, for any finite V ⊂ X , there exists a Gaussian measure P{µV ,ΣV}

parametrized by a finite vector µV and a positive semi-definite matrix ΣV such that

fV = {f(x) : x ∈ V} have the distribution P{µV ,ΣV} .

The mean vector µV is computed via a mean function µ : X → R. For any finite

set of inputs V := {xi}ni=1, n ∈ N, the value of the mean function at each input xi

corresponds to the i-th component of µV , i.e., µV,i = µ(xi) for i = 1, · · · , n.

The covariance matrix ΣV is constructed as a Gram matrix, with entries deter-

mined by evaluating a covariance function, k : X × X → R, on the set of inputs V.

The function k must be symmetric, i.e., k(x,x′) = k(x′,x) for all x,x′ ∈ X , and

positive semi-definite, i.e.,
∑n

i=1

∑n
j=1 aiajk(xi,xj) ≥ 0 for all n ∈ N,x1, · · · ,xn ∈ X

and non-zero a = (a1, · · · , an) ∈ Rn.

The GP, denoted as GP(µ, k), is defined by its mean function µ and covariance

function k. The notation f(x) ∼ GP(µ, k) indicates that the function f(x) is a sample

from this GP.

To demonstrate the existance of the GP, we can easily verify that the familiy

of multivariate Gaussian measures {P{µV ,ΣV} : V ⊂ X} parametrized by µ anf

k satisfies the marginalization property in Equation (2.3). This implies that for

any V ⊂ U ⊂ X , the measure we obtain by restricting P{µU ,ΣU} to the set V is

P{µV ,ΣV} 1. As a result, this family of Gaussian finite-dimensional distributions can

be extended to a unique stochastic process, which is the GP.

1This holds due to the fact that the entries in the covariance matrix corresponding to x,x′ ∈ V
are equal in both ΣU and ΣV , and the same holds true for the mean function.

15
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2.2 Bayesian nonparametrics

In the preceding section, we introduced the concept of a stochastic process as an

infinite-dimensional random valued function. In this section, we introduce Bayesian

nonparametrics — a versatile framework designed to infer the distribution of such

functions from a finite set of observations. Unlike parametric models that rely on

a fixed number of parameters, Bayesian nonparametric models operate within an

infinite-dimensional parameter space, affording them the flexibility and expressiveness

needed to tackle a wide array of complex modeling tasks.

Bayesian nonparametric models have showcased their versatility across various

domains, including regression, classification, clustering, and latent variable modeling.

A substantial body of literature has explored the foundational concepts and motiva-

tions underlying these models, with notable contributions from Hjort et al. (2010),

Orbanz and Teh (2011), and Ghahramani (2012).

This section reviews the fundamental theoretical principles of Bayesian nonpara-

metric models. In Section 2.2.1, we present a generalized version of Bayes’ theorem

tailored to address the intricacies inherent in infinite-dimensional parameter spaces

. Moving forward, Section 2.2.2 navigates the practical considerations essential for

the evaluation of Bayesian nonparametric models, particularly when constrained to

a finite subset of the parameter space. Lastly, we provide an insightful exploration

of Gaussian processes as a prime exemplar of Bayesian nonparametric models in Sec-

tion 2.2.3. Through these discussions, we aim to provide a comprehensive overview

of Bayesian nonparametrics, offering both theoretical insights and practical guidance

for leveraging this powerful framework in various modeling scenarios.

2.2.1 Generalized Bayes theorem

Applying Bayes’ theorem in infinite dimensions presents a complex challenge. The

conventional Bayesian framework relies on the Lebesgue measure, which poses diffi-

culties when dealing with infinite-dimensional spaces. This leads to undefined prior

and posterior densities for infinite objects, necessitating the development of a gener-
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alized form of Bayes’ theorem. In this section, we closely follow the insights presented

by Schervish (1996) and Matthews (2016) to address this challenge.

In the previous section, we introduced a random function denoted as f , defined

over an index set X . We demonstrated that f can be defined on the product space

RX along with its associated product σ-algebra G, effectively forming a measurable

space denoted as (RX ,G). To perform Bayesian inference on f , we introduce a prior

probability distribution Pf on the measurable space (RX ,G). We also introduce a

vector of observations y = {yi}ni=1 with elements in R. Our objective is to infer the

posterior distribution of f given y, denoted by P̂f .

To establish a probabilistic linkage between f and y, we introduce a critical com-

ponent, the likelihood function denoted as p(y | f). Under the assumption that Pf is

absolutely continuous with respect to P̂f (Billingsley, 1995b, p. 422), we can use the

Radon-Nikodym (RN) derivative of the posterior with respect to the prior to derive

a more general form of Bayes’ theorem, as proven in Stuart (2010, Theorem 6.31):

∂P̂f

∂Pf
(u) =

p(y|f = u)

p(y)
, ∀u ∈ RX . (2.9)

Here, p(y) represents a crucial quantity known as the marginal likelihood, given by:

p(y) :=

∫
RX

p(y|f = u)dPf (u). (2.10)

In the special case where f is finite and both Pf and P̂f are absolutely continuous

with respect to the Lebesgue measure µ, we can recover the classical Bayes’ theorem

using the chain rule for RN derivatives as follows:

∂P̂f

∂µ
(u) =

∂P̂f

∂Pf
(u)

∂Pf

∂µ
(u)

=
p(y|f = u)

p(y)

∂Pf

∂µ
(u).

In the more general scenario where f is an infinite-dimensional function, we ex-

press the posterior measure P̂f as the measure induced by the RN derivative ∂P̂f
∂Pf

, as
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defined in Equation (2.9). Consequently, we have:

P̂f (E) =

∫
E

p(y|f = u)

p(y)
dPf (u) (2.11)

for all E ∈ G.

2.2.2 Working with a finite subset of the parameter space

In practical applications of Bayesian nonparametric models, we often focus on a finite

subset of the available parameter space. This subset is chosen to adequately explain

the observed sample, and the excess dimensions are typically integrated out over the

prior to compute the marginal likelihood.

In some cases, the likelihood function p(y|f) depends solely on the values of f

at a limited set of data points denoted as X = {xi}ni=1 ⊂ X . Let f represent the

evaluation of f at these data points, i.e., f := fX ≜ {f(x)}x∈X. As a result, we can

simplify the likelihood function to p(y|f).

The posterior measure, which expresses the updated belief about the parameter

f after considering the observed data, can be calculated using the generalized Bayes

formula in Equation (2.9) :

∂P̂f
∂Pf

(u) =
p(y|f = πX(u))

p(y)
, ∀u ∈ RX (2.12)

where πX : RX → Rn is a coordinate projection onto X such that πX(u) := uX ≜

{u(x)}x∈X for all u ∈ RX . The denominator, p(y), represents the marginal likelihood

of the observed data and can be calculated as a finite integral over the prior marginal

probability measure of f , denoted by PfX ,

p(y) =

∫
p(y|f)dPfX(f). (2.13)

Equation (2.11) is transformed into a finite-dimensional integral term, as expressed
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in Equation (2.14):

P̂f (E) =

∫
E

p(y|f = πX(u))

p(y)
dPf (u), ∀E ∈ B(RX). (2.14)

Inference For inference, we only need to evaluate the posterior in its finite-dimensional

form. In prediction tasks, where we anticipate a set of predictive points denoted by

X∗, alongside the data points X, we define the finite-dimensional vector f∗ as the

evaluation of the model’s underlying function f at the predictive points X∗. The

projection of f onto X ∪X∗ is denoted as f∗∪X.

The equation for the posterior measure of the projected function f∗∪X, denoted

as , P̂f∗∪X can be expressed as:

P̂f∗∪X
(E) = P̂f (π

−1
∗∪X(E)) =

∫
π−1
∗∪X(E)

p(y|f = πX(u))

p(y)
dPf (u)

=

∫
E

p(y|f = π∗∪X:X(u))

p(y)
dPf∗∪X

(u) (2.15)

for all E in the σ-algebra associated with {X∗ ∪X}. Importantly, this integral is of

finite dimension, enabling efficient calculations in practical scenarios.

2.2.3 Gaussian process as a prior

The Gaussian process described in Section 2.1.3 provides a suitable prior for modeling

functions. The finite-dimensional marginals of the underlying prior measure, denoted

as Pf , are Gaussian, characterized by a mean µ and covariance function k. Conse-

quently, these marginals possess a well-defined density with respect to the Lebesgue

measure.

Equation (2.15) reveals that the finite-dimensional form of the posterior measure

P̂f at the input locationX also possesses a density, denoted by p(f |y,X). This density

can be expressed as follows:

p(f |y,X) =
p(y|f)p(f |X)

p(y)
. (2.16)

Here, p(f |X) represents the Gaussian density of the finite-dimensional measure PfX .
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Similarly, the density of the posterior distribution of f∪X can be expressed as

follows:

p(f , f∗|y,X,X∗) =
p(y|f)p(f , f∗|X,X∗)

p(y)
. (2.17)

Here p(f , f∗|X,X∗) denotes the Gaussian density of Pf∗∪X
and p(f , f∗|y,X,X∗) rep-

resents the density of P̂f∗∪X
.

Assuming a Gaussian process prior allows us to derive these standard forms of the

Bayes formula, presented in Equations (2.16) and (2.17). Furthermore, these equa-

tions retain their tractability when we assume a Gaussian distribution for p(y|f), as

discussed in the subsequent section, making them particularly convenient for practical

applications.

2.3 Gaussian processes as inference mode

In the preceding section, we introduced GPs as a valuable Bayesian framework for

modeling mapping functions. GPs have demonstrated their effectiveness in capturing

intricate and non-linear relationships between input variables X and output variables

y by incorporating a prior on the underlying mapping function that connects X and

y and refining it through Bayesian inference as new data emerges. This versatility

has led to their widespread adoption across a broad spectrum of machine learning

applications, spanning supervised learning, unsupervised learning, and reinforcement

learning.

This section provides a comprehensive overview of the practical aspects associated

with Gaussian processes. In Section 2.3.1, we present the Gaussian process regression

model, which serves as an illustrative example of the GP methodology. Addition-

ally, in Section 2.3.2, we outline the various limitations and challenges inherent to

GP modeling, offering insights into both its strengths and areas that require careful

consideration.
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2.3.1 Gaussian process regression

Gaussian processes have been particularily popular due to their conjugacy property.

Specifically, when the likelihood function p(y|f) takes on a Gaussian form, the result-

ing posterior within the GP framework, in Equations (2.16) and (2.17), remains a GP.

This property greatly simplifies the inference process. Such a scenario occurs when

observations y correspond precisely to evaluations of a mapping function f : X → R

at data points X, including additive Gaussian noise.

In the context of regression, this relationship is typically represented by assuming

that each observation in y = {yi}ni=1 arises from both f and a noise vector ε = {εi}ni=1,

as follows:

yi = f(xi) + εi for all i = 1, . . . , n. (2.18)

Here, ε follows an independent and identically distributed Gaussian distribution with

zero mean and variance σ2
n, i.e. ε ∼ N (ε|0, σ2

n) . This leads to a likelihood function:

p(y|f) = N (y|f , σ2
nIn). (2.19)

where In is the n×n identity matrix. In GP regression, we assume a GP prior over f

in Equation (2.18), defined by a mean function µ and a covariance function kθ with

hyperparameters θ. These hyperparameters θ control the smoothness, scaling, and

other general properties of the covariance and functions generated from the GP. It

is common to set the prior mean function to zero, i.e., µ(x) = 0 for all x ∈ X . The

inclusion of Gaussian noise simplifies the inference process, enhancing the efficiency

and practicality of Gaussian process regression.

Posterior over the latent function In a Bayesian context, Equation (2.16) pro-

vides a means to compute the posterior distribution of the latent functions f and f∗.

When dealing with a Gaussian likelihood, both the posterior and predictive posterior

can be determined analytically, as the prior and Gaussian likelihood form a conjugate

pair. Consider the joint distribution of f , f∗ and y under this prior, which is described

21



2. Bayesian Nonparametrics with Gaussian processes

by the following Gaussian distribution:


y

f

f∗

 ∼ N


y

f

f∗


∣∣∣∣∣

0

0

0

 ,


Kn,n + σ2

nIn Kn,n Kn,∗

Kn,n Kn,n Kn,∗

K⊤
n,∗ K⊤

n,∗ K∗,∗


 (2.20)

where Kn,n is the n × n Gram matrix with i, j entries k(xi,xj), K∗,∗ is the n∗ × n∗

Gram matrix with i, j entries k(x∗
i ,x

∗
j ) and Kn,∗ is the n× n∗ Gram matrix with i, j

entries k(xi,x
∗
j ).

Finally, the posterior distribution over the latent values f and f∗ can be com-

puted using the standard conditional rule of the Gaussian distribution, as detailed in

Appendix B.1, resulting in:

p(f , f∗|y,X,X∗) = N

( f

f∗

 ∣∣∣∣∣
µ(X) +Kn,n (Kn,n + σn2In)

−1 (y − µ(X))

µ(X∗) +K∗,n (Kn,n + σn2In)
−1 (y − µ(X))

 ,

K∗,∗ −K∗,n(Kn,n + σ2
nIn,n)

−1Kn,∗ K∗,∗ −K∗,n(Kn,n + σ2
nIn,n)

−1Kn,∗

K∗,∗ −K∗,n(Kn,n + σ2
nIn,n)

−1Kn,∗ K∗,∗ −K∗,n(Kn,n + σ2
nIn,n)

−1Kn,∗

)

(2.21)

where µ(X) is the n-dimension vector with i-th entry µi = µ(xi).

Given p(f , f∗|y,X,X∗), we can also calculate the predictive distribution of the

latent function at test points X∗ by marginalizing out f using:

p(f∗|y,X,X∗) =

∫
p(f∗|f ,X∗)p(f |X,y)df (2.22)

By once again applying the conditional rule of the Gaussian distribution, we can

derive the posterior distribution p(f∗|y,X,X∗), which is also Gaussian and charac-
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(a) GP prior (n = 0)

(b) GP posterior (n = 10)

(c) GP posterior (n = 15)

Figure 2.1: Gaussian process prior and posterior of a one-dimensional function
f(x) = sin(4πx)+sin(7πx) (black) with Gaussian kernel. The blue line represents the
GP posterior mean conditioned on n observations (red dot). The blue dashed lines
represent 5 random function samples from the GP prior (a) or posterior (b,c). The
shaded area represents the pointwise mean ±1.96 standard deviation of each value
(corresponding to a 95% confidence region). As the number of observations increases,
the GP posterior increasingly better approximates the function. Specifically, (b) and
(c) show the GP posterior for n = 10 and n = 15 observations, respectively.
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terized by the following mean and variance expressions:

p(f∗|y,X,X∗) = N (f∗|µ∗,Σ∗) with (2.23)

µ∗ := µ(X) +K∗,n(Kn,n + σ2
nIn)

−1(y − µ(X)) (2.24)

Σ∗ := K∗,∗ −K∗,n(Kn,n + σ2
nIn)

−1Kn,∗ (2.25)

These results are discussed in detail in Rasmussen and Williams (2005, p.16). No-

tably, Equation (2.25) illustrates that the predictive variance comprises two compo-

nents: the prior variance at the test points and a term representing the reduction in

uncertainty resulting from the additional information provided by the observations.

In fact, we can represent the posterior as a single Gaussian process, referred to

as the posterior GP. This GP has a mean function µ∗ : X → R and a covariance

function k∗ : X × X → R, defined as follows:

µ∗(x) = µ(x) + k(x,X)(Kn,n + σ2In)
−1(y − µ(x)), ∀ x ∈ X (2.26)

k∗(x,x′) = k(x,x′)− k(x,X)(Kn,n + σ2In)
−1k(X,x), ∀ x,x′ ∈ X . (2.27)

where k(x,X) = k(X,x)⊤ denotes the 1 × n vector whose ith entry is k(x,xi) for

i = 1, · · · , n. These functions map inputs X to real values R and satisfy the properties

of a Gaussian process.

Marginal likelihood The marginal likelihood p(y|X) can be obtained by inte-

grating out the latent function using the likelihood and the prior:

p(y|X) =

∫
p(y|f ,X)p(f |X)df (2.28)

In GP regression the marginal likelihood is available in closed form:

p(y|X) = N (y|0,Kn,n + σ2
nIn). (2.29)
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Figure 2.2: The arrows directions suggest directions of influence. Grey circles repre-
sent the observed variables. The bold horizontal bar represent a set of fully connected
nodes. The observation yi are equal to the corresponding latent variables fi plus some
observation noise and are conditionally independent of all other nodes given fi.
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The log marginal likelihood can then be calculated as:

log p(y|X) = −1

2
y⊤ (Kn,n + σ2

nIn
)−1

y − 1

2
log |K+ σ2

nIn| −
n

2
log 2π. (2.30)

where | · | denotes the determinent of the matrix argument.

2.3.2 Practical challenges in GP modelling

In this section, we delve into the practical challenges frequently encountered during

the implementation of GPs and explore the strategies devised to overcome them.

Specifically, we discuss model selection, non-Gaussian likelihoods and scalability issue.

Model Selection Selecting the appropriate GP prior is a pivotal aspect of Gaussian

Process modeling. This includes the choice of a covariance function family and the

definition of its hyperparameters. This critical step is commonly referred to as “model

selection” within the literature. In-depth discussions on different approaches can be

found in Rasmussen and Williams (2005).

One approach is to employ full Bayesian inference (Williams and Rasmussen,

1995; Hensman et al., 2015), which entails placing priors on the hyperparameters and

computing the posterior distribution over these parameters. However, implementing

Bayesian inference can be challenging, as it necessitates the evaluation of multiple

25



2. Bayesian Nonparametrics with Gaussian processes

integrals, which may not be analytically tractable depending on the model.

Another widely-used strategy is Empirical Bayes, also known as the maximum

likelihood approach. This method optimizes the hyperparameters by maximizing the

log-marginal likelihood of the data, denoted as p(y|X). This approach is numerically

more stable, particularly as n (the number of data points) increases. Nevertheless, it

diverges from traditional Bayesian methods because the prior is estimated from the

data.

Cross-Validation (CV) presents an alternative option, employing resampling tech-

niques to assess the model’s predictive performance. The data is partitioned into M

non-overlapping sets, with M − 1 sets allocated for training the GP and the remain-

ing set used for validation. This process is repeated with different validation sets

iteratively. The model’s performance on the validation sets acts as a proxy for gen-

eralization error, aiding in the selection of the optimal hyperparameters for the GP

model.

Non-Gaussian Likelihoods Gaussian processes are renowned for their conve-

nience when paired with Gaussian likelihoods, as they yield tractable Gaussian pos-

teriors. However, the real world often presents scenarios where these Gaussian as-

sumptions do not apply. For instance, in linear logistic regression models for binary

classification, the likelihood takes the form of a sigmoid transformation applied to the

latent function f . Similarly, when Gaussian processes are employed for count data,

likelihoods may involve Poisson distributions.

To contend with such non-Gaussian likelihoods, approximate inference methods

have been developed. These methods provide computationally feasible Gaussian ap-

proximations for non-Gaussian posteriors. Commonly used techniques include Monte

Carlo sampling (Filippone et al., 2013; Havasi et al., 2018; Neal, 1997), Laplace Ap-

proximation (Williams and Barber, 1998; Flaxman et al., 2015a), Expectation Prop-

agation (EP) (Minka, 2001; Hernandez-Lobato and Hernandez-Lobato, 2016), and

Variational Bayes (Opper and Archambeau, 2009; Frigola et al., 2014a; Blei et al.,

2017a; Tran et al., 2016; Sheth et al., 2015; Hensman et al., 2015). Comparative
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studies of these approximate inference methods can be found in Kuss and Rasmussen

(2006) and Nickisch and Rasmussen (2008).

Scalability Standard GPs have a cubic time complexity O(n3) which arises from

the need to compute the inverse and determinant of the n×n kernel matrix Kn,n (as

seen in Equations (2.24), (2.25), and (2.30)). This limitation makes them challenging

to apply to datasets with thousands of observations or more. To address this, various

approximations have been proposed in recent literature to enhance GP scalability

while preserving prediction quality. These approaches are comprehensively reviewed

by Liu et al. (2020).

These scalability approximations can be broadly categorized into two types: global

approximations and local approximations. Global approximations aim to summarize

the entire training set using a smaller set of support points, such as sparse meth-

ods, kernel approximation via a subset of the training data (Keerthi and Chu, 2005;

Lawrence et al., 2002; Seeger, 2003), sparse kernel approximation (Buhmann, 2001;

Gneiting, 2002; Melkumyan and Ramos, 2009; Wendland, 2004). In contrast, local

approximations rely on multiple local experts that each cover a specific region (Datta

et al., 2016; Gramacy, 2016; Liu et al., 2018; Rasmussen and Ghahramani, 2001; Samo

and Roberts, 2015c; Park and Huang, 2016).

The most prevalent approach for mitigating the cubic complexity of GPs is through

sparse approximation. In these methods, a set of m ≪ n inducing variables is em-

ployed to globally represent the GP posterior, substantially reducing the training

complexity to O(m2n). One approach involves a reduced-rank approximation of the

kernel function, achieved by mapping the input space from Rd to a lower-dimensional

space Rm (m < n) using a feature map ϕ. The approximated kernel function becomes

k(x,x′) ≈ ϕ(x)⊤ϕ(x′). Examples of algorithms in this category include the Nyström

method (Williams and Seeger, 2001a) and random Fourier features (RFF) (Rahimi

and Recht, 2007), which are discussed further in Sections 3.3.3 and 4.3.1.

Another popular class of sparse approximations involves modifying the GP prior

to establish an augmented joint prior p(f , fm) = p(f |fm)p(fm), where (fm,Xm) repre-
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sents a set of inducing pair. This can be accomplished through deterministic (Smola

and Bartlett, 2001; Csató and Opper, 2002; Seeger et al., 2003) or partially/fully inde-

pendent (Snelson and Ghahramani, 2006; Quiñonero-Candela and Rasmussen, 2005)

assumptions on the conditionals p(f |fm). However, these approaches transform the

inducing points into additional kernel hyperparameters, which can lead to overfitting

when jointly optimizing all unknown hyperparameters together. Further information

on these methods can be found in Quiñonero-Candela and Rasmussen (2005).

The Variational Sparse GP method, introduced by Titsias (2009a), combines the

strengths of exact prior knowledge with variational approximation for the GP pos-

terior distribution. This method approximates the exact GP posterior, p(f |y), with

a variational distribution, q(f) = p(f |fm)q(fm), by minimizing the KL divergence

between the two distributions. The optimization process adjusts the pseudo-points

and kernel hyperparameters jointly to maximize the evidence lower bound (ELBO).

This approach uses inducing points as variational parameters, helping to address the

overfitting problem associated with sparse approximations of the prior. Moreover, the

variational distribution is typically assumed to be Gaussian, allowing for approximate

inference even when the posterior is not available in closed form. Variational Sparse

GP has garnered significant attention in recent literature, with various improvements

and extensions proposed (Lázaro-Gredilla and Figueiras-Vidal, 2009; Hensman et al.,

2017; Adam et al., 2020; van der Wilk et al., 2017; Hensman et al., 2013; Hoffman

et al., 2013).

Finally, scalability can also be improved by leveraging the structure of the co-

variance function to achieve efficient matrix inversion with fast matrix-vector multi-

plication. For instance, the Kroenecker method Gilboa et al. (2013); Flaxman et al.

(2015a) takes advantage of the tensor product structure of the kernel for multivari-

ate cartesian product grid inputs. The Toeplitz method (Cunningham et al., 2008a)

is another example that exploits the kernel matrix structure on a regularly spaced

one-dimensional grid. While these methods offer enhanced efficiency, they are con-

strained by the requirement for grid-structured inputs, limiting their applicability to

most datasets.
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2.4 Kernels and covariance functions

As previously discussed, the selection and design of covariance functions play a pivotal

role in the proper design of Gaussian process tasks. This section explores fundamental

concepts related to covariance functions that will be utilized in subsequent chapters.

Specifically, we introduce the concept of kernel functions and conduct a comprehensive

investigation into their relationships with covariance functions within the framework

of Gaussian processes.

In Section 2.4.1, we begin by introducing the foundational concepts of Repro-

ducing Kernel Hilbert Spaces (RKHS) and kernel methods. Notably, we discuss the

kernel trick, a cornerstone of machine learning, that empowers linear algorithms to

discern non-linear patterns in data. This technique forms the basis for kernel methods

as a distinct algorithmic class. Moving forward, Section 2.4.2 introduce the Mercer

theorem, a critical tool for decomposing kernels into their eigenfunctions. The signif-

icance of this theorem becomes apparent in our exploration of the interplay between

kernels and covariance functions within the context of Gaussian processes, a formal

presentation of which is found in Section 2.4.3. Within Section 2.4.3, we introduce

the KL-decomposition of a Gaussian process, providing valuable insights into its in-

herent properties and behavior. Finally, in Section 2.4.4, we provide a diverse array

of various kernel types and offer comprehensive descriptions of their unique charac-

teristics. Through these examples, we aim to illustrate the practical applications of

the concepts elucidated throughout this chapter.

2.4.1 Reproducing kernel Hilbert space

In this section, we provide a concise introduction to Reproducing Kernel Hilbert

Spaces (RKHS) and their associated reproducing kernels. RKHS, initially introduced

by various authors including Aronszajn (1950) in seminal works, represent a class of

Hilbert spaces of functions characterized by a unique reproducing kernel. For a more

comprehensive understanding of the subject, we recommend referring to the works of

Berlinet and Thomas-Agnan (2004) and Steinwart and Christmann (2007).
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An RKHS is a Hilbert space H of R-valued functions defined on a non-empty

set X that possesses a distinctive property: the evaluations of two functions become

pointwise close when these two functions are close enough in the norm of H. This

property is formalized through evaluation functionals ex : H → R, defined as ex(f) =

f(x), required to be continuous.

Definition 2.4.1 (Reproducing kernel Hilbert space). A Hilbert space H of

R-valued functions defined on a non-empty set X is said to be a Reproducing kernel

Hilbert space (RKHS) if all evaluational functionals ex : H → R, defined by ex(f) =

f(x), are continuous.

In Definition 2.4.1, the term “continuity”signifies that for any function f in H,

there exists a constant c > 0 such that |ex(f)| ≤ c||f ||H, where ||f ||H denotes the

norm induced by ⟨·, ·⟩H, the inner product on H, namely ||f ||2H := ⟨f, f⟩H.

An RKHS is closely associated to a function k : X × X → R known as the

reproducing kernel, which enables the evaluation of any function within the space.

Definition 2.4.2 (Reproducing kernel). Let H be a Hilbert space of R-valued

functions defined on a non-empty set X . The function k : X × X → R is considered

a reproducing kernel of H if it satisfies

� ∀x ∈ X , k(·,x) ∈ H

� ∀x ∈ X ,∀h ∈ H, ⟨h, k(·,x)⟩H = h(x)

In particular, for any x,x′ ∈ X ,

k(x,x′) = ⟨k(·,x′), k(·,x)⟩H.

The second condition in Definition 2.4.2, known as the reproducing property, es-

tablishes that any evaluation functional in H is continuous. Additionally, the Reiz’s

theorem (Rudin, 1987, Theorem 4.12) guarantees the existence of a unique reproduc-

ing kernel in any RKHS. Therefore, H is an RKHS if and only if a reproducing kernel

exists. As an alternative to Definition 2.4.1, RKHS may be defined as Hilbert spaces

of functions with reproducing kernels. Moreover, the reproducing kernel associated
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with H is unique, and as such, H is often denoted as Hk to indicate the specific

reproducing kernel k associated with it.

The reproducing kernel k has two important properties derived from Definition

2.4.2 : it is symmetric, meaning that k(x,x′) = k(x′,x), ∀x,x′ ∈ X , and positive

definite, meaning that for any, n ≥ 1, any (w1, . . . , wn) ∈ R and (x1, . . . ,xn) ∈ X ,

n∑
i=1

n∑
j=1

wiwjk(xi,xj) ≥ 0. (2.31)

RKHS construction We have established the existence of a unique reproducing

kernel function for every RKHS, which is both symmetric and positive definite. Con-

versely, the Moore-Aronszajn theorem (Aronszajn, 1950) provides a crucial insight

by stating that any symmetric and positive definite function defines a unique RKHS.

The theorem is presented as follows:

Definition 2.4.3 (Moore-Aronsajn theorem). Let k : X × X → R be a positive-

definite function. Then there exists a unique RKHS Hk of functions on X for which

k is a reproducing kernel. And the subspace H0 spanned by the functions k(·,x) for

x ∈ X with the inner product

⟨f, g⟩H0 =
n∑

i=1

n∑
j=1

αiβjk(xi,x
′
j) (2.32)

where f(x) =
∑n

i=1 αjk(x,xi) and g(x) =
∑n

j=1 βjk(x,x
′
j), is a valid pre-RKHS 2.

Hence, a profound one-to-one correspondence exists between positive definite func-

tions and RKHSs. Each positive definite function gives rise to an RKHS, and con-

versely, every RKHS is uniquely generated by a positive definite function.

Kernel trick The reproducing property of the RKHS establishes it as a valuable

framework for various learning algorithms. However, in certain situations, working

directly within the RKHS can be impractical. Fortunately, the “kernel trick” offers a

solution by enabling the embedding of a given space into a larger RKHS using kernels.

2H0 being a pre-RKHS implies that Hk is the set of functions on X which are point-wise limits
of Cauchy sequences in H0.
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This embedding allows previously daunting operations to be transformed into more

manageable tasks within the extended space.

The kernel trick is based on the idea that a symmetric, positive-definite function

k(x,x′) can define an inner product in a real Hilbert space H′ via a map ϕ : X → H′.

Theorem 2.4.4 (Kernel trick). Let X be a non-empty space. Then for any sym-

metric, positive-definite function k : X × X → R there exists a real Hilbert space H′

with inner product ⟨·, ·⟩H′ and a map ϕ : X → H′ such that

k(x,x′) = ⟨ϕ(x), ϕ(x′)⟩H′ . (2.33)

The feature map ϕ transforms the original space X into the larger feature space

H′ , aligning the inner product in H′ with the kernel function k in the original space.

This embedding empowers linear learning algorithms to effectively capture nonlinear

functions or decision boundaries without explicitly mapping the data to a higher-

dimensional space. Instead, these operations can be expressed in terms of evaluations

of k, enhancing the efficiency and efficacy of the learning process.

Numerous algorithms have undergone “kernelization”, which involves replacing

their inner products with reproducing kernels, as extensively discussed in the works

of Schölkopf and Smola (2018); Liu et al. (2010); Shawe-Taylor and Cristianini (2004).

These kernelized algorithms encompass a wide range of applications, including the

kernel perceptron (Aizerman et al., 1964), support vector machines, principal compo-

nent analysis (Schölkopf et al., 1998), ridge regression (Caponnetto, 2007), and many

others.

2.4.2 The Mercer decomposition

In this section, we introduce the Mercer’s theorem (Mercer, 1909), a fundamental

result with wide applications in machine learning and various data analysis domains.

The theorem offers both a necessary and sufficient condition for a positive semi-

definite kernel function to be expressible as a series decomposition. Mercer’s theorem

holds a pivotal role in bridging stochastic processes with kernel methods and serves
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as a crucial tool for our subsequent discussions.

Before we delve into the main discussion, we establish some preliminary consider-

ations. We assume that the domain X is a compact metric space, and the kernel k is

a continuous function on X . We define the space of square-integrable functions with

respect to a finite Borel measure µ on X as L2(X , µ)3. Additionally, we assume that

||k||L2(X ,µ) < ∞. A kernel with these properties is known as a Mercer kernel. We

consider a Hilbert-Schmidt integral operator Tk : L2(X , µ)→ L2(X , µ) defined as :

Tk[h](·) =
∫
X
k(x, ·)h(x)dµ(x), ∀h ∈ L2(X , µ). (2.34)

The operator Tk inherits various properties from k. In particular, Tk is a posi-

tive, self-adjoint, compact operator. Applying the spectral theorem for self-adjoint,

compact operators (Steinwart and Christmann, 2007, Theorem A.5.13) to Tk, we con-

clude that there exists at most a countable orthonormal set {Φi}i∈I of L2(X , µ) and

a family {λi}i∈I ⊂ R of strictly positive values converging to 0 such that:

Tk[h](·) =
∑
i∈I

λi⟨Φi, h⟩L2(X ,µ)Φi(·), ∀h ∈ L2(X , µ). (2.35)

In fact, {λi}i∈I and {ei}i∈I are respectively the eigenvalues and eigenfunctions of

Tk satisfying the eigenvalue problem Tk[Φi](·) = λiΦi(·), for all i ∈ N. The orthogo-

nality of the eigenfunctions reduces to

∫
X
Φi(x)Φj(x)dµ(x) = δi,j , ∀ i, j ∈ N. (2.36)

where δi,j defined as the Kronecker delta.

Finally, the Mercer’s theorem (Mercer, 1909), states that the kernel k has a rep-

resentation in terms of {λi}i∈I and {Φi}i∈I .

Theorem 2.4.5 (Mercer’s Theorem). Let k be a continuous positive definite kernel

k : X ×X → R on a compact metric space X , and let µ be a finite Borel measure on

3Strictly here each f ∈ L2(X , µ) represents a class of functions that are equivalent everywhere
with respect to µ.
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X with supp[v] = X . Then k has a representation

k(x,x′) =
∑
i∈I

λiΦi(x)Φi(x
′), ∀ x,x′ ∈ X (2.37)

where the convergence is absolute and uniform.

This version of the Theorem can be found in Steinwart and Christmann (2007,

Theorem 4.49) or Cucker and Zhou (2007, Theorem 4.10), with a proof provided by

Cucker and Zhou (2007) and Riesz and Nagy (1990). Equations 2.35 and 2.37 are

heavily utlized in machine learning. It is worth noting that the theorem requires X to

be compact, which is a restrictive assumption. However, Steinwart and Scovel (2012)

have established several Mercer type series representations under weaker assumptions

on X .

Furthermore, while the expansion in Equation (2.37) depends on the choice of

measure µ, the kernel k in the left-hand side is unique and independent of µ. There-

fore, while different choices of µ may lead to different eigenfunctions and eigenvalues,

they all yield different representations of the same underlying kernel k.

Mercer representation of a RKHS In the previous section, we established that

a feature space and feature map for the kernel k can be given by H0 = Hk and

ϕ(x) = k(·,x), respectively, for all x ∈ X . However, the Mercer decomposition

offers an alternative representation of the feature map for k. Equation (2.37) can be

re-expressed as

k(x,x′) = ⟨{
√
λiΦi(x)}i∈I , {

√
λiΦi(x

′)}i∈I⟩ℓ2(R), (2.38)

where ℓ2(R) is the space of square-summable sequences. This allows us to express k

using Equation (2.33) with a feature space H′ = ℓ2(R) and a corresponding explicit

feature map ϕ : X → ℓ2(R) defined as ϕ(x) = {
√
λiΦi(x)}i∈I . This feature map is

well-defined since
∑

i∈I |
√
λiΦi(x)|2 = k(x,x) <∞.

Furthermore, the Mercer representation provides an explicit characterization of
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the RKHS Hk associated with a continuous kernel k on a compact metric space X

(Steinwart and Christmann, 2007, Theorem 4.51). Specifically, we have

Hk :=

{
h :=

∑
i∈I

aiλ
1/2
i Φi : {ai}i∈I ∈ ℓ2(R)

}
. (2.39)

The inner product of Hk is given by ⟨g, h⟩Hk
=
∑

i αiβi for g :=
∑

i biλ
1/2
i Φi and

h :=
∑

i biλ
1/2
i Φi.

2.4.3 Connection between kernels and Gaussian processes

In this section, we establish a fundamental connection between reproducing kernels

and covariance functions of stochastic processes, specifically GPs. This connection

provides valuable insights into the relationship between kernel methods and proba-

bilistic modeling.

Loève’s Theorem, originally presented by Loeve (1978), establishes a precise link

between positive definite functions and the covariance functions of second-order stochas-

tic processes 4:

Theorem 2.4.6 (Loève ’s Theorem). A function k : X ×X → R is the covariance

function of a second-order stochastic process if and only if it is positive definite.

In other words, any positive definite function can be interpreted as the covariance

function of a suitable stochastic process. This theorem underpins the bridge between

kernels and stochastic processes. For more details and the formal proof, one can refer

to Berlinet and Thomas-Agnan (2004, Theorem 27).

On a compact space X , the connection between the KL expansion of a process f

(discussed in Theorem 2.1.4) and the Mercer decomposition of its continuous covari-

ance function k is immediately apparent. The KL-expansion utilizes the eigensystem

(Φi, λi)i∈I of Tk (as defined in Equation (2.34)), which is also the one used in the

Mercer representation of k.

When I = N in Equation (2.34), the convergence in L2(X ,P) of the KL expansion

4A stochastic process f is said to be second-order if its expected squared value, E[f(x)2], is finite
for all x in the space X
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of f can be deduced from the Mercer decomposition of its covariance function k.

Indeed for all n ∈ N, we can establish that

E

∣∣∣∣∣f(x)−
n∑
i

wiΦi(x)

∣∣∣∣∣
2
 = k(x,x)−

n∑
i=1

λkΦi(x)
2.

This expression tends to 0 as n→∞ by Mercer’s theorem.

KL expansion of Gaussian processes Theorems like 2.1.4 give us an elegant

means to express a GP, f ∼ GP(0, k), through an infinite decomposition:

f(x) =
∞∑
i=1

wiΦi(x), ∀x ∈ X . (2.40)

Here, the convergence occurs in the mean square, and the random coefficients wi follow

a Gaussian distribution: wi ∼ N (wi|0, λi). Indeed, the Mercer theorem implies that

Cov(f(x), f(x′)) = k(x,x′). The expression in Equation (2.40) is commonly known

as the KL expansion of GPs. It provides an alternative representation of GPs and

complements the finite distribution-based characterization discussed in Section 2.1.3.

A practical application of this expansion is the construction of finite-dimensional

approximations to GPs. By employing i.i.d standard normal random variables (w1, · · · , wn),

where wi ∼ N (wi|0, λi), we can create a truncated KL expansion,

n∑
i=1

wiΦi(x) for all x ∈ X . (2.41)

This finite-dimensional Gaussian process approximates the original GP f ∼ GP(0, k).

Multiple view of GP Equation (2.40) provides an alternative perspective on GP

regression. We can interpret GP regression as a Bayesian regression problem, fea-

turing an infinite number of basis functions and a Gaussian prior on the weights, as

detailed in Rasmussen and Williams (2005, Section 2.1). This approach is sometimes

referred to as the “weight” view of GP regression, in contrast to the “function” view

described in Section 2.3.1.
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The model can be written as:

y =

∞∑
i=1

ziλ
1/2
i Φi(x) + ε, ∀x ∈ X . (2.42)

where the weights are drawn from a Gaussian prior distribution with zi ∼ N (zi|0, 1)

for i ∈ N and the basis functions are defined as {λ1/2
i Φi}∞i=1. Remarkably, this formu-

lation exhibits mathematical equivalence with Gaussian process regression expressed

in Section (2.3) via the decomposition in Equation 2.4.3. Fundamentally, this corre-

spondence can be seen as an instance of the kernel trick, where the kernel function

takes the form k(x,x′) = ⟨{
√
λiΦi(x)}i∈I , {

√
λiΦi(x

′)}i∈I⟩ℓ2(R). Consequently, GP

regression emerges as a kernelized version of Bayesian linear regression.

2.4.4 Examples of kernels

In this section, we present popular choices of valid kernels, that are widely used in

the literature. Further examples of kernels can be found in the works of Schölkopf

and Smola (2002a); Rasmussen and Williams (2005).

One commonly studied class is Stationary kernels, which maintain their properties

when translated. This property is expressed as k(x,x′) = k(x−x′), ensuring that for

any constant shift α ∈ R, k(x+ α,x′ + α) = k(x− x′) holds.

A more specific type of kernel, known as isotropic kernels, is defined as k(x,x′) =

k(||x−x||2). This implies that the covariance function depends solely on the distance

between points, without regard to their relative orientations. Some common examples

of isotropic kernels include:

Squared exponential kernel The squared exponential kernel (SE), also referred

to as the Gaussian kernel or Gaussian radial basis function (RBF) kernel in literature,

is a widely used covariance function in Gaussian processes. It is expressed as:

k(x,x′) = σ2 exp

(
−||(x− x′)⊘ ℓ||22

2

)
, ∀x,x′ ∈ X (2.43)
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(a) SE kernel (b) Matérn kernel (c) Rational quadratic kernel

Figure 2.3: Distance plot of the main kernel functions. Here, τ = ||x − x′||. The
Matérn covariance functions utilize σ = 1 and ℓ = 1. The Rational Quadratic func-
tions employ σ = 1 as well. The plot highlights the variations in the distance functions
for these different kernel types.

In this equation, σ2 represents a strictly positive scaling parameter, and ℓ is an

arbitrary real-length scale parameter.

The squared exponential kernel generates covariance functions that exhibit in-

finite differentiability. Consequently, GPs with this kernel produce functions with

mean square derivatives of all orders, yielding highly smooth outputs. The length-

scale parameter ℓ controls the smoothness of the functions: larger ℓ values result

in smoother functions with less rapid changes. Meanwhile, σ dictates the average

deviation from the mean.

However, it’s essential to recognize that the squared exponential kernel’s extreme

smoothness is based on strong assumptions, making it potentially unsuitable for all

applications, as discussed by Stein in Stein (1999). Nevertheless, despite these limita-

tions, the squared exponential kernel remains a popular choice due to its user-friendly

nature and versatility.

Matérn kernel The Matérn kernel, initially proposed in spatial statistics by Matérn

Matérn (1960) and further developed by Stein (Stein, 1999, section 2.7), offers a ver-

satile family of kernels. It is defined as follows:

kν(x,x
′) = σ2 21−ν

Γ(ν)

(√
2ν||x− x′||2

ℓ

)ν

Kν(

√
2ν||x− x′||2

ℓ
), ∀x,x′ ∈ X (2.44)

Here, ν, ℓ, and σ are strictly positive parameters, Γ(·) denotes the Gamma function,

and Kν(·) is a modified Bessel function (Abramowitz and Stegun, 1965, section 9.6).
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2. Bayesian Nonparametrics with Gaussian processes

The Matérn family of kernels finds its origins in the study of spatial forest orga-

nization by Matérn and has since become a cornerstone in spatial statistics. Particu-

larly, when ν takes on half-integer values, i.e., ν = p+ 1/2 where p ∈ N, the Matérn

kernel simplifies into a product of an exponential function and a polynomial function

of order p. The most commonly employed cases in the literature are for p = 0, 1, 2:

k 1
2
(x,x′) = σ2 exp

(
−||x− x′||2

ℓ

)
,

k 3
2
(x,x′) = σ2 exp

(
1 +

√
3||x− x′||2

ℓ

)(
−
√
3||x− x′||2

ℓ

)
,

k 5
2
(x,x′) = σ2 exp

(
1 +

√
5||x− x′||2

ℓ
+

5||x− x′||2
3ℓ2

)(
−
√
5||x− x′||2

ℓ

)
.

Specifically, k 1
2
is known as the Laplace or exponential kernel.

The degree of smoothness induced by the Matérn kernel is determined by the

parameter ν. In general, it results in functions that are [ν] − 1 times differentiable.

Similarly, a GP with a Matérn kernel with parameter ν is also [ν]− 1 times differen-

tiable. As ν increases, both the function and the Gaussian process become smoother.

For instance, when ν = 1/2, the kernel functions and the process exhibit rough be-

havior, whereas as ν →∞, the kernel converges to the infinitely smooth radial basis

function (RBF) kernel.

It’s important to note that distinguishing between values of ν less than or equal to

7/2 can be challenging without prior knowledge about the function’s differentiability.

In practice, the values ν = 1/2, 3/2, 5/2 are often selected to represent different levels

of differentiability (Rasmussen and Williams, 2005, section 4).

Rational quadratic kernel The rational quadratic kernel, given by :

k(x,x′) = σ2

(
1 +
||x− x′||22

2αℓ2

)−α

, ∀x,x′ ∈ X (2.45)

where α and ℓ are positive parameters, produces relatively smooth function priors

when used in GPs. It can be conceptualized as an infinite sum of squared exponential

kernels, each with a different lengthscale. The weighting between these lengthscales
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is governed by the parameter α. Notably, as α tends toward infinity, the rational

quadratic kernel converges to the exponentiated quadratic kernel (Rasmussen and

Williams, 2005).

Non stationnary kernel An example of a non-stationary kernel is the polynomial

kernel family, defined as k(x,x′) = (x⊤x′ + b)n , for all x,x′ ∈ X where b > 0 and

n ≤ 1.

Operation with kernels Complex kernels can be constructed by combining or

modifying existing kernels while preserving the positive semi-definiteness property.

For instance, if k1 and k2 are properly defined real kernels, then the sum k(x,x′) =

αk1(x,x
′)+βk2(x,x

′) for α, β ≥ 0 is a valid kernel. Similarly, the product k(x,x′) =

k1(x,x
′)k2(x,x

′) is also a kernel. Additionally, the convolution operation k(x,x′) =∫
X ,X k1(x, z)k2(z, z

′)k1(z
′,x′)dzdz′ is another valid kernel construction method. For

further details on kernel construction, refer to Rasmussen and Williams (2005).
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2. Bayesian Nonparametrics with Gaussian processes

Figure 2.4: Visualization of Gaussian process with Squared Exponential kernel (SE) :
On the left-hand side panels, we present three realizations of random functions drawn
from Gaussian process priors with SE covariance functions. These functions have a
fixed σ = 1, and different ℓ values. On the right-hand side panels, we showcase
the corresponding covariance matrices. This analysis sheds light on the behavior of
Squared Exponential kernels under varying ℓ values.
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Figure 2.5: Visualization of Gaussian process with Matérn kernel : On the left-hand
side panels, we present three realizations of random functions drawn from Gaussian
process priors with Matérn covariance functions. These functions have a fixed σ = 1,
fixed ℓ = 1, and different ν values. On the right-hand side panels, we showcase
the corresponding covariance matrices. This analysis sheds light on the behavior of
Matérn kernels under varying ν values.
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2.5 Summary

In this introductory chapter, we have laid the essential theoretical groundwork for the

subsequent chapters. We introduced the fundamental principles of Bayesian nonpara-

metrics, outlined the formalism of Gaussian processes, and emphasized the pivotal

role that kernels play in this context. Our primary aim was to establish a comprehen-

sive understanding of the interplay between these key concepts. In the forthcoming

chapters, these foundational elements will be extensively employed and relied upon.
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Chapter 3

Background review : Gaussian

process modulated spatial Cox

processes

Spatial point pattern data constitutes a set of discrete points denoting the precise

spatial locations of observed events within a two-dimensional plane. These patterns

are pervasive across diverse academic disciplines, including but not limited to ecology,

epidemiology, geology, and urban planning. Spatial point processes represent a spe-

cialized class of stochastic models designed to analyze and model such point pattern

data. These processes inherently generate a finite set of spatial points on a finite

space, thereby facilitating the systematic examination of event distribution.

This chapter provides a comprehensive overview of the theoretical foundations

that underpin the analysis of point pattern data through the lens of spatial point

processes. While our objective does not encompass exhaustive coverage, its principal

mission is to furnish the reader with the requisite insights necessary for a comprehen-

sive understanding of the forthcoming contributions.

Section 3.1 introduces the fundamental concepts, definitions, and core charac-

teristics of point processes. In our pursuit of utmost clarity and self-sufficiency, we

allocate substantial attention to the comprehensive exposition of these foundational
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3. Background review : Gaussian process modulated spatial Cox processes

properties. This includes exploring key statistical metrics such as the intensity func-

tion and pair correlation. The intensity function plays a pivotal role in defining

the distribution and pseudo-likelihood functions of point processes. In many model

implementations, there is a focus on modeling the intensity function itself. Addition-

ally, the pair correlation function enables us to elucidate second-order relationships

between point patterns, such as attraction and repulsion.

Section 3.2 marks a shift in our focus towards two pivotal model classes: the

Poisson and Cox point processes. The Poisson process assumes a foundational role,

while the Cox process represents a generalized and more adaptable approach. Notably,

the Poisson process presupposes a constant event rate, whereas the Cox process, a

more versatile model, accommodates dynamic event intensities. This versatility makes

the Cox process an invaluable tool for addressing complex real-world scenarios, where

event rates may vary considerably.

In the last Section 3.3, we will introduce a notable advancement: Cox processes

modulated with GPs. In this approach, a GP function acts as a prior for its intensity

function. To ensure the non-negativity of the intensity function, a positive transfor-

mation is necessary for the GP prior. This paradigm shift lays the groundwork for

our forthcoming research. To provide a comprehensive context for our work, we delve

into various implementations of Gaussian Cox processes, distinguished by different

transformation functions. These include the log Gaussian Cox process Møller et al.

(1998), which relies on the exponential transformation, and the sigmoidal Cox process

Adams et al. (2009), which leverages a sigmoid transformation. Finally, we introduce

the permanental process Shirai and Takahashi (2003); McCullagh and Møller (2006)

defining the Poisson process intensity in terms of the square of a GP. We will focus

on inference and computational challenges associated with these models. These im-

plementations hold particular significance as they will serve as benchmarks against

which we can assess the contributions of our own research in the subsequent chapters.

In this chapter, we exclusively examine cases where the intensity function is solely

dependent on the point locations. However, it’s important to note that there are

proposals beyond the scope of our study that extend this paradigm, which we briefly
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3. Background review : Gaussian process modulated spatial Cox processes

mention for informational purposes. First, there are efforts to extend the analysis to

spatio-temporal data by incorporating a time dependency into the intensity function.

Common approaches include kernel smoothing methods or the log Gaussian Cox

process Brix and Diggle (2001); Diggle et al. (2005, 2013). Secondly, researchers may

wish to explore the relationship between intensity and covariates to understand factors

influencing events. Classical models found in literature include the Cox proportional

hazard model Cox (1972); Cygu et al. (2021), which models the log of the intensity

function as a linear combination of covariates, as well as various kernel-based intensity

estimators Baddeley et al. (2012); Guan (2008). Additionally, the log Gaussian Cox

process Yue and Loh (2010) has been examined as a Bayesian alternative.

3.1 Introduction to Point processes

In this section, we delve into the fundamental concepts of point processes and provide

formal definitions. Additionally, we explore two critical summary statistics for spatial

point processes: the intensity function, which quantifies the expected number of points

per unit volume, and the pair correlation, which measures the extent of attraction

or repulsion among points. These statistics play a pivotal role in characterizing and

distinguishing various classes of point processes throughout the remainder of this

chapter. For readers interested in learning more about statistics for spatial point

processes, we recommend consulting recent textbooks such as Diggle (2003a), Gelfand

et al. (2010), and Moller and Waagepetersen (2003).

3.1.1 Point process definition

Point processes are stochastic models used to describe the random distribution of

points in a multi-dimensional space. In this context, both the number of points and

their specific locations are treated as random variables. We typically consider two

cases: the event case (with dimension d = 1), where points correspond to isolated

events, and the spatial case (with dimension d = 2), where points represent the

positions of objects or events within a two-dimensional space.

Consider a bounded metric state space X ⊂ Rd, where d ≥ 1, equiped with an
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adequate σ-field B. A realization of a point process on X is represented as a set of

points X = {x1, . . . ,xN}, with N ∈ N+ and xi ∈ X for i = 1, · · · , N . This set X is

termed “locally finite” if, for any bounded Borel set B ∈ B, the number of points in

X that fall within B is almost surely finite.

Formally, this condition can be expressed as |XB| < ∞ for all B ∈ B0, where

XB := X∩B represents the restriction of X to the set B, B0 is the class of bounded

Borel sets in X , and | · | denotes the cardinality of a set. The family of all locally finite

point configurations is denoted by Nlf. The notation used in this discussion follows

Moller and Waagepetersen (2003) and Gelfand et al. (2010).

Now that we have introduced the key concepts above, we can present two equiv-

alent formal definitions of point processes:

Random locally finite point configurations A point process X can be formally

defined as a random locally finite point configurations. In essence, it is represented

as a random variable mapping from a probability space (Ω,F ,P) to a measurable

space (Nlf,Nlf). Here, Nlf is the smallest σ-algebra generated by all locally finite

configurations. A more detailed treatment can be found in Daley and Vere-Jones

(2003) or Moller and Waagepetersen (2003, Section B.2 ).

Random count function Alternatively, a point process can be defined using the

count function N : B0 → N+. In this context, N(B) denotes the count of points

from the point process X located within the set B. Consequently, we can express

N(B) as N(B) := |XB| for all B ∈ B0. The measurability of X is equivalent to the

count N(B) being a random variable for any B ∈ B0. In fact, a point process can be

regarded as a stochastic process of count variables N := {N(B)}B∈B0 .

It’s important to note that the two definitions of point processes presented here

are equivalent, and the choice of which one to use depends on the specific problem or

application at hand. In this document, we will use the notation N or X interchange-

ably to refer to the same point process. To simplify the notation, we will also use

X ⊂ X instead of X ∈ Nlf to denote a point configuration, and B ⊆ X instead of
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B ∈ B for a Borel set. This slight abuse of notation does not affect the underlying

meaning.

Throughout this chapter, we also adopt a simplifying assumption regarding point

processes, considering them to be simple. Under this assumption, the occurrence of

multiple events at the exact same location is not allowed. Specifically, for all x ∈ X ,

we have N(x) ∈ {0, 1} with almost sure certainty. This simplicity assumption is

applicable to many significant classes of point processes, including Poisson processes

and Cox processes, which we will delve into in later sections.

3.1.2 Moment measures and intensity function

Moment measures are vital quantities used to characterize the behavior of point

processes. They provide valuable insights into the spatial distribution and clustering

patterns of points, aiding our understanding of underlying spatial arrangements. This

discussion provides a concise overview of moment measures, with a specific focus on

two critical measures: the intensity (first moment) and the pair correlation function

(second moment).

Moment measures Let B1, · · · , Bn ⊆ X be not necessarily disjoint Borel sets,

where n ∈ N+. Consider a point process X on X with a count function N . The nth

order moment measure M (n) of X is defined as:

M (n)(B1 × · · · ×Bn) := E [N(B1) · · ·N(Bn)] (3.1)

where B1 × · · · ×Bn represents a product set.

Additionally, the nth order factorial moment measure M[n] is defined as:

M[n](B1 × · · · ×Bn) := E

 ̸=∑
{x1,···xn}∈X

n∏
i=1

1{xi ∈ Bi}

 (3.2)

where the sum is taken over n-tuples of pairwise distinct points in X.

Factorial moment measures are of significant importance in point process theory.
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They allow us to calculate the expectation of a function summed over a point process,

a relationship commonly known as the Campbell theorem (Campbell, 1909). More

precisely, for a non-negative measurable function h on the product space X n, the

Campbell theorem states:

E

 ̸=∑
{x1,··· ,xn}∈X

h(x1, · · · ,xn)

 =

∫
X
· · ·
∫
X
h(u1, · · · ,un)M[n](du1, · · · , dun). (3.3)

For further details, refer to Moran (1968, pp. 417–423).

If the nth order moment measure M[n] of a point process X is absolutely con-

tinuous with respect to the Lebesgue measure, it admits an n-order product density

λ(n) : X n → [0,∞] such that Equation (3.3) can be written as

E

 ̸=∑
{x1,··· ,xn}∈X

h(x1, · · · ,xn)

 =

∫
X
· · ·
∫
X
h(u1, · · · ,un)λ

(n)(u1, · · · ,un)du1, · · · , dun.

(3.4)

Here, λ(n) is the n-order joint intensity function of X. When x1, · · · ,xn are distinct,

λ(n)(x1, · · · ,xn) can be heuristically interpreted as the probability of observing one

point in each of the infinitesimal small volumes dx1, · · · , dxn. The n-order intensity

function implicitly defines a complete probability model for the point process, serving

as the fundamental building block for constructing the likelihoods and probability

distributions required for point process data analysis.

Intensity function In our analysis, we will primarily focus on the first two orders

of the factorial moment measure. For the first order (n = 1), the first factorial

moment measure can defined as:

M[1](B) = E[N(B)] =

∫
B
λ(u)du, ∀ B ⊆ X . (3.5)

Here, λ(·) := λ(1)(·) is known as the intensity function, representing the average num-

ber of points per unit area, volume, or higher-dimensional space at a given location

in the space. Alternatively, it can be interpreted as the instantaneous probability of

point occurrence around a location x ∈ X . These concepts are formalized using the
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limit:

λ(x) = lim
|dx|→+0

P{N(dx) ̸= 0}
|dx|

= lim
|dx|→+0

E [N(dx)]

|dx|
. (3.6)

Please note that this interpretation implicitly assumes that the point process X is

simple.

Pair correlation For the second order (n = 2), the second-order moment measure

M[2] is expressed using the the Campbell theorem as:

M[2](B1 ×B2) =

∫
B1

∫
B2

λ(2)(u1,u2)du1u2, ∀ B1, B2 ⊆ X (3.7)

where λ(2) is the second-order product density. Additionally, we can define the second

moment measure M (2)(B1 ×B2) := E[N(B1)N(B2)] and relate it to M[2] as follows:

M (2)(B1 ×B2) = M[2](B1 ×B2) +M (1)(B1 ∩B2), ∀B1, B2 ⊆ X . (3.8)

This enables us to define the covariance between two sets, B1 and B2:

cov(N(B1), N(B2)) = E [N(B1)N(B2)]− E[N(B1)]E[N(B2)]

= M (2)(B1 ×B2)−
∫
B1

∫
B2

λ(u1)λ(u2)du1du2

=

∫
B1∩B2

λ(u)du+

∫
B1

∫
B2

λ(u1)λ(u2)(ρ(u1,u2)− 1)du1du2.

(3.9)

Here, λ is the intensity function, and ρ(x1,x2) is the pair correlation function, which

satisfies:

ρ(x1,x2) :=
λ(2)(x1,x2)

λ(x1)λ(x2)
, ∀x1,x2 ∈ X . (3.10)

Equation (3.9) comprises two terms: the first term represents the variance of the

number of points in both sets, while the second term accounts for the additional

variance resulting from the interaction between the points.

In summury, we presented in this section the first two moments of a point pro-

cess, from which we derive two key functions: the intensity function and the pair
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correlation. These functions play a crucial role in the analysis of spatial point pro-

cesses. Indeed, spatial point patterns often exhibit inhomogeneity and clustering (or

aggregation), which refer to the spatial variation of point density and the stochastic

dependence among points, respectively. These phenomena are fundamentally distinct,

although they are difficult to disentangle.

Inhomogeneity is typically quantified using the intensity function λ. By studying

how λ varies across the study region, we gain valuable insights into the spatial distri-

bution of points and can pinpoint areas of interest with high or low point densities.

On the other hand, clustering is quantified using the correlation function, ρ (Møller

and Waagepetersen, 2016; Dvořák et al., 2019). When ρ = 1, points are independent,

implying no clustering. If ρ > 1, it suggests clustering or aggregation i.e. points are

attracted to one another. Conversely, ρ < 1 indicates inhibition or repulsion, where

points actively avoid each other, leading to dispersion. ρ unveils the intricate spatial

dynamics within point patterns, crucial for understanding spatial dependencies among

points.

3.2 Poisson and Cox processes

In the field of point processes, the Poisson process and Cox process are considered

two of the most significant models. Their relevance extends across a multitude of

real-world point pattern applications, encompassing seismic activity (Gardner and

Knopoff, 1974), epidemiology (Diggle, 2003b; Banerjee et al., 2003), neuroscience

(Cunningham et al., 2008b) and crime incident locations (Grubesic and Mack, 2008;

Flaxman et al., 2019). In this section, we will delve deeper into the Poisson process

and the Cox process, examining their distinct characteristics and applications.

3.2.1 Poisson processes

Poisson processes are a class of simple point processes that play a foundational role in

the study of spatial point patterns. They are characterized by “complete spatial ran-

domness”, which means that the points are distributed independently and uniformly
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throughout the spatial domain.

Definition 3.2.1 (Poisson processes). Let X denote a spatial domain, and let Λ be

a locally finite measure expressed as Λ(B) =
∫
B v(x)dx, B ⊆ X , where v : X → R+.

A point process X on X is a Poisson process if it satisfies the following conditions:

1. For any measurable subset B ⊆ X , N(B), follows a Poisson distribution with

mean parameter Λ(B).

2. Given N(B) = n, the n points in B are independent and identically distributed

with a density function proportional to v.

The measure Λ introduced in this definition coincides with the first moment mea-

sure M (1) of the point process X. Specifically, for any bounded subset B of X , we

have E[N(B)] = Λ(B). Consequently, the function v in this context is the first-order

intensity function of X, denoted by λ. Henceforth, we will use λ in place of v. More-

over, the second condition of the definition implies that, given {N(B) = n}, the n

points of XB are independently and identically distributed with a density equal to

λ(x)/Λ(B) for all x ∈ B.

If the intensity function λ remains constant throughout space, the Poisson process

X is referred to as homogeneous. In this scenario, points are uniformly distributed

within any region of space, and the expected point count is proportional to the region’s

size. Conversely, if the intensity function exhibits arbitrary variations across space,

X is termed an inhomogeneous Poisson process.

The Poisson process exhibits independent scattering, which means that if B1 and

B2 are disjoint subsets of X , then XB1 and XB2 are independent entities (Moller and

Waagepetersen, 2003, Proposition 3.2). This property suggest a lack of interaction or

complete spatial randomness among points. It is also reflected in the n-order intensity

function, which satisfies

λ(n)(x1, . . . ,xn) = λ(x1) . . . λ(xn) (3.11)

for all x1, . . . ,xn ∈ X , and the pair correlation function ρ being equal to one.
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Algorithm 1 Thinning algorithm (W. and Shedler, 1979) for Homogeneous Poisson
process simulation : Simulate data from a Poisson process on region B with random
λ(·).

1: input: Region B, Upper-bound λ∗, X = ∅
2: N ∼ Poisson(λ∗|B|)
3: {x}Ni=1 ∼ Uniform(B)
4: for i = 1 to N do
5: u ∼ Uniform[0, 1]

Retain or thin with probability λ(·)/λ∗:
6: if u < λ(x)/λ∗ then
7: X = X ∪ {x}
8: end if
9: end for

10: return X

Thinning and simulation

Definition 3.2.1 offers a straightforward approach to simulating a homogeneous Pois-

son process: start by simulating N(B) ∼ Poisson(Λ(B)) for a specified region of

interest, denoted as B, and then generate N(B) independent points distributed uni-

formly within B.

To simulate inhomogeneous processes, a distinct strategy is required. Here, we

employ independent thinning to derive a new point process, denoted as Xthin. In this

process, each point x in the original X is included in Xthin with a probability given

by pthin(·), where pthin : X → [0, 1]. Crucially, the decision to include or exclude

each point is made independently. If the initial process X is a Poisson process with

intensity λ, then Xthin also follows a Poisson process, albeit with an intensity of

λ · pthin (Moller and Waagepetersen, 2003, Proposition 3.7).

Notably, when dealing with an inhomogeneous Poisson process X characterized by

an intensity function λ bounded by a constant λ∗, it can be represented as an indepen-

dent thinning of a homogeneous Poisson process with a constant intensity of λ∗. The

retention probabilities, denoted as pthin(·), can be defined as pthin(·) = λ(·)/λ∗. This

insightful perspective leads to the development of the thinning algorithm (W. and

Shedler, 1979), which is an efficient method for simulating inhomogeneous Poisson

processes. We present the algorithm in detail in Algorithm 1.
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Poisson process distribution

The n-th order intensity function, denoted as λ(n) and defined in Equation , holds

significant utility as it allows us to express the distribution of a Poisson process.

Proposition 3.2.2. Let B ⊆ X . If X is a Poisson process on X with an intensity

function λ(·) and Λ(B) <∞ then,

E [h(XB)] =

∞∑
n=0

exp(−Λ(B))

n!

∫
B
· · ·
∫
B
h({xi}ni=1)

n∏
i=1

λ(xi) dx1 · · · dxn. (3.12)

Particularly, for all F ∈ Nfl:

P(XB ∈ F ) =

∞∑
n=0

exp(−Λ(B))

n!

∫
F
· · ·
∫
F

n∏
i=1

λ(xi) dx1 · · · dxn. (3.13)

The derivation of Equation (3.12) follows directly from the tower property of

conditional expectation and the definition of a Poisson process. Specifically:

E[h(XB)] = E [E [h(XB)|N(B) = n]]

=

∞∑
n=0

P(N(B) = n)E[h(XB)|N(B) = n]

=
∞∑
n=0

P(N(B) = n)

∫
B
· · ·
∫
B
h({xi}ni=1)

n∏
i=1

λ(xi)

Λ(B)
dx1 · · · dxn.

The rest follows from the fact that N(B) ∼ Poisson(Λ(B)). Equation (3.13) is obtain

from Equation (3.12) when h({xi}ni=1) := 1{{xi}ni=1 ∈ F}.

Poisson process density and likelihood

In some instances, it proves valuable to establish the density of a Poison process

with respect to another Poisson process. Consider two Poisson processes, X1 and

X2, each characterized by its corresponding intensity functions, λ1 and λ2. If the

distribution of X1 is absolutely continuous with respect to the distribution of X2 for

all F ∈ Nlf , then by the Radon-Nikodym theorem (Billingsley, 1995b, p.422) there
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(a) Homogeneous Poisson process (b) Inhomogeneous Poisson process

Figure 3.1: Realization of homogeneous (left) and inhomogeneous (right) spatial Pois-
son process on X = [0, 1]2. In both case the expected number of points is 300. For
the inhomogeneous Poisson process, λ(x1, x2) ∝ x2 exp(−5x1).

exists a function p : Nfl → [0,∞) such that

P(X1 ∈ F ) = E
[
1{X2∈F}p(X2)

]
, ∀F ∈ Nfl (3.14)

This function, p, assumes the role of the density of X1 with respect to X2. To

maintain consistency with Proposition 3.2.2, it must satisfy:

p(X) = exp(Λ2(B)− Λ1(B))
∏
x∈X

λ1(x)

λ2(x)
, for all X ⊆ B. (3.15)

Here, Λ1 and Λ2 represent the first moment functions of X1 and X2, respectively.

Regrettably, Poisson processe distributions do not always exhibit absolute conti-

nuity with respect to each other. However, when the space X is bounded, Poisson

processes consistently demonstrate absolute continuity with respect to the unit rate

Poisson process, where λ = 1 (Møller and Waagepetersen, 2004, Proposition 3.8).

Consequently, in such cases, a Poisson process with intensity λ possesses a density

with respect to the unit rate Poisson process, expressed as:

p(XB) = exp(|B| − Λ(B))
∏

x∈XB

λ(x) (3.16)
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Then for all F ∈ Nfl,

P(XB ∈ F ) =

∞∑
n=0

exp(−|B|)
n!

∫
F
· · ·
∫
F
p({xi}ni=1)dx1 · · · dxn. (3.17)

As a consequence, for a finite point configurations XB = {x1, · · · ,xN}, where

N ∈ N+, we can define a pseudo-likelihood, represented as the logarithm of its density:

log p(XB) = |B| −
∫
B
λ(x)dx+

N∑
i=1

log λ(xi). (3.18)

The pseudo-likelihood formulation in Equation (3.18) is a widely adopted approach

in the literature, especially when the explicit density expression is unknown. In this

formulation, we conveniently represent the density in terms of the intensity function.

Subsequently, the intensity function can be estimated through established statistical

techniques, including maximum likelihood estimation based on Equation (3.18) or

Bayesian methods.

Finite point processes constructed from Poisson processes

While Poisson processes may not always be the ideal choice for modeling real-world

phenomena, they serve as a valuable foundation for constructing more structured

point processes. This concept is particularly applicable to finite point processes,

which almost certainly possess finite realizations. This characteristic implies that the

spatial domain X is bounded, and the point count N(X ) is finite almost surely.

Finite point process distributions are in general characterized by a discrete prob-

ability distribution that specifies the probability of having a given number of points

within a certain region B i.e. {P(N(B) = n)}n∈N+ for all B ⊆ X ; and a family of

joint probability densities ρ(n) for the spatial locations of points, given that there are

exactly n points present (Daley and Vere-Jones, 2003, Chapter 5). However, deriving

closed-form expressions for these distributions is often a challenging endeavor.

An alternative approach to constructing finite point processes involves explicitly

defining their density function, denoted as p, with respect to the unit Poisson process.
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This approach parallels the method used to define the Poisson process itself. By

utilizing this technique, the distribution of a finite point process can be expressed in a

manner similar to what is demonstrated in Equation (3.17), employing the predefined

density function p instead. For a more comprehensive understanding, we recommend

Daley and Vere-Jones (2003, Chapter 5).

3.2.2 Cox processes

The Poisson process can be extended by considering the intensity as a realization of

a stochastic process. This extended framework, initially explored by Cox (1955) and

known as the Cox process, provides a richer probabilistic model.

In essence, a Cox process is constructed based on a non-negative stochastic process

represented as z = {z(x)}x∈X . If the conditional distribution of X, given z, conforms

to a Poisson process with intensity function z, then X is referred to as a Cox process

driven by z.

Definition 3.2.3 (Cox Process). Suppose that z = {z(x)}x∈X is a non-negative

random field such that with probability one, x→ z(x) is a locally integrable function.

If [X|z] is a Poisson process over X with intensity function λ, then X is said to be a

Cox process driven by z.

To characterize the Cox process, we condition on z and leverage the properties of

the Poisson process. The n-order intensity function of a Cox process X driven by z

is expressed as:

λ(n)(x1, · · · ,xn) = E [z(x1) · · · z(xn)] , ∀ x1, · · · ,xn ∈ X . (3.19)

Here, the expectations are calculated with respect to z. Specifically, the first order

density function is λ(x) = E [z(x)] for all x ∈ X , and the second order intensity

function is expressed as λ(2)(x1,x2) = E [z(x1)z(x2)] for all x1,x2 ∈ X .

Advantages Cox processes offer several advantages over deterministic approaches,

including:
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1. Bayesian treatment of Poisson processes: Cox processes enable naturally a

Bayesian treatment of Poisson processes, allowing the incorporation of prior

knowledge about the intensity function. By encoding prior beliefs regarding

the functional form of the intensity function through a prior distribution, we

can estimate a posterior distribution and quantify uncertainty.

2. Higher-order spatial dependence properties: While Poisson processes model first-

order inhomogeneity, they fail to model second or higher-order spatial depen-

dence properties. Cox processes provide a more flexible class of models capable

of accommodating the aggregation or inhibition of events (i.e., when ρ ̸= 1).

This makes them well-suited for capturing complex spatial patterns. This flex-

ibility is evident in the Cox process pair correlation function:

ρ(x1,x2) =
E [z(x1)z(x2)]

E [z(x1)]E [z(x2)]
, ∀x1,x2 ∈ X . (3.20)

In general, ρ does not equal 1, indicating the presence of higher-order spatial

dependence properties.

3. Flexibility: Compared to other structured approaches, Cox processes remain

flexible. One can exploit the properties of the Poisson process by conditioning,

allowing for the modeling of complex spatial patterns that may not be captured

by other approaches.

Pseudo-likelihood When the space is restricted to a bounded set B ⊆ X , the

Poisson process [X|z] can be described by a density with respect to the unit rate

Poisson process, as discussed in Section 3.2.1. For a finite point configuration XB,

we can derive a density similar to Equation (3.18):

p(XB) = E

exp(|B| − ∫
B
z(u)du

) ∏
x∈XB

z(x)

 . (3.21)

Here, the expectation is taken with respect to z. This expression can be used to

estimate the unknown intensity function i.e. the distribution of z, from data using
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maximum likelihood or Bayesian methods. However, obtaining an explicit expression

for Equation (3.21) is often infeasible, and the integral
∫
X z(u)du can be challenging

to compute.

Throughout the remainder of this document, we will use the notation λ(x) inter-

changeably to refer to either the random field driving the Cox process i.e., z(x), or

the deterministic first-order intensity function λ(1)(x) = E [z(x)]. Depending on the

context of the discussion, it should be clear whether λ is stochastic or known.

In summary, this section provided a brief introduction to Poisson processes and

Cox processes, emphasizing the derivation of their distributions, densities, and pseudo-

likelihoods using an intensity function. In the upcoming section, we will delve into

a specific category of Cox processes that regulate the stochasticity of the intensity

function by incorporating a GP prior.

3.3 Gaussian Cox processes

A flexible extension of the Poisson process involves the incorporation of a stochastic

Poisson intensity through the utilization of a nonparametric Gaussian process prior.

This results in the popular Gaussian Cox process model, which has demonstrated

remarkable efficacy across a wide range of applications.

Gaussian Cox process models leverage the capabilities of GPs, offering a natu-

ral and comprehensive framework for Bayesian inference on intensity functions. It

distinguishes itself from alternative methodologies by combining the advantages of

nonparametric modeling and the intrinsic capacity to quantify the uncertainty in

intensity estimation. In this section, we will delve deeper into the concept of Cox

processes modulated by GPs, providing more detailed discussions and insights.

Double intractability Inference with the Gaussian Cox process model is chal-

lenging due to the doubly-intractable likelihood, requiring integration of an infinite-

dimensional random function over the input domain.

To illustrate this, consider a Gaussian Cox process, denoted as X, driven by a
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positive random field, z, defined as z(x) = g ◦ f(x) for all x ∈ X . Here, g represents

a non-negative transformation function g : X 7→ R+, and f is a latent function. We

then introduce a GP prior on f , denoted as f ∼ GP(0, k), where k : X × X → R

defines the kernel function.

Furthermore, we assume the existence of a finite point configurationXB = {x1, · · · ,xN},

with N ∈ N+, observed within a finite region B ⊂ X . Conditioned on the latent func-

tion f , the likelihood function is expressed as:

p(XB|f) = exp

(
−
∫
B
g(f(x)) dx

) N∏
i=1

g(f(xi)). (3.22)

where f represents the infinite-dimensional object. Additionally, the latent posterior

p(f |XB) can be represented as:

p(f |XB) =
exp

(
−
∫
B g(f(x)) dx

)[∏N
i=1 g(f(xi))

]
p(f)∫

exp
(
−
∫
B g(f(x)) dx

)[∏N
i=1 g(f(xi))

]
p(f) df

. (3.23)

Notably, the likelihood expression in Equation (3.22) requires evaluating an integral

of f over the full domain B, making it “doubly-intractable”.

Positive transformation choices In addition, a positive transformation must be

applied to the GP prior to ensure the intensity function remains non-negative. Dif-

ferent choices of transformation function are found in the literature. A first classical

approach relies on the exponential transformation, resulting in the log Gaussian Cox

process proposed by Møller et al. (1998). This model usually requires numerical ap-

proximation of the integral by discretization over the input space (Møller et al., 1998;

Diggle et al., 2013), a computationally-intensive procedure which scales poorly with

the dimensionality of the input domain. A second approach uses a sigmoid transfor-

mation and an input space augmentation via thinning, to construct an Markov Chain

Monte Carlo sampler (Adams et al., 2009; Gunter et al., 2014), eliminating the need

for likelihood integration. In practice however, this approach is computationally in-

tractable for large problems. Other works include the use of the Relu (Ko and Seeger,

2016) and softplus (Seeger and Bouchard, 2012; Park et al., 2014) as transformation
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functions. Finally, Lopez-lopera et al. (2019) introduce a finite approximation where

positiveness conditions is imposed directly on the GP.

Another approach exploits the so-called permanental process, defining the Poisson

process intensity in terms of the square of a GP (McCullagh and Møller, 2006; Lloyd

et al., 2015). It enables analytical computation of the intensity integral when coupled

with a variational inference scheme with inducing points (similar to Titsias 2009b)

and has received considerable recent attention (Lian et al., 2015; Flaxman et al., 2017;

John and Hensman, 2018).

In the following sections, we provide deeper descriptions of these diverse ap-

proaches and the corresponding inference methods that have been proposed in the

literature.

3.3.1 Log-Gaussian Cox processes

The log-Gaussian Cox process (LGCP), introduced by Møller et al. (1998), is an

instance of a Gaussian Cox process where the intensity is modeled through an expo-

nential transformation. Specifically, it defines the intensity as

λ(x) := exp(f(x)) with f ∼ GP(0, k), (3.24)

for all locations x ∈ X .

Computational grid To address the intractability of the integral, a common ap-

proach is to discretize the region of consideration B ⊂ X into a regular lattice of m

non-overlapping regions {Ai}mi=1, each having centroids {ci}mi=1. The LGCP model

is then approximated with a piecewise constant intensity function on this lattice,

i.e., λ(x) ≈ exp(fi) for all x ∈ Ai, where fi := f(ci) for i = 1, · · · ,m. Given

{fi}mi=1, the number of points in each region Ai follows a Poisson distribution with

a mean of
∫
Ai

λ(x)dλ(x) = |Ai| exp(fi). In particular, assuming a point pattern

XB = (x1, · · · ,xN ), the conditional log-likelihood of the model can be computed as
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follows:

log p(XB|f) ≈ −
m∑
i=1

|Ai| exp(fi) + nifi + C (3.25)

where ni denotes the number of points observed in Ai and C is a constant.

Inference Inference for LGCP models is challenging since the posterior, induced

by Equation (3.25), is not tractable. Two commonly used methods for addressing

this challenge are sampling with Markov Chain Monte Carlo (MCMC) techniques

and employing Integrated Nested Laplace Approximation (INLA).

While this chapter doesn’t delve into detailed explanations of MCMC methods,

those interested can find comprehensive overviews in Gilks et al. (1995) and Gamer-

man and Lopes (2006). Several MCMC sampling techniques have been introduced

for estimating the latent posterior distribution within the LGCP framework. These

include the Metropolis-adjusted Langevin algorithm (MALA) (Roberts and Tweedie,

1996; Møller et al., 1998; Brix and Diggle, 2001; Diggle et al., 2005), its Riemann

manifold variant (mMALA) (Girolami and Calderhead, 2011; Diggle et al., 2013),

and elliptic sampling (Murray et al., 2010; Leininger and Gelfand, 2017).

On the other hand, Integrated Nested Laplace Approximation (INLA), introduced

by Rue et al. (2009) and H. and L. (2005), offers a different approach. INLA is a

statistical method that provides fast and accurate approximate inference for Bayesian

models with latent Gaussian variables. It combines numerical integration and Laplace

approximation to estimate posterior distributions for model parameters and latent

variables. INLA has been proposed as an alternative approach for LGCP models

(Illian et al., 2012) where the latent GP is approximated by a Gaussian Markov

random field (GMRF) with a sparse precision matrix on a fine lattice. A study

conducted by Taylor and Diggle (2014) compared the performance of MCMC schemes

and INLA, particularly for spatial LGCP models, taking into account scenarios where

hyperparameters are treated as known values.

The choice of the grid is critical to strike a balance between computational com-

plexity and approximation accuracy. As the cell sizes approach zero, the method
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converges to the true solution (Waageptersen, 2004, corollary A.1). However, han-

dling the potentially dense covariance matrix over {ci}mi=1 ∪X becomes challenging,

often limiting the lattice to only a few points. This limitation can impact the quality

of the likelihood approximation and, consequently, the accuracy of the inference.

3.3.2 Sigmoidal Cox processes

The sigmoidal Cox Poisson process (SGCP), a novel class of Gaussian Cox processes

introduced by Adams et al. (2009), defines the intensity function as a sigmoidal

transformation of a latent function f governed by a Gaussian Process (GP) prior. In

explicit terms, the intensity function is mathematically represented as:

λ(x) := λ∗ · σ(f(x)) with f ∼ GP(0, k), (3.26)

for all locations x ∈ X . In this equation, σ(·) represents the sigmoid function, defined

as:

σ(x) :=
1

1 + exp−x
.

The inclusion of the positive constant λ∗ > 0 in Equation (3.26) plays a critical role,

acting as an upper bound for the intensity function λ. This is essential because the

sigmoid function inherently constrains values to the range between 0 and 1.

The key advantage of this sigmoidal specification lies in its capacity to generate

asymptotically exact samples from the intensity function posterior without requiring

any approximations. Instead of conducting MCMC inference directly on the posterior,

the approach involves working with an augmented posterior that eliminates the need

for integration.

Modified thinning To obtain a sample from an SGCP model, we employ a mod-

ified version of the thinning algorithm, as outlined in Algorithm 1. This adaptation

takes advantage of the fundamental fact that λ(·) is bounded by λ∗. The algorithm’s

workflow begins with the sampling of m + n points, denoted as X̂m+n = {x̂i}m+n
i=1 ,

drawn from a Poisson distribution characterized by a constant intensity of λ∗. Sub-
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sequently, we simulate the function f using the GP prior, with input points derived

from X̂m+n. This step provides an evaluation of the intensity at these sampled points.

Finally, we can apply a thinning procedure, partitioning X̂m+n into two distinct sub-

sets: one containing the retained (observed) points, with probability σ(f(·)), denoted

as X = {xi}ni=1, and rejected latent points Xm = {x(m)
i }mi=1. As outlined by the

independent thinning property described in Section 3.2.1, this process precisely yields

an asymptotically exact sample from λ(·).

Exact MCMC via augmentation Inspired by the simulation algorithm, Adams

et al. (2009) proposed to augment the variable set to include the latent points Xm.

This augmentation results in a new Bayesian hierarchical model formulation. For a

finite point configuration XB := {xi}Ni=1, the joint posterior of this augmented model

can be expressed as follows:

log p(XB,Xm,m,fN+m|λ∗) = −λ∗|B|+ (N +m) log(λ∗)

+
N∑
i=1

log(σ(f(xi)) +
m∑
i=1

log(−σ(f(x(m)
i ))) + log(p(fN+m)) (3.27)

Here, p(fN+m) denotes the joint prior distribution of the latent function f at the

input points X̂N+m := XB∪Xm. We also used that, conditioned on the knowledge of

X̂N+m, for all x ∈ X̂N+m, the probability of a point being observed is determined by

σ(f(x)), whereas the probability of the point being latent is described by 1−σ(f(x)).

To sample from the posterior distribution of interest, p(fN |XB, λ
∗), we can employ

a MCMC approach on the joint posterior specified in Equation (3.27). This MCMC

procedure involves three transitions, addressing the number of thinned events m,

their respective locations Xm, and the latent function fN+m. After these transitions,

we discard the latent points, enabling us to conduct MCMC inference on the model

without relying on numerical approximations.

In their investigation, Adams et al. (2009) demonstrated that the SGCP, with its

garantee of producing asymptotically exact sampling, outperformed the LGCP with

discretization (using 10, 25, and 100 bins) for relatively small datasets containing
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approximately 200 points. However, they also highlighted a limitation of the SGCP

method: its impracticality for datasets comprising several thousand points or more.

This limitation arises from poor scalability concerning both the dimension of the

domain and the size of the data. The inclusion of thinned events within the GP leads

to a computational cost of O((N + m)3) in each MCMC step, and the number of

thinned events, denoted as m, tends to grow exponentially with the dimension of the

space.

Nevertheless, researchers have extended the SGC model to enhance its perfor-

mance and versatility. For example, Gunter et al. (2014) proposed an adaptive thin-

ning method that replaces the global upper bound with a more efficient piece-wise

function, reducing the need for thinned points. Another notable extension involves

incorporating a latent marked Poisson process and a Polya–Gamma random variable,

as suggested by Donner and Opper (2018a), to establish a likelihood representation.

To approximate the posterior distribution in this extended framework, the authors

utilize variational inference and sparse Laplace methods, significantly reducing the

computational complexity of the model.

3.3.3 Permanental processes

The permanental process is a more flexible class of Gaussian Cox processes, which

provides an exception to the general rule that analytical expressions for likelihoods

are not available. This process is obtained by defining the intensity as a square of

Gaussian processes, i.e.,

λ(x) := |f(x)|2 with f ∼ GP(0, k). (3.28)

Permanental processes were first introduced by Shirai and Takahashi (2003), and

further studied by McCullagh and Møller (2006). They serve as a natural counterpart

to the more extensively investigated determinantal point processes, which have been

the focus of substantial research in both mathematical and physics literature. While

there are certain resemblances, permanental processes possess distinct and unique
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properties. McCullagh and Møller (2006) present a comprehensive examination of

permanental processes, offering detailed insights into their density and moment prop-

erties.

When considering the intensity prior on a GP having a mean 0, squaring has the

effect of redistributing more probability mass around the central location of the GP

prior and towards extreme events. These effects arise from the inherent amplification

process in squaring, which accentuates values closer to zero and magnifies extreme

values. Furthermore, the transformation of negative values into positive ones reallo-

cates more mass to their corresponding positive counterparts.

The purpose of this section is to establish a foundational understanding of per-

manental processes and their tractability properties, which are essential for compre-

hending our proposed Bayesian inference scheme on permanental processes in the

following chapter. Firstly, we introduce the concept of permanental processes and

discuss their key features. Following that, we provide an overview of existing infer-

ence methodologies from the literature, which will serve as benchmarks for evaluating

the effectiveness of our contributions.

A permanent point process, denoted as X, possesses a closed-form, non-negative

n-th order intensity function defined as follows:

λ(n)(x1, · · · ,xn) : = E
[
f(x1)

2 · · · f(xn)
2
]

= per [k(xi,xj)]1≤i,j≤n (3.29)

where per[·] denotes here the n/2-weighted permanent of its matrix argument, defined

as:

per [k(xi,xj)]1≤i,j≤n :=
∑
π

(n
2

)#π
n∏

i=1

k(xi,xπ(i)). (3.30)

In the above equations, π(·) represents a permutation of 1, . . . , n, and the summation

is performed over all permutations, with #π denoting the number of cycles in π.

The validity of this result is established in McCullagh and Møller (2006, Theorem 1).

The term “permanental” is derived from the use of the permanent function in this
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representation. The construction of the permanental process bears a resemblance to

that of the determinantal process, with a notable distinction being that Equation

(3.29) employs the permanental function instead of the determinantal function.

Integral expression The permanental process offers distinct tractability proper-

ties that make it particularly appealing. It leverages the Mercer decomposition of the

kernel function k (as detailed in Theorem 2.4.5) and the Karhunen-Loève decompo-

sition of f (as described in Theorem 2.1.4), which together allow for a closed-form

expression of the intensity integral.

Indeed, from the Mercer’s theorem (2.4.5), when the space X is compact and k is

continuous and positive, it can be represented as:

k(x,x′) =
∞∑
i=1

λiΦi(x)Φi(x
′), ∀ x,x′ ∈ X . (3.31)

In this context, {Φi}∞i=1 denotes the orthogonal eigenfunctions in L2(X , µ) and {λi}∞i=1

their corresponding eigenvalues. Then, similar to the formulation in (2.40), the GP

f(x) ∼ GP(0, k) has a KL infinite decomposition of the form

f(x) =
∞∑
i=0

wiΦi(x). (3.32)

where w = (w1, w2, . . .) ∼ N (w|0,Λ) and Λ is a diagonal covariance matrix with i-

entries λi for i = 1, 2, .... Consequently, the integral of the intensity can be expressed

as:

∫
X
f(x)2 dµ(x) =

∞∑
i=0

∞∑
j=0

∫
X
wiwjΦi(x)Φj(x)dµ(x)

=

∞∑
i=0

∞∑
j=0

wiwj⟨Φi,Φj⟩L2(X ,µ)

=
∞∑
i=0

w2
i <∞ a.s. (3.33)

It’s important to note that this integral expression holds for a generic compact space

X and a measure µ, capitalizing on the orthogonality of {Φi}∞i=1 within L2(X , µ).
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Likelihood expression We consider an observed finite point configuration within

a finite subset B ⊂ X , represented as XB = {xi}Ni=1. Assuming a kernel for f with

an explicit Mercer representation with respect to B and µ, defined as the Lebesgue

measure, we can derive a closed-form density for the conditional likelihood p(XB)

of a permanental process. Starting from the general density expression in Equation

(3.21), and incorporating the permanental specification into it, we obtain:

p(XB) = E

exp(− ∞∑
i=0

w2
i

) N∏
i=1

( ∞∑
j=0

wjΦj(xi)
)2

= exp|B|− 1
2
D per

[
k̃(xi,xj)

]
1≤i,j≤N

(3.34)

In this equation, {Φi}∞i=1 are assumed orthogonal in L2(B). Additionally, k̃ denotes

the modified kernel:

k̃(x,x′) =

∞∑
i=1

λi

(1 + λi)
Φi(x)Φi(x

′), ∀x,x′ ∈ X . (3.35)

Here the series D represents a convergent sum, defined as D =
∑∞

i=1 log(1 + λi)

(McCullagh and Møller, 2006, section 2.3). A detailed proof is available in (McCullagh

and Møller, 2006, Theorem 2).

However, two significant limitations become apparent:

1. The likelihood expression in Equation (3.34) necessitates a Mercer representa-

tion for k in L2(B), which, for most kernel choices, is not explicitly available.

This issue will be explored in more detail in the upcoming sections.

2. Computing the permanent terms per[k̃] is typically infeasible, even for relatively

small matrices. In fact, it is a well-established result that there is no available

deterministic polynomial-time method for the exact computation of permanents

for general matrices (Valiant, 2006).

Despite these challenges, numerous approximate inference strategies have emerged

in the literature to tackle the computational complexities associated with the perma-

nental process while maintaining its tractability. In this context, we highlight two
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recent and promising inference methods from the literature: a variational approach

known as VBPP and a Laplace-based method that relies in the Mercer representation

of the kernel, referred to as LBPP.

Inference with variational approximation (VBPP)

Variational inference (VI) methods, as introduced by Jordan et al. (1999), have

emerged as a pivotal tool in Bayesian inference, offering a powerful means of ap-

proximating otherwise intractable probability distributions. VI achieves this by ap-

proximating an untractable distribution through a carefully selected “variational dis-

tribution” chosen from a family of tractable distributions. This selection process

hinges on optimizing the Kullback-Leibler (KL) divergence (Kullback and Leibler,

1951) between the target distribution and the variational distribution, resulting in

significantly faster computations compared to traditional methods like MCMC sam-

pling. Consequently, VI has found widespread utility across diverse applications,

including Bayesian regression, matrix factorization, and deep learning. For a more

comprehensive introduction to VI, readers can delve into the recent survey by Blei

et al. (2017b).

Lloyd et al. (2015) introduced variational methods for permanental process which

they term Variational Bayes for Point Processes(VBPP). This approach has garnered

substantial attention in the machine learning literature Lian et al. (2015); Flaxman

et al. (2017); John and Hensman (2018). VBPP extends a more general VI frame-

work initially developed for sparse GPs with inducing points by Titsias (2009a). In

the following section, we provide a short overview of VI within the context of the

Permanental process. For a more detailed exposition of variational sparse GP with

inducing points, readers are directed to the work of Titsias (2009a).

For the permanental process, we assume an observed point configuration in B

denoted as XB = {xi}Ni=1, N ∈ N+. To approximate the Gaussian process with

inducing points, we adopt the sparse approximation proposed by Titsias (2009a).

Specifically, we introduce a set of inducing points Xm = {x(m)
i }mi=1 in B and the

corresponding inducing variables fm := f(Xm). We assume a variational distribution

70



3. Background review : Gaussian process modulated spatial Cox processes

at the inducing variables, denoted as q(fm), that follows a Gaussian distribution with

mean m and covariance S.

Following the developments in Section 2.3.1, we proceed to define a variational

GP as q(f) =
∫
B p(f |fm)q(fm)dfm. This definition implies q(f) ∼ GP(m̄, k̄) with

mean function m̄ and kernel k̄ derived using the Gaussian distribution’s conditioning

rule and expressed as below:

m̄(x) = k(x,Xm)K−1
m,mm, ∀x ∈ B

k̄(x,x′) = k(x,x′)− k(x,Xm)K−1
m,mk(Xm,x) (3.36)

+ k(x,Xm)K−1
m,mSK−1

m,mk(Xm,x), ∀ x,x′ ∈ B.

Variational bound The objective of the VI approach is to minimize the KL di-

vergence between the posterior GP p(f |XB) and the variational process q(f), from

the following:

KL(q(f)||p(f |XB)) := −Eq(f)

[
log p(f |XB)

q(f)

]
= log(p(XB))−

(
Eq(f) [log p(XB|f)]−KL(q(f)||p(f))

)
.

Thus, minimizing KL(q(f)||p(f |XB)) with respect to q(·) is equivalent to maximizing

the evidence lower bound LELBO, given by

LELBO := Eq(f) [log(p(XB|f))]−KL(q(f)||p(f)).

In a Permanental process context, from the expression of p(XB|f) given in Equa-

tion (3.22), the ELBO can be rewritten as:

LELBO = −Eq(f)

[∫
B
f(x)2dx

]
+

N∑
i=1

Eq(f) [log(f(xi)]−KL(q(f)||p(f)) (3.37)

In this equation, the first terms represents the likelihood of the observed data un-

der the variational distribution q(f), while the last KL divergence term serves as a

complexity penalty that encourages q(f) to be close to the prior Gaussian process

71



3. Background review : Gaussian process modulated spatial Cox processes

p(f).

As suggested by Matthews (2016), the KL divergence term in Equation (3.37)

simplifies into a tractable KL divergence between two Gaussian distributions at the in-

ducing points Xm. Additionally, the sum-of-expectation term
∑N

i=1 Eq(f) [log(f(xi))]

can be evaluated analytically when q(f) ∼ GP(m̄, k̄) (Lloyd et al., 2015). However,

the first term involving an expectation over an integral in Equation (3.37) is generally

intractable.

Gaussian kernel case Specifically, the first term in Equation (3.37) can be com-

puted as:

Eq(f)

[∫
B
f(x)2dx

]
=

∫
B
Eq(f)

[
f(x)2

]
dx

=

∫
B
Eq(f) [f(x)]

2 dx+

∫
B
Varq(f) [f(x)] dx

= m⊤K−1
m,mΨK−1

m,mm− tr(K−1
m,mΨ) + tr(K−1

m,mS K−1
m,mΨ).

(3.38)

In this equation, Ψ is a m×m matrix equal to
∫
k(Xm,x)k(x,Xm)dx. Generally, Ψ

is not tractable, but Lloyd et al. (2015) provide a closed-form solution for Ψ for the

separable Gaussian kernel, as detailed in Equation (C.3).

Inference To perform inference, the variational parameters (m,S), together with

the GP hyperparameters Θ, are jointly optimized to minimize LELBO. This optimiza-

tion process can be executed using standard optimization methods. Upon completion

of the optimization, the posterior process p(f |XB) is approximated by q(f) as deter-

mined by Equations (3.36) and the knowledge of (m,S).

Laplace Bayesian Permanental Processes (LBPP)

In their work, Walder and Bishop (2017) proposed a novel Bayesian approach for

the permanental process that leverages connections with reproducing kernel Hilbert

spaces (RKHS) and a Laplace approximation to estimate the intensity posterior.

This approach, known as the Laplace-Based Bayesian Permanental Process (LBPP),
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presents a significantly more efficient alternative to existing Bayesian inference meth-

ods. Moreover, LBPP can also be seen as a Bayesian extension of a frequentist

approach introduced by Flaxman et al. (2017). To provide a better understanding of

LBPP, we will first briefly explain the approach of Flaxman et al. (2017), and then

introduce LBPP.

Intensity estimation with reproducing kernel In their work, Flaxman et al.

(2017) developed a non-probabilistic regularization algorithm for estimating the in-

tensity function of a of an inhomogenous Poisson process, by exploiting the proper-

ties of RKHS (as introduced in Section 2.4.1). They estimate the intensity function

λ(·) = f(·)2 using a function f ∈ Hk, where Hk denotes the RKHS associated with a

kernel function k that has a Mercer representation defined in Equation (3.31). The es-

timation of f is performed by minimizing the negative likelihood with a regularization

term, given by:

f̂ = argmin
Hk

{
−

N∑
i=1

log(f(xi)) +

∫
B
f(x)2dx+ ||f ||2Hk

}
. (3.39)

Equation (3.39) defines the objective of a regularized Empirical Risk Minimization

problem (ERM). This problem combines a Poisson likelihood with a regularization

term ||f ||2Hk
. Notably, Flaxman et al. (2017)’s work demonstrates that this objec-

tive can be reformulated as an equivalent, tractable ERM problem over a RKHS. In

particular, we can reframe the objective function, denoted as J [f ], as follows:

J [f ] = −
N∑
i=1

log(f(xi)) + ||f ||L2(B) + ||f ||2Hk

= −
N∑
i=1

log(f(xi)) + ||f ||2Hk̃
(3.40)

where Hk̃ is a new RKHS associated with the exact modified kernel k̃ given in Equa-

tion (3.34). Assuming that the modified kernel k̃ can be computed, the problem

initially formulated in Equation (3.39), which operates within the RKHSHk, is equiv-

alent to optimizing the problem J [f ] presented in Equation (3.40) within the RKHS
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Hk̃.

By invoking the representer theorem (Kimeldorf and Wahba, 1971) in conjunc-

tion with Equation (3.40), the solution f̂ can be succinctly expressed as f̂(x) =∑N
i=1 α̂ik̃(x,xi) for all x ∈ B, where α̂ = [α̂1, · · · , α̂N ]⊤ ∈ RN . For a deeper under-

standing of ERM within RKHS and the representer theorem, we refer you to Schölkopf

and Smola (2002b, section 4.2). As a result, we are presented with a finite-dimensional

problem, wherein we seek to determine α̂ ∈ RN such that:

α̂ = argmin
α∈RN

{
−

N∑
i=1

log(α⊤k̃(X, xi) +α
⊤K̃n,nα)

}
(3.41)

In this equation, K̃n,n denotes anN×N matrix with i, j entries k̃(xi,xj), and k̃(X,xi)

represents an N -dimensional vector with j entries k(xj ,xi). Solving the optimization

problem in Equation 3.41 can be efficiently accomplished using standard numerical

optimization techniques.

Bayesian approach with Laplace approximation In contrast, Walder and

Bishop (2017) propose a Bayesian approach that models the intensity function of a

Permanental process by establishing a connection with RKHS, akin to the approach

presented by Flaxman et al. (2017).

By employing the Karhunen-Loève (KL) representation of the GP introduced in

Equation in Equation (3.32), the Permanental process can be redefined as a linear

combination of basis functions, as depicted below:

λ(x) :=

∞∑
i=0

∞∑
j=0

wiwjΦi(x)Φj(x) with w ∼ N (w|0,Λ). (3.42)

This representation implies that inferring the latent function f is equivalent to infer-

ring its random coefficients w, with a Gaussian prior distribution w ∼ N (w|0,Λ).

Substituting the Gaussian process expression with fixed hyperparameters Θ into

the expression for the Permanental process likelihood in Equation (3.34), we arrive
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at the following form:

log p(XB|w,Θ) = −
∞∑
i=1

w2
i +

N∑
i=1

log
(
|

∞∑
j=0

wjΦj(xi)|2
)
. (3.43)

The joint distribution over w and XB can, in turn, be expressed as:

log p(w,XB|Θ) = log p(XB|w,Θ) + log p(w)

= log p(XB|w,Θ)− 1

2
w⊤(I+ Λ−1)w + C (3.44)

for some constant C.

In their research, Walder and Bishop (2017) introduced a Laplace approximation

method to handle the intractable posterior distribution p(w|X,Θ). This method

involves a second-order approximation of the logarithm of the posterior distribution,

where the Taylor expansion is truncated after the second-order term. The resulting

approximation yields a Gaussian distribution N (w|ŵ,Q), with a mean ŵ equal to

the mode of the posterior distribution, i.e.

ŵ := argmax
w

p(w|XB,Θ)

and a covariance matrix equal to the inverse of the Hessian of the negative log-

posterior evaluated at the mode.

To establish a connection with Flaxman et al. (2017), we start by considering the

stationary equation that the mode ŵ must satisfy, i.e., ∇w log p(w|XB,Θ)|w=ŵ = 0.

This implies that

ŵ =
(
I+ Λ−1

)−1

(
N∑
i=1

Φ(xi)

w⊤Φ(xi)

)
. (3.45)
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With this stationary solution in place, we can compute the predictive mean:

E [f(x)|XB] = Φ(x)⊤ŵ (3.46)

=
N∑
i=1

2

ŵ⊤Φ(xi)
·Φ(xi)

⊤ (I+ Λ−1
)−1

Φ(x)

:=

N∑
i=1

α̂ik̃(x,xi) (3.47)

where α̂i = 2/ŵ⊤Φ(xi) for i = 1, · · · , N .

Notably, this computation leads to the same k̃ as observed in Equations (3.34)

and (3.41). Remarkably, Walder and Bishop (2017) demonstrated that optimizing ŵ

is equivalent to optimizing α similarly to the problem posed in Equation (3.41). This

intriguing connection reveals that LBPP’s predictive mean aligns with the intensity

estimation approach with RKHS by Flaxman et al. (2017), despite their conceptual

differences. In fact, the Bayesian Laplace method can be perceived as a probabilistic

extension of the intensity estimation with RKHS approach.

Arbitrary domain In both Walder and Bishop (2017) and Flaxman et al. (2017),

the feasibility of computing the integral term
∫
B f(x)dx and the expression for k̃

depend on the availability of an explicit Mercer decomposition for k with respect to

L2(B). Regrettably, such a decomposition is not generally available, which limits

the applicability of these methods to arbitrary domains and kernels. For instance,

while Flaxman et al. (2017) derived a specific representation for the Gaussian kernel

in L2(R2, µ) when µ is a Gaussian measure, this approach does not extend well to

other kernel types or common scenarios where B is a finite subset of R2 and µ is the

Lebesgue measure.

To address the challenge of more general domains, Flaxman et al. (2017) and

Walder and Bishop (2017) introduce the Nyström method. This approach offers a

low-rank approximation of the kernel k by utilizing a subset of m ≤ N uniformly

sampled data points denoted as Xm = {x(m)
i }mi=1. Specifically, the Nyström method

approximates the kernel integral operator Tk (as defined in Equation (2.34)) through

discretization over Xm. This leads to an approximation of the eigenvalues and eigen-
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functions of the Mercer decomposition (Theorem 2.4.5), in terms of the eigenvectors

{Φ(m)
i }mi=1 and eigenvalues {λ(m)

i }mi=1 of the m ×m Gram matrix Km,m with entries

k(x
(m)
i ,x

(m)
j ). The detailed formulation for these approximated eigenfunctions and

related eigenvalues will be presented in the forthcoming chapter. This delay is pur-

poseful, as it has a direct correspondence to our forthcoming contribution. For further

details about the Nyström method, please refer to Rasmussen and Williams (2005,

Chap. 4.3, 8).

However, employing the Nyström method with these approximated finite-dimensional

eigenvectors leads to a partial loss of the tractability property associated with the

permanental process. Specifically, the analytical expression for the integral term∫
B f(x)dx can only be obtained under the Nyström method for certain standard

kernel types, most notably the Gaussian kernel. For a precise and comprehensive

computation of this integral, please refer to the upcoming chapter.

Reflection invariance and nodal lines

Generally speaking, the use of a square-rootl in the permanental process can lead to

posterior distributions featuring artifacts known as “nodal lines” (John and Hens-

man, 2018). These nodal lines emerge due to the non-injective nature of the square

link function, wherein different values of ± f can produce the same intensity. This

phenomenon can create regions where the latent function modes alternates between

positive and negative values, causing zero-crossings and artificially driving the inten-

sity to zero. Figure 3.2 visually illustrates this issue in a 1D context, depicting the

known intensity in black alongside model fits with only positive or alternating signs

for the latent functions.

These effects tends to manifest when regions with a high number of events alter-

nate with those of low activity. As a result, the artificial suppression of intensity may

initially appear inconsequential. However, depending on the problem’s configuration,

nodal lines can also appear in moderate intensity region, though less frequently. This

can potentially introduce issues in terms of model interpretation and sampling. In

Figure 3.2, this is illustrated by the first crossing line represented by the “◦” symbol.
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Figure 3.2: Examples of nodal lines for a 1D Toy example in John and Hensman
(2018). The figure shows the effect of nodal lines for a 1D intensity function (black),
a model fit (orange) over a realization where N = 10 and a better model fit without
0 crossing. The graph is taken from John and Hensman (2018, section 4.5).

In the subsequent chapter, we will discuss and introduce an empirical solution pro-

posed by (John and Hensman, 2018) within our model to address this issue. (John

and Hensman, 2018) demonstrated how these effects can be mitigated by incorpo-

rating an offset term into the prior. However, it’s important to acknowledge that

these observations are primarily grounded in empirical evidence. The precise delin-

eation between performance enhancement and the mitigation of nodal lines through

this prior reparametrization may lack a firmly established theoretical foundation,

prompting the need for further exploration.

3.4 Summary

In this chapter, we provided a comprehensive overview of GP-modulated Cox pro-

cesses. We began by introducing the fundamental concepts of point processes, em-

phasizing key elements such as intensity functions, densities, and pseudo-likelihoods.

Our goal was to elucidate their formulation with justification. We also introduced

Poisson processes, Cox processes, and Gaussian Cox processes in a general context.

We further explored various classes of Gaussian Cox processes, including the log-

arithmic and sigmoid versions. Finally, we introduced the Permanental process and

its two different implementations: VBPP and LBPP, which play crucial roles in the

subsequent chapter.

Despite the Permanental process offering compelling advantages, particularly in
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terms of tractability, its applicability does face constraints that merit consideration:

1. One significant limitation, as extensively discussed in this chapter, pertains

to the tractability advantage of the integral term, which is limited to specific

standard kernel types. Notably, both VBPP and LBPP with Nyström rely

exclusively on the Gaussian kernel. While these methods yield efficient inference

for the Gaussian kernel, other kernel types may not enjoy the same benefits.

These constraints are particularly limiting because the choice of kernel for a

GP model profoundly impacts its performance on a given task. This aspect has

been highlighted as a primary drawback of using the Permanental process in

the existing literature (Aglietti et al., 2019).

2. Another limitation associated with the reflection invariance of the Permanental

process involves the emergence of artifacts known as “nodal lines” (John and

Hensman, 2018), as described earlier, within posterior distributions.

In the upcoming chapter, we present our contributions, specifically designed to

address or mitigate these challenges.

79



Chapter 4

Sparse spectral Bayesian

Permanental process with

generalized kernel

In this chapter, we introduce a novel scheme for Bayesian inference on permanental

processes which models the Poisson intensity as the square of a Gaussian process.

Combining generalized kernels and a Fourier features-based representation of the

Gaussian process with a Laplace approximation to the posterior, we achieve a fast

and efficient inference that does not require numerical integration over the input space,

allows kernel design and scales linearly with the number of events. Our method builds

and improves upon the state-of-the-art Laplace Bayesian point process benchmark of

Walder and Bishop (2017), demonstrated on both synthetic, real-world temporal and

large spatial data sets.
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4.1 Introduction

In the previous chapter, we introduced a promising instance of the Gaussian Cox

process known as the permanental process (McCullagh and Møller, 2006), obtained

by defining the intensity as the square of a GP. Walder and Bishop (2017) propose

a Laplace Bayesian point process (LBPP) method, a fast inference schemes for the

permanental process that relies on the Mercer decomposition of the Gaussian process

kernel and a Laplace approximation to the intensity posterior. They show significant

speed improvement compared to variational Bayesian inference. Inference based on

the Laplace approximation has already been proposed in the context of a Gaussian

Cox process by Cunningham et al. (2008a), Illian et al. (2012), and Flaxman et al.

(2015b).

However, the tractability properties of the permanental process used by Lloyd

et al. (2015) and Walder and Bishop (2017) only holds for certain standard types of

kernels such as the squared exponential kernel, which encodes restrictive assumptions

about the form of the function we are modelling. In general, the choice of kernel

determines almost all the generalization properties of a Gaussian process model and

profoundly affects its performance on a given task (Rasmussen and Williams, 2005).

Approaches have been proposed in recent years to achieve more expressible kernels

either by a composition of simple analytical forms (Duvenaud et al., 2011, 2013) or

more flexibly through a spectral representation (Lázaro-Gredilla et al., 2010; Wilson

and Adams, 2013; Samo and Roberts, 2015a).

In this chapter, we build on the LBPP approach of Walder and Bishop (2017),

introducing an alternative fast Laplace-based inference exploiting spectral represen-

tation of kernels and random Fourier features (RFFs). Our approach, the Sparse

Spectral Permanental Process (SSPP), retains the tractability properties of the per-

manental process, whilst being able to adapt to a broader range of stationary kernels.

Furthermore, our method works with generalized stationary spectral kernels (Samo

and Roberts, 2015a), to our knowledge, the most general class of expressible spectral

kernels, that can approximate any stationary kernels to arbitrary precision.
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Following John and Hensman (2018), we also include a mean constant to mitigate

the effect of nodal lines observed for the permanental process, resulting from the

non-injective nature of the squared transformation. Our approach shows systematic

improvement in accuracy in synthetic and real-world data sets.

4.2 Preliminaries : Permanental processes

In the context of a Poisson process occurring in a continuous domain X , the inference

process involves estimating an intensity function λ(x) : X 7→ R+. This chapter focuses

on permanental process models, where the intensity λ is defined as λ(·) := f(·)2, for

a function f ∼ GP(0, k(x,x′)), with k : X × X → R being the positive-definite

covariance function for f .

We assume XB = {xi}Ni=1 to be a realization of N observations in a finite region

B ⊂ X . In this chapter, we employ a change of notation, referring to XB as X for

clarity and convenience, as there is no ambiguity in this context.

4.2.1 Integral expression via Mercer Theorem

Here, we briefly recall the basic components of permanental processes discussed in

Section 3.3.3. The GP covariance function k has a Mercer decomposition (Theorem

(2.4.5)) on (X , µ), if it can be written as

k(x,x′) =
∞∑
i=1

λiΦi(x)Φi(x
′) for x,x′ ∈ X

where {λi}∞i=1 is a sequence of summable, non-negative, non-increasing eigenvalues,

and {Φi(·)}∞i=1 is a set of mutually-orthogonal, unit-norm eigenfunctions with respect

to the inner product ⟨u, v⟩ =
∫
X u(x)v(x)dµ(x). Subsequently, following Equation

3.32, f(x) ∼ GP(0, k(x,x′)) can be reformulated as an equivalent linear form

f(x) =
∞∑
i=0

wiΦi(x)

82



4. Sparse spectral Bayesian Permanental process with generalized kernel

where w = (w1, w2, . . .)
⊤ ∼ N (w|0,Λ) and Λ is a diagonal covariance matrix

with entries λi, i = 1, 2, .... Further, it can be shown that Cov(f(x), f(x′)) =

Φ(x)⊤ΛΦ(x′) = k(x,x′), where Φ(·) is a vector with entries Φi(·), i = 1, 2, .... Re-

ferring to Equation (3.33), the integral of the intensity can be expressed as:

∫
X
f(x)2 dµ(x) =

∞∑
i=0

w2
i .

4.2.2 Approximate Bayesian inference

In our case, to make the reformulation of the integral
∫
B f(x)2dx possible as in

Equation (3.33), the kernel for f requires an explicit Mercer representation with

respect to B and µ defined as the Lebesgue measure ; this is not available for most

choices of kernel. In such cases, the Nyström method can be used to approximate

the eigenfunctions and eigenvalues of the Mercer decomposition. Both Flaxman et al.

(2017) and Walder and Bishop (2017) adopt the Nyström approach in the context

of the Permanental Cox process with Gaussian kernel. Walder and Bishop (2017)

further propose a Bayesian inference scheme based on a Laplace approximation for

a non-GP likelihood. We provide a quick review of the LBPP model using Nyström

method proposed by Walder and Bishop (2017). We also provide in Proposition 4.2.1,

an expression for the integral term
∫
B f(x)2dx under Nyström approximation that is

not directly available in Walder and Bishop (2017).

In Section 3.3.3, we discussed the Nyström method (Rasmussen and Williams,

2005, Chap. 4.3, 8), which offers a way to approximate the function f based on a

reduced-rank approximation for k. The method achieves this by considering a subset

of m ≤ N data points Xm = {x(m)
i }ni=1 sampled uniformly from the original data.

The eigenvalues and eigenfunctions of the Mercer decomposition are approximated

using the eigenvectors u
(m)
i and eigenvalues λ

(m)
i of Km,m, the Gram matrix with i, j

entry k(x
(m)
i ,x

(m)
j ). Thus, f can be approximated by

f(x) ≈
m∑
i=1

λ̂
1
2
i w

(m)
i Φ̂i(x) (4.1)
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where w(m) = (w
(m)
1 , . . . , w

(m)
m )⊤ ∼ N (0, Im) and

λ̂i :=
1

m
λ
(m)
i (4.2)

Φ̂i(·) :=
√
m

λ
(m)
i

k(·,X(m))⊤u
(m)
i . (4.3)

We can reformulate Equation (4.1) by substituting the expressions for for {λ̂i}mi=1

and {Φ̂(·)i}mi=1 from Equations (4.2) and (4.3):

f(x) ≈ k(x,Xm)⊤
m∑
i=1

w
(m)
i√
λ
(m)
i

u
(m)
i

= k(x,Xm)⊤U(m)Λ(m)−
1
2w(m)

:= w(m)⊤φ(m)(x)

(4.4)

where U(m) is the m×m matrix of eigenvectors {u(m)
i }mi=1 as columns, and φ(m)(·) :=[

k(·,Xm)⊤U(m)Λ(m)−
1
2

]⊤
denotes the new features vector.

Integral calculation In Proposition 4.2.1 we express the integral term
∫
B f(x)2dx

under the Nyström approximation with the Gaussian kernel k, both because it is not

available in Walder and Bishop (2017) and to demonstrate the similarities with the

corresponding derivation of our proposed method in Proposition 4.3.3.

Proposition 4.2.1. Under the GP approximation (4.4) with the Gaussian kernel k,

the integral expression
∫
B f(x)2 dx can be written as

∫
B
f(x)2 dx = w(m)⊤M(m)w(m)

where M(m) is a n× n matrix defined as

M(m) := Λ(m)−
1
2

[
U(m)⊤Ψ(m) U(m)

]
Λ(m)−

1
2

and Ψ(m) is a n× n matrix given in Section C.1 of Appendix C.

We provide a proof of this result in Section C.1 of Appendix C.
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4.3 Model

Motivated in part by the shortcomings of the Nyström approach proposed by Walder

and Bishop (2017), we now present an alternative LBBP approach to inference for the

permanental process. In contrast to the Mercer approach, it is based on a sparse spec-

tral representation of a GP, exploiting random Fourier features (RFFs, Rahimi and

Recht, 2007) for reduced-rank kernel expression. As a result, it provides a tractable

expression for the integral of the intensity over the input domain.

Our spectral approach works for any bounded, continuous and shift-invariant

kernel k(x,x′) := k(x − x′) that satisfies the condition of Bochner’s theorem (see

Theorem 4.3.1) and admits a finite dimensional feature space representation or ap-

proximation. In contrast, the variational inference approach of Lloyd et al. (2015)

and the LBPP with Nyström, yield an analytical integral expression for a limited

choice of kernels, like the Gaussian kernel. Furthermore, we are able to adapt our

method to generalized stationary spectral kernels (Samo and Roberts, 2015a) which

generalize two other classes of expressible spectral kernels, the sparse spectrum kernels

(Lázaro-Gredilla et al., 2010) and the mixture spectral kernels (Wilson and Adams,

2013). These two kernels have been proven to be able to approximate any bounded

continuous stationary kernels to arbitrary precision.

We also address the issue of nodal lines discussed in John and Hensman (2018).

This problem arises since the inverse link function λ(·) := f(·)2 is not injective, with

±f(·) producing the same intensity. Therefore, regions of negative and positive f

must exhibit zero-crossings, where the intensity is artificially forced to zero, despite

the underlying intensity being positive. Following John and Hensman (2018), we add

an offset parameter β to the intensity function λ(·) := (f(·)+β)2 corresponding to an

initial value for the prior mean of the GP, to alleviate the problem. Notably, this β

parameter is considered a model hyperparameter and is fitted to the data accordingly.
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4.3.1 Sparse spectral kernels

In this section, we briefly present two families of spectral kernels, sparse spectrum ker-

nels (Lázaro-Gredilla et al., 2010) and mixture spectral kernels (Wilson and Adams,

2013) that have been proposed in recent years for kernel design. They are both known

to be dense in the family of stationary kernels, implying that they can approximate

any stationary kernel to an arbitrary precision given sufficient spectral components.

Spectral kernels are constructed via the Bochner’s theorem (Bochner, 1932), which

states that any bounded, continuous and shift-invariant kernel k(x,x′) := k(τ ) with

τ = x− x′, is the inverse Fourier transform of a bounded positive measure.

Theorem 4.3.1. (Bochner) An integrable function k : Rd → C is the covariance

function of a weakly stationary mean square continuous random process on Rd if and

only if it can be represented as

k(τ ) =

∫
Rd

exp(iz⊤τ )dµ(z) (4.5)

where µ(z) is a positive definite measure.

Sparse spectrum kernels Sparse spectrum kernels can be obtained by setting µ in

Equation (6.13) to be a positive discrete symmetric measure µss =
∑K

k=1
ak
2 (δωk

+ δ−ωk
)1

where ak > 0 and δωk
denotes the Dirac measure centred at the point spectral fre-

quencies wk ∈ Rd for k = 1, · · · ,K. Note that as such, µss is singular with re-

spect to the Lebesgue measure and does not admit a density. Through Equation

(6.13), we obtained the sparse spectrum kernel, spanned by the trigonometric func-

tions {cos(ω⊤
k x)}Kk=1. A major challenge is that a direct optimization of the linear

coefficients {ak}Kk=1 and the frequencies {ωk}Kk=1 often leads to over-fitting as illus-

trated by Lázaro-Gredilla et al. (2010) in the context of GP regression.

Mixture spectral kernels Wilson and Adams (2013) consider the case when µ

is absolutely continuous with respect to the Lebesgue measure and admits a spec-

1Note that positive finite discrete measures are weakly dense in the space of all positive finite
measure (Hu and Papageorgiou, 2013).
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Figure 4.1: Illustration of the SSPP model. The arrows directions suggest directions
of influence.
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tral density S(·). In that case, S(·) and the kernel function k are Fourier duals of

each other. Mixture spectral kernels model the spectral density S as a mixture of

independent Gaussian densities with non-zero mean. Since mixtures of Gaussians are

dense in the set of all distribution functions (Plataniotis and Hatzinakos, 2001), the

resulting dual of this set is dense in the family of continuous stationary kernels.

Random Fourier features Random Fourier features, as initially proposed by

Rahimi and Recht (2007), leverage a randomized lower-dimensional feature mapping

to achieve scalability. This approach is grounded in Bochner’s theorem, allowing the

kernel function k to be reformulated as:

k(x− x′) ≈ σ2

r

r∑
k=1

exp(iz⊤k (x− x′)) (4.6)

where z1, . . . , zr in Rd are independent samples from the distribution with density

S(·), for some integer r > 0 and σ > 0. Here, we have assumed that µ in Equa-

tion (6.13) is absolutely continuous with respect to the Lebesgue measure and has

a spectral density S(·). Equation (6.13) is then approximated using Monte Carlo

integration. We also treat the scale parameter σ of the kernel function separately for

convenience.

We thus obtain a kernel approximation

k(x− x′) ≈ φ(r)(x)⊤φ(r)(x′) (4.7)
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where φ(r) is an explicit feature mapping φ(r) : X → Rr such that

φ(r)(x) =
σ√
r

[
exp(iz⊤1 x), . . . , exp(iz

⊤
r x)

]⊤
. (4.8)

We may obtain a 2r-sized real-valued mapping that satisfies Equation (4.6) using

φ(r)(x) =
σ√
r
[ cos(z⊤1 x), . . . , cos(z

⊤
r x),

sin(z⊤1 x), . . . , sin(z
⊤
r x)]

⊤ (4.9)

where z ∼ S(z). The derivation of Equation (4.9) is provided in Section C.2 of

Appendix C.

RFF methods share a close relationship with sparse spectrum kernel. Examining

Equation (4.9), we observe RFF as a particular instance of a sparse spectrum kernel,

wherein the frequencies ωk are randomly sampled from a distribution rather than

being optimized. However, it’s important to note that while RFF methods provide

scalability, they do not inherently adress the challenge of adaptively learning the

spectral measure µ from the available data.

RFF are widely recognized for their efficacy in approximating various isotropic

kernels, such as the Gaussian, Laplace, or Cauchy kernels. However, empirical ev-

idence suggests that kernels with spectral densities exhibiting multimodal behavior

or sharp edges, such as oscillatory kernels, pose a greater challenge for accurate ap-

proximation. Addressing this challenge often requires employing a larger number of

random features to ensure precise capture.

From a theoretical perspective, several studies have advanced our understanding

of the optimal number of features necessary to effectively approximate the kernel

matrix (Rahimi and Recht, 2007; Sriperumbudur and Szabó, 2015; Sutherland and

Schneider, 2015) and to maintain the statistical properties of the original method

across diverse learning tasks (Rahimi and Recht, 2007; Li et al., 2021). Specifically,

for the former, research has demonstrated that O(ϵ−2 log |X |) features are enought to

achieve an approximation accuracy of ϵ with respect to the L∞ error (Sriperumbudur
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and Szabó, 2015). Regarding the latter, learning with RFF and Lipschitz continuous

loss functions necessitates Ω(
√
n log(n)) features to prevent any loss of learning ac-

curacy (Li et al., 2021). Notably, fewer features are typically sufficient when dealing

with the Gaussian kernel in both cases.

Additionally, several works have extended the initial formulation proposed by

Rahimi and Recht (2007) through alternative Monte Carlo sampling techniques.

These methods aim to either enhance the approximation quality (Yu et al., 2016)

or reduce the time complexity (Le et al., 2013). Other approaches include Quasi-

Monte Carlo sampling (Yang et al., 2014; Lyu, 2017) and Quadrature methods (Dao

et al., 2017).

Note that the above RFF formulation is usually only suitable for stationary ker-

nels, which satisfy the conditions set forth by Bochner’s theorem. This restricts its

applicability to many nonstationary kernels. However, several explicit random fea-

ture map approximations have been proposed for some specific nonstationary kernels.

Examples include the generalized Gaussian kernel(Vempati et al., 2010), additive ker-

nels Vedaldi and Zisserman (2012), Polynomial kernels on the unit sphere (Pennington

et al., 2015). Additionally, some authors Genton (2001); Samo and Roberts (2015a);

Ton et al. (2018) have introduced Fourier features for nonstationary kernels based on

a generalization of the Bochner’s theorem proposed by Yaglom (Yaglom, 1987).

4.3.2 Generalized stationary kernels

One advantage of our method is that it can work with the generalized stationary

kernels (Samo and Roberts, 2015a), that are dense in the family of stationary kernel

and admits sparse spectrum kernels and mixture spectral kernels as special cases.

Generalized kernels can also account for different degree of differentiability of the

latent function. Sparse spectrum kernels andmixture spectral kernels are more limited

in a sense that, when used as covariance functions, they yield infinite differentiability

of the corresponding stochastic process, which might be unrealistic for certain learning

tasks (Stein, 1999).

Definition 4.3.2. (Generalized stationary kernel) Let g be a stationary kernel g :
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Rd → R such that g(0) = 1. A generalized kernel kGS with K ∈ N+ components takes

the form

kGS(τ ) =
K∑
k=1

σ2
k g(τ ⊙ γk) cos(ω

⊤
k τ ) (4.10)

where ωk ∈ Rd, γk ∈ R+d, σk > 0 for k = 1, · · · ,K and ⊙ denotes the element-wise

Hadamard product.

The parameters {γk}Kk=1 are used as inverse input scales. When {γk}Kk=1 are

set to zero, we retrieve the sparse spectrum kernels. The spectral mixture kernels

corresponds to a special case where g(τ ) = exp(−||τ ||22/2)/
√
2π.

The degree of smoothness of a zero-mean GP with kernel kGS is determined by

the kernel g. Samo (2017) proposes learning the differentiability of the underlying

latent function, by setting g to be a Matérn kernel with different parameter values ν

from 1
2 + i, i = 0, · · · 2. The case of i = 0 corresponds to continuity and the case of

i > 0 to i times differentiability.

Finite-dimensional Feature Space Approximation For our methodology, we

are interested in having a reduced rank representation for kGS similar to Equation

(4.9). Any consistent RFF approximation of g in Equation (4.10) such that g(x−x′) ≈

φ
(r)
g (x)⊤φ

(r)
g (x′) where φ

(r)
g is an explicit feature mapping φg : X → Rr, would results

in a finite-dimensional feature space approximation for kGS (Samo, 2017). In that

case,

kGS(x,x
′) ≈

K∑
k=1

hk(x)
⊤hk(x

′)

with

hk(x) = σk φ
(r)
g (x⊙ γk)⊗

cos(ω⊤
k x)

sin(ω⊤
k x)

 (4.11)

for k = 1, . . . ,K, where ⊗ denotes the Kronecker product.

To be consistent with previous notations, we define kGS(x,x
′) ≈ φ(r)(x)⊤φ(r)(x′)
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Table 4.1: Common Stationary distance-dependent kernels and their duals, where
Γ(·) is the Gamma function and Kν(·) is a modified Bessel function.

Name Kernel function k(τ ) Spectral density S(z)

Gaussian exp
(
− ||τ⊘ℓ||2

2

) ∏d
i=1 ℓi

(2π)d/2
exp

(
− ||z⊙ℓ||2

2

)
Matérn(ν) 21−ν

Γ(ν)

(√
2ντ
ℓ

)ν
Kν(

√
2ντ
ℓ ) Γ(ν+d/2)ℓd

Γ(ν)(2νπ)d/2

(
1 + ℓ

2ν ||z||
2
)−(ν+d/2)

where φ(r)(x) is a feature mapping φ(r)(x) : X → R4rK satisfying

φ(r)(x) = [h1(x)
⊤, · · · , hK(x)⊤]⊤. (4.12)

Comparing the RFF in Equation (4.8) with those in Equation (4.12), we observe that

the latter appears as a vector comprising both ‘cos-sin’ and ‘cos-cos’ product terms.

These terms are parametrized by d-dimensional vectors {ωk}Kk=1 and {γk}Kk=1, which

serve as hyperparameters and are optimized during fitting. Of particular note, when

all {γk}Kk=1 are set to vectors of ones entries, {ωk}Kk=1 to zero vectors, and the scale

parameter σk to 1/
√
K, we achieve a finite-dimensional feature space that delivers an

equivalent kernel approximation to that of RFF in Equation (4.7).

4.3.3 Sparse spectral Permanental processes (SSPP)

Using RFFs for the GP approximation leads to a so-called sparse spectrum GP, first

proposed by Lázaro-Gredilla et al. (2010) in the context of GP regression. Sparse

spectrum GPs are GPs defined with the kernel induced by the feature map in Equa-

tions (4.9) or (4.12), k(r)(x,x′) = φ(r)(x)⊤φ(r)(x′).

The resulting approximate Gaussian process can be written in terms of a new
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r-size latent vector

f (r)(x) ≈ w(r)⊤φ(r)(x) where w(r) ∼ N (w(r)|0, Ir). (4.13)

We define a permanental process with the spectral approximation of Equation

(4.13), in which the intensity vector f follows a similar linear form with feature vector

given by Equations (4.9) or (4.12). We refer to it as the Sparse Spectral Permanental

Process (SSPP) when using the feature map (4.9) or Generalized Sparse Spectral

Permanental Process (GSSPP) when using the feature map (4.12).

In both cases, a tractable expression can be obtained for the integral term in the

likelihood, now defined as
∫
B λ(x) dx :=

∫
B(f(x) + β)2 dx, as follows:
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Proposition 4.3.3. (with proof in sections C.2 and C.3 of Appendix C) Under the

GP approximation of Equation (4.13), the integral expression
∫
B λ(x) dx can be ex-

pressed as

∫
B
λ(x) dx = w(r)⊤M(r)w(r)

+ 2β w(r)⊤m(r) + β2|B| (4.14)

where M(r) is an r × r matrix with i, j entries defined as

M
(r)
i,j :=

∫
B2

φ
(r)
i (x)φ

(r)
j (x) dx (4.15)

for i, j = 1, · · · , r and m(r) is a r-vector with entries

m
(r)
i :=

∫
B
φ

(r)
i (x) dx. (4.16)

for i = 1, · · · , r. Final expressions for M(r) and m(r) are provided in Appendix C.

The solution of Proposition 4.3.3 shares similarities with Warren et al. (2022) ap-

proach, who utilized Random Fourier Features (RFF) in Bayesian Quadrature (BQ).

However, our result also covers the calculation of
∫
f2(x)dx and applies to the feature

map of a generalized kernel, with the feature map of standard RFF being a specific

instance.

4.4 Inference

Adopting the sparse spectral GP, f (r) assumes the linear form of Equation (4.13)

for weight vector w(r) with independently-distributed standard Gaussian elements.

Moreover, the integral in Equation (4.14) reduces to a quadratic form. We also define

the model hyperparameters Θ to be the parameters of the kernel function together

with the offset term β. More precisely, for SSPP, the hyperparameters consist of

Θ := (σ, ℓ, β), while for GSSPP, Θ := ({σk}Kk=1, {ωk}Kk=1, {γk}Kk=1, β).
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The (non-log) likelihood function in Equation (3.22) therefore becomes

log p(X|w(r),Θ) =

−w(r)⊤M(r)w(r) − 2β w(r)⊤m(r) − β2|B|

+
N∑
i=1

log(|w(r)⊤φ(r)(xi) + β|2). (4.17)

where M(r) and m(r) are the matrix and vector terms from proposition 4.3.3. We

can compute the log-likelihood function in O(r2N), i.e. linearly in N . The log of the

joint-distribution over w(r) and X is then

log p(w(r),X|Θ) = log p(X|w(r),Θ) + log p(w(r))

= log p(X|w(r),Θ)− 1

2
w(r)⊤w(r) + C (4.18)

for some constant C, where p(w(r)) = N (w(r)|0, Ir) denotes the prior distribution

over w(r).

4.4.1 Laplace approximation

The latent posterior p(w(r)|X,Θ) induced from Equation (4.18) is approximated using

Laplace’s method. In this context, Laplace’s method refers to a Gaussian approxima-

tion obtained from a second-order Taylor expansion of log p(w(r)|X,Θ) around the

mode of the posterior. This yields

p(w(r)|X,Θ) ≈ N (w(r)|ŵ(r),Q)

:= q(w(r)|X,Θ) (4.19)

where ŵ(r) := argmaxw(r) p(w(r)|X,Θ) is the mode of the latent posterior and Q is

chosen to be the negative inverse Hessian of the true posterior at that point.
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The gradient and the Hessian of the true posterior with respect to w(r) are

∇w(r) log p(w(r)|X,Θ) = − (2M(r) + Ir)w
(r)

− 2β m(r) + 2
N∑
i=1

φ(r)(xi)

w(r)⊤φ(r)(xi) + β

∇2
w(r) log p(w

(r)|X,Θ) = − (2M(r) + Ir)

− 2
N∑
i=1

φ(r)(xi)φ
(r)(xi)

⊤

(w(r)⊤φ(r)(xi) + β)2
.

The mode ŵ(r) must satisfy the stationary constraint

∇w(r) log p(w(r)|X,Θ)|w(r)=ŵ(r) = 0,

that implies

ŵ(r) =(
M(r) +

1

2
Ir

)−1
(

N∑
i=1

φ(r)(xi)

w(r)⊤φ(r)(xi) + β
− β m(r)

)
. (4.20)

Equation (4.20) cannot be solved analytically. Instead, we estimate ŵ(r) iteratively

using Newton-Raphson method, with step

w(r)new = w(r) − (∇2
w(r) log p(w

(r)))−1∇w(r) log p(w(r)). (4.21)

The precision matrix Q−1 is then given by −∇2
w(r) log p(w(r)|X,Θ)|w(r)=ŵ(r) .
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4.4.2 Model selection

We first derive a marginal likelihood approximation similar to Walder and Bishop

(2017, Section 4.1.6).

log p(X|Θ)

= log p(ŵ(r),X|Θ)− log p(ŵ(r)|X,Θ)

≈ log p(ŵ(r),X|Θ)− log q(ŵ(r)|X,Θ)

=− ŵ(r)⊤M(r)ŵ(r) − 2β ŵ(r)⊤m(r) − β2|B|

+

N∑
i=1

log(|ŵ(r)⊤φ(r)(xi) + β|2)

− 1

2
ŵ(r)⊤ŵ(r) +

1

2
log |Q|+ N

2
log(2π) (4.22)

since the quadratic term of log q(ŵ(r)|X,Θ) cancels out.

We tune the hyperparameters Θ by maximizing Equation (4.22). The model

selection is facilitated by the fact that the gradient of the marginal likelihood in

Equation (4.22) with respect to Θ can be easily expressed. The terms M(r), m(r) and

φ(r)(·) are functions of the hyperparameters Θ. The mode ŵ(r) is also a function of

Θ.

The partial derivatives of the marginal likelihood with respect to Θ is obtained

using the chain rule,

∇Θi log p(x|Θ) =
∂ log p(x|Θ)

∂Θi

∣∣∣
explicit

+
r∑

j=1

∂ log p(X|Θ)

∂ŵj

∂ŵj

∂Θi
. (4.23)

Expressions for the terms ∂ log p(X|Θ)
∂Θj

, ∂ log p(X|Θ)
∂ŵj

and ∂ŵ(r)

∂Θi
above are given in the next

section, requiring a full mode search within each iterative hyperparameters update.

In the current work, we note that assuming ∂ŵ(r)

∂Θi
= 0 and alternating independent

updates for the mode in Equation (4.21) and the hyperparameters in Equation (4.23)

provides faster and yet acceptable results.
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Algorithm 2 Compute the mode ŵ(r) and the hyperparameters Θ

1: input: data X

2: initialize Θ0 and ŵ
(r)
0

3: for t = 1 to T do
4: compute M(r) and φ(r)(X)

5: ŵ
(r)
t := mode(p(w(r)|X,Θ), ŵ

(r)
t−1) {locate posterior mode using Equation

(4.21) with initial value ŵ
(r)
t−1}

6: f̂ := φ(r)(X)ŵ
(r)
t + β

7: V := diag(f̂−1)φ(r)(X)
8: Q−1 := 2M(r) + Ir + 2V⊤V {precision matrix Q−1 =

−∇2
w(r) log p(w

(r)|X,Θ)|w(r)=ŵ(r)}
9: compute the gradient g from Algorithm 8

10: Θt ← update(Θt−1,g)
11: end for
12: return ŵ

(r)
T (mode) and ΘT (hyperparameters)

Marginal likelihodd derivatives

We now express the gradient of the marginal likelihood log p(X|Θ) with respect to

the hyperparameters Θ. Using the chain rule,

∇Θi log p(X|Θ) =
∂ log p(X|Θ)

∂Θi

∣∣∣
explicit

+
r∑

j=1

∂ log p(X|Θ)

∂ŵj

∂ŵj

∂Θi
. (4.24)

The first term of Equation (4.24) can be solved as

∂ log p(X|Θ)

∂Θj

∣∣∣
explicit

= −ŵ(r)⊤ ∂M(r)

∂Θj
ŵ(r) + 2

N∑
i=1

ŵ(r)⊤ ∂φ(r)(xi)
∂Θj

ŵ(r)⊤φ(r)(xi)
+

1

2
tr(Q−1 ∂Q

∂Θj
)

(4.25)

where Q−1 = −∇2
w(r) log p(w(r)|X,Θ)|w(r)=ŵ(r) is the precision matrix expressed in
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Algorithm 3 Compute the mode ŵ(r) and the hyperparameters Θ with independent
updates

1: input: data X

2: initialize Θ0 and ŵ
(r)
0

3: for t = 1 to T do
4: compute M(r) and φ(r)(X)

5: ŵ
(r)
t ← ŵ

(r)
t {update the posterior mode using one iteration of Equation (4.21)}

6: f̂ := φ(r)(X)ŵ
(r)
t + β

7: V := diag(f̂−1)φ(r)(X)
8: Q−1 := 2M(r) + Ir + 2V⊤V {precision matrix }
9: compute the gradient dp

dΘ from Algorithm 8 (line 18)

10: Θt ← update(Θt−1,
dp
dΘ)

11: end for
12: return ŵ

(r)
T (mode) and ΘT (hyperparameters)

Section 4.4.1. The last term of Equation (4.25) can be expressed as

1

2
tr(Q−1 ∂Q

∂Θj
) = −1

2
tr(

∂Q−1

∂Θj
Q)

= −tr

(
∂M(r)

∂Θj
Q+

∂

∂Θj

[
N∑
i=1

φ(xi)φ(xi)
⊤

(w⊤φ(xi))2

]
Q

)

= −tr

(
∂M(r)

∂Θj
Q

)
−

N∑
i=1

2

(ŵ(r)⊤φ(xi))2

[
φ(xi)

⊤Q
∂ φ(xi)

∂Θj

]

+ 2
N∑
i=1

ŵ(r)⊤ ∂φ(xi)
∂θj

(ŵ(r)⊤φ(xi))3

[
φ(xi)

⊤Q φ(xi)
]

(4.26)

The ∂ log p(X|Θ)
∂ŵj

terms of Equation (4.24) is

∂ log p(X|Θ)

∂ŵj
= − ∂ log p(ŵ(r),X|Θ)

∂ŵj︸ ︷︷ ︸
=0

+
1

2
tr(Q−1∂Q

∂ŵ j
)

= −1

2
tr(

∂ Q−1

∂ŵj
Q)

= −tr

(
∂

∂ŵj

[
N∑
i=1

φ(xi)φ(xi)
⊤

(ŵ(r)⊤φ(xi))2

]
Q

)

= 2

N∑
i=1

φj(xi)

(ŵ(r)⊤φ(xi))3

[
φ(xi)

⊤Q φ(xi)
]

(4.27)

98



4. Sparse spectral Bayesian Permanental process with generalized kernel

Algorithm 4 Compute the log marginal likelihood derivatives

1: input: X (inputs), spectral locations and hyper-parameters Θ, posterior mode
ŵ(r), precision matrix Q−1, r × r “integral” matrix M(r), N × r features matrix
φ(r)(X)

2: compute ∇M(r), the dim(Θ̃) × r × r tensor of partial derivatives of M(r) with
respect to Θ̃

3: compute ∇φ(r)(X), the dim(Θ̃) ×N × r tensor of partial derivatives of φ(r)(X)
with respect to Θ̃

4: f̂ := φ(r)(X)ŵ(r)

5: L = cholesky(Q−1) {Solve LL⊤ = Q−1}
6: Cφ := L \φ(r)(X)
7: C∇φ := L \ ∇φ(r)(X)
8: rφ := (Cφ ∗Cφ)1r
9: R∇φ = (Cφ ∗C∇φ)1r

10: S := ∇φ(r)(X)ŵ(r)

11: E := (S diag(f̂−2)) ∗φ(r)(X).

12: sintegral = ŵ(r)⊤∇M(r)ŵ(r)

13: sdata = 2 (S diag(f̂−1))1N
14: s1 = tr(L⊤ \ (L \ ∇M(r)))
15: s2 = 2 (R∇φ diag(f̂−2))1N
16: s3 = 2(S diag(f̂−3))rφ
17: v := diag(f̂−1)∇φ(r)(X)− 1⊤NE {Equation (4.28)}

18:
dp
dΘ := sdata − sintegral − s1 − s2 + s3 { Equation (4.25)}

19:
dp
dw := 2φ(r)(X)⊤diag(f̂−3)rφ {Equation (4.27)}

20: dW
dΘ := 2( L \ (L⊤ \ (∇M(r)ŵ(r) − v))) {Equation (4.29)}

21: g = dp
dΘ + dW

dΘ
dp
dw {Equation (4.24)}

22: return g (dim(Θ̃)-vector of partial derivatives)

where, in the first line, we have imposed stationarity using∇w(r) log p(w(r)|X,Θ)|w(r)=ŵ(r) =

0.

We finally express the last terms ∂ŵ(r)

∂Θi
of Equation (4.24). From the expression
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of ŵ(r) in Equation (4.20). We obtain

∂ŵ(r)

∂Θj
=

∂

∂Θj

[(
M(r) +

1

2
Ir

)−1
(

N∑
i=1

φ(r)(xi)

ŵ(r)⊤φ(r)(xi)

)]

=
∂

∂Θj

[(
M(r) +

1

2
Ir

)−1
](

N∑
i=1

φ(xi)

ŵ(r)⊤φ(xi)

)

+

(
M(r) +

1

2
Ir

)−1
[

∂

∂Θj

(
N∑
i=1

φ(xi)

ŵ(r)⊤φ(xi)

)
+

∂

∂ŵ(r)

(
N∑
i=1

φ(xi)

ŵ(r)⊤φ(xi)

)
∂ŵ(r)

∂Θj

]

= −
(
M(r) +

1

2
Ir

)−1
[
∂M(r)

∂Θi
ŵ(r) − v̂ −

(
N∑
i=1

φ(xi)φ(xi)
⊤

(w⊤φ(xi))2

)
∂ŵ(r)

∂Θi

]

where

v̂ :=
∂

∂Θj

(
N∑
i=1

φ(xi)

ŵ(r)⊤φ(xi)

)
=

N∑
i=1

∂φ(xi)
∂Θj

ŵ(r)⊤φ(xi)
−

N∑
i=1

ŵ(r)⊤ ∂φ(xi)
∂Θj

(ŵ(r)⊤φ(xi))2
φ(xi) (4.28)

Thus

∂ŵ(r)

∂Θi
= −

[
M(r) +

1

2
Ir +

N∑
i=1

φ(xi)φ(xi)
⊤

(w⊤φ(xi))2

]−1 [
∂M(r)

∂Θi
ŵ(r) − v̂

]

= −2Q

[
∂M(r)

∂Θi
ŵ(r) − v̂

]

(4.29)

Implementation Details The implementation of the marginal log likelihood par-

tial derivatives with respect to the hyperparameters Θ̃ is shown in Algorithm 4. This

implementation has been preferred over an autodiff method for performance reasons.

However, the output has been thoroughly validated against an autodiff approach.

4.5 Predictive distribution

To form predictive distributions, we assume that the latent posterior is approximated

by q(w(r)|X,Θ) as in Equation (4.19).
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4.5.1 Predictive intensity distribution

For some x∗ ∈ B, the predictive distribution of f(x∗) can be deduced from Equations

(4.13) and (4.19) to be

f(x∗)|X,Θ ∼ N (f(x∗)|µ∗(x∗), σ∗(x∗)) (4.30)

where

µ∗(x∗) := ŵ(r)⊤φ(r)(x∗) (4.31)

and

σ∗(x) := φ(r)(x∗)⊤Qφ(r)(x∗). (4.32)

Given λ(·) = (f(·) + β)2 and Equation (4.30) above, we can also derive the pre-

dictive distribution of the intensity function

λ(x∗)|X,Θ ∼ Gamma(λ(x∗)|a∗(x∗), b∗(x∗)) (4.33)

with parameters

a∗(x∗) =

(
µ∗(x∗)2 + σ∗(x∗)2

)2
2σ∗(x∗)2 (2µ∗(x∗)2 + σ∗(x∗)2)

and (4.34)

b∗(x∗) =
µ∗(x∗)2 + σ∗(x∗)2

2σ∗(x∗)2 (2µ∗(x∗)2 + σ∗(x∗)2)
. (4.35)

4.5.2 Predictive expected log-likelihood

For a training set X = {xi}Ni=1 and an held-out test set X∗ = {x∗
i }N

∗
i=1, we can derive

from Equation (3.22), an approximation for the expected predictive log-likelihood

E [log p(X∗|X)] ≈ Ew(r)

[
−
∫
B
(w(r)⊤φ(r)(x) + β)2dx

]
+

N∗∑
i=1

Ew(r)

[
log(w(r)⊤φ(r)(x∗

i ) + β)2)
]
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where w(r) ∼ q(w(r)|X,Θ). The expectation over the integral term can be solved

analytically. The sum-of-expectation can be expressed using Pochhammer series,

that we approximate in practise by interpolation of a look-up table of precomputed

values. This is very similar to Lloyd et al. (2015, section 4.3). We provide more

details in Section C.4 of Appendix C.

4.6 Experiments

We benchmark the SSPP scheme introduced in Sections 4.4 and 4.5 against a Nyström-

based implementation of the LBPP scheme of Walder and Bishop (2017), a frequentist

kernel smoothing approach with edge correction (KS) (Diggle, 1985) and the varia-

tional inference scheme for point processes proposed by Lloyd et al. (2015) (VBPP).

We test the algorithms on three 1D synthetic data sets and three real data sets (one

in 1D and two in 2D). Typically, experiments conducted under the SSPP scheme do

not directly assess the stability of the RFF due to the absence of controls fixing a

dataset while rerunning the RFF. However, observing consistent gains across multiple

datasets can be considered indicative of its stability.

4.6.1 Benchmarks settings

To benchmark the algorithms, we use the following settings. Our KS implementation

uses standard kernel density estimation with truncated normal kernels to account for

domain knowledge. The kernel bandwidth parameter is estimated via grid search

using the leave-one-out log average likelihood objective of Lloyd et al. (2015). We

used a publicly-available implementation of VBPP (https://github.com/st–/vbpp).

We adopt fixed inducing points on a grid over |B|. For consistency, we also used a

constant offset β for both LBPP and VBPP implementations.

4.6.2 Performance metrics

The average test expected log-likelihood Ltest := E[log p(X∗|X)] is used as an eval-

uation metric. This is generally difficult to compute for point process models, but

is available for SSPP and LBPP (see Section 4.5). For the synthetic experiment we
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also consider the normalized L2 norm to the known ground truth intensity function

i.e. L2 := 1
|B|
(∫

B E[(λ∗(x)− λtruth(x))
2] dx

) 1
2 where λ∗(x) denotes the predictive

intensity.

4.6.3 Synthetic dataset

Three 1D simulated examples from Adams et al. (2009) are considered. The corre-

sponding intensities are defined as λ1(x) = 2 exp(−x/15) + exp(−((x− 25)/10)2) on

the interval [0, 50] for approximately 47 events per sample, λ2(x) = 5 sin(x2) + 6 on

the interval [0, 5] for approximately 36 events per sample and λ3(x) is a piecewise lin-

ear function shown in Figure 4.2 on the interval [0, 100] for approximately 225 events

per sample.

These intensity functions have been considered previously in the context of Gaus-

sian Cox process by Samo and Roberts (2015b), Donner and Opper (2018b), John

and Hensman (2018) and Aglietti et al. (2019). We train the models on 10 inde-

pendent samples generated from the ground truth, and evaluate the performance of

each using 50 test sets sampled independently from the ground truth. We use the

acronyms GSSPP-SE and GSSPP-m(ν) to refer to the generalized kernel variants of

SSPP as in Equation (4.10) with g set to be the Gaussian kernel and Matérn kernel

with parameter ν respectively.

We report optimal performance across models for sets of spectral points or induc-

ing points of size (denoted by p) ranging from 15 to 100. Results are given in Table

4.2 and the mean predictive intensities displayed in Figure 4.2. GSSPP and SSPP

outperform the other methods in terms of both Ltest and L2 for λ1 and λ2. Compared

to LBPP, GSSPP and SSPP perform better consistently, but with slightly increase

execution times. In a similar manner to findings for VBPP, GSSPP and SSPP fit-

ting remains up to three orders of magnitude faster than alternative MCMC-based

methods (Adams et al., 2009), see Lloyd et al. (2015) for comparison.
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(a) λ1(x)

(b) λ2(x)

(c) λ3(x)

Figure 4.2: Mean predictive intensity of the three toy intensity functions λ1, λ2 and
λ3 defined as in Adams et al. (2009). Solid colored lines represent the predictive
mean. The solid black lines shows the ground truth. The shaded areas are the 80%
credible region of the GSSPP model.
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Table 4.2: Performance of GSSPP, SSPP, KS, VBPP and LBPP schemes on three
samples of synthetic data. Values in bold-face refer to best performance, which cor-
responds to lower values of L2, but higher values of Ltest.

λ1(x) λ2(x) λ3(x)

L2 Ltest time(s) L2 Ltest time(s) L2 Ltest time(s)

GSSPP-SE 0.74 105.92 1.32 0.83 52.62 1.59 1.62 842.05 2.94
GSSPP-m12 0.71 104.23 1.88 0.86 48.58 1.42 1.98 838.17 2.54
GSSPP-m32 0.68 106.05 1.79 0.78 51.65 1.56 1.75 840.80 2.53
GSSPP-m52 0.69 106.12 1.71 0.84 52.77 1.59 1.68 841.77 2.32
SSPP 0.78 105.19 0.63 0.74 56.01 0.69 1.60 835.35 1.05

KS 1.10 102.49 0.09 0.89 58.07 0.08 3.22 834.68 0.19
VBPP 0.72 104.65 1.98 0.85 51.11 1.15 1.63 838.65 1.52
LBPP 0.81 103.29 0.06 0.96 51.76 0.07 1.87 833.31 0.13

4.6.4 Real datasets

In the following sections, we present the results of applying our proposed method to

the real-world datasets.

Coal data set The classic coal mine accidents data set is a well-known collection

of 191 fatal coal-mining accidents that occurred in Britain between March 15, 1875,

and March 22, 1962. Originally compiled by MaguireE et al. (1952), the data set

was later updated and refined by Jarrett (1979) in a revised format. This data set

has been widely used to study various problems, such as changepoint analysis and

nonhomogeneous Poisson processes (Fearnhead, 2006a; Carlin et al., 1992; Adams

et al., 2009; Lloyd et al., 2015). Researchers have noted that the frequency of coal

mine accidents varied over time due to changes in safety regulations and historical

developments.

Our analysis revealed a clear correlation between the historical introduction of

safety regulations and the inferred intensity of coal mine disasters. Specifically, we

observed a significant decline in the rate of disasters from 1870 to 1890, coinciding
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with the passage of several acts by the UK parliament to improve mine worker safety.

Notably, these acts included the Coal Mines Regulation Acts of 1872 and 1887. Sim-

ilarly, we found that the inferred intensity of disasters decreased after 1950, which

could be attributed to the implementation of further safety regulations under the

Mines and Quarries Act of 1954. Previous studies on this data set have also reported

similar findings (Fearnhead, 2006a; Carlin et al., 1992; Lloyd et al., 2015).

For this data set, we evaluate predictive performance for the competing inference

schemes using 100 random partitions of the sample into train and test subsets (X

and X∗) of approximately equal size. Figure 4.3 shows the predicted mean intensity

with credible intervals. Results are presented in Table 4.3.

Table 4.3: Results on Coal data experiment with standard errors in brackets.

Coal data (1D)

Ltest time(s)

GSSPP-SE 224.44 (±0.57) 1.56

GSSPP-m12 220.80 (±0.85) 1.84

GSSPP-m32 224.25 (±0.55) 1.58

GSSPP-m52 223.84 (±0.54) 1.25

SSPP 221.23 (±0.86) 0.64

KS 219.50 (±0.33) 0.11

VBPP 221.19 (±1.34) 1.75

LBPP 218.68 (±0.87) 0.16

Bei data set The Bei data set contains information about the location of 3605 trees

of the species Beilschmiedia pendula (Lauraceae) in a 1000 by 500 meter rectangular

sampling region in the tropical rainforest of Barro Colorado Island. This data set is

part of a much larger data set that includes hundreds of thousands of trees belonging

to thousands of species (Hubbell and Foster, 1983). The Bei data set has already been
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Figure 4.3: Predictive mean intensity for the coal mine accident, with highest 80%
credible intervals.

used by Møller and Waagepetersen (2007) in the context of point process modeling.

The information contained in the Bei data set is a valuable resource for researchers

studying tropical rainforest ecology, as it can be used to test hypotheses about the

factors that influence the spatial distribution of a single species of tree in a highly

diverse ecosystem

For these data, we evaluate predictive performance using 100 random partitions

of the original sample into train and test subsamples of approximately equal size,

with p now ranging from 15 to 150. Table 4.4 presents the results. An illustration of

a single fit is provided in Figure 4.4. Additionally, Figure 4.8 shows the performances
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(a) GSSPP-SE (b) GSSPP-m32

(c) GSSPP-m12 (d) SSPP

(e) VBPP (f) LBPP

Figure 4.4: Heat map of the predictive mean intensity with p = 150 for the Bei data
set. The black dots are the 3605 input data points.
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Table 4.4: Results on Bei data experiment with standard errors in brackets.

Beil data (2D)

Ltest time(s)

GSSPP-SE 763.49 (±3.81) 20.48

GSSPP-m12 760.82 (±4.31) 20.31

GSSPP-m32 764.73 (±2.60) 20.85

GSSPP-m52 763.82 (±1.00) 20.55

SSPP 751.50 (±2.55) 17.54

KS 735.78 (±1.49) 4.22

VBPP 757.95 (±3.14) 28.41

LBPP 711.72 (±1.35) 1.35

per number of spectral points or inducing points.

Porto Taxi data set The Porto Taxi data set (Moreira-Matias et al., 2013) is the

third data set that we analyze in this study. It consists of 1.7× 106 taxi journey tra-

jectories that took place in Porto, Portugal, between 2013 and 2014, including pickup

and drop-off locations and timestamps. Although Porto has two taxi companies, each

operating a fleet, the authors of the data set used information only from the largest

company, which had 441 registered taxis equipped with mobile data terminals.

Porto is a medium-sized urban area with a population of 1.3 million, and accord-

ing to a recent aerial survey of the road traffic of the city (Moreira-Matias et al.,

2013; Ferreira et al., 2009), the number of vacant taxis is greater than the passenger

demand, resulting in intense competition between the two companies and drivers.

The regulations in place prohibit drivers from randomly searching for passengers and

require them to select one of the 63 available taxi stands in the city and wait for

the next service immediately after dropping off their last passenger. A map of the

stand spatial distribution is presented in the Figure 4.5. The data set provides valu-
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Figure 4.5: Taxi Stand spatial distribution over the city of Porto, Portugal. Graph
presented is obtained from Moreira-Matias et al. (2013, section 4).

able insights into the urban mobility patterns of the city. Researchers have used this

data set to explore various aspects of urban mobility. For example, Aglietti et al.

(2019) and John and Hensman (2018) leveraged the data set to test their Cox process

methodology.

We consider the pick-up locations as observations of a point process. As in Aglietti

et al. (2019), we restrict the analysis to 7000 events selected with (latitude, longitude)

pairs bounded by (41.147,−8.58) and (41.18,−8.65). We select 1400 events at random

as training set and use the rest as testing set. We set p ranging from 15 to 200 Table

4.5 presents the results. Figure 4.7 illustrates a single fit to the full data set for four

models. Figure 4.8 shows the performances per number of spectral points or inducing

points.

For each of the real-data applications, GSSPP performs best. The average fit-

ting time using GSSPP is comparable to that of VBPP. Figure 4.3 shows the effect

of different choice of GSSPP kernel function g. When choosing g to be a Matérn

kernel, with parameter ν, spectral points z are drawn from a Student-t distribution

with 2ν degree of freedom as discussed in Section C.2 of Appendix C. Compared to

GSSPP-SE, these models tend to produce feature mappings with larger coefficients
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(a) (b)

Figure 4.6: Sample of trajectories for the Taxi data, with 20,000 random pick-up
events selected. The light blue dots indicate the input points, while the red rectangle
represents the window with (latitude, longitude) pairs bounded by (41.147,−8.58)
and (41.18,−8.65) considered in our experiments.

Table 4.5: Results on Taxi data experiment with standard errors in brackets.

Taxi data (2D)

Ltest time(s)

GSSPP-SE 278.54 (±1.64) 23.91

GSSPP-m12 283.23 (±1.11) 23.86

GSSPP-m32 280.48 (±0.72) 19.60

GSSPP-m52 281.18 (±1.43) 23.94

SSPP 268.32 (±0.65) 12.13

KS 262.13 (±0.26) 2.55

VBPP 281.02 (±0.63) 20.45

LBPP 254.45 (±0.17) 1.04

for trigonometric components; hence the resulting intensity appears less smooth.

4.7 Conclusion

We introduce a novel Bayesian framework to infer the intensity function of a perma-

nental process. Our approach uses a Laplace-based inference exploiting generalized
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(a) GSSPP-m12 (b) SSPP

(c) VBPP (d) LBPP

Figure 4.7: Heat map of the predictive mean intensity for the Taxi data set scaled to
a unit square. The black dots are the input data points.
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(a) Taxi data

(b) Bei data

Figure 4.8: Average normalized test expected log-likelihood (Ltest) of the different
methods on 2D real data, as a function of the number of spectral points or inducing
points.

113



4. Sparse spectral Bayesian Permanental process with generalized kernel

kernels and random Fourier features (RFFs). The approach requires no discretization

of the domain, allows kernel designs, and provides better predictive accuracy than the

alternative Laplace-based approach of Walder and Bishop (2017). The performance

of our scheme also compares favorably with other standard methods on both real

temporal and large spatial data sets.
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Chapter 5

Background review : Gaussian

Process time series models

Temporal dynamics are ubiquitous in numerous domain, encompassing fields such as

biology, engineering, econometrics, and the social sciences. These dynamics reflect

the ever-evolving and changing nature of systems over time. Time series data serves

as a crucial instrument to understand these temporal phenomena. Formally, time

series data are defined as a mapping time (t ∈ T ) to measurements (xt ∈ R), either

in discrete (T = Z) or continuous (T = R) time, depending on sampling frequency

and precision. The primary objective of time series analysis is to uncover the under-

lying relationships among data points and to facilitate predictive modeling of future

observations.

Conventional time series modeling relies on probabilistic models marked by strin-

gent assumptions. When dealing with dynamically dependent data, practitioners

commonly turn to linear models due to their computational simplicity and approx-

imation capabilities. The autoregressive (AR) and state space models (SSM) are

notable examples. AR models project future values as linear combinations of past

values, possibly with external factors. They extend into autoregressive moving av-

erage (ARMA) models when a moving average component (MA) is incorporated,

eventually converging to AR models under specific conditions (notably with a suffi-

ciently large lag parameter) (Brockwell and Davis, 2016). In contrast, SSM treats
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time series as a latent process evolving over time under underlying state dynamics

and measurement equations. Past values inform latent state estimates, facilitating

predictions of future values.

However, modeling dynamically dependent data presents unique challenges that

simplistic probabilistic models someties fail to address. A significant challenge is

the presence of nonlinearity, as real-world phenomena frequently exhibit intricate

nonlinear dependencies, adding complexity to the modeling process. To tackle this

challenge, researchers have developed parametric methods tailored to nonlinear dy-

namics. These methods encompass the use of basis function expansion, nonlinear

extensions of AR models (e.g., Threshold Autoregressive Models (Tong and Lim,

1980) or Markov Switching Models (Hamilton, 1989)), and extensions of state space

models (e.g., Extended Kalman filter (Athans et al., 1968; Julier et al., 1995)).

A more recent approach involves extending state space models and AR models to

GPs. GPs offer enhanced flexibility by eliminating the need for explicit parameteriza-

tion. They adeptly capture nonlinear paterns within time serie data while providing

analytical predictive densities under reasonable assumptions. This presents a contrast

to many nonlinear Bayesian approaches for predictive density estimation, which often

rely on computationally demanding techniques such as Monte Carlo sampling, local

expansions, or variational methods.

Another significant challenge in working with time series data is non-stationarity,

which involves abrupt changes in generative parameters. The failure to detect these

specific change points, where the underlying distribution undergoes shifts, can pro-

foundly disrupt the predictive performance of stationary parametric models. Common

models used in Change point detection (CPD) include Poisson processes with varying

intensity (Ritov et al., 2002), Gaussian models with changing variance (Johnson et al.,

2003), and Markov models with time-varying transition matrices (Braun and Müller,

1998). These methods have demonstrated their value across various domains, includ-

ing finance Chib (1998); Koop and Potter (2004); Kummerfeld and Danks (2013),

quality control Aroian and Levene (1950), climate modelling Manogaran and Lopez

(2018), cybersecurity Polunchenko et al. (2012), genetics Caron et al. (2012a) and
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speech recognition Panda and Nayak (2016).

Bayesian Online Change Point Detection (BOCPD) methods stands out due to

their fully Bayesian methodology for change point analysis, which bypasses the need

for approximate inference. It was independently introduced by Adams and MacKay

(2007) and Fearnhead and Liu (2007). Traditionally, Bayesian approaches to Change

Point Detection (CPD) primarily relied on retrospective inference techniques, often

resorting to segmentation methods to obtain samples from the posterior distribution,

which represents the likelihood of change point locations Barry and Hartigan (1993);

Green (1995); Xuan and Murphy (2007). In contrast, BOCPD offers real-time or

online inference by continuously generating a predictive distribution for the next

data point, considering the already observed information.

BOCPD has naturally been extended to incorporate GP-based underlying time

series models, as proposed by Saatçi et al. (2010), addressing the non-stationarity

issue while allowing for flexible and nonlinear dependencies. In subsequent sections of

this document, we introduce an enhanced version of Saatçi et al. (2010)’s approach,

aimed at improving both robustness and computational efficiency while enhancing

prediction quality. This chapter provides a comprehensive review of prior research,

setting the stage for our unique contribution.

In Section 5.1, we thoroughly delve into time series modeling with GPs, beginning

with an introduction to two primary approaches for GP-based time series modeling:

the GP time series model (GPTS) and the Gaussian Process Autoregressive (GPAR)

models. Our exploration will provide a comprehensive analysis of their distinctive

features. Moving on to Section 5.2, we shift our focus to the core principles of BOCPD.

This section offers an understanding of BOCPD and further examines its GP-based

extensions, as originally proposed by Saatçi et al. (2010). These will serve as essential

building blocks and benchmarks for assessing our contribution.
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5.1 GP time series

GP-based time series models leverage the inherent flexibility of GPs to adeptly cap-

ture intricate temporal dependencies within data, while concurrently facilitating the

application of Bayesian principles to the domain of time series modeling. This sec-

tion serves to provide a formal exposition and analysis of several GP-based time series

models, which will play an integral role in subsequent sections and the forthcoming

chapter.

Firstly, in Section 5.1.1, we introduce the GPTS model (Roberts et al., 2013).

The GPTS model considers the temporal index as an input variable and possesses

the noteworthy attribute of generalizing numerous classical linear models, encom-

passing MA, AR, ARMA, and Kalman filter classes. Our discussion will delve into

the intricacies of this generalization. Subsequently, in Section 5.1.2, we present the

GPAR model (Quiñonero-Candela et al., 2003), an adaptation of the autoregressive

model within the Gaussian Process framework. Lastly, in Section , we offer a concise

presentation of GP-based state space models. Although slightly beyond the primary

scope of our work, we include it for completeness.

5.1.1 GPTS

The Gaussian Process Time Series (GPTS) model, initially introduced by Roberts

et al. (2013), treats the time index t ∈ [1, T ] as an input variable. Given a sequence

of observations x1:T = {xi}Ti=1, the GPTS model takes the following form:

xt = f(t) + εt. (5.1)

Here, f is a Gaussian process with a mean of zero and covariance function k, i.e.,

f ∼ GP(0, k), and εt is Gaussian noise with zero mean and standard deviation σn,

i.e., εt ∼ N (εt|0, σn). An illustration of the model is provided in Figure 5.1.

Numerous approaches have been proposed in the literature for designing the GPTS

model. One approach involves treating the problem as a regression task and using
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a combination of Gaussian and periodic kernels to account for time-dependent de-

cay and periodicity in the signal, respectively (Roberts et al., 2013). By combining

these kernels, the GPTS model effectively captures underlying patterns and dynamics

within time series data.

Notably, GPTS exhibits distinctive attributes. First, as a GP, GPTS inherently

facilitates principled Bayesian inference with tractable posterior and predictive dis-

tributions. Second, the GPTS prior can be seen as a generalization of other classical

linear approaches in time series modeling, such as AR models, MA models, and the

Kalman filter for state-space modeling. Many of these linear models can be viewed

as instances of GPTS with specific covariance functions (Murray-Smith and Girard,

2001; Turner, 2011) 1. Finally, it is crucial to recognize that GPTS is fundamentally

a linear model. Consequently, akin to other linear models, GPTS faces a significant

limitation — it cannot effectively capture nonlinear dynamics.

We now briefly discuss the correspondence between GPTS and linear models,

following the content and notation introduced by Turner (2011, Chapter 3). While

the intricacies of these linear models are beyond the scope of this thesis, readers

interested in further understanding can refer to time series modeling textbooks, such

as Box et al. (1994); Brockwell and Davis (1991).

MA processes The MA model is a popular approach for modeling univariate time

series in time series analysis (Brockwell and Davis, 1991, Chapter 3). This model

posits that the output variable exhibits cross-correlalation with a distinct random

variable, which is not identical to itself. In essence, the MA model can be regarded as

a finite impulse response filter applied to white noise. The MA(∞) process is defined

as follows:

xt = µ+ σεεt +

t−1∑
i=1

miεt−i (5.2)

where µ is a constant drift, ε1:t = [ε1, · · · , εt] are i.i.d normally distributed white

noise error terms with mean 0 and variance 1, and m1:t−1 = [m1, · · · ,mt−1] denotes

1Note that this does not directly translate to the posterior, as the GPTS posterior function can
theoretically converge to non-random functions, rendering points independent, unlike in MA or AR
models.
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Figure 5.1: Graphical model for linear-Gaussian process time series model (GPTS).
The arrows directions suggest directions of influence. Grey circles represent the ob-
served variables. The bold horizontal bar represents a set of fully connected nodes.
Note that an observation xi is conditionally independent of all other nodes given the
corresponding latent variable, fi.
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the model’s parameters. We can represent the MA process more concisely as:

xt = µ+M(t, 1 : t) · ε1:t (5.3)

where M is a parameters matrix. Its t-th row, denoted as M(t, 1 : t), equals the

vector
[
(Et−1 ·m1:t−1)

⊤, σε
]
, with Et−1 being the (t− 1)× (t− 1) exchange matrix

with i, j elements

Ei,j =


1, i+ j = t

0, i+ j ̸= t.

(5.4)

In a typical MA(q) model, where the lag size is set to the last q noise terms, we set

M(t, t− q : t) to
[
(Eqm1:q)

⊤, σε
]
for all t > q.

Any MA process can be represented as a GPTS model with a suitable choice of the

covariance function. Similar to the ’weight’ view of GPs introduced in Section 2.4.3,

for a finite set of input vectors X = {xi}ni=1, a GP f ∼ GP(0, k) can be represented

using Cholesky factorization:

f(X) = chol(Kn,n)w, with w ∼ N (w|0, In) (5.5)

where Kn,n is the n× n Gram matrix with entries k(xi,xj) for i, j = 1, . . . , n.
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In the context of GPTS, where the observations correspond to the input time t,

this leads to the following representation:

xt = L(t, 1 : t)ε1:t, with ε1:t ∼ N (ε1:t|0, It) (5.6)

where L := chol(K1:t,1:t) is the t × t lower triangular matrix obtained from the

Cholesky factorization of the matrix K1:t,1:t corresponding to the first t input vectors.

To simplify the model without loss of generality, we can assume µ = 0. Therefore,

by equating Equation (5.3) and Equation (5.6), we can transform a GPTS into an

MA model and vice versa, yielding L = M =⇒ K1:t,1:t = MM⊤.

AR processes Autoregressive (AR) models are widely employed in fields such as

econometrics, signal processing, and statistics for describing time-varying processes.

The fundamental concept behind AR models is that the current value of a time series

is determined by its past values and a stochastic term. Mathematically, an AR(∞)

process can be represented as follows:

xt = µ+ σεεt +
t−1∑
i=1

aixt−i (5.7)

where εt is a normally distributed white noise error term, and a1:t−1 = [a1, · · · , at−1]

are the parameters of the model. Alternatively, an AR model can be expressed in

matrix form as::

p(xt|x1:t−1) = N (xt|A(t, t− 1)x1:t−1,A(t, t)2) (5.8)

where A is a matrix of model parameters such that its t-th row, denoted as A(t, 1 : t),

is equal to the vector [(Et−1a1:t−1)
⊤, σε]. In a standard AR(p) model, the p most

recent values of the time series are used to predict the next value. To represent this,

we set A(t, t− p : t) to be equal to
[
(Ep · a1:p)⊤, σε

]
for t > p.

We can convert a GPTS model into an AR model, starting from the Cholesky
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representation of the GP:

xt = L(t, 1 : t)ε1:t

= A(t, t− 1)x1:t−1 +A(t, t)2εt

= A(t, t− 1)L(1 : t− 1, 1 : t− 1)ε1:t−1 +A(t, t)2εt.

This implies a recursive relation:

L(t, 1 : t) = [A(t, t− 1)L(1 : t− 1, 1 : t− 1), A(t, t)] . (5.9)

Finally, we can obtain the equivalent covariance matrix from the Cholesky factoriza-

tion, i.e., K1:t,1:t = LL⊤.

ARMA processes A standard ARMA(p, q) combines an AR component and an

MA component. The parameters p and q specify the number of past values and

past errors used in the model, respectively. Mathematically, the ARMA(p,q) model

is represented as:

xt = µ+ σεεt +

p∑
i=1

aixt−i +

q∑
i=1

miεt−i. (5.10)

This model can also be expressed in matrix form as:

xt = µ+ σεεt +M(t, 1 : t) · ε1:t +A(t, 1 : t− 1) · x1:t−1. (5.11)

To compute the equivalent covariance matrix, we can use the following recursive

equation:

xt = L(t, 1 : t)ε1:t

= M(t, 1 : t)ε1:t +A(t, 1 : t− 1)y1:t−1

= (M(t, 1 : t− 1) +A(t, t− 1)L(1 : t− 1, 1 : t− 1)) ε1:t−1 +M(t, t)εt (5.12)
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This allows us to compute L recursively using the following equations:

L(t, 1 : t− 1) = M(t, 1 : t− 1) +A(t, t− 1)L(1 : t− 1, 1 : t− 1)

L(t, t) = M(t, t)

Finally, the equivalent covariance matrix is obtained as before: K1:t,1:t = LL⊤.

Kalman filter In their work, Hartikainen and Sarkka (2010) demonstrated the

reformulation of GPTS as Kalman filtering and smoothing applied to linear state

space models. We provides an overview of their approach, which treats the GPTS

model as an estimation of the state of a multi-dimensional continuous-time Gauss-

Markov process.

We start by considering an m-th order scalar stochastic differential equation (SDE)

given by:

∂mf(t)

tm
+ am−1

∂m−1f(t)

tm−1
+ · · ·+ a1

∂f(t)

t
+ a0f(t) = wt (5.13)

Here, a0, · · · , am−1 are known constants, and wt denotes a white noise process with

a spectral density equal to the constant q. This equation can be expressed as a

first-order Markov process by rewriting it as:

∂ut

∂t
= F ut +Gwt (5.14)

where ut is a vector defined as ut = [f(t), ∂f(t)∂t , · · · , ∂
m−1f(t)
∂tm ]⊤ , and the matrices F

and G are given by

F =



0 1

. . .
. . .

0 1

−a0 . . . −am−2 −am−1


, G =



0

...

0

1


.

It’s worth noting that in Equation (5.14), a white noise representation is used for

SDEs. However, to conform to the standard notation for SDEs, dWt should be used

instead of wt, where Wt represents a Brownian motion.
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To obtain f(t) from ut, we define the vector H = [1, 0, · · · , 0]T ∈ Rm+1, which

picks out the first component of ut, i.e., f(t) = H⊤ut. Substituting this expression

into Equation (5.14) and applying the Fourier transform to both sides, we obtain an

expression for the spectral density S(ω) of f(t) given by:

S(ω) = H⊤(F+ iωI)−1G q G⊤ [(F− iωI)−1
]⊤

H. (5.15)

We assume that covariance function of f(t) is stationary covariance function

k(τ) = k(t − s) = k(τ) with τ = t − s. In the stationary state, i.e. after the

process has run for an infinite amount of time, the covariance function is given by

the inverse Fourier transform of S(ω), which yields

k(τ) = H⊤Σ∞ exp(F|τ |)H. (5.16)

Here Σ∞ is the stationary covariance of ut, which satisfies the matrix Riccati equa-

tion:

∂Σ∞
∂t

= FΣ∞ +Σ∞F⊤ +G q G⊤. (5.17)

To represent a given GPTS process f(t) with a stationary covariance function

k(τ) as a Markov process similar to Equation (5.14), we need to find a consistent

transition matrix F and scalar q that satisfy Equation (5.15) for the spectral density

of f . The authors show that this is possible when the spectral density of k(τ) can be

expressed as a rational function of ω2 in the form:

S(ω) ∝ (polynomial in ω2)−1. (5.18)

In this case, we can write S(ω) = H(iω) q H(−iω), where H(·) is a transfer function

and q is a scalar, similar to Equation (5.15) (with H(iω) = H⊤(F + iωI)−1G). By

applying the Fourier transform, we obtain the time-domain equation:

∂mf(t)

tm
+ hm−1

∂mf(t)

tm
+ · · ·+ h1

∂f(t)

t
+ h0f(t) = wt (5.19)
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where h0, · · · , hm−1 are the coefficients of polynomial in the denominator of H(iω)

and wt is a white noise with spectral density equal to q. Thus, we can construct a

consistent transition matrix F by setting its coefficients to h0, · · · , hm−1.

The authors provide an explicit reformulation for the Matérn class of kernel,

whose covariance function is of the form given in Equation (5.18). For the Squared

Exponential kernel, however, the spectral density cannot be expressed as a rational

function. Instead, the authors use a spectral Taylor approximation to obtain an

equivalent finite-dimensional Markov process.

We can convert the continuous-time model described in Equation (5.14) into a

discrete-time state-space model with the following process equation:

ut = At−1ut−1 + qt−1, qt−1 ∼ N (ut−1|0,Qt−1) (5.20)

where At−1 = exp(F∆t) and Qt−1 is given by the integral expression

Qt−1 =

∫ ∆t−τ

0
exp(F∆t)G q G⊤ exp(Fδt− τ)dτ.

with ∆t denoting the time difference between t and (t−1). The measurement equation

is given by

xt = H⊤ut + εt, εt ∼ N (εt|0, σn). (5.21)

We have demonstrated that GPTS can be represented as linear state space models.

Remarkably, the converse is also true: any linear state space model can be expressed

as a GPTS. To illustrate this, let’s consider a general linear state space model with a

representation akin to Equation (5.20) in discrete time or (5.14) in continuous time.

In this model, we have transition matrices F and A, as well as transition vectors G

and H. The latent process ut is modeled as an Ornstein-Uhlenbeck (OU) process.

Consequently, we can derive its stationary covariance Σ∞(s, t), which provides infor-

mation about the relationship between entries of ut and us. Furthermore, we can use

this covariance structure to express the stationary covariance for the Gaussian mea-

surements xt. Intriguingly, this equivalence is akin to having a GPTS prior, complete

126



5. Background review : Gaussian Process time series models

with a consistent kernel k(s, t).

5.1.2 GPAR

In addition to GPTS, another powerful approach to time series modeling using GPs

is the Autoregressive Gaussian Process (GPAR) (Quiñonero-Candela et al., 2003;

Turner, 2011). A GPAR model of order p incorporates the preceding p values x1:t−1

as inputs at time t, leading to the following equation:

xt = f(xt−p:t−1) + εt (5.22)

Here, as in GPTS, the function f follows a GP with a zero mean and covariance

function k, denoted as f ∼ GP(0, k). Additionally, εt represents Gaussian noise with

a mean of zero and standard deviation σn, signifying εt ∼ N (εt|0, σn). This GPAR

formulation can be seen as a specific instance of GP-based Nonlinear AutoRegressive

models with eXogenous inputs (GP-NARX), where exogenous inputs are incorporated

into the model (Kocijan et al., 2005; Ažman and Kocijan, 2011; Worden and Green,

2014; Worden et al., 2018).

An illustration of this model is presented in Figure 5.2. The model depicted in the

graph follows a second-order autoregressive structure, meaning each latent variable fi

depends on the previous two observed variables xi−1 and xi−2, as well as the previous

latent functions. An observation xi is conditionally independent of all other nodes

given the corresponding latent variable fi.

The GPAR methodology is often regarded as more versatile than GPTS. While

GPTS can be viewed as a linear AR time series model, GPAR is able to capture nonlin-

ear relationships, making it better suited for modeling complex dynamics. However,

it’s important to acknowledge that GPAR comes with a higher computational cost

compared to GPTS. Furthermore, GPTS retains some elegant properties that are not

preserved when using GPAR. Specifically, GPAR assumes directionality in the dy-

namics, which may not be suitable for reversible physical systems. Moreover, GPTS

can handle continuous time, whereas GPAR is limited to cases where observations
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Figure 5.2: Graphical model for second order auto-regressive Gaussian process time
serie model (GPAR). The arrows directions suggest directions of influence. Grey
circles represent the observed variables. The bold horizontal bar represents a set of
fully connected nodes. Note that an observation xi is conditionally independent of
all other nodes given the corresponding latent variable, fi.
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are uniformly sampled.

Numerous inference methods have been proposed in the literature for GPAR.

Gregorcic and Lightbody (2002) and Kocijan et al. (2005) introduced inference tech-

niques that maximize the marginal likelihood p(x1:T ) =
∏T

t=1 p(xt|x1:t−1). Other

studies, such as those by Quiñonero-Candela et al. (2003) and Girard et al. (2002),

have explored GP-NARX models with uncertain inputs for multi-step ahead forecast-

ing, enabling the propagation of predictive uncertainty over several time steps. More

recently, the GP-NARX approach for multi-step ahead prediction has been combined

with different sparse GP approximations Gutjahr et al. (2012) or variational GP

techniques to overcome computational challenges associated with large datasets.

5.1.3 GP-SSM

State space models (SSMs) have become a fundamental tool for analyzing time series

data. These models propose that the observed time series results from an underlying

process involving hidden or latent states that evolve over time in accordance with

specific dynamics and measurement equations. The foundational linear SSMs with

Gaussian noise were initially introduced by Kalman (1960). Subsequently, researchers

have explored various extensions to accommodate non-linear and non-Gaussian sce-

narios.

One notable extension involves the integration of Gaussian processes to introduce

non-linear functions into SSMs, giving rise to what are known as Gaussian Process
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Figure 5.3: Graphical model for Gaussian process state-space model (GP-SSM). The
arrows directions suggest directions of influence. Grey circles represent the observed
variables. The bold horizontal bar represents a set of fully connected nodes. Note
that an observation xi is conditionally independent of all other nodes given the cor-
responding latent variable, gi.
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State Space Models (GP-SSMs) (Wang et al., 2005). GP-SSMs are characterized by

system dynamics expressed as follows:

ut = f(ut−1) + εf

xt = g(ut) + εg.

In this formulation, u1:T represents a latent state, and a Gaussian process prior is

imposed on the function f . The noise terms εf and εg are assumed to follow Gaussian

distributions. For a visual representation of the model, please refer to Figure 5.3.

Various methodologies have been proposed for performing inference and learning

in GP-SSMs, addressing different aspects of state estimation and system identifica-

tion. For real-time state estimation, Ko and Fox (2009) and Deisenroth et al. (2009)

introduced filtering methods, which aim to deduce the current system state based on

available measurements. Techniques for estimating past states, known as smoothing,

have been explored by Deisenroth and Mohamed (2012) and Deisenroth et al. (2012).

They employ both deterministic and stochastic approximations to incorporate both

current and future observations for estimating past states.
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Learning the dynamics of GP-SSMs can be approached in different ways. Turner

et al. (2010) and Dempster et al. (1977) have employed MLE with Expectation-

Maximization (EM) approximations to identify system parameters. A more com-

prehensive Bayesian approach is presented by Frigola et al. (2013), which employs

particle sampling (PMC). A hybrid approach that combines learning and inference

has been proposed by Frigola et al. (2014b). This method utilizes variational GP

approximation and particle sampling, striking a balance between flexibility and com-

putational feasibility.

Most of these methods assume that the measurement function g is known and

parametric. An innovative approach introduced by Eleftheriadis et al. (2017) allows

for joint learning of both latent transitions and measurement functions using GP

priors through variational inference. This approach enhances modeling capabilities,

particularly in scenarios where the measurement function is not well-defined or pre-

determined.

In this section, we discussed various GP-based time series models, which, unfor-

tunately, do not accommodate non-stationarity. In the next section, we introduce

the BOCPD methodology, designed explicitly to address non-stationarity. What sets

BOCPD apart is its model-agnostic nature, allowing us to seamlessly integrate it into

our GP-based time series models. In the following chapter, we’ll explore how this

integration enhances our ability to analyze both stationary and non-stationary time

series data, offering a comprehensive and flexible approach.

5.2 Bayesian change point detection

The conventional approach to Bayesian inference for Change Point Detection (CPD),

especially when dealing with an unknown number of change points, typically in-

volves offline segmentation. In this context, the posterior distribution of change

point locations is estimated using various methods, such as Markov Chain Monte

Carlo (MCMC) (Chib, 1998), reversible jump MCMC (Green, 1995; Punskaya et al.,

2002), or direct simulation employing exact techniques for posterior means computa-
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tion (Barry and Hartigan, 1993; Liu and Lawrence, 1999; Fearnhead, 2005, 2006b).

In contrast, BOCPD, introduced by Adams and MacKay (2007) and Fearnhead

and Liu (2007), offers a unique capacity for online inference. In simpler terms,

BOCPD excels at detecting changes in data acquired incrementally over time. It

does so by constructing a predictive distribution for the next data point based on the

observed data up to the present moment. BOCPD has received considerable recent

interest, , with research efforts focusing on performance enhancement Saatçi et al.

(2010), model selection Knoblauch and Damoulas (2018), hyperparameter learning

Turner et al. (2009); Wilson et al. (2010); Caron et al. (2012a) and change point

prediction Agudelo-España et al. (2019).

In this section, we provide a concise overview of the BOCPD algorithm. We start

by introducing the original iteration of BOCPD, as conceived by Adams and MacKay

(2007), which assumes that observations are independent and identically distributed

within each data segment. Notably, the algorithm has undergone significant evolution

in the literature, expanding to incorporate more advanced underlying predictive model

(UPM) that serves as base generative models.

In particular, we delve deeper into the various extensions of BOCPD introduced

by Saatçi et al. (2010), which integrate nonparametric Gaussian Process-based UPMs

to specifically capture temporal structures within data segments. Throughout this

section, we provide in-depth insights into the distinct components and procedural

steps of the algorithm, with the aim of enhancing readers’ understanding.

5.2.1 BOCPD algorithm

In BOCPD, we assume a sequence of observations x1:T = {xi}Ti=1 that can be parti-

tioned into sub-groups separated by possible change points.

Run length To quantify the time elapsed since the last change point, BOCPD

employs the concept of run length. Denoted as rt ∈ N at time t, it represents the

131



5. Background review : Gaussian Process time series models

length of the current run at time t+ and follows this rule:

rt =


0, if changepoint occurs at time t+

rt−1 + 1, otherwise.

(5.23)

The run length increases by one or resets to zero when a changepoint occurs. If rt =

n > 0, then xt+1 will be the (n+ 1)-th instance of an existing run (xt−rt+1, · · · , xt).

On the other hand, if rt = 0, it means that xt+1 is the first instance of a new run

starting at t+. We assume that r0 = 0.

The transition probabilities are modeled using a conditional changepoint prior

p(rt|rt−1). This assumes that rt is independent of everything given rt−1 and follows

this rule:

p(rt|rt−1) =


H(rt−1) if rt = 0

1−H(rt−1) if rt = rt−1 + 1

0 otherwise.

(5.24)

Here, the hazard function H(t) is calculated as:

H(τ) =
Pchange(τ)∑∞
t=τ Pchange(t)

where Pchange represents the probability distribution over the interval between change-

points. A simple case arises when Pchange(·) is a discrete exponential geometric dis-

tribution with a scale parameter of 1/h, resulting in H(τ) = h.

Predictive distribution Our primary concern is to recursively estimate the pre-

dictive distribution of the current run length rt ∈ [1, t], for each time step t within the

range [1, T ]. To calculate this predictive distribution for x1:T , BOCPD incorporates

run length variables as follows:

p(xt|x1:t−1) =
∑
rt−1

p(xt|xt−1, rt−1)p(rt−1|x1:t−1)

:=
∑
rt−1

p(xt|x(r)
t−1)p(rt−1|x1:t−1). (5.25)
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Here, x
(r)
t−1 refers to the last rt−1 observations before xt. An underlying predictive

model (UPM) is defined to evaluate the posterior predictive distribution of the next

datum given the possible previous run length, i.e., p(xt|x(r)
t−1) for all r ∈ [0, t− 1] and

t ∈ [1, T ]. The UPM serves as a base model with parameters that change for each

run length.

The procedure for inferring the run length involves recursively computing the

joint probability of the current run length rt and the observed sequence up to time t,

denoted as x1:t. Given the hazard function and the UPM, this is achieved as follows:

p(rt,x1:t) =
∑
rt−1

p(xt, rt|rt−1,x1:t−1)p(rt−1,x1:t−1)

=
∑
rt−1

p(rt|rt−1)p(xt|rt−1,x1:t−1)p(rt−1,x1:t−1)

=
∑
rt−1

p(rt|rt−1)︸ ︷︷ ︸
Hazard

p(xt|x(r)
t−1)︸ ︷︷ ︸

UPM

p(rt−1,x1:t−1)︸ ︷︷ ︸
Message

. (5.26)

The normalizing constant of p(rt|x1:t) is obtained by summing up all its evaluation

instances since rt is a discrete random variable, i.e.

p(rt|x1:t) =
p(rt,x1:t)∑
rt
p(rt,x1:t)

(5.27)

The predictive distribution of x1:T is derived by recursively computing the prob-

abilities p(rt|x1:t) for all feasible values of rt within the interval [0, t], as defined in

Equation (5.27). These computed probabilities are subsequently employed in the pre-

dictive distribution calculation outlined in Equation (5.25). The process is visually

illustrated in Figure 5.4.

Alternative formulation Some variations of the original BOCPD algorithm in

the literature employ a message passing recursion on the conditional distribution

p(rt|x1:t−1) directly, resulting in the following formulation:

p(rt|x1:t) ∝
∑
rt−1

p(rt|rt−1)︸ ︷︷ ︸
Hazard

p(xt|x(r)
t−1)︸ ︷︷ ︸

UPM

p(rt−1|x1:t−1)︸ ︷︷ ︸
Message

. (5.28)
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(a)

(b)

(c)

Figure 5.4: BOCPD model description in terms of run lenghts. Figure (a) shows
hypothetical univariate data divided by change points into three segments of lenghts
g1 = 4, g2 = 6 . Figure (b) shows rt as a function of time. Figure (c) shows the trellis
on which the message passing algorithm lives. Solid lines indicates that probability
mass is being passed “upwards”. Dotted lines indicate the possibility that the current
run is truncated and the run lenght drops to zero. The Figures are taken from Adams
and MacKay (2007).

Interestingly, the normalizing factor is equal to p(x1:t−1), which can be determined

by summing all evaluation instances over rt.This provides an immediate evaluation of

the marginal likelihood up to time step t−1, which proves beneficial for the estimation

of model hyperparameters, as presented in Section 5.2.3. Moreover, the conditional

distributions delineated in Equation (5.28) can be directly leveraged for computing

the predictive distribution outlined in Equation (5.25).
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5.2.2 Time independent UPM

In the original BOCPD algorithm (Adams and MacKay, 2007), an assumption is

made that the observations within each run length are independent and identically

distributed (i.i.d), following an exponential family distribution. This assumption,

particularly in the context of Gaussian i.i.d. observations, is referred to as TIM-

UPM, with TIM standing for time independent model.

Normal-Inverse-Gamma conjugate model For a time series x1:T = {xi}1:T ,

the prior distribution is specified as follows:

xt ∼ N (xt|µ, τ−1) (5.29)

where

µ ∼ N (µ|µ0, (τκ0)
−1) and τ ∼ Gamma(α0, β0) (5.30)

Here, η0 := (α0, β0, κ0, µ0) represents hyperparameters, and {xi}1:t are assumed inde-

pendent given µ and τ . This joint prior is referred to as the Normal-Inverse-Gamma

(NIG) distribution NIG(µ, τ |η0).

The NIG distribution possesses the conjugacy property, allowing us to compute a

conjugate posterior over parameters at time t given a series of observations within a

run length rt−1 as:

p(µ, τ |x(r)
t−1, η0) ∼ NIG(η

(r)
t ) (5.31)

where parameters η
(r)
t = (κ

(r)
t , µ

(r)
t , α

(r)
t , β

(r)
t ) can be expressed recursively as follows:

µ
(r)
t =

κ0µ0 +
∑

x
(r)
t−1

κ0 + rt−1
(5.32)

κ
(r)
t = κ0 + rt−1 (5.33)

α
(r)
t = α0 + rt−1/2 (5.34)

β
(r)
t = β0 +

1

2

∑
x
(r)
t−1

2
− 1

2rt−1

(∑
x
(r)
t−1

)2
+

κ0rt−1(
∑

x
(r)
t−1 − µ0)

2

2(κ0 + rt−1)
(5.35)
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Algorithm 5 Original BOCPD with TIM-UPM

1: for t = 1 to T do
2: Evaluate predictive probabilities:

3: π
(r)
t = p(xt|η(r)t )

Update growth probabilities:

4: p(rt = rt−1 + 1,x1:t) = p(rt−1,xt−1)π
(r)
t (1−H(rt−1))

Update change point probabilities:
5: p(rt = 0,x1:t) =

∑
rt−1

p(rt−1,x1:t−1)H(rt−1)
Perform prediction:

6: update the sample moments and parameters η
(r)
t+1 given xt

7: p(x1:t) =
∑

rt
p(rt,x1:t).

8: p(rt|x1:t−1) = p(rt,x1:t)/p(x1:t).

9: p(xt+1|x1:t−1) =
∑

rt
p(xt+1|η(r)t+1)p(rt|x1:t)

10: end for

These updates yield sufficient statistics
∑

x
(r)
t−1

2
and

∑
x
(r)
t−1), which can be stored

and updated in a streaming manner across time and run lengths.

TIM UPM Integrating over the parameters µ and τ leads to a UPM given by:

p(xt|x(r)
t−1) := p(xt|η(r)t )

∼ St2α

(
µt,

βt
αt

κt + 1

κt

)
(5.36)

where St2α denotes a Student-t distribution with 2α degrees of freedom. Note that

in our notation, η
(r)
t represents the set of parameters associated with the predictive

for xt and depends on rt−1.

Applying this predictive posterior over each run length results in Algorithms 5

and 6. Algorithm 5 corresponds to a recursion applied to Equation (5.26), as seen

in the original BOCPD (Adams and MacKay, 2007). Conversely, Algorithm 6 is a

vectorized version of BOCPD where iteration is applied to Equation (5.28).

5.2.3 GP-based UPM

As discussed, the standard BOCPD algorithm relies on the assumption that data

within each segment follows an i.i.d. distribution. However, real-world datasets often

violate this assumption, as they exhibit temporal smoothness within each regime, in-
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Algorithm 6 Vectorized BOCPD Run length estimation with TIM-UPM

1: Initialize the recursion
2: Ξ0 ← 1
3: for t = 1 to T do
4: πt ← vec({p(xt|η(r)t )}rt)
5: h← H(1 : t)

Update growth probabilities:
6: Ξt[2 : t+ 1]← Ξt−1 ⊙ πt ⊙ (1− h)

Update change point probabilities:
7: Ξt[1]←

∑
Ξt−1 ⊙ πt ⊙ h

Perform prediction:
8: p(xt|x1:t−1) =

∑
Ξt

9: Ξt ← normalized Ξt

10: p(rt|x1:t−1) = Ξt

11: update the sample moments and parameters η
(r)
t+1 given xt

12: end for
Compute the evidence

13: p(x1:T ) =
∑

ΞT

troducing dependencies between data points. This violation of the i.i.d. assumption

can lead to inaccurate change point detections. Additionally, the standard BOCPD

algorithm treats hyperparameters as fixed and known, but the algorithm’s perfor-

mance is highly sensitive to their settings.

To address these limitations, several extensions to the BOCPD algorithm have

emerged, leveraging more adaptable UPMs capable of capturing temporal dependen-

cies within each regime. For instance, Knoblauch and Damoulas (2018) introduced a

BOCPD extension that employs a linear parametric Bayesian Vector Autoregressive

(BVAR) model to describe the processes between changepoints.

Notably, Saatci et al. (2010) introduced a nonparametric UPM based on GPs. As

discussed in Section 5.1, these GP-based UPM excels in modeling intricate dynamics

and temporal smoothness within each segment of a time series, all without relying on

explicit parametric distributions. These extensions naturally build upon the GPTS,

previously described as a generalized linear model, and GPAR for capturing nonlinear

dynamics. These UPMs inherently inherit the various properties of GPTS and GPAR

discussed in previous sections (Section 5.1.1 and Section 5.1.2), respectively. We now

proceed to delve into these properties in more detail:
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GPTS-UPM Given a time series xt and a prediction target time t, the GPTS-UPM

provides a predictive distribution in the form of:

p(xt|x(r)
t−1) ∼ N (xt|mt,r, vt,r) (5.37)

where

mt,r = k⊤
∗
(
K+ σ2

nI
)−1

xt,r

vt,r = k(t, t)− k⊤
∗
(
K++σ2

nI
)−1

k∗. (5.38)

In the equations above, xt,r := xt−r+1:t−1, K is the matrix with i, j entries k(t− r +

i, t− r+ j) for i, j = 1, · · · , r− 1 and k∗ is an (r− 1)-dimensional vector with the ith

entry being k(t, t− r + i) for i = 1, · · · , r − 1.

GPAR-UPM For a GPAR-UPM of order p, where at time t, the past p values

xt−p:t−1 are considered as input, and xt as the observation, the model yields an auto-

regressive predictive distribution:

p(xt|x(r)
t−1) ∼ N (xt|mt,r, vt,r) (5.39)

where

mt,r = k⊤
∗
(
K+ σ2

nI
)−1

xt,r

vt,r = k(xt, xt)− k⊤
∗
(
K++σ2

nI
)−1

k∗. (5.40)

In these equations, xt,r = xt−r+1:t−1, Ki,j = k(xi−p+1:i,xj−p+1:j) for i, j = t −

r, · · · , t−2 and k∗ is an (r−1)-dimensional vector with the ith entry being k(xt−p:t−1,xi−p+1:i)

for i = t− r, · · · , t− 2.

Edges effects In the case of AR models, edge effects emerge when t ≤ p. To address

this, we can establish artificial initial conditions by setting xt = 0. Similarly, in the

context of GPAR-UPMs, when calculating the predictive distribution in Equation

(5.39), we nullify the subvector xt−r−p+1:t−r.
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Efficient implementation Efficient implementation is paramount to the practi-

cality of GP-based BOCPD. A straightforward GP inference approach, which retains

all run lengths, can lead to a daunting computational complexity of O(T 5) if GP

predictions are recalculated at each time step. Fortunately, several implementation

techniques have been proposed in the literature, including those by Saatçi et al.

(2010), to mitigate this computational burden.

When dealing with uniformly sampled data in GPTS-UPMs, the covariance matri-

ces exhibit a Toeplitz structure. Saatçi et al. (2010) astutely leveraged this property

to efficiently solve predictions using recursive relationships similar to the Yule-Walker

equations found in linear AR models (Golub and Van Loan, 1996). This approach

significantly reduces the computational complexity to O(T ) per step and O(T 3) in

total.

In the case of GPAR-UPMs, Saatçi et al. (2010) introduced rank one updates to

the precision matrix of the covariance matrix, allowing for vertical updates at every

time step and horizontal updates across run lengths. This optimization significantly

lowers the complexity to O(T 4).

Another valuable modification, introduced in the original BOCPD paper (Adams

and MacKay, 2007), and also employed by Saatçi et al. (2010); Knoblauch and

Damoulas (2018), involves the practice of pruning some run length probability es-

timates. This technique focuses on removing estimates with a total mass below a

specific threshold or considering only the Rmax most probable values. When com-

bined with the previously mentioned methods, this results in a running complexity

of O(R2
maxT

2) for GPAR-UPMs and O(R2
maxT ) for GPTS models.

Learning hyperparameters Hyperparameters play a pivotal role in determining

the performance of GP-based BOCPD. Their determination is a challenge in itself,

particularly in BOCPD, where a single run can be computationally intensive. These

hyperparameters are represented as Θ = (θ, σn, H(·)), with θ denoting the GP kernel

hyperparameters.

139



5. Background review : Gaussian Process time series models

(Saatçi et al., 2010, 2015) proposed to learn the hyperparameters of BOCPD by

maximizing the log marginal likelihood log p(x1:T ′ |Θ) using the derivatives of one-

step-ahead predictive likelihoods over a test set of data on a test set [0, T ′], where

T ′ < T . To achieve this, Saatçi et al. (2010) introduced the relationship

log p(x1:T ′ |Θ) = −
T ′∑
i=1

log p(xt|x1:t−1,Θ), (5.41)

They then proposed a recursive algorithm, described in (Saatçi et al., 2015), for eval-

uating the gradients ∇Θ log p(xt|x1:t−1,Θ) for t ∈ [0, T ′]. However, it’s important

to note that this approach can be computationally demanding as it requires multi-

ple BOCPD runs to obtain optimal hyperparameters. A similar approach has been

employed in Knoblauch and Damoulas (2018). We will provide a more detailed de-

scription of a modification to the BOCPD algorithm that addresses the computation

of these marginal derivatives in the next chapter.

Alternatively, Caron et al. (2012b) suggest an online method for hyperparameter

learning. This approach involves the iterative use of gradient descent, expressed as

Θt+1 = Θt + αt∇Θt log p(xt+1|x1:t) for t ∈ [0, T ]. (5.42)

This method allows for incremental learning of hyperparameters as new data points

become available.

5.3 Summary

This chapter provided an insightful exploration of time series data modeling with GPs,

with an emphasis on their significance. In contrast to conventional methods for time

series analysis, GPs derive a notable advantage from their non-parametric nature,

offering remarkable flexibility without the need for explicit probabilistic assumptions.

We introduced a range of GP-based models, including GPTS and GPAR, as power-

ful tools for addressing the challenges posed by time series data. GPTS was presented

as a general linear model, while GPAR emerged as a versatile nonlinear counterpart.
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This distinction is crucial, as it enables us to effectively tackle the issue of nonlinearity

in time series data, a challenge that traditional models often struggle with.

Additionally, we introduced BOCPD as a valuable approach for identifying changes

in statistical characteristics within time series data, especially when dealing with

non-stationary data. Our emphasis on the work of Saatçi et al. (2010) in extending

BOCPD through the incorporation of GPTS and GPAR models serves as the back-

drop for our work presented in in Chapter 6. These foundational concepts equip us

with the necessary knowledge to comprehend and appreciate our contribution dis-

cussed in the following chapter.

141



Chapter 6

Bayesian online change point

detection with Hilbert space

approximate Student-t process

In this chapter, we introduce a variant of Bayesian online change point detection

(BOCPD) with a reduced-rank Student-t process (TP) and dependent Student-t

noise, as a nonparametric time series model. Our method builds and improves upon

the state-of-the-art Gaussian process (GP) change point model benchmark of Saatçi

et al. (2010). The Student-t process generalizes the concept of a GP and hence yields

a more flexible alternative. Additionally, unlike a GP, the predictive variance explic-

itly depends on the training observations, while the use of an entangled Student-t

noise model preserves analytical tractability. Our approach also uses a Hilbert space

reduced-rank representation of the TP kernel, derived from an eigenfunction expan-

sion of the Laplace operator Solin and Särkkä (2020), to alleviate its computational

complexity. Improvements in prediction and training time are demonstrated with

real-world data sets.
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6.1 Introduction

The original BOCPD algorithm makes the assumptions that observations are i.i.d.

within each run length. In Chapter 5, we introduced an extended BOCPD approach

that incorporates a more flexible nonparametric UPM based on GPs, as proposed by

Saatçi et al. (2010). This extension includes a non-linear auto-regressive GP-based

model (GPAR) and a time-deterministic GP model (GPTS) with change points, both

of which significantly enhance predictive performance.

In this chapter, we build on the GP-based approach of Saatçi et al. (2010), in-

troducing an alternative UPM based on a Student-t process (TP) with Student-t

noise Shah et al. (2014) and Hilbert space reduced-rank kernel proposed by Solin and

Särkkä (2020). Benefiting from its fatter tails, a TP offers inherent robustness against

outliers, surpassing GPs in this regard. Specifically, in the context of BOCPD, TPs

exhibit a lower propensity for generating false alarms when detecting change points

caused by outliers. Additionally, TPs offer more adaptive predictive variance in com-

parison to GPs, adjusting more effectively to the variance of past observations. We

will explore this aspect further in Section 6.3.1. Lastly, a TP introduces greater flex-

ibility compared to a GP, as it represents the most general elliptical process with a

tractable density Shah et al. (2014)

The first mention of a TP can be found in Rasmussen and Williams (2005) and

early applications in Archambeau and Bach (2011) and Yu et al. (2007). However,

Rasmussen and Williams (2005) concluded that a TP is not practicable, due to the

intractability of the posterior when adding noise (since the Student-t distribution is

not closed under addition). TPs have received greater recent attention since Shah

et al. (2014) proposed a derivation from a Wishart prior, and introduced a dependent

Student-t noise preserving tractability. The benefit of a TP compared to a GP has

since been demonstrated for regression Shah et al. (2014); Tang et al. (2016, 2017); Li

and Ma (2021), state-space models Solin and Särkkä (2015) and Bayesian optimization

Tracey and Wolpert (2018).
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To overcome the GP computational complexity, several schemes have been pro-

posed in the literature. Reduced-rank approximation methods which approximate

the kernel Gram matrix with another matrix of smaller rank have been popular (see

Chapter 8 Rasmussen and Williams, 2005). Common examples include the Nyström

method (see Williams and Seeger, 2001b) and Random Fourier Features Rahimi

and Recht (2007). Solin and Särkkä (2020) introduced an Hilbert space method

for reduced-rank which approximates the eigendecomposition of stationary kernels

in terms of an eigenfunction expansion of the Laplace operator. In their original

paper, Solin and Särkkä (2020) adapt the method for a GP approximation referred

as HSGPs, that has been used in the context of GP regression Solin and Särkkä

(2020); Riutort-Mayol et al. (2022) and GP-based state-space models Svensson et al.

(2016); Svensson and Schön (2017). The choice of an Hilbert space approach is par-

ticularly convenient in a BOCPD context. In the approximation, features vectors are

independent of the covariance function, yielding computational advantages detailed

later.

Combining a Student-t process predictor model and Hilbert space reduced-rank

kernels, our Hilbert space TP-UPM (HSSPAR) shows systematic improvement in

predictive performance and hyperparameter learning time for real-world data sets

presented in Section 6.6.

6.2 Preliminaries

In this section, we begin by offering a concise overview of the foundational concepts

essential to understanding our research contribution. In Section 6.2.1, we breifly

revisit the basic component of BOCPD discussed in more details in Section 5.2. Ad-

ditionally, Section 6.2.2 offers a comprehensive introduction to the Student-t process,

along with an analysis of its properties when combined with Student-t noise.

6.2.1 BOCPD algorithm

Given an hazard function and an UPM, the inference about the run is done recursively

at every time step. This inference process is described by the following expressions,
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based on Equations (??) and (5.25):

p(rt|x1:t) ∝
∑
rt−1

p(rt|rt−1)︸ ︷︷ ︸
Hazard

p(xt|x(r)
t−1)︸ ︷︷ ︸

UPM

p(rt−1|x1:t−1) (6.1)

where x
(r)
t−1 indicates the last rt−1 observations prior to xt. The conditional prior,

expressed as p(rt|rt−1), is defined by Equation (5.24). The normalizing constant

of p(rt|x1:t) in Equation (6.1) is obtained by summing up all its evaluation in-

stances, since rt is a discrete random variable. The marginal predictive distribution

p(xt|x1:t−1), is subsequently determined by Equation 5.25.

As outlined in Section 5.2, Adams and MacKay (2007) adopt Gaussian i.i.d. as-

sumptions with a Normal-Inverse-Gamma prior on parameters. On the other hand,

Saatçi et al. (2010) introduced two GP UPM variants. GPTS effectively utilizes time

as an index, allowing it to adapt to irregular time intervals. Moreover, as demon-

strated in Section 5.1.1, GPTS has been shown to possess an equivalent linear AR

representation. On the other hand, GPAR, an auto-regressive UPM of order p, takes

xt−p:t−1 as input at time t. Although it imposes a uniform time step constraint,

GPAR generalizes GPTS, making it highly suitable for handling non-linearity and

modeling more complex data dynamics.

6.2.2 Student-t Processes (TP)

We review the properties of the Student-t distribution and process, which serves in

later sections as our predictive model.

Definition 6.2.1. An n-dimensional vector y is multivariate Student-t-distributed

with ν degrees of freedom, mean vector µ ∈ Rn and covariance matrix K ∈ Rn×n, if

its joint probability density is given by

St(y|µ,K, ν) =
Γ((ν + n)/2)

Γ(ν/2)((ν − 2)π)n/2|K|1/2
×(

1 +
1

ν − 2
(y − µ)⊤K−1 (y − µ)

)− ν+n
2

. (6.2)
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As for the Gaussian distribution, the conditional distribution for a multivariate

Student-t has an analytical form. The following result can be found in Kotz and

Nadarajah (2004) and Shah et al. (2014).

Lemma 6.2.2. Let y ∼ St(y|µ,K, ν) and partition y into two sub-vectors y1 ∈ Rn1

and y2 ∈ Rn2 such that µp = E [yp] and Kp|p = cov [yp,yp] for p = 1, 2. Then the

conditional density for y1|y2 has an analytical form y1|y2 ∼ St(µ1|2,K1|2, ν1|2) with

µ1|2 = K1,2K
−1
1,2(y2 − µ2 + µ1), covariance K1|2 = ν−2+β

ν−2+n2
(K1,1 − K1,2K

−1
2,2K1,2),

β = (y2 − µ2)
⊤K−1

22 (y2 − µ2) and ν1|2 = ν + n2 degrees of freedom.

TP construction As described in Shah et al. (2014), we can construct a Student-

t process by placing an inverse Wishart process prior on the kernel of a Gaussian

process. The Wishart distribution is a probability distribution over Π(n), the set of

real-valued, n× n, symmetric, positive definite matrices.

Definition 6.2.3. A random matrix Σ ∈ Π(n) is inverse Wishart distributed with

parameters ν ∈ R+, K ∈ Π(n) and we write Σ ∼ IW(ν,K) if its density is given by

p(Σ|v,K) ∝ |Σ|−
v+2n

2 exp

(
−1

2
tr(KΣ−1)

)
. (6.3)

Dawid (1981) shows that the inverse Wishart distribution is consistent under

marginalization. Thus we can defined a Wishart process for some input space X and

a positive definite function k : X × X → R.

Definition 6.2.4. The process σ is a inverse Wishart process (IWP) on X with

parameter v and kernel function k : X×X → R if for any finite collection x1, · · · , xn ∈

X , σ(x1, · · · , xn) ∼ IW(ν,K) where K ∈ Π(n) is the Gram matrix with i, j entries

k(xi, xj) for i, j = 1, . . . , n. We write σ ∼ IWP(ν, k).

For some kernel function k parametrized by θ and a mean function µ : X → R,

Shah et al. (2014) propose deriving the Student-t process f as a hierarchical model
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such that

σ ∼ IWP(ν, kθ)

f |σ ∼ GP(µ, (ν − 2)σ). (6.4)

For any collection f = (f(x1), · · · , f(xn))⊤ with µ = (µ(x1), · · · , µ(xn))⊤ and

Σ = σ(x1, · · · , xn), we see that

p(f |µ,K, v) =

∫
p(f |Σ)p(Σ|v,K)dΣ

∝
exp

(
−1

2 tr
(
K + (f−µ)(f−µ)⊤

ν−2

))
|Σ|(ν+2n+1)/2

∝
(
1 +

1

v − 2
(y − µ)⊤K−1(y − µ)

)− v+n
2

(6.5)

which is a multivariate Student-t distribution St(µ,K, ν). Since the multivariate

Student-t distribution is consistent under marginalisation, Shah et al. (2014) conclude

that Equation (6.5) is the finite-dimensional distribution of a well defined stochastic

process f . We write f ∼ T P(ν, k).

Definition 6.2.5. A random real-valued function f : X → R is said to follow a

Student-t process f ∼ T P(0, k, ν), with ν degrees of freedom, mean function µ ∈ X

and covariance function k : X × X → R, if any collection of function values has a

joint multivariate Student-t distribution such that

(f(x1), · · · , f(xn)) ∼ St(µ,K, ν) (6.6)

where K is a covariance matrix with entries Ki,j = k(xi, xj) for i, j = 1, · · · , n.

Student-t noise model Unfortunately, with a TP, adding Student-t noise removes

analytical tractability. To overcome this issue, Shah et al. (2014) and Zhang and Ye-

ung (2010) propose to add an uncorrelated but dependent noise term, which preserves

tractability.

We assume each observation in y = {yi}ni=1 is to be modelled from a latent process
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f = {f(xi)}ni=1 and a noise vector ε = {εi}ni=1 such that

yi = fi + εi for i = 1, · · · , n (6.7)

where f
ε

 ∼ St

02n,

K 0

0 σ2
nIn

 , ν

 . (6.8)

Utilizing the linear transformation properties of the multivariate Student-t distribu-

tion, applied to the expression:

y = f + ε =

[
In, In

]f
ε

 ,

we can deduce that y ∼ T P(0n,K + σn
2In, ν). Therefore, we obtain a tractable

distribution for y, simply incorporating the noise variance into the kernel. Note that

f and ε in Equation (6.8) are not independent since the scaling parameter ν has an

effect on both f and ε.

Tang et al. (2016) gives a probabilistic interpretation to this noise incorporation.

Equation (6.8) can be shown to be equivalent to a noise model following

p(ε|f , σn) ∼ St

(
ε
∣∣∣ν + n,0, σn

(
ν

ν + n

)
·
(
1 +

1

ν
f⊤K−1f

)
I

)
. (6.9)

Thus, the variance of the noise model adjusts to the data fit term f⊤K−1f present

in the noise-free model marginal log likelihood − log p(f |µ,K, v) derived from Equa-

tion (6.2.2). This means that when the noise-free model fits the data well, the added

noise will have a smaller variance, and vice versa.

Relation to GPs A TP can be seen as a generalization of a GP. As the parameter

ν approaches infinity, the GP converges to the TP in the following sense: If we have

f ∼ T P(µ, k, ν), where µ represents the mean function and k denotes the covariance

function, then the distribution of f tends towards GP(µ, k) as ν tends to infinity

(Shah et al., 2014, Lemma 2). A TP is in fact the most general elliptical process with
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Algorithm 7 BOCPD run length estimation

1: (Ξ0,∇hΞ0,∇θΞ0)← (1, 0, 0) {Initialize the recursion, set hazard and UPM deriva-
tives to 0.}

2: Compute the eigenfunctions evaluation Φ.
3: Define Ξ̃t as Ξt[2 : t+ 1].
4: for t = 1 to T do
5: (πt,∇θπt)← UPM predictive(xt, t,Φ)
6: h← H(1 : t)

Update growth probabilities:
7: Ξ̃t ← Ξt−1 ⊙ πt ⊙ (1− h)
8: ∇θΞ̃t ← (1− h)⊙ (∇θΞt−1 ⊙ πt +∇θπt ⊙ Ξt−1)
9: ∇hΞ̃t ← πt ⊙ (∇hΞt−1 ⊙ (1− h)− Ξt−1 ⊙∇hh)

Update change point probabilities:
10: Ξt[1]←

∑
Ξt−1 ⊙ πt ⊙ h

11: ∇θΞt[1]←
∑

h⊙ (∇θΞt−1 ⊙ πt +∇θπt ⊙ Ξt−1)
12: ∇hΞt[1]←

∑
πt ⊙ (∇hΞt−1 ⊙ h+ Ξt−1 ⊙∇hh)

Perform prediction:
13: p(rt|x1:t−1)← normalized Ξt.
14: end for
15: p(x1:T ) =

∑
ΞT

Compute the evidence
16: ∇p(x1:T ) = (

∑
∇hΞT ,∇θΞT )

17: return (p(x1:T ),∇p(x1:T ))

an analytically-representable density Shah et al. (2014). Furthermore, Tang et al.

(2016) argue that a TP with noise incorporated in the kernel as in Equations (6.8)

and (6.9) tends to a GP with i.i.d Gaussian noise as ν →∞.

6.3 Model

In this Section, we present two variations of our extensions. Section 6.3.1 introduces

BOCPD with TP-based UPM, while Section 6.3.3 provides a more detailed exposition

of BOCPD with Hilbert space approximate TP UPM (RRSPAR-CP).

6.3.1 BOCPD with TP-based UPM

We propose a BOCPD extension where the UPM is based on a TP process with

Student-t noise. We first introduce a TP auto-regressive model of order p where at
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time t, the past p values xt−p:t−1 are taken as input and xt as the observation, i.e.

xt = f(xt−p:t−1) + εt (6.10)

where f ∼ T P(0, k, ν) and ε is a dependent Student-t noise with scale parameter σn

described in Equation (6.8).

Interestingly, by Lemma 6.2.2, we can marginalize out the latent f , to yield an

marginal predictive distribution. This yields an auto-regressive TP-based UPM of

the form

p(xt|xt−r:t−1) ∼ St(xt|mt,r, vt,r, ν + r − 1) (6.11)

where

mt,r = k⊤
∗ K̃

−1xt,r

vt,r = αt,r

(
k(xt, xt)− k⊤

∗ K̃
−1k∗

)
(6.12)

αt,r =
v − 2 + βt,r
v − 3 + r

βt,r = x⊤
t,rK̃

−1xt,r.

Here xt,r = xt−r+1:t−1, K̃i,j = k(xi−p+1:i,xj−p+1:j) + σ2
nδi,j for i, j = t− r, · · · , t− 2,

δi,j denotes the Kronecker delta and k∗ is an (r− 1)-dimensional vector with the ith

entry being k(xt−p:t−1,xi−p+1:i) for i = t− r, · · · , t− 2.

The predictive meanmt,r has the same form as for a GP (assuming the same kernel

and hyperparameters). However, due to the differing marginal likelihood between

TP and GP, the predictive mean differs after learning the hyperparameters. Unlike a

GP, the TP model exhibits more adaptive predictive volatility based on the training

observations. The parameter βt,r explicitly depends on xt,r. When βt,r exceeds (r−1),

TP’s predictive variance surpasses that of a GP, and vice versa. In fact, assuming xt,r

is drawn from a GP prior N (0, K̃), βt,r follows a Chi-squared distribution with mean

(r − 1). Consequently, if observations have similar variance as expected under a GP

prior, TP’s covariance is comparable to that of a GP. However, significantly larger or

smaller variability in the observations leads to higher or lower posterior uncertainty
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in TP, respectively.

Note that this TP-UPM inherits the uniform time step constraint from its GPAR

counterpart. Consequently, we are limited to uniformly sampling discrete observa-

tions. At present, to our knowledge, there is no immediate solution available for

handling missing data.

6.3.2 Hilbert space approximate Student-t processes

The TP UPM in Equation (6.11) inherits the same cubic computational cost of GPs,

which is prohibitive for most applications. We propose a reduced-rank implemen-

tation of the Student-t Process UPM based on the novel Hilbert space method for

reduced-rank kernel approximation Solin and Särkkä (2020). Solin and Särkkä (2020)

obtain approximate eigendecompositions of stationary covariance functions in terms

of an eigenfunction expansion of the Laplace operator in a compact subset of Rd.

The Hilbert space reduced-rank method provides a different advantage in our case

compared to other reduced-rank approximations :

(i) The Laplace-based feature vectors are independent of the particular choice of

kernel, including the kernel hyperparameters. Gradient computation is thus

facilitated, which in turn speeds up the learning phase. We refer to Section 6.5

for more details.

(ii) The decay of the expansion coordinates is fast. Hence, a good approximation

can be obtained with relatively few basis points. As an example, Solin and

Särkkä (2020) obtains a good approximation to univariate RBF kernels with

only 12 eigenfunctions. They argue that adding more eigenfunctions has negli-

gible effect on the approximation accuracy.

Hilbert space reduced-rank kernel

In this section, we present a summary of the mathematical details of the Hilbert space

based reduced-rank kernels introduced by Solin and Särkkä (2020).
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Bochner representation Hilbert space methods for reduced-rank kernels are con-

structed via the Bochner’s theorem (Bochner, 1932; Rudin, 2017), which was intro-

duced in the previous sections (Theorem 4.3.1). The theorem states that any bounded,

continuous, and shift-invariant kernel k(x,x′) := k(τ ) with τ = x− x′, is the inverse

Fourier transform of a bounded positive measure. More precisely, the kernel k can be

represented as follows:

k(τ ) =

∫
Rd

exp(iw⊤τ )dµ(w) (6.13)

where µ(w) is a positive definite measure.

If the measure µ(w) admits a spectral density S(w), we can furthermore express

the following Fourier identities

k(τ ) =
1

(2π)d

∫
exp(iw⊤τ )S(w)dw

S(w) =

∫
k(τ ) exp(−iw⊤τ )dτ . (6.14)

In the isotropic case where the covariance function only depends on the Euclidian

norm ||τ || such that k(τ ) = k(||τ ||), the spectral density is also only dependent on

the norm of w i.e. S(w) = S(||w||).

Covariance operator as a pseudo-differential operator We can define a co-

variance operator K associated with each covariance function k as

Kf =

∫
k(·,x′)f(x′)dx′ (6.15)

for any regular functions f . When k is stationary then K is translation invariant.

Thus, we can express the Fourier transform of K as a transfer function, which is the

spectral density S(·) itself. Indeed, one can verify that F [Kf ](w) = S(w)F [f ](w)

where F [·] denotes the Fourier transform of its argument.

We consider the isotropic case S(w) = S(||w||). We further assume that S(·) is
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regular enough to be represented as a polynomial expansion i.e.

S(||w||) = a0 + a1||w||2 + a2(||w||2)2 + a3(||w||2)3 + · · · (6.16)

Recall that the transfer function of the Laplace operator∇2 is−||w||2 i.e. F [∇2f ](w) =

−||w||2F [f ](w). Thus from Equation (6.16), we have

F [Kf ](w) = S(||w||)F [f ](w)

=
[
a0 + a1||w||2 + a2(||w||2)2 + a3(||w||2)3 + · · ·

]
F [f ](w)

= a0F [f ](w)− a1F [∇2f ](w)− a2F [(∇2)2f ](w)− a3F [(∇2)3f ](w) + · · ·

= F [a0 − a1∇2f − a2(∇2)2f − a3(∇2)3f + · · · ](w). (6.17)

From the equality (6.17), we get the following representation of K, which defines

a pseudo-differential operator as a series of Laplace operator

K = a0 − a1∇2 − a2(∇2)2 − a3(∇2)3 + · · · . (6.18)

Hilbert space approximation of K We now form a Hilbert space approximation

for the pseudo-differential operator defined in Equation (6.18). Consider the eigen-

value problem for the Laplace operator ∇2 in the compact subset Ω ⊂ Rd and with

Dirichlet boundary conditions

−∇2ϕj(x) = λjϕj(x) if x ∈ Ω,

ϕj(x) = 0 if x ∈ ∂Ω (6.19)

where {ϕj}∞j=1 and {λj}∞j=1 are the set of eigenvalues and eigenfunctions of the Lapla-

cian operator. Because −∇2 is a positive definite Hermitian operator, the set of

eigenfunction {ϕj}∞j=1 is orthonormal with respect to the inner product

⟨f, g⟩ =
∫
Ω
f(x)g(x)dx (6.20)

153



6. BOCPD with Hilbert space approximate Student-t process

that is ∫
Ω
ϕi(x)ϕj(x)dx = δi,j (6.21)

and all eigenvalues {λj} are real and positive.

The Laplace operator can be assigned a formal kernel

l(x,x′) =
∑
j

λjϕj(x)ϕj(x
′) (6.22)

in a sense that

−∇2f(x) =
∑
j

λj⟨f, ϕj⟩ϕj(x) (spectral decomposition)

=

∫
Ω
l(x,x′)f(x′)dx′.

Similarly, we can define the kernel of the power representation the Laplace operator

as

ls(x,x′) =
∑
j

λs
jϕj(x)ϕj(x

′) (6.23)

for s = 1, 2, · · · , in a sense that due the orthonormality of the basis

−(∇2)sf(x) =

∫
Ω
ls(x,x′)f(x′)dx′.

This implies that we also have

[
a0 + a1(−∇2) + a2(−∇2)2 + · · ·

]
f(x)

=

∫
Ω

[
a0 + a1l

1(x,x′) + a2l
2(x,x′) + · · ·

]
f(x′)dx′. (6.24)

The left hand side is Kf as defined in Equation (6.18). Thus from Equation (6.15),

we conclude that

k(x,x′) ≈ a0 + a1l
1(x,x′) + a2l

2(x,x′) + · · ·

=
∑
j

[
a0 + a1λj + a2λ

2
j + · · ·

]
ϕj(x)ϕj(x

′). (6.25)
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By letting ||w||2 = λj the spectral density in Equation (6.16) becomes

S(||w||) = a0 + a1λj + a2λ
2
j + a3λ

3
j + · · · .

and substituting in Equation (6.25) leads to the final approximation

k(x,x′) =

∞∑
j=1

S(
√
λj)ϕj(x)ϕj(x

′) (6.26)

In one dimension For one dimension within a closed interval Ω = [−L,L] ⊂

R where L is some positive real number, the solution to the Laplacian eigenvalue

problem in Equation (6.19) is independent of the specific choice of covariance function

and is given by

λj =

(
πj

2L

)2

, (6.27a)

ϕj(x) =
1√
L
sin
(√

λj(x+ L)
)
. (6.27b)

for j = 1, · · · ,m where m denotes the number of basis functions.

In d dimensions In the d-dimensional case, we consider rectangular domain Ω =

[−L1, L1]×· · ·× [−Ld, Ld] with Dirichlet boundary conditions. The number of eigen-

functions and eigenvalues in the approximation is equal to the number of d-tuples,

that is, possible combinations of univariate eigenfunctions over all dimensions.

Every k-th dimension has a number of univariate basis functions equal to mk with

indices ranging from 1, · · · ,mk. Let S ∈ Nm∗×d be the matrix of all these d-tuples

indices with m∗ =
∏d

k=1mk.

Each multivariate eigenfunction ϕ∗
j : Ω → R corresponds to the product of the

univariate eigenfunctions whose indices corresponds to the j-th element of the d-

tuples Sj,·, and each multivariate eigenvalue λ∗
j is a d-vector with elements that are

the univariate eigenvalues whose indices corresponds to the j-th elements of the d-

tuples Sj,·. Thus for x = (x1, · · · , xd) ∈ Ω and j = 1, · · · ,m∗, we have

155



6. BOCPD with Hilbert space approximate Student-t process

λ∗
j = {λSj,k

}dk=1 =

{(
πSj,d

2L

)2
}d

k=1

, (6.28)

ϕ∗
j (x) =

d∏
k=1

ϕSj,k
(xk) =

d∏
k=1

1√
Lk

sin
(√

λSj,k
(xd + Lk)

)
(6.29)

for j = 1, · · · ,m∗.

The approximate covariance function is then

k(x,x′) ≈
m∑
j=1

S
(√

λ∗
j

)
ϕ∗
j (x)ϕ

∗
j (x

′) (6.30)

where S denotes the d-dimensional spectral density of the covariance functions with

argument
√
λ∗
j that denotes the element-wise square root of the vector λ∗

j .

Comparison to RFF This Hilbert space reduced-rank method exhibits similarities

with the RFF detailed in Section 4.3.1, as they both originate from Bochner’s theorem

and thus possess spectral characteristics. However, they differ fundamentally in their

construction. While RFF is inherently random, being generated by direct sampling

from the spectral density of the kernel, the method presented here is deterministic and

relies on an approximation of the spectral density. Specifically, this is accomplished

by conducting a Taylor expansion of the spectral density as outlined in Equation

(6.16), thereby establishing a parallel with the spectral decomposition of the Laplace

operator.

Student-t processes with Hilbert space kernel

We now assume a Student-t process as defined in definition 6.2.5 with a stationary ker-

nel with hyperparameters θ. For the univariate case with observations within a closed

interval Ω = [−L,L] ⊂ R, where L is some positive real number, we can approximate

the stationary kernel k with hyperparameters θ with a kernel representation given by

Equation 6.26 where Sθ(·) is the spectral density of k.

In particular, for a Gaussian kernel k(x − x′) = σ2 exp
(
−(x− x′)2/2 ℓ

)
with
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scaling parameter σ and length-scale parameter ℓ, the corresponding spectral density

is defined as Sθ(w) = σ
√
2πℓ2 exp(−π2ℓ2w3

2 ), where {ϕj}∞j=1 and {λj}∞j=1 are the sets

of eigenfunctions and eigenvalues of the Laplace operator ∇2 in Ω as described in

Equations (6.27a) and (6.27b).

As discussed, the eigenvalues λj are monotonically increasing with j and for

bounded kernel the spectral density goes to zero with higher frequencies. Thus, a

good approximation is obtained by truncating the expansion in Equation (6.26) to

the first m terms. This results in an approximate covariance described by:

k(x,x′) ≈
m∑
j=1

Sθ(
√

λj)ϕj(x)ϕj(x
′). (6.31)

Similarily, we can form an approximate eigendecomposition of the covariance ma-

trix

K ≈ Φ⊤ΛΦ (6.32)

where Λ is a diagonal matrix with entries {Sθ(
√
λj)}mj=1 and Φ is a matrix of eigen-

function evaluations such that Φi,j = ϕi(xj). The quality on the approximation

also relies on the choice of closed interval [−L,L]. Solin and Särkkä (2020) simply

normalized the data and adjust L accordingly.

6.3.3 BOCPD with Hilbert space approximate TP UPM

Using the reduced-rank Hilbert method, the predictive distribution of Equation (6.11)

becomes p(xt|xt−r:t−1) ∼ St(xt|mt,r, vt,r, ν + r − 1). Further, using the Woodbury

matrix inversion formula

mt,r = ϕ(xt−1)
⊤Qt,rΦt,rxt,r

vt,r = αt,r

(
ϕ(xt−1)

⊤Qt,rϕ(xt−1)
)

(6.33)

αt,r =
(ν − 2)σ2

n + βt,r
ν − 1

βt,r = ||xt,r||22 − (xt,rΦt,r)
⊤Qt,r(Φt,rxt,r)
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Algorithm 8 RRSPAR-CP UPM implementation

1: Function UPM predictive(xt, t,Φ):
2: Inputs: rmax,Qt−1,rmax , ut−1 := Φt−1,rmaxxt−1,rmax {Inputs from previous itera-

tions}
3: Q← h update(Qt−1,rmax , ϕ(xt−2)) {Eq.(6.37)}
4: u← ut−1 + xt−1ϕ(xt−2)
5: if rmax + 1 > Rmax then
6: Q← h downdate(Q, ϕ(xt−rmax))
7: u← u− xt−rmaxϕ(xt−rmax−1)
8: end if
9: rmax ← min(Rmax, rmax + 1)

10: Qt,rmax ← Q
11: ut ← u
12: for r = rmax to t = 1 do
13: mt,r ← ϕ(xt−1)

⊤Qu
14: βt,r ← ||xt,r||22 − u⊤Qu
15: Compute αt,r and vt,r {Eq (6.33)}
16: πt,r ← p(xt|xt−r:t−1) {Eq.(6.11)}
17: Compute ∇mt,r,∇βt,r,∇αt,r and ∇vt,r
18: Compute ∇πt,r with chain rule
19: Q← v downdate(Q, ϕ(xt−r)) {Eq.(6.36) }
20: u← u− xt−rϕ(xt−r−1)
21: end for
22: return (πt,∇πt).

with xt,r = xt−r+1:t−1. Here, Φt,r is a m× (r − 1) matrix of eigenfunctions with i, j

entry ϕi(xj) for i = 1, · · · ,m and j = t− r, · · · , t−2, and Qt,r is the m×m precision

matrix such that

Qt,r =
(
Φt,rΦ

⊤
t,r + σ2

nΛ
−1
)−1

. (6.34)

6.4 Implementation details

As noted in Equation (6.27), the basis function in the reduced-rank approximation

does not depends on covariance function hyperparameters. Thus the eigenfunctions

can be evaluated once and stored in a cached T ×m matrix Φ through the learning

process, with O(Tm) space complexity. If the number of observations T is so large

that storing is not feasible, evaluation can be carried out in blocks or only when

necessary.
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Pruning the run length distribution In a naive implementation, all the run

lengths are retained and the posterior p(rt|x1:t) for rt = {1, · · · , t} forms a vector of

size t at every update step. In practice the run length distribution is highly peaked.

A modification of the algorithm is to prune out the run length probability estimates

with a total mass below a certain threshold, i.e ≤ 1/Rmax; or to only consider the

Rmax most probable values, i.e |rt| ≤ Rmax Adams and MacKay (2007). This yields

a running complexity of O(TR2
maxm

2) for the reduced-rank TP-based UPM.

Vertical Rank-One update We can improve the implementation further, by per-

forming a rank-one update of the precision matrix Qt,r across run lengths. Indeed,

at time t, the product Φt,rΦ
⊤
t,r in Equation (6.34) can be updated across run lengths

as

Φt,rΦ
⊤
t,r = Φt,r−1Φ

⊤
t,r−1 + ϕ(xt−r)ϕ(xt−r)

⊤. (6.35)

Thus, knowing Qt,rmax , where rmax stands for the maximum run length size at time t,

we can use the Sherman-Morrison inversion formula to obtain the following recursion

Qt,r−1 =

(
Im +

Qt,rϕ(xt−r)ϕ(xt−r)
⊤

1− ϕ(xt−r)⊤Qt,rϕ(xt−r)

)
Qt,r. (6.36)

Equation (6.36) can be implemented as an outer product of two matrix-vector prod-

ucts. To make the evaluation fast, we used the specialized BLAS routines for rank-one

update (i.e. the scipy method linalg.blas.dger for Python). While reports have

mentioned potential numerical instability with rank-one updates to the precision ma-

trix (Schölkopf and Smola, 2018, Chapter 10), our implementation has not exhibited

any such issues.

This proposed rank-one update of Qt,r, together with an efficient update of the

product Φt,rxt,r in Equation (6.33) yields a running complexity of O(TRmaxm
2).

Horizontal Rank-One Update We can also perform a horizontal update of the

precision matrices across time t. Let Qt,rmax denote the precision matrix associated

with the largest run length at time t (i.e. for rt = |rt|). Using Equation (6.35), we
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obtain

Qt,rmax =(
Im −

Qt−1,rmaxϕ(xt−2)ϕ(xt−2)
⊤

1 + ϕ(xt−2)⊤Qt−1,rmaxϕ(xt−2)

)
Qt−1,rmax . (6.37)

To maintain consistency with pruning, an additional rank-one downdate is necessary

when |rt−1| + 1 > Rmax, to remove the information carried by ϕ(xt−|rt−1|), as given

below

Qt,rmax =(
Im +

Qt,rmaxϕ(xt−|rt−1|)ϕ(xt−|rt−1|)
⊤

1− ϕ(xt−|rt−1|)
⊤Qt,rmaxϕ(xt−|rt−1|)

)
Qt,rmax . (6.38)

Maximum A-Posteriori (MAP) segmentation For the identification of change

points, we used a variation of theMAP segmentation algorithm proposed by Knoblauch

and Damoulas (2018). We compute MAPt, an estimator of the density of the run

length MAP estimate before t with the recursion

MAPt = max
r
{p(rt = r|x1:t)MAPt−r−1}. (6.39)

For r∗t , the maximizer of Equation (6.39) at time t, the MAP segmentation is St =

St−r∗t−1 ∪ {(t− r∗t )}, S0 = ∅, where t′ ∈ St means a CP occurs at t′ ≤ t.

6.5 Hyperparameter learning

Following Saatçi et al. (2010), the hyperparameters Θ := (θ, ν, σn) where θ refers

to the kernel hyperparameters, are learned by minimizing the marginal negative log

likelihood

log p(x1:T |Θ) = −
T∑
i=1

log p(xt|x1:t−1,Θ). (6.40)

Saatçi et al. (2010) optimize the hyperparameters on a test subset {x1:T ′} by running

the BOCPD multiple times to find Θ̃ = argminΘ{log p(x1:T ′ |Θ)}. The gradient of

the log likelihood is obtained from the gradient of the one-step-ahead predictor gradi-
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ents ∇p(xt|x1r:t−1). The terms ∇p(xt|x1:t−1) are themselves computed by iteratively

calculating the gradient of the UPM, ∇p(xt|xt−r:t−1), the gradient of the hazard rate

∇p(rt|rt−1) and then propagating forward using the chain rule Saatçi et al. (2010).

These computations are consistent with hyperparameter learning in other on-line GP

methods Ranganathan et al. (2011).

For GP-based UPM, the computation and forward propagation of the gradient is

particularly expensive and accounts for most of the training time. In our case, com-

putation of the UPM gradient is easier since the feature vectors Φt,r are independent

of the hyperparameters Θ. We are left from Equation (6.33) with

∇Θmt,r = ϕ(xt−1)
⊤∇ΘQt,rΦt,rxt,r

∇Θvt,r =
vt,r
αt,r
∇αt,r + αt,r

(
ϕ(xt−1)

⊤∇ΘQt,rϕ(xt−1)
)

∇Θβt,r = −(xt,rΦt,r)
⊤∇ΘQt,r(Φt,rxt,r) (6.41)

where

∇θQt,r = σ2
nQt,r

(
Λ−2∇θΛ

)
Qt,r

∇νQt,r = 0 (6.42)

∇σnQt,r =
1

2σn
Qt,rΛ

−1Qt,r.

The term Λ−2∇θΛ in Equation (6.42) is independent of the observations and thus

can be computed once at the beginning of each optimizing step and reused throughout

the BOCPD iterations. Equation (6.41) and (6.42) provide a simple computational

routine for the gradient, once the precision matrix Qt,r update is obtained. The

gradient of the UPM, ∇p(xt|xt−r:t−1) is then derived from the gradient of UPM

parameters.

161



6. BOCPD with Hilbert space approximate Student-t process

6.6 Experiments

We compare our scheme to the two GP-based UPM variants introduced in Saatçi

et al. (2010), namely ARGP and GPTS. We also include as baseline the normal i.i.d

UMP (TIM) of Adams and MacKay (2007). We use the acronyms HSSPAR-CP to

refer to our reduced-rank Student-t process-based UPM as in Equation (6.33), and

HSGPAR-CP for an equivalent reduced-rank GP-based UPM. We test the algorithms

on four real data sets (3 in 1D and 1 in 3D). The average one-step-ahead negative log

likelihood (NLL) and the mean squared error relative to the predictive mean (MSE)

are used as evaluation metrics. Results are presented in Table 6.4.

6.6.1 Settings

We use a hazard function with a trainable constant hazard rate h initialized at 100,

which yields a conditional prior p(rt|rt−1) with probability of a change point equal

to 0.01. Following Saatçi et al. (2010), for GPTS we used a rational quadratic kernel

and a Gaussian kernel for the auto-regressive variants. The GPTS execution time is

improved by assuming uniform discrete observation time and exploiting the Toeplitz

structure of the covariance function (Saatçi et al., 2010). The ARGP implementation

includes horizontal and vertical rank-one Cholesky updates.

For HSSPAR, the trainable hyperparameters consist of the UPM parameters

Θ := (θ, ν, σn) where θ refers to the kernel hyperparameters. Our implementations

of HSSPAR and HSGPAR use the Hilbert space reduced-rank kernel derived from

Gaussian kernels with the number of basis functionsm ranging from 5 to 15. For auto-

regressive UPM (GPAR and HSSPAR variants), we use lag parameter p = 1, 2, 3. We

observed that for larger p, the computational advantage of HSSPAR reduces, since as

discussed earlier, the number of multivariate basis functions increases exponentially

with dimension. Other authors make similar observations for multivariate HSGP

regression (Riutort-Mayol et al., 2022).
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6. BOCPD with Hilbert space approximate Student-t process

Table 6.1: Results of predictive performance on Nile data. The results are provided
with 95% error bars and the p-value testing the null hypothesis that methods are
equivalent to the best performing method, according to NLL, using one sided t-test.
(·)-CP refers to the BOCPD variant of the respective method.

Method Negative Log Likelihood p-value MSE p-value time(s)

Nile Data (200 training points, 463 Test points)

RRGPAR-CP 1.1480 (± 0.0564) 0.072 0.5756 (±0.0977) 0.480 43.18
RRSPAR-CP 1.0984 (± 0.0653) N/A 0.5783 (±0.0995) N/A 44.52
GPTS 1.2313 (±0.0449) < 0.001 0.6050 (±0.0942) 0.301 2.74
GPTS-CP 1.1468 (±0.0533) 0.067 0.5381 (±0.0890) 0.208 5.20
GPAR 1.1729 (±0.0527) 0.020 0.5587 (±0.0978) 0.355 142.66
GPAR-CP 1.1481 (±0.0587) 0.079 0.5792 (±0.0964) 0.493 267.17
TIM 1.1769 (±0.0852) 0.065 0.6644 (±0.1029) 0.081 N/A

6.6.2 Nile data

The Nile data set records the lowest annual water levels of the Nile river during the

period 622-1284. The data has been used for change point detection in Garnett et al.

(2009) and Saatçi et al. (2010). Following Saatçi et al. (2010), we learn the hyper-

parameters on the first 200 entries and evaluate the performance on the remaining

period 822-1284. A structural change in the data is known to occur in year 715 due to

an upgrade in ancient sensor technology to the nilometer. Results are given in Table

6.4. The run length posterior for HSSPAR is displayed in Figure 6.1. We can see

by comparing HSGPAR-CP to GPAR-CP that the reduced-rank approximation does

not alter the performance significantly. HSSPAR-CP outperforms both GPTS-CP

and GSPAR-CP in terms of NLL. The error bars tend to be larger than desired, but

this is something that was also observed in Saatçi et al. (2010), and attributable to

the small test size (463 points). In Figure 6.1 we can also see that HSSPAR correctly

captures the known change point at the year 715. While Saatçi et al. (2010) identified

18 CPs, our algorithm is more robust in that it only detects 9 CPs.

6.6.3 Well Log data

The Well Log data set contains 4050 measurements of radioactivity taken during the

drilling of a well. These data have been studied in the context of change point de-
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6. BOCPD with Hilbert space approximate Student-t process

Figure 6.1: Results for the Nile Record data with RRSPAR-CP. Top: The vertical
dashed red line represents the boundary between train set and test sets. The vertical
dashed black line marks the installation of the nilometer in 715. The small red
crosses represents alert locations obtained from MAP segmentation. Bottom: The
run length CDF and its median in solid red.

tection by Ruanaidh and Fitzgerald (2012) and by Fearnhead and Clifford (2003).

The data set contains many outliers. Some authors, e.g. Adams and MacKay (2007);

Levy-leduc and Harchaoui (2007) remove these before running the change point al-

gorithms; however, outliers are retained by other authors, e.g. Fearnhead and Rigaill

(2019) and Knoblauch et al. (2018). In our case, we use the data unfiltered. Re-

sults in Table 6.4 show slightly better performance for HSSPAR-CP compared to

HSGPAR-CP and GPAR-CP even though this advantage might lack statistical sig-

nificance. For this data set, we see the effectiveness of the reduced-rank formulation

when the training set becomes relatively large (≥ 1000). The fitting of HSSPAR-CP

and HSGPAR-CP is > 20× faster than that of GPAR-CP in our experiment. In

terms of alerted change points, on the unfiltered data, HSSPAR-CP identifies 25 CPs

compared to 44 for GPAR-CP in Saatçi et al. (2010). Notably, when the data is

filtered, the number of CPs reduces to 22 for HSSPAR-CP, indicating that applying

filtering results in only 3 additional CPs.
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Table 6.2: Results of predictive performance on Well-Log. The results are provided
with 95% error bars and the p-value testing the null hypothesis that methods are
equivalent to the best performing method, according to NLL, using one sided t-test.
(·)-CP refers to the BOCPD variant of the respective method.

Method Negative Log Likelihood p-value MSE p-value time(s)

Well-Log Data (1000 training points, 3047 Test points)

RRGPAR-CP 0.1927 (±0.0343) 0.390 0.1165 (±0.0109) 0.312 528.75
RRSPAR-CP 0.1875 (±0.0321) N/A 0.1194 (±0.0123) N/A 659.20
GPTS 0.5557 (±0.0480) < 0.001 0.1575 (±0.0199) 0.007 17.88
GPTS-CP 0.2489 (±0.0446) < 0.001 0.1201 (± 0.0115) 0.460 78.24
GPAR 0.3001 (±0.0383) < 0.001 0.1704 (±0.0380) 0.023 11,596.64
GPAR-CP 0.1926 (±0.0342) 0.392 0.1166 (±0.0110) 0.316 13,610.75
TIM 0.2562 (±0.0287) 0.003 0.1921 (±0.0275) 0.002 N/A

Figure 6.2: Results for the unfiltered Well Log data with HSSPAR-C. Top: The ver-
tical dashed red line represents the boundary between train and test sets. The small
red crosses represents alert locations obtained from MAP segmentation. Bottom:
The run length CDF (black) and its median (red).

165



6. BOCPD with Hilbert space approximate Student-t process

Figure 6.3: Results for the filtered Well Log data with HSSPAR-CP. Top: The ver-
tical dashed red line represents the boundary between train and test sets. The small
red crosses represents alert locations obtained from MAP segmentation. Bottom:
The run length CDF (black) and its median (red).

Figure 6.4: Results for the unfiltered Well Log data with HSSPAR-CP, considering
measurements ranging from 400 to 1200 (in time units). Top: Alert locations ob-
tained from MAP segmentation are represented by small red crosses. The horizontal
dashed black line indicates the mean of observations between change points. Bot-
tom: The run length CDF (black) and its median (red).

We provide visualizations of the run length posterior for HSSPAR-CP on both

0Here error bars are ±1.96× standard error.
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6. BOCPD with Hilbert space approximate Student-t process

Figure 6.5: Results for the unfiltered Well Log data with HSSPAR-CP, considering
measurements ranging from 1600 to 2700 (in time units). Top: Alert locations ob-
tained from MAP segmentation are represented by small red crosses. The horizontal
dashed black line indicates the mean of observations between change points. Bot-
tom: The run length CDF (black) and its median (red).

filtered and unfiltered data, as depicted in Figures 6.2 and 6.3. Specifically, Figure

6.2 presents results obtained using unfiltered data, similar to the experiment described

in Table 6.4. To explore the effects of outlier processing, Figure 6.3 showcases results

obtained from a filtered version of the Well Log data set. Furthermore, Figure 6.4 and

Figure 6.5 display similar outcomes as Figure 6.2, but with a reduced measurement

range of 400 to 1200 and 1600 to 2700 (time units), respectively. Consequently, Figure

6.2 allows for a direct comparison to Figure 2 in Adams and MacKay (2007).

6.6.4 Bee Waggle Dance data

The waggle dance is bees’ method of communicating the location of forage (direction,

distance and profitability of food source) to each other. Entomologists have been

interested in identifying change points in different stages in the bee dance. The Bee

Waggle Dance data set contains the bee’s x-coordinate position, y-coordinate position

and head angle at each frame of 6 video sequences of bee waggle dances. Following

Saatçi et al. (2010), we examine the first video sequence only, and consider angle

differences for the angle sequence. HSSPAR-CP outperforms in terms of NLL and
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Table 6.3: Results of predictive performance on Bee Waggle data. The results are
provided with 95% error bars and the p-value testing the null hypothesis that methods
are equivalent to the best performing method, according to NLL, using one sided t-
test. (·)-CP refers to the BOCPD variant of the respective method.

Method Negative Log Likelihood p-value MSE p-value time(s)

Bee Waggle Data (250 training points, 806 Test points)

RRGPAR-CP -0.9249 (±0.1574) 0.006 0.8623 (±0.1670) 0.034 225.63
RRSPAR-CP -1.2291 (±0.1099) N/A 0.6646 (±0.1071) N/A 315.41
GPTS 1.2786 (±0.2440) < 0.001 1.6688 (±0.2321) < 0.001 13.58
GPTS-CP 0.0766 (±0.1737) < 0.001 1.1911 (±0.1856) < 0.001 20.91
GPAR -0.4948 (±0.2976) < 0.001 0.7757 (±0.1115) 0.054 412.66
GPAR-CP -1.0430 (±0.1175) 0.013 0.7238 (±0.1275) 0.202 485.46
TIM 1.3853 (±0.1106) < 0.001 1.3670 (±0.1943) < 0.001 N/A

MSE. Figure 6.6 shows the run length posterior and change point alerts for HSSPAR-

CP. The HSSPAR-CP model correctly identifies 16 of the 19 known CPs.
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6. BOCPD with Hilbert space approximate Student-t process

Figure 6.6: Results for the Bee Waggle Dance data with HSSPAR-CP. Top: The
time-series are the bee’s x-location (blue), y-location (orange) and angular difference
(green). The vertical dashed red line represents the boundary between train and test
sets. The small red crosses represents alert locations obtained from MAP segmenta-
tion. The small blue crosses represents the known true change point. Bottom: The
run length CDF (black) and its median (red).

6.6.5 Snowfall data

The Snowfall data report the historical daily snowfall level in Whistler BC (Canada)

from 1972 to 2008. We train the model on the first 1000 entries of the data (cor-

responding to approximately three years) and test on the 12,880 remaining points.

The HSSPAR-CP model performs significantly better in terms of both NLL and MSE

compared to its competitors. Fitting of HSSPAR-CP is also > 20× faster than that

of GPAR-CP.

The Student-t UPM outperforms other GP-based CP algorithms in terms of NLL

in all experiments. We attribute this performance to the generalization property

(compared to a GP) and to the fatter predictive distribution of a TP. The reduced-

rank approximation yields significantly faster training while maintaining good per-

formance for applications with larger training sets, i.e. Well Log and Snowfall.
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Table 6.4: Results of predictive performance on Whithler Snowfall data. The results
are provided with 95% error bars and the p-value testing the null hypothesis that
methods are equivalent to the best performing method, according to NLL, using one
sided t-test. (·)-CP refers to the BOCPD variant of the respective method.

Method Negative Log Likelihood p-value MSE p-value time(s)

Whistler Snowfall Data (1000 training points, 13380 Test points)

RRGPAR-CP -0.0278 (±0.0531) < 0.001 1.3040 (±0.0962) < 0.001 605.64
RRSPAR-CP -0.52425 (±0.0393) N/A 0.9785 (±0.0900) N/A 591.06
GPTS 1.2965 (±0.0495) < 0.001 1.1828 (±0.0774) 0.002 18.15
GPTS-CP 0.6143 (±0.0693) < 0.001 1.1701 (±0.0807) 0.003 59.10
GPAR 1.1708 (±0.1453) < 0.001 1.1195 (±0.1013) 0.021 12,150.95
GPAR-CP -0.1890 (±0.0433) < 0.001 1.1959 (±0.0994) 0.004 14,493.47
TIM 0.3374 (±0.0264) < 0.001 0.9912 (±0.0769) 0.381 N/A

6.7 Conclusion

We introduce a Bayesian online change point detection framework that combines a

Student-t process with dependent Student-t noise as a time-series model, and Hilbert

space reduced-rank kernel approximation for mitigating computation complexity. We

illustrate the use of our scheme on a diverse set of real world examples. Our method

compares favorably to other GP-based alternatives in terms of both prediction and

hyperparameter learning time.
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Chapter 7

Conclusion

7.1 Contributions

In this thesis, we explored advanced methods that leverage the spectral sparse rep-

resentation of GPs for analyzing time series and spatial data. Our contributions are

twofold: Firstly, we were particularly interested in developing fast and flexible infer-

ence schemes for Gaussian Cox processes. Secondly, our goal has been to develop

a fast and robust alternative to existing GP-based Bayesian change point detection

methods (BOCPD), specifically designed to address non-stationary patterns in time

series data.

In Chapter 4, we introduced our new approach for Bayesian inference in the con-

text of permanental processes. Permanental processes belong to a special class of

Gaussian Cox processes, where the Poisson intensity is modeled as the square of a

Gaussian process. This unique characteristic allows for the analytical computation

of intensity integrals, particularly when employing a Gaussian kernel. Our method-

ology combines a random Fourier representation of the Gaussian process kernel with

a fast Laplace approximation to the intractable posterior distribution. Notably, this

approach extends to generalized kernels. These kernels are known to be dense within

the family of stationary kernel, , which implies that they can approximate any sta-

tionary kernel with arbitrary precision given an adequate number of spectral compo-

nents. Furthermore, the use of generalized kernels simplifies the process of learning
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the underlying latent function’s differentiability. In essence, we offered an efficient

inference technique that eliminates the need for numerical integration, accommodates

customized kernel design, exhibits linear scalability concerning the number of events,

and, importantly, outperforms the alternative Laplace-based approach proposed by

Walder and Bishop (2017). We demonstrated the superior performance of our ap-

proach on various datasets, including synthetic data, real-world temporal data, and

extensive spatial datasets.

In Chapter 6, we proposed an approach that improve the existing BOCPD with

GPs Saatçi et al. (2010). Our proposed method incorporates an Auto-Regressive

Student-t Process underlying predictive model (UPM), which includes dependent

Student-t noise, resulting in a solution that is more flexible but also more robust.

The intractability inherent to this problem is resolved by introducing dependent noise,

inspired by the work of Shah et al. (2014). Student-t processes are renowned for their

ability to generalize the concept of GPs, providing us with greater flexibility. In our

specific context, TP UPMs also prove to be more robust to data noise, reducing the

likelihood of producing false change point alarms. However, BOCPD with GPs is

recognized for its computational complexity, typically demanding O(T 5) operations

for a straightforward implementation. To address this challenge, we integrate a Hilbert

space reduced-rank approximation, developped by Solin and Särkkä (2020). This

method approximates the spectral decomposition of stationary kernels through an

eigenfunction expansion of the Laplace operator. Combining this technique with

others results in a reduced computational complexity of O(TRmaxm
2), where Rmax

represents the pruning threshold, and m signifies the number of basis functions. In

practical experiments, our method outperforms other GP-based alternatives in terms

of both prediction accuracy and hyperparameter learning efficiency.

7.2 Future work

A promising avenue for future research involves extending our existing spatial ap-

proach for permanental processes into a spatio-temporal context, where data is col-

lected across both space and time. These processes find applications in diverse do-
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mains, ranging from the study of disease occurrence and its temporal propagation

(Balderama et al., 2012; Dong et al., 2023) to urban mobility patterns (Du et al.,

2016) and criminal activities (Flaxman et al., 2019; Rosser and Cheng, 2019), among

others. The recent surge in data availability has invigorated interest and research

in this domain. For instance, several cities, including Chicago, Seattle, Detroit, and

Baltimore, have made their spatio-temoral data accessible for research purposes in

the study of criminal activity.

A common objective in these areas is the development of models that can effec-

tively capture both spatial and temporal dependencies and their effects on propa-

gation. However, introducing a temporal dimension introduces computational com-

plexities, resulting in the prevailing but limited strategy of using separate models

for event time and space. Various methods have been employed, with kernel density

estimation (Lee and Mitchell, 2014) being the most prevalent approach, alongside the

use of log-Gaussian Cox Processes (Diggle et al., 2005, 2013), and self-exciting point

process models (Mei and Eisner, 2017; Rosser and Cheng, 2019). Notably, Flaxman

et al. (2019) introduced a methodology in a spatio-temporal setting that bears some

similarity to our approach, incorporating a Random Feature Fourier (RFF) represen-

tation of log-Gaussian Cox Processes.

In our context, our aim is to expand a permanental spatial model into a temporal

spatial framework, with a dual focus on tractability properties and the potential for

enhanced generalization, leveraging the use of generalized kernels.
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Appendix A

Matrix Algebra

Throughout the thesis, we have utilized several Matrix algebra identities, which we

include here for reference. For a more detailed discussion, we recommend consulting

Golub and Van Loan (1996) or Harville (2008).

A.1 Woodbury identity

In linear algebra, the Woodbury matrix identity, says that the inverse of a rank-m

pertubation of some n× n matrix can be computed by doing a rank-m correction to

the inverse of the original matrix.

The identity is given by the following equation:

(A+UCV)−1 = A−1 −A−1U
(
C−1 +VA−1U

)−1
VA−1. (A.1)

Here, A and C are matrices of sizes n×n and m×m, respectively, and U and V are

arbitrary matrices of sizes n ×m and m × n, respectively. The left-hand side of the

equation can be computed directly, but requires a complexity of O(n3). However, the

right-hand side can be computed more efficiently in O(m2n), which is particularly

advantageous when m≪ n.
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A.2 Cholesky factorization

The Cholesky decomposition of a real positive-definite matrix A, is a decomposition

of the form:

A = LL⊤ (A.2)

where L is a lower triangular matrix with real and positive diagonal entries, and L⊤

denotes the conjugate transpose of L. Every real-valued symmetric positive-definite

matrix has a unique Cholesky decomposition (Golub and Van Loan, 1996, p.143).

The Cholesky factorization method computes the Cholesky factor L of an n × n

matrix in O(n3/6) time and is a highly stable operation from a numerical standpoint.

This factorization is particularly useful for solving linear systems of the form Ax = b

, since

Ax = b ⇐⇒ x = L⊤\(L\b) (A.3)

where L\b denotes the solution to the linear system Lx = b. The two linear systems

can be solved using forward and backward substitution in O(n2/2) time each, which

is faster and more accurate than directly solving Ax = b.

A.3 Matrix Product Trace Invariance

The trace of a matrix product is invariant under cyclic permutations, meaning that:

tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC). (A.4)

This relationship holds true regardless of the dimensions of the matrices A,B,C,

and D.

A.4 Exchange Matrix

The exchange matrix E are special cases of permutation matrices, with ones on the

anti-diagonal and zeros on all other elements.
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Definition A.4.1. If En is the n× n exchange matrix with i, j elements

Ei,j =


1, i+ j = n+ 1

0, i+ j ̸= n+ 1.

(A.5)

In particular,

E2 =

0 1

1 0

 , and E3 =


0 0 1

0 1 0

1 0 0

 . (A.6)

Thus, the exchange matrixEn is a permutation matrix of order n that interchanges

rows and columns of the identity matrix In along the main diagonal. Algebraically,

En has the property that for any vector x = [x1, · · · , xn]⊤ ∈ Rn, the product Enx

results in a vector with the same entries as x but in reverse order ,

Enx = x(n : −1 : 1) = [xn, · · · , x1]. (A.7)

This can be interpreted as flipping the vector around the middle entry (if n is odd)

or between the two middle entries (if n is even).

A.5 Matrix derivatives

The elements of the inverse matrix (A)−1 have a derivative with respect to the pa-

rameters θ given by:

∂

∂θ
A−1 = −A−1

(
∂A

∂θ

)
A−1. (A.8)

If A is a positive definite symmetric matrix, the derivative of the log determinant

with respect to the parameters θ is given by:

∂

∂θ
log |A| = −tr

(
A−1∂A

∂θ

)
. (A.9)
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Gaussian Identities

In this section, we review a few identities regarding multivariate Gaussian distribu-

tions that are relevant to the thesis. For more comprehensive information, we refer

to the work of Mardia et al. (1979).

Multivariate Gaussian distribution The multivariate normal distribution is an

extension of the one-dimensional (univariate) normal distribution to higher dimen-

sions. The probability density function (PDF) of a multivariate Gaussian distribution

with mean vector µ and covariance matrix Σ is given by the following equation:

p(x) = N (x|µ,Σ)

= (2π)−1/n|Σ|−1/2 exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
, (B.1)

where |Σ| denotes the determinant of the covariance matrix.

B.1 Conditional rule of the Gaussian distribution

Suppose that we partition x ∼ N (x|µ,Σ) into two random vectors i.e x =
(
x1
x2

)
.

Further, suppose that we partition the mean vector and covariance matrix in a cor-

responding manner. That is, µ =
( µ1
µ2

)
. and Σ =

(
Σ11 Σ12
Σ21 Σ22

)
.
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Marginalisation Any distribution for a subset of variables from a multivariate

normal, is a multivariate normal distribution i.e.

p(x1) = N (x1|µ1,Σ11)

Conditioning rule Any distribution for a subset of variables from a multivariate

normal, conditional on known values for another subset of variables, is a multivariate

normal distribution i.e.

p(x1|x2) = N (x1|µ1|2,Σ1|2) (B.2)

where

µ1|2 := µ1 +Σ12Σ
−1
22 (x2 − µ1),

Σ1|2 := Σ11 −Σ12(Σ
−1
22 )Σ21

B.2 Integral of the product of two Gaussians

Consider two n-dimensional Gaussian distributionsN (x1|x2,Σ11) andN (x2|µ2,Σ22),

where x1 and x2 are n-dimensional vectors, Σ11 andΣ22 are n×n covariance matrices,

and µ2 is an n-dimensional mean vector.

The integral of the product of these two Gaussian verifies

∫
N (x1|x2,Σ11)N (x1|µ2,Σ22)dx1 = N (x1|x2,Σ11 +Σ22) (B.3)

where the integral is taken over the entire n-dimensional space.

This integral is used, for example, in Bayesian inference to compute the posterior

distribution of a parameter x2 from observations x1, Gaussian likelihood p(x1|x2) =

N (x1|x2,Σ11) and Gaussian prior p(x2) = N (x2|µ2,Σ22). In this context, the re-

sulting posterior distribution is also a Gaussian distribution.
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B.3 Linear transformations

If x ∼ N (x|µ,Σ), then the linear transformation x̃ = Ax+α is also Gaussian, with

mean and covariance given by:

E[x̃] = Aµ+α, (B.4)

Cov(x̃) = E[(x̃− E[x̃])(x̃− E[x̃])⊤] = AΣA⊤. (B.5)
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Appendix C

Proofs

C.1 Proof of proposition (4.2.1) :

Integral Expression for LBPP with Nyström

In Proposition 4.2.1 we express the integral term
∫
B f(x)2dx under the Nyström

approximation both because it is not available in Walder and Bishop (2017) and

to demonstrate the similarities with the corresponding derivation of our proposed

method in Proposition 4.3.3.

C.1.1 Integral Calculation

Let f be approximated by the Nyström-based approach defined in Equation (4.4) i.e.

f(x) ≈ w(m)⊤φ(m)(x). The integral expression
∫
B λ(x)2 dx can be written as

∫
B
f(x)2dx ≈

m∑
i=1

m∑
j=1

w
(m)
i w

(m)
j

∫
B
φ
(m)
i (x)φ

(m)
j (x) dx

=

m∑
i=1

m∑
j=1

w
(m)
i w

(m)
j√

λ
(m)
i λ

(m)
j

∫
B

(
k(x,Xm)e

(m)
i

)(
k(x,Xm)e

(m)
j

)
dx

=

m∑
i=1

m∑
j=1

w
(m)
i w

(m)
j√

λ
(m)
i λ

(m)
j

e
(m)
i

⊤
(∫

B
k(Xm,x)k(x,Xm) dx

)
e
(m)
j

= w(m)⊤Λ− 1
2

[
U(m)⊤Ψ(m) U(m)

]
Λ− 1

2︸ ︷︷ ︸
:=M(m)

w(m)
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where Ψ(m) =
∫
B k(Xm,x)k(x,Xm) dx is the integral statistic already defined in

Lloyd et al. (2015) and John and Hensman (2018). In particular, for the separable

Gaussian kernel defined in Equation (C.3),

Ψ
(m)
i,j = σ4

∫
B

d∏
k=1

exp

−(x
(m)
k,i − x

(m)
k,j )

2

4ℓk
2

 exp

−(xk − x̄
(m)
k,i,j)

2

ℓk
2

 dx

= σ4
2∏

k=1

ℓk
√
π

d
exp

−(x
(m)
k,i − x

(m)
k,j )

2

4ℓk
2

×
erf

 x̄
(m)
k,i,j −Bmin

k

ℓk

− erf

 x̄
(m)
k,i,j −Bmax

k

ℓk


where σ and ℓ := (ℓ1, ℓ2) are respectively the scaling and length-scale parameters of

the covariance function, x
(m)
k,i is the kth coordinate of the ith Nyström-sampled point

x
(n)
i and x̄

(m)
k,i,j := (x

(n)
k,i + x

(m)
k,j )/2.

Offset Term Adding an offset term β to the intensity i.e λ(·) = (f(·) + β)2 yields

∫
B
(f(x) + β)2 dx =

∫
B
f(x)2dx+ 2β

∫
B
f(x)dx+ β2|B|

with

∫
B
f(x)dx ≈

(∫
B
k(x,Xm)dx

)
U(m)Λ− 1

2w(m) = ψ(m)⊤U(m)Λ(m)−
1
2w(m)

where ψ(m) :=
∫
B k(Xm,x)dx is a m-vector such that in the separable Gaussian

kernel case above, we have

ψ
(m)
i = σ2

2∏
d=1

ℓd
√
π√
2
×

erf
x

(m)
d,i −Bmax

d

ℓd
√
2

− erf

x
(m)
d,i −Bmin

d

ℓd
√
2

 .
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C.2 Proof of proposition (4.3.3) :

Integral Expression via RFF

Let f be approximated by a RFF-based approach as defined in Equation (4.13) of the

main text i.e. f (r)(x) ≈ w(r)⊤φ(r)(x) where the feature map φ(r) follows Equation

(4.8) of the main text.

C.2.1 Real Valued Feature Mapping

We first detail the derivation of the real valued Fourier features described in Equation

(4.9) of the main text. The imaginary part of Equation (4.8) of the main text can be

discarded as follows

k(x− x′) = σ2Ez

[
exp(−iz⊤(x− x′))

]
= σ2Ez

[
cos(z⊤(x− x′)) + i sin(z⊤(x− x′))

]
(C.1)

= σ2Ez

[
cos(z⊤(x− x′))

]
= σ2Ez

[
cos(z⊤x) cos(z⊤x′) + sin(z⊤x) sin(z⊤x′)

]
(C.2)

≈ σ2

r

r∑
i=1

cos(z⊤i x) cos(z
⊤
i x

′) + sin(z⊤i x) sin(z
⊤
i x

′)

=
σ2

r
φ(r)(x)⊤φ(r)(x′)

where z1, . . . , zr are independent samples with density S(z) and the explicit feature

mapping φ(r)(·) is defined as

φ(r)(x) :=
σ√
r



cos(z⊤1 x)

. . .

cos(z⊤r x)

sin(z⊤1 x)

. . .

sin(z⊤r x)


.
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Gaussian Kernel Specifically, without approximation, for a Gaussian kernel kg

with X = Rd and where

kg(x− x′) = σ2
d∏

i=1

exp

(
−(xi − x′

i)
2

2 ℓ2i

)
(C.3)

with scaling parameter σ and length-scale vector ℓ = [ℓ1, . . . , ℓd]
⊤, the corresponding

spectral density S(z) is a multivariate normalN (0,diag(γ)) with γ := [1/ℓ21, . . . , 1/ℓ
2
d]
⊤.

Matérn Kernel For a Matérn class of kernel function km such that

km(x− x′) = σ2 2
1−ν

Γ(ν)

(√
2ν(x− x′)

ℓ

)ν

Kν

(√
2ν(x− x′)

ℓ

)
(C.4)

where σ ∈ R+, ℓ ∈ R+, ν ∈ R+ and Kν is a modified Bessel function, the corre-

sponding spectral density S(z) is a d dimension multivariate Student-t distribution

St(0,Σ, 2ν) with covariance function Σ = (1/ℓ) Id and degree of freedom 2ν. The

spectral locations Z are sampled as

Z =
√

u/2νℓ G where u ∼ χ2(2ν) (C.5)

and G is a d× r matrix of of i.i.d. standard normal random variables.

C.2.2 Integral Calculation

We now detail the integral expression of proposition (4.3.3) for the real valued Fourier

features in Equation (4.9) of the main text. We consider without loss of generality the

spatial case where B = [−a, a]2. xd,i refers to the dth coordinate of the ith training

input xi for i = 1, . . . , N and zd,i to the dth coordinate of the ith spectral point zi

for i = 1, . . . , r. The integral of f over B becomes

∫
[−a,a]2

f(x)2dx =
∑
i,j

w
(r)
i w

(r)
j

∫
[−a,a]2

φ
(r)
i (x)φ

(r)
j (x) dx (C.6)
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where

φ
(r)
i (x)φ

(r)
j (x) =

σ2

r



cos(z⊤i x) cos(z
⊤
j x) if (i, j) ∈ [1, r]2

sin(z⊤i x) sin(z
⊤
j x) if (i, j) ∈ [r + 2, 2r]2

cos(z⊤i x) sin(z
⊤
j x) if (i, j) ∈ [1, r]× [r + 2, 2r]

sin(z⊤i x) cos(z
⊤
j x) if (i, j) ∈ [r + 2, 2r]× [r, r].

(C.7)

Thus,
∫
B f(x)2dx = w⊤M(r)w, where M(r) is the matrix with i, j entry obtained

by integrating Equation (C.7). The ‘cos’, ‘sin’ and ‘cos-sin’ expressions can be written

as

∫
[−a,a]2

cos(z⊤i x) cos(z
⊤
j x) dx =

1

2

∫
[−a,a]2

[
cos((zi − zj)

⊤x) + cos((zi + zj)
⊤x)

]
dx

∫
[−a,a]2

sin(z⊤i x) sin(z
⊤
j x) dx =

1

2

∫
[−a,a]2

[
cos((zi − zj)

⊤x)− cos((zi + zj)
⊤x)

]
dx

and

∫
[−a,a]2

cos(z⊤i x) sin(z
⊤
j x) dx =

1

2

∫
[−a,a]2

[
sin((zi − zj)

⊤x) + sin((zi + zj)
⊤x)

]
dx = 0.

Thus, since the off-diagonal blocks of M(r) are null, we can rewrite Equation (C.6) as

∫
B
f(x)2dx =

σ2

r

[
w(r)

:r

⊤
(A+B)w(r)

:r +w(r)
r:

⊤
(A−B)w(r)

r:

]
=

σ2

r
w(r)⊤

[
D⊤

l (A+B)Dl +D⊤
r (A−B)Dr

]
w(r) (C.8)

where w
(r)
:r := [w

(r)
1 , . . . , w

(r)
r ]⊤, w

(r)
r: := [w

(r)
r+1, . . . , w

(r)
2r ]

⊤, Dl :=

[
Ir 0

]
, Dr :=[

0 Ir

]
and A and B are two r × r matrices defined as

Ai,j =
1

2

∫
[−a,a]2

cos((zi − zj)
⊤x) dx and Bi,j =

1

2

∫
[−a,a]2

cos((zi + zj)
⊤x) dx.
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A and B can be evaluated as follows

Case 1: zi ̸= zj We define again z̄d,i,j := zd,i + zd,j . Then,

Ai,j =
cos[a(z̃1,i,j − z̃2,i,j)]− cos[a(z̃1,i,j + z̃2,i,j)]

z̃1,i,j z̄2,i,j
=

2

z̃1,i,j z̄2,i,j
(sin[az̃1,i,j ] sin[az̃2,i,j ]) .

Bi,j =
cos[a(z̄1,i,j − z̄2,i,j)]− cos[a(z̄1,i,j + z̄2,i,j)]

z̄1,i,j z̄2,i,j
=

2

z̄1,i,j z̄2,i,j
(sin[az̄1,i,j ] sin[az̄2,i,j ]) .

Case 2: zi = zj

Ai,i = 2a2.

Bi,i =
cos[2a(z1,i − z2,i)]− cos[2a(z1,i + z2,i)]

4z1,iz2,i
=

1

2z1,iz2,i
(sin[2az1,i] sin[2az2,i]) .

Offset Term For the offset term β, we need to compute the integral of f , that is

obtained from

∫
[−a,a]2

f(x)dx =
σ√
r

r∑
i=1

w
(r)
i

∫
[−a,a]2

cos(z⊤i x) dx+
σ√
r

2r∑
i=r+1

w
(r)
i

∫
[−a,a]2

sin(z⊤i x) dx︸ ︷︷ ︸
=0

=
σ√
r
w

(r)⊤
m(r)

where m is a r-vector such that

m
(r)
i =

2 cos[a(z1,i − z2,i)]− 2 cos[a(z1,i + z2,i)]

z1,iz2,i
=

4

z1,iz2,i
(sin[az1,i] sin[az2,i]) .

C.3 Proof of proposition (4.3.3) :

Integral Expression for GK

We assume kGS to be a Generalized kernel given in Equation (4.10) in the main text,

with a kernel g that admits a consistent RFF representation such that g(x − x′) ≈

φ
(r)
g (x)⊤φ

(r)
g (x′) where φ

(r)
g is an explicit feature mapping φg : X → Rr.
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C.3.1 Real Valued Feature Mapping

The Generalized kernel kGS becomes

kGS(τ ) ≈
K∑
k=1

σ2
k φ

(r)
g (x⊙ γk)

⊤φ(r)
g (x′ ⊙ γk)Ψk(x

⊤ωk)
⊤Ψk(x

′⊤ωk)

where Ψk(x) is a map Ψk : X → R2 such that Ψk(x) =

cos(x⊤ωk)

sin(x⊤ωk)

 for k = 1, . . . ,K

and ∀x ∈ X so that Ψk(x
⊤ωk)Ψk(x

′⊤ωk) = cos((x − x′)⊤ωk) for all ωk ∈ Rd and

∀x,x′ ∈ X . Thus,

kGS(x,x
′) ≈

K∑
k=1

hk(x)
⊤hk(x

′)

with

hk(x) = σk φ
(r)
g (x⊙ γk)⊗

cos(ω⊤
k x)

sin(ω⊤
k x)


for k = 1, . . . ,K, where ⊗ denotes the Kronecker product.

In particular, when φ
(r)
g follows Equation (4.9) in the main text,

hk(x) =
2σk√
r



cos(z⊤1 (x⊙ γk))

cos(ω⊤
k x)

sin(ω⊤
k x)


· · ·

sin(z⊤r (x⊙ γk))

cos(ω⊤
k x)

sin(ω⊤
k x)




(C.9)

where z1, . . . , zr are independent samples from Sg(z) the spectral density of g.

The resulting approximate Gaussian process with generalized kernel can be writ-

ten, in terms of a new 4rK-size latent vector as follow

f(x) ≈ w(r)⊤φ(r)(x) with w(r) ∼ N (0, I4Kr).
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where

φ(r)(x) = [h1(x)
⊤, · · · , hK(x)⊤]⊤

with hk(x) defined as in Equation (C.9) for k = 1, · · · ,K.

C.3.2 Integral Calculation

The integral of f over B becomes

∫
[−a,a]2

f(x)2dx =
∑
i,j

w
(r)
i w

(r)
j

∫
[−a,a]2

φ
(r)
i (x)φ

(r)
j (x) dx (C.10)

Thus,
∫
[−a,a] f(x)

2dx = w(r)⊤M(r)w(r), where M(r) is the matrix with i, j entry

obtained by integrating Equation (C.10). The computation of M (r) can be split into

different cases expressed below as ‘cos’, ‘sin’ and ‘cos-sin’ terms.

Cos Terms The ‘cos’ i, j terms can be written as

∫
[−a,a]2

cos(z⊤i (x⊙ γi)) cos(x
⊤ωi)) cos(z

⊤
j (x⊙ γj)) cos(x

⊤ωj)) dx

=
1

8

8∑
k=1

∫
[−a,a]2

cos(x⊤η
(k)
i,j ) dx (C.11)

where

η
(1)
i,j = (zi ⊙ γi) + ωi + (zj ⊙ γj) + ωj , η

(5)
i,j = (zi ⊙ γi)− ωi + (zj ⊙ γj)− ωj ,

η
(2)
i,j = (zi ⊙ γi) + ωi + (zj ⊙ γj)− ωj , η

(6)
i,j = (zi ⊙ γi)− ωi + (zj ⊙ γj) + ωj ,

η
(3)
i,j = (zi ⊙ γi) + ωi − (zj ⊙ γj)− ωj , η

(7)
i,j = (zi ⊙ γi)− ωi − (zj ⊙ γj) + ωj ,

η
(4)
i,j = (zi ⊙ γi) + ωi − (zj ⊙ γj) + ωj , η

(8)
i,j = (zi ⊙ γi)− ωi − (zj ⊙ γj)− ωj .
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Integrating the left hand integrants in Equation (C.11) yields

∫
[−a,a]2

cos(x⊤η
(k)
i,j ) dx =


2a2, if i = j and k ∈{3,7}

1

2η
(k)
1,i,jη

(k)
2,i,j

(
sin[a η

(k)
1,i,j ] sin[a η

(k)
2,i,j ]

)
, otherwise

.

(C.12)

Sin Terms The ‘sin’ i, j terms are

∫
[−a,a]2

sin(x⊤(zi ⊙ γi)) sin(x
⊤ωi)) sin(x

⊤(zj ⊙ γj)) sin(x
⊤ωj)) dx

=
1

8

8∑
k=1

(−1)k
∫
[−a,a]2

cos(x⊤η
(k)
i,j ) dx (C.13)

The left hand integrants in Equation (C.13) integrate alike to Equation (C.12) up to

a (−1)k factor.

Cos-sin Terms The ‘cos-sin’ i, j terms can be evaluated as follows

∫
[−a,a]2

sin(x⊤(zi ⊙ γi)) sin(x
⊤ωi)) cos(x

⊤(zj ⊙ γj)) cos(x
⊤ωj)) dx

=
1

8

8∑
k=1

(−1)m(k)

∫
[−a,a]2

cos(x⊤η
(k)
i,j ) dx (C.14)

where m(k) = 1 if k = 1, · · · , 4 and 0 else. The left hand integrants in Equation

(C.14) integrate alike to Equation (C.12) up to a m(k) factor.

The remaining terms, yields sums of integrals of the type
∫
[−a,a] sin(x

⊤η)dx with

η ∈ Rd, that equal zero.

Offset Term For the offset term β, we need to compute the integral of f , that is∫
f(x)dx = w(r)⊤m(r) where m(r) is a 4Kr-vector such that

m
(r)
i =

∫
[−a,a]2

φ
(r)
i (x) dx

The computation of m(r) can be split into two cases : the ‘cos’ terms
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∫
[−a,a]2

cos(z⊤i (x⊙ γi)) cos(x
⊤ωi)) dx =

1

η
(1)
1,i η

(1)
2,i

(
sin[a (η

(1)
1,i )] sin[a (η

(1)
1,i )]

)
+

1

η
(2)
1,i η

(2)
2,i

(
sin[a (η

(2)
1,i )] sin[a (η

(2)
1,i )]

)

and the ‘sin’ terms

∫
[−a,a]2

sin(z⊤i (x⊙ γi)) sin(x
⊤ωi)) dx =

1

η
(1)
1,i η

(1)
2,i

(
sin[a (η

(1)
1,i )] sin[a (η

(1)
1,i )]

)
− 1

η
(2)
1,i η

(2)
2,i

(
sin[a (η

(2)
1,i )] sin[a (η

(2)
1,i )]

)

where

η
(1)
i = (zi ⊙ γi) + ωi, η

(2)
i,j = (zi ⊙ γi)− ωi.

The remaining ‘cos-sin’ terms equal zero.
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C.4 Predictive Expected Log-likelihood

For a training set X = {xi}Ni=1 and an held-out test set X∗ = {x∗
i }N

∗
i=1, we can derive

an approximation for the expected predictive log-likelihood

E [log p(X∗|X)] ≈ −Ew(r)

[∫
B
(w(r)⊤φ(r)(x) + β)2dx

]
+

N∗∑
i=1

Ew(r)

[
log(w(r)⊤φ(r)(x∗

i ) + β)2)
]

where w(r) ∼ q(w(r)|X,Θ).

The integral term can be solved as

Ew(r)

[∫
B
(w(r)⊤φ(r)(x) + β)2dx

]
=

∫
B
Ew(r) [w(r)⊤φ(r)(x) + β]2dx+

∫
B
Var[w(r)⊤φ(r)(x)]dx

=

∫
B

(
φ(r)(x)⊤ŵ(r)ŵ(r)⊤φ(r)(x)

)
dx+ 2β

∫
B

(
ŵ(r)⊤φ(r)(x)

)
dx+ β2|B|

+

∫
B

(
φ(r)(x)⊤Qφ(r)(x)

)
dx

= tr
(
(ŵ(r)ŵ(r)⊤ +Q)

∫
B
φ(r)(x)φ(r)(x)⊤dx︸ ︷︷ ︸

:=M(r)

)
+ 2βŵ(r)⊤

(∫
B
φ(r)(x)dx

)
︸ ︷︷ ︸

:=m(r)

+β2|B|

= ŵ(r)⊤M(r)ŵ(r) + tr
(
QM(r)

)
+ 2βŵ(r)⊤m(r) + β2|B|

where M(r) and m(r) are defined in Proposition 4.3.3. Note that we used the cyclical

property of the trace in the last two lines. We also used the Tonelli’s theorem in

the first line to reverse the ordering of the integration over the positive integrand

(w(r)⊤φ(r)(x) + β)2q(w(r)).

The sum-of-expectations can also be expressed analytically. It takes of form

∑
i

E[log z2i ] where zi ∼ N (µi, σi) (C.15)

with

µi := ŵ(r)⊤φ(r)(x∗
i ) + β and σi := φ

(r)(x∗
i )

⊤Qφ(r)(x∗
i ). (C.16)
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Following Lloyd et al. (2015, section 4.3), each summand can be expressed as

E[log z2i ] = −G(− µi

2σ2
i

) + log

(
σ2
i

2

)
− C

where G(·) is defined as

G(z) = 2z
∞∑
j=0

j!zj

(2)j(1/2)j
(C.17)

with (·)j being the rising Pochhammer series. The constant C ≈ 0.57721566 is the

Euler Mascheroni constant. G(·) can in practice be evaluated using a large multi-

resolution look-up table of pre-computed values. Accurate evaluation can be obtained

by linear interpolation of the values from the table.
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folgen. USSR, Ser. Math: Bull. Acad. Sci., 5.

Koop, G. and Potter, S. (2004). Forecasting and estimating multiple change-point

models with an unknown number of change points. Rev. Econ. Stud., 74.

Kotz, S. and Nadarajah, S. (2004). Multivariate t Distributions and Their Applica-

tions. Cambridge University Press.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The Annals

of Mathematical Statistics, 22(1):79–86.

Kummerfeld, E. and Danks, D. (2013). Tracking time-varying graphical structure. In

Advances in Neural Information Processing Systems, volume 26.

Kuss, M. and Rasmussen, C. (2006). Assessing approximations for gaussian process

classification. In Weiss, Y., Schölkopf, B., and Platt, J., editors, Advances in Neural

Information Processing Systems, volume 18. MIT Press.

Lawrence, N., Seeger, M., and Herbrich, R. (2002). Fast sparse gaussian process

methods: The informative vector machine. In Advances in Neural Information

Processing Systems, volume 15. MIT Press.

Lawrence, N. D. (2003). Gaussian process latent variable models for visualisation

of high dimensional data. In Proceedings of the 16th International Conference on

Neural Information Processing Systems, NIPS’03, page 329–336, Cambridge, MA,

USA. MIT Press.

Lázaro-Gredilla, M. and Figueiras-Vidal, A. (2009). Inter-domain gaussian processes

for sparse inference using inducing features. In Bengio, Y., Schuurmans, D., Laf-

206



BIBLIOGRAPHY

ferty, J., Williams, C., and Culotta, A., editors, Advances in Neural Information

Processing Systems, volume 22. Curran Associates, Inc.

Lázaro-Gredilla, M., Quinonero-Candela, J., Rasmussen, C. E., and Figueiras-Vidal,

A. R. (2010). Sparse spectrum Gaussian process regression. The Journal of Machine

Learning Research, 11:1865–1881.

Le, Q., Sarlos, T., and Smola, A. (2013). Fastfood - approximating kernel expansions

in loglinear time. In 30th International Conference on Machine Learning.

Lee, D. and Mitchell, R. (2014). Controlling for localised spatio-temporal autocorre-

lation in long-term air pollution and health studies. Statistical methods in medical

research, 23.

Leininger, T. J. and Gelfand, A. E. (2017). Bayesian inference and model assessment

for spatial point patterns using posterior predictive samples. Bayesian Analysis,

12:1–30.

Levy-leduc, C. and Harchaoui, Z. (2007). Catching change-points with Lasso. In

Advances in Neural Information Processing Systems, volume 20.

Li, X. and Ma, J. (2021). Non-central student-t mixture of Student-t processes for ro-

bust regression and prediction. In Intelligent Computing Theories and Application,

pages 499–511.

Li, Z., Ton, J.-F., Oglic, D., and Sejdinovic, D. (2021). Towards a unified analysis of

random fourier features. J. Mach. Learn. Res., 22(1).

Lian, W., Henao, R., Rao, V., Lucas, J. p., and Carin, L. (2015). A multitask point

process predictive model. In Proceedings of the 32nd International Conference on

Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages

2030–2038, Lille, France. PMLR.

Liu, H., Cai, J., Wang, Y., and Ong, Y. (2018). Generalized robust bayesian com-

mittee machine for large-scale gaussian process regression. In In International

Conference on Machine Learning, pages 3131–3140.

207



BIBLIOGRAPHY

Liu, H., Ong, Y., Shen, X., and Cai, J. (2020). When gaussian process meets big data:

A review of scalable gps. IEEE Transactions on Neural Networks and Learning

Systems, 31:4405–4423.

Liu, J. S. and Lawrence, C. E. (1999). Bayesian inference on biopolymer models.

Bioinformatics, 15 1:38–52.

Liu, W., Principe, J. C., and Haykin, S. (2010). Kernel Adaptive Filtering: A Com-

prehensive Introduction. Wiley Publishing, 1st edition.

Lloyd, C., Gunter, T., Osborne, M., and Roberts, S. (2015). Variational inference

for Gaussian process modulated Poisson processes. In International Conference on

Machine Learning, pages 1814–1822. PMLR.

Loeve, M. (1978). Probability Theory II. Springer.

Lopez-lopera, A. F., John, S., and Durrande, N. (2019). Gaussian process modulated

cox processes under linear inequality constraints. In Chaudhuri, K. and Sugiyama,

M., editors, Proceedings of the Twenty-Second International Conference on Arti-

ficial Intelligence and Statistics, volume 89 of Proceedings of Machine Learning

Research, pages 1997–2006. PMLR.

Lyu, Y. (2017). Spherical structured feature maps for kernel approximation. In Pre-

cup, D. and Teh, Y. W., editors, Proceedings of the 34th International Conference

on Machine Learning, volume 70 of Proceedings of Machine Learning Research,

pages 2256–2264. PMLR.

MacKay, D. J. C. (2002). Information Theory, Inference & Learning Algorithms.

Cambridge University Press, USA.

MaguireE, B. A., S., P. E., and Wynn, A. H. A. (1952). The time intervals between

industrial accidents. Biometrika, 39(1-2):168–180.

Manogaran, G. and Lopez, D. (2018). Spatial cumulative sum algorithm with big

data analytics for climate change detection. Computers & Electrical Engineering,

65:207–221.

208



BIBLIOGRAPHY

Mardia, K., Kent, J., and Bibby, J. (1979). Multivariate analysis. Probability and

mathematical statistics. Acad. Press.

Matthews, A. G. D. G. (2016). Scalable Gaussian process inference using variational

methods. PhD thesis, University of Cambridge.

Matérn, B. (1960). Spatial Variation. Lecture Notes in Statistics. pringer-Verlag,

Berlin.

McCullagh, P. and Møller, J. (2006). The permanental process. Advances in Applied

Probability, 38(4):873–888.

Mei, H. and Eisner, J. M. (2017). The neural hawkes process: A neurally self-

modulating multivariate point process. In Guyon, I., Luxburg, U. V., Bengio, S.,

Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in

Neural Information Processing Systems, volume 30. Curran Associates, Inc.

Melkumyan, A. and Ramos, F. (2009). A sparse covariance function for exact gaussian

process inference in large datasets. In Proceedings of the 21st International Joint

Conference on Artificial Intelligence, IJCAI’09, page 1936–1942, San Francisco,

CA, USA. Morgan Kaufmann Publishers Inc.

Mercer, J. (1909). Functions of positive and negative type and their connection with

the theory of integral equations. Philos. Trans. Roy. Soc. London, 209:415–446.

Minka, T. P. (2001). Expectation propagation for approximate bayesian inference. In

Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence,

UAI’01, page 362–369, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Mockus, J., Tiesis, V., and Zilinskas, A. (1978). The application of Bayesian methods

for seeking the extremum. Towards Global Optimization, 2(117-129):2.

Moller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spa-

tial Point Processes. Chapman & Hall/CRC Monographs on Statistics & Applied

Probability. CRC Press.

Moran, P. A. (1968). An Introduction to Probability Theory. Clarendon Press, Oxford.

209



BIBLIOGRAPHY

Moreira-Matias, L., Gama, J., Ferreira, M., Mendes-Moreira, J., and Damas, L.

(2013). Predicting taxi–passenger demand using streaming data. IEEE Trans-

actions on Intelligent Transportation Systems, 14(3):1393–1402.

Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. Adaptive Com-

putation and Machine Learning series. MIT Press.

Murray, I., Adams, R. P., and MacKay, D. J. C. (2010). Elliptical slice sampling.

The Proceedings of the 13th International Conference on Artificial Intelligence and

Statistics, 9:541–548.

Murray-Smith, R. and Girard, A. (2001). Gaussian process priors with arma noise

models. Irish Signals and Systems Conference, pages 147–152.

Møller, J., Syversveen, A. R., and Waagepetersen, R. P. (1998). Log Gaussian Cox

processes. Scandinavian Journal of Statistics, 25(3):451–482.

Møller, J. and Waagepetersen, R. (2004). Statistical Inference and Simulation for

Spatial Point Process. Monographs on Statistics and Applied Probability. Chapman

& Hall.

Møller, J. and Waagepetersen, R. (2016). Some recent developments in statistics for

spatial point patterns. Annual Review of Statistics and Its Application, 4(1):317–

342.

Møller, J. and Waagepetersen, R. P. (2007). Modern statistics for spatial point pro-

cesses. Scandinavian Journal of Statistics, 34(4):643–684.

Neal, R. M. (1997). Monte carlo implementation of gaussian process models for

bayesian regression and classification. arXiv: Data Analysis, Statistics and Proba-

bility.

Nickisch, H. and Rasmussen, C. E. (2008). Approximations for binary gaussian pro-

cess classification. Journal of Machine Learning Research, 9(67):2035–2078.

Opper, M. and Archambeau, C. (2009). The Variational Gaussian Approximation

Revisited. Neural Computation, 21(3):786–792.

210



BIBLIOGRAPHY

Orbanz, P. and Teh, Y. W. (2011). Bayesian nonparametric models. In Encyclopedia

of Machine Learning, pages 81–89. Springer.

Panda, S. and Nayak, A. (2016). Automatic speech segmentation in syllable centric

speech recognition system. Int J Speech Technol 19, 9(18).

Park, C. and Huang, J. Z. (2016). Efficient computation of gaussian process regression

for large spatial data sets by patching local gaussian processes. Journal of Machine

Learning Research, 17(174):1–29.

Park, M., Weller, J., Horwitz, G., and Pillow, J. (2014). Bayesian active learning of

neural firing rate maps with transformed gaussian process priors. Neural computa-

tion, 26:1–23.

Pennington, J., Yu, F. X. X., and Kumar, S. (2015). Spherical random features for

polynomial kernels. In Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., and Gar-

nett, R., editors, Advances in Neural Information Processing Systems, volume 28.

Curran Associates, Inc.

Plataniotis, K. N. and Hatzinakos, D. (2001). Gaussian Mixtures and their Applica-

tions to Signal Processing, volume Advanced Signal Processing Handbook of CRC

Press. Springer-Verlag.

Polunchenko, A. S., Tartakovsky, A. G., and Mukhopadhyay, N. (2012). Nearly

optimal change-point detection with an application to cybersecurity. Sequential

Analysis, 31:409 – 435.

Punskaya, E., Andrieu, C., Doucet, A., and Fitzgerald, W. (2002). Bayesian curve

fitting using mcmc with applications to signal segmentation. IEEE Transactions

on Signal Processing, 50(3):747–758.
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