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ABSTRACT: Telomeres are specialized structures, found at the ends of linear chromosomes in eukaryotic cells, that play a crucial
role in maintaining the stability and integrity of genomes. They are composed of repetitive DNA sequences, ssDNA overhangs, and
several associated proteins. The length of telomeres is linked to cellular aging in humans, and deficiencies in their maintenance are
associated with various diseases. Key structural motifs at the telomeres serve to protect vulnerable chromosomal ends. Telomeric
DNA also has the ability to form diverse complex DNA higher-order structures, including T-loops, D-loops, R-loops, G-loops, G-
quadruplexes, and i-motifs, in the complementary C-rich strand. While many essential proteins at telomeres have been identified, the
intricacies of their interactions and structural details are still not fully understood. This Perspective highlights recent advancements in
comprehending the structures associated with human telomeres. It emphasizes the significance of telomeres, explores various
telomeric structural motifs, and delves into the structural biology surrounding telomeres and telomerase. Furthermore, telomeric
loops, their topologies, and the associated proteins that contribute to the safeguarding of telomeres are discussed.

Eukaryotic cells contain linear chromosomes that are
encased by a nucleoprotein complex at each end called

a telomere.1 The hexanucleotide repeats found within
telomeric DNA are linked to various proteins that bind to
both telomeric double-stranded DNA (dsDNA) and single-
stranded DNA (ssDNA), through direct or indirect inter-
actions. These proteins come together to form the protective
protein telomere cap.2 Telomeres play a crucial role in
stabilizing the ends of chromosomes, and their protective
function may hinge on whether they are in an “uncapped” or
“capped” state.2,3 For an extended period, it was believed that
the telomeres were transcriptionally inactive. Nevertheless,
recent findings have revealed that telomeric DNA is often
transcribed into telomeric repeat-containing RNA (TERRA).4

Telomeric RNA is a newly emerging component in telomeric
function that could be an important element of telomere
machinery.2 Previously, studies focused on telomeric DNA and
its linked proteins. However, the identification of TERRA
RNA at the chromosome ends has the potential to provide
fresh perspectives and enrich our existing understanding.5 The
proteins present at the telomeres possess a unique structure

that allows them to oversee and safeguard DNA, making them
integral to numerous biological processes. Additionally,
telomeres play a role in regulating gene expression and
function as a molecular timer, governing the replicative
capacity of human cells.6 In proliferating cells that lack
functional telomerase, telomeres shorten with each mitotic
division, and the cells finally die. The telomeric DNA and
TERRA RNA structural motifs are discussed in detail in this
Perspective along with their roles in regulatory pathways.

■ STRUCTURE AND FUNCTION OF TELOMERES
Telomeric DNA is composed of repetitive sequences located at
the termini of chromosomes. This characteristic is observed in
a diverse range of eukaryotic species. The guanine-rich (G-
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rich) sequences consist of tandem repeats of (TTTTGGGG)n
in lower eukaryotes such as Oxytricha, or (TTGGGG)n in
Tetrahymena and (TTAGGG)n in vertebrates.7,8 Telomeric
sequences in human somatic cells usually range in length from
10 to 15 kb.9 Contrary to the rest of the double-stranded
telomeric DNA, the G-rich strand has a 5′ to 3′ strand
orientation, and the 3′ end strand extends past the
complementary C-rich stand in a single-strand overhang.10

This overhang length varies depending on the species and is
typically 50−200 nucleotides long in humans.11 Recent studies
have confirmed the presence of several proteins that are
essential in maintaining the integrity of the telomeric DNA
(Table 1). Telomeres can therefore be defined as ribonucleo-
protein complexes present at the ends of the chromosomes.

In the process of lagging strand DNA synthesis, the terminal
regions of linear DNA are unable to achieve complete
replication. This arises from the intrinsic asymmetry inherent
in semiconservative DNA replication, a phenomenon com-
monly referred to as the “end-replication problem.”12 As
normal somatic cells divide, telomeric repeats gradually
shorten with every replicative cycle at a rate of 50−200 bp
per cell division. Soon after, the cells enter a state of
irreversible growth inhibition and eventually die via cellular
apoptosis.8 The shortening of telomeric DNA can be viewed as
a molecular clock that marks the beginning of cellular
senescence.9 This biological phenomenon has been linked to
cellular immortality and aging because immortalized cells’
telomeric DNA does not shrink following division.13

Table 1. A Summary of the Telomere-Associated Proteins Discussed in This Review

Telomere-associated proteins Role at telomeres PDB id (if available) Reference

Telomerase Extension of telomeric DNA 7QXB 17, 24, 27
The shelterin complex Protects and regulates telomeres. Consists of six proteins TPP1-POT1-

TRF1-TRF2-TIN2-RAP1
34, 35

TPP1 (POT1 interacting protein) Interacts with PO1 and TIN2. Recruits telomerase to telomeres and is in
direct contact with telomerase

5UN7,5H65,7TRE,5XYF 26, 36−38

POT1 (protection of telomeres) Recognizes the 3′ single strand and binds to ss-ds DNA junction, prevents
telomere instability

8SH1,7S1O,7S1T,7S1U 27, 30, 32,
33, 39

TRF1 (telomere repeat binding factor) Recognizes dsDNA TTAGGG sequences 8OX1,1W0T 29, 40−43
TRF2 (telomere repeat binding factor) Binds to and promotes the development of T-loops 1W0U,5XYF 29, 37, 41,

43, 44
TIN2 (TRF interacting nuclear) Interacts with TPP1, TRF proteins and acts as a bridging unit 5XYF 37, 45, 46
RAP1 (repressor/activator protein) Dependent on TRF2 for telomere binding, inhibits DNA repair 3K6G 47−50
ssDNA binding CST complex Consists of three proteins CTC1-STN1-TEN1 8SOK 25, 51, 52
CTC1 Controls access of telomerase, prevents G-overhang extension, involved in

telomere length homeostasis
6W6W 25, 53, 54

STN1 Binds to ssDNA and protects telomeres from DNA degradation 4JOI 25, 53, 55
TEN1 Required for DNA polymerase α-mediated C-strand synthesis 4JOI 25, 51, 52,

55, 56
DNA2 helicase Interacts with TRF1/2 in shelterin complex, removes telomeric G4 5EAX,5EAN 57−59
Pif1 helicase Unwinds G4, inhibits telomerase activity at telomeres 6HPT,6L3G,7OAR 60−65
FANCJ (Fanconi anemia complementation
group J) helicase

Involved in homologous recombination, DNA damage repair, G4
resolution, and maintaining genomic stability

66, 67

StyRecQL (stylonychia RecQ-like) helicase Resolution of telomeric G4 68
TLS (translocated in liposarcoma)/FUS
(fused in sarcoma) proteins

Binds to telomeric G4 DNA and TERRA 69

HMGB1 (high mobility group B1) protein Binds to noncanonical DNA structures like G4, hemicatenated DNA
loops, and four-way junctions

4QR9 70−72

Gen1 (genetic endonuclease) Resolves HJ at T-loops 5T9J 73, 74
SLX1/4 (structure-specific DNA binding
protein required for maintenance of
genome stability X) endonuclease

Resolves HJ at T-loops 7CQ4 75, 76

RTEL1 helicase Unwinds T-loops, promotes telomere replication 7WU8 77−79
RecQ helicase complex Consists of SGS1-TOP3-RMI1-MPH1-SRS2 proteins. Resolves D-loop,

unwinds G4
2WWY,6CRM 80−83

ATM (Ataxia Telangiectasia mutated)
kinase

Involved in dsDNA breaks 8OXP 84−86

ATR (Ataxia Telangiectasia and RAD3)
kinase

Involved in ssDNA damage 5YZ0 84, 85, 87

MRN complex Consists of MRE11-RAD50-NBS1 proteins. Recognizes ds breaks, primes
DNA ends for repair, activating ATM, implicated in nonhomologous
end joining and homologous recombination

8BAH,3AV0,3QKU 88−91

RAD51 Facilitates strand exchange during HR, involved in D-loops and
recruitment of TERRA via R-loops

5H1B 80, 92−94

RNase H1 and H2 Prevents R-loop accumulation 2QK9,3P56 95−97
ATP-dependent DNA helicase senataxin Prevents R-loop accumulation 98, 99
DHX9 helicase Unwinds R-loops and G4 8SZP 100, 101
EST1A (ever shorter telomeres)/SMG6 Regulates telomerase via TERRA, involved in nonsense-mediated decay

process
2HWW 102−105

RAD51AP1 (RAD51-associated protein) Involved in R-loop and D-loop formation, role in ALT pathways 106
BRCA1 (p220) Deals with ssDNA damage at R-loop termination sites 107, 108

Biochemistry pubs.acs.org/biochemistry Perspective

https://doi.org/10.1021/acs.biochem.4c00023
Biochemistry XXXX, XXX, XXX−XXX

B

pubs.acs.org/biochemistry?ref=pdf
https://doi.org/10.1021/acs.biochem.4c00023?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


As a result, it is essential to preserve both the length of the
telomeres and the presence of the single-stranded overhang for
the stability of chromosomes and the viability of cells. Failure
to do so results in end-to-end fusion events and erosion that
lead to genomic instability and cell senescence.14 Furthermore,
telomeres have also been linked to sister chromatid pairing
during mitosis, homologous meiotic synapses, and the
development of nuclear regions that may be critical for
transcriptional regulation.15 When DNA breaks are detected,
DNA damage surveillance proteins activate enzymes that break
down DNA or fuse chromosomal ends. These biological
processes highlight the importance of telomeres in the
protection of chromosomal ends.
In addition to protecting the ends of DNA strands,

telomeres carry out additional vital tasks such as controlling
the expression of genes that are either close to the telomeres
(called TPE) or far from them (called TPE over long distances,
or TPE-OLD).16 The minimal length of telomeric DNA
repeats and the efficiency of the related protein complexes are
two factors that strictly control the function of telomeres.17

Furthermore, it is believed that appropriate telomere function
is aided by higher-order DNA conformations like the G-
quadruplexes (G-rich, four-stranded nonhelical structures) and
T-loop.12 Moreover, telomeric chromatin plays a crucial role in
signaling, maintaining telomeres, and controlling telomere
function; nevertheless, many of the specific molecular
mechanisms and structures of human telomeric chromatin
remain unclear. Additionally, RNA polymerase II transcribes a
lengthy noncoding RNA called telomeric repeat-containing
RNA (TERRA) from telomeric DNA in telomeric regions.18

TERRA has been linked to the regulation of telomerase, the
arrangement of heterochromatin at telomeres, the control of
gene expression, and the DNA damage response (DDR) that is
brought on by telomere malfunction.19

■ MAINTENANCE OF TELOMERES
Recombination and retrotransposition are two examples of the
diverse processes that have evolved in various cells to stop the
progressive degradation of telomeres.20,21 Telomerase, a
specialized enzyme present in eukaryotes, is an RNA-
dependent DNA polymerase complex that helps in the
maintenance of telomere length by synthesizing telomeric
DNA sequences.8 Besides maintaining telomeric length in the
germline or rapidly dividing cells, telomerase also plays a key
role in tumorigenesis and is a hallmark of cancer.14

Telomerase is a ribonucleoprotein multicomplex composed
of a catalytic protein subunit (hTERT), also known as the

TERT reverse transcriptase, and an RNA moiety (hTR). The
expression of hTERT protein is not typically observed in
normal somatic cells, whereas TER is not only present in
telomerase negative cells but is effectively recruited into a fully
functional ribonucleoprotein complex upon the introduction of
hTERT in vitro.14 hTR is a ubiquitously expressed RNA
component that serves as a template for the insertion of
TTAGGG repeats to the ends of chromosomes, thereby aiding
in the catalysis, localization, and assembly of the telomerase.22

Telomerase almost universally provides the molecular basis for
unlimited proliferative potential. Telomerase is present in
∼85% of all cancer cells and absent in normal somatic cells.23

Telomerase differs from other reverse transcriptases in that it
carries its template RNA for telomeric DNA synthesis. The
RNA component consists of 451 nucleotides. This RNA
contains a sequence that is complementary to about 11 bps in
humans, acting as a template for telomere replenishment.21

The template region is longer than the telomeric repeat that it
encodes. The longer template plays an important role in both
alignment and elongation. By using base-pairing, a piece of the
template aligns with the primer 3′ section, and elongation
replicates it to the 5′ end. No matter where synthesis begins
within the template area, the length of the template guarantees
complete replication of the telomeric repeat sequence. The
elucidation of telomerase, TER, and its associated protein
complexes by the use of cryo-EM places the individual
elements in a wider structural context.24−27 The structures are
now available of the human telomerase with telomerase RNA
(TER) bound to the shelterin protein TPP1 (PDB ID
7TRE)26 and a larger complex of telomerase-DNA-TPP1-
POT1 (PDB ID 7QXB)27 that spatially places the key
telomere binding proteins in context for recruitment of
telomerase to the telomere and its processivity (Figure 1).

■ TELOMERE BINDING PROTEINS
Telomerase can bind ssDNA in vitro and extend primer
sequences in the presence of NTPs; but in vivo, the appropriate
substrate for telomerase activity is not naked DNA repeats but
the shelterin complex, which is a collection of six proteins
(Figure 1).28 Telomeric DNA sequences are directly
recognized by the three proteins, TRF1, TRF2, and POT1.
However, a shelterin complex is created when three more
proteins, TIN2, TPP1, and RAP1, associate together. These
core proteins act to recruit additional components to the
telomere to create multiprotein complexes that help regulate
telomere maintenance.28

Figure 1. Human telomeres associate with the six-protein shelterin complex. A homodimeric protein called TRF1 interacts with the double-
stranded DNA (top strand: TTAGGG). TRF2 aids in the T-loop formation. RAP1, a protein connected to TRF2, prevents DNA repair. POT1
interacts with ssDNA. When TPP1 is lost, POT1 function is hampered. A protein called TIN2 interacts with the TPP1-POT1 complex, TRF1,
TRF2, and TIN2.
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Telomeric repeat-binding factors 1 and 2 (TRF1 and TRF2)
directly attach to dsDNA TTAGGG sequences through a
DNA binding domain located at the C-terminal region of the
protein.29 This provides a shielding effect on the chromosomal
ends, thereby preventing an incorrect DNA damage response.
TRF1 has acidic amino acids close to its N-terminus, while
TRF2 has a basic region rich in Gly/Arg. They bind DNA as
homodimers or oligomers by homotypic interactions in the
TRF homology (TRFH) domain. These proteins connect to
arrays of the telomeric sequence TAGGGTTAG with
remarkable sequence selectivity. Nonetheless, the protection
of telomeres 1 (POT1) protein recognizes the 3′-single-
stranded overhang at the end of the chromosomal dsDNA.30

POT1 protein is present in organisms such as the micro-
sporidia, plants, mammals, and fission yeast.31 It is a highly
conserved protein that is essential for the regulation and
maintenance of telomerase. Additionally, POT1 structural
domains have been identified either alone or in complexes,
such as POT1a bound to dsDNA with a GTTAGG repeat 3′-
overhang (PDB ID 8SH1).32 Another is the c-terminal domain
(POT1c) (PDB 7S1O, 7S1T, and 7S1U).33 The complex
describes how POT1a functions to safeguard the key
interaction site known as the ds-ssDNA junction. This
structural configuration emphasizes how essential it is to cap
the phosphorylated 5′ C-rich strand of the junction, inhibit
RPA (replication protein A) loading, and restrict ATR (Ataxia
telandiectasia and RAD3) recruitment (Figure 2A). Further-
more, the interactions between the POT1 OB/TPP1 binding
domains with the shelterin complex bind the ssDNA overhang
to the telomeric dsDNA.
Moreover, TRF1- and TRF2-interacting nuclear protein 2

(TIN2) are used by TPP1-POT1 heterodimers to link the
duplex section of the telomeres to the single-stranded
overhang.45 TIN2 interacts with TRF1 at its C-terminus, and
it binds to a hinge domain at TRF2’s N-terminus. Using a third
protein interaction site located at its N-terminus, TIN2 binds
to TPP1 and forms a complex. Thus, via binding to TRF1,
TRF2, and TPP1, TIN2 plays a crucial part in the shelterin
complex.28,34 Repressor/activator protein 1 (RAP1) in humans
is dependent on TRF2 for telomere binding, since it is not
capable of binding DNA.48 Through its C-terminal domain,
RAP1 interacts with a tiny helical area in TRF2’s hinge domain
to form a complex.47

TIN2 and TPP1 (POT1 interacting protein 1) interacts with
POT1 and TIN2 via the POT1-binding domain and the C-
terminal of TIN2.46 POT1’s association with telomeres is
contingent upon its correlation with TPP1, which functions as
the principal route for POT1’s recruitment to telomeres.
POT1 is known to disrupt the telomeric G-quadruplex (see
below), enabling telomerase extension.109 However, it is
believed that RAP1 in yeast binds to telomeric DNA to
promote the synthesis of G-quadruplexes,110 whereas RAP1 in
humans is recruited to telomeres by TRF2.49 It has been
shown that TRF2 binds to T-loops and promotes their
development (Figure 1).25 The shelterin complex as a whole
controls signaling cascades from chromosomal ends and
protects and regulates telomeres.34

Synthesis of the complementary C-strand by DNA polymer-
ase α is also connected to telomere maintenance and cannot
bind to ss telomeric DNA without the assistance of CTC1-
STN1-TEN1 proteins known collectively as the ssDNA
binding complex CST.25,51,52 Subunits of CST control access
of telomerase, preventing G-overhang extension, while TEN1

is required for DNA polymerase α-mediated C-strand
synthesis. In the cryo-EM structure (PDB ID 8SOK) with
and without telomeric ssDNA, the CST complex can be
observed to be interacting with POT1/TPP1 revealing how
CST recruitment to the telomere is regulated by POT1 and its
phosphorylation state.51

According to a recent study, human cells may include 200
telomere-associated proteins that interact with and may have
an impact on telomeric structure.111 These were identified via
the biochemical purification of the telomeric complexes. Given
the wide variety of telomere components, it is possible that
human telomeres are extremely malleable in their organization.

■ HIGH-ORDERED NUCLEIC ACID STRUCTURES AT
THE TELOMERES

G-Quadruplexes. Complementary DNA is associated with
a double-stranded arrangement; however, it can also form
multistranded structures beyond this duplex arrangement by
either unzipping and then independently refolding of the two
strands into alternative topologies or through the self-
association of multiple strands.81 In regions containing
telomeric DNA, the repetitive G-rich sequences can refold
into a G-quadruplex (G4) (Figure 2B). Here the core structure
consists of stacked G-quartets where the guanines associate
with one another via Hoogsteen hydrogen bonding in a
coplanar cyclic array, stabilized by eight hydrogen bonds.
Through π−π stacking interactions, G-quartets can successfully
stack on top of one another to create four-stranded G4 DNA
structures.112,113 This arrangement results in a negatively
charged central channel lined by carbonyl oxygen groups along

Figure 2. Structures found at the human telomeres. (A) Structure of
POT1 (cyan) bound to duplex/single-stranded interface and the 3′
end of unfolded telomeric ssDNA; (B) the crystal structure of the
propeller topology of human telomeric DNA G4; (C) structural
model of the G4-duplex DNA interface; (D) structure of telomerase
holoenzyme illustrating the reverse transcriptase (ice blue)-telomerase
RNA (khaki)-TPP1 (gray)-POT1 (cyan)-histone H2A/B (orange)-
telomeric DNA (red). Red arrows show the G-rich DNA direction,
and blue arrows show the C-rich DNA direction. The corresponding
PDB identifiers are listed below each subfigure.
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the central axis of the structure. The charge repulsion in the
channel is stabilized by the presence of monovalent cations.
Each G4 consists of two distinct features: the centrally stacked
G-stem and the unpaired bases that connect the guanine
stretches to form the loops. The extended G-rich 3′ single-
strand overhang at the ends of telomeres lacks the
complementary C-rich strand and so provides an opportunity
for these motifs to readily form and modulate access of POT1
to the ssDNA ends of the chromosomes.32 Structurally, it has
been observed that G4s formed from human telomeric
sequences can exist in multiple topologies.114 The several kb
of single-stranded repeating G-rich sequences present at the
telomeric ends can also form multiple G4 units adjacent to
each other. These units can then combine to form complex
multimeric G4 structures.115−117 The structure of the interface
between dsDNA and G4 has been determined showing G4s
stacked externally to the dsDNA providing a model for the 3′
end of a linear chromosome in the absence of POT1 (Figure
2C). The G4s are thermodynamically stable with melt
temperature above dsDNA and can be further stabilized by
the presence of small molecule ligands.114 It is worth
mentioning that a G4 targeting clinical candidate�
QN302�has been approved for Phase 1 clinical trials by the
FDA for pancreatic ductal adenocarcinoma.118,119

Crucial to the discussion of G4 is the presence of G-
quadruplex binding proteins (G4BPs) other than POT1 that
perform several important functions like providing stability to
the G4 complex as well as facilitating its unfolding.120 The
basic categories of G4BPs are based on the regulatory
mechanisms and functional interactions these proteins have
with G4s. First, these proteins are classified as G4-folding
proteins, which alter G4 structures, and G4-interacting
proteins, which are functional proteins recruited by G4.
Another way to categorize G4BPs is based on the distribution
of G4s in the genome, i.e., DNA and RNA G4BPs.
G4BPs carry out a number of biological tasks like telomere

homeostasis, which occurs at the site where telomere-binding
proteins form a ternary complex with the G4 telomeric DNA
structures.66 G4BPs such as helicases must resolve the G4s that
arise during replication in order for the replication machinery
to function properly. DNA2 is a helicase/nuclease protein that
was initially identified in yeast but also isolated in mammalian
DNA that localizes at telomeres and interacts with shelterin
components TRF1 and TRF2. Using the helicase-dead DNA2
mutant protein, it was demonstrated that mammalian DNA2
nuclease identified and cleaved telomeric G4 DNA in a
helicase-independent manner in vitro, leading to the nucleolytic
elimination of both the G4 generated in 5′ flap structures and
the telomeric G4 created in template DNA. The standard
ssDNA repair apparatus could then probably close the
resultant DNA gap in the template.57

The 5′−3′ DNA helicase FANCJ (Fanconi anemia
complementation group J) is involved in a number of
biological activities, including homologous recombination,
DNA damage repair, G4 resolution, and maintaining genomic
stability.121 In order to facilitate effective DNA replication,
FANCJ may unfold and remove G4 structures; in contrast, lack
of it will halt replication at G4s and ultimately result in DNA
damage.122 It has been demonstrated that S. cerevisiae’s RecQ
helicases Sgs1p and BLM preferentially unwind G4s over
Holliday junctions. Researchers have also isolated a RecQ-like
helicase called the StyRecQL, and it is evident that this helicase
is linked to telomerase in the replication band, is drawn to

replicating telomeres by telomerase, and plays a role in the
unfolding of the G4.
TLS/FUS has also been identified that binds to G4

telomeric DNA and TERRA simultaneously. In vitro, a fold
in the G4 Htelo and TERRA is the particular target of the C-
terminal Arg-Gly-Gly (RGG) domain in TLS, which forms a
ternary complex with them. Additionally, TLS binds G4
TERRA in vivo and G4 DNA in the telomere double-stranded
region.69 Recently, researchers also isolated a nuclear protein
that is highly prevalent in vertebrates called nuclear protein
high mobility group B1 (HMGB1). HMGB1 shows a high
affinity to bind to noncanonical DNA structures such as
hemicatenated DNA loops and four-way junctions in addition
to G4 DNA. Furthermore, it exhibits nonsequence selectivity
in binding to B-form DNA, resulting in DNA helix
deformation and promoting DNA interaction with other
nuclear proteins.71

To aid in DNA replication, Pif1 helicase, another protein
present in yeast cells, may attach to and unfold G4 structures.60

Pif1 prefers to attach itself to G4 forming sequences in the S-
phase of the cell cycle.61 Pif1 helicase then unwinds any G4
structures, thereby reducing double strand breaks during the
cell cycle.123 In the absence of Pif1, these sites are susceptible
to double breaks.124 Furthermore, Pif1 is also negative
regulator of telomerase.62

T-Loop Structures. The main function of the long 3′
ssDNA overhang in mammalian telomeres may be to load
POT1 and the shelterin complex at the end of the telomere,
allowing them to interact with other shelterin complexes
attached to other loops around the telomere.25 When the 3′
ssDNA overhang (TTAGGG in mammals) loops back and is
tucked into the double-stranded component of the telomeric
DNA molecule, lasso-like three-stranded DNA displacement
loops known as T-loops or telomere loops are formed.125

These loops aid in concealing and protecting the single-strand
overhangs of chromosomal DNA.126 According to a recently
suggested T-loop concept,125 both terminal strands are
annealed to their corresponding strands in the form of a
bubble. Because this structural configuration possesses traits of
both a replication fork and a Holliday junction, the T-loops are
more stable within this configuration than with merely paired
dsDNA with an ssDNA overhang. To further reinforce the
stability of these T-loops, shelterin complexes loaded at the
telomeric end preferentially loop back (Figure 1). As stated
earlier, loading of POT1 and the shelterin complex at the
terminal ends of the telomere allows them to interact with
other shelterin complexes attached to different loops along the
length of the telomere. This structural configuration, which is
observed in naturally isolated T-loops, allows for a wider
distribution of sizes for the circular part of the loop.126

The recently suggested model of the T-loop bubble states
that the resolution of the Holliday junction (HJ) at the site
where the two ssDNA cross over one another would result in a
covalently closed ssDNA circle that anneals to the strand
bearing the free 3′ terminus (Figure 3C,D).126 A rolling
circular replication template that employs regular chromoso-
mal replication components can significantly extend the
preceding DNA by employing resolvases such as GEN1 or
SLX1/4 to resolve the HJ at the T-loop. This theory offered an
alternative mechanism by which the telomere may be extended
by the T-loop. As was already established, the involvement of
the T-loop in DNA transactions supports their function in
telomere homeostasis. The origins of linear chromosomes and
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telomeres as well as how they overcome the difficulties
associated with end-protection and end-replication, are still
unknown. A recent study identified a potential CDK2
phosphorylation site at Ser365 in human TRF2, which may
be mutated to alanine (Myc-tagged TRF2(S367A)) or treated
with λ-protein phosphatase to eliminate it.77 This suggests a
mechanism of unwinding the T-loops to facilitate telomere
replication. The cell cycle analysis showed that this alteration is
significantly less in the S phase but prevalent in the G1, G2,
and M phases. This provides a brief window to the RTEL1
helicase in the S-phase during the PP6R3 phosphatase
dephosphorylation to temporarily access and unwind T-loops
and promote telomere replication.77

D-Loops and Their Structures. During the formation of a
D-loop, the dsDNA coils around in a lasso-like fashion.47 It is
then possible for the single-stranded 3′ terminus overhang of
telomeric DNA to re-enter the dsDNA and produce a
displacement loop in the process (D-loop; Figure 3B).81

Once formed, D-loops are dynamic structures. A DNA

polymerase that is committed to using donor DNA as a
template during repair can expand D-loops with an annealed
3′-OH end. SGS1-TOP3-RMI1, MPH1, and SRS2 are proteins
that dissolve D-loops by the use of helicases or top-
oisomerases.80 In the process of heteroduplex rejection,
mismatch repair proteins improve the D-loop disruption
mechanism as mismatched DNA. Sequence mismatches or
differences could occur when DNA strands from different
origins, such as sister chromatids or homologous chromo-
somes, construct a D-loop structure for repair or recombina-
tion. These discrepancies may result from DNA mistakes or
genetic variances. By identification of these differences and
mistakes within the D-loop, the mismatch repair proteins
attach to the D-loop. The D-loop is then broken down,
ensuring that only correctly matched DNA strands are used for
repair or recombination, maintaining the integrity of the
genetic material, and halting the spread of mutations.127 Due
to the enzyme’s dynamic nature, two broken ends cannot
invade the same donor molecule at the same time, resulting in
the formation of a double-Holliday junction, or for a single end
to invade two different donors at the same time, resulting in
multi-invasions (MI). This prevents structure-selective endo-
nucleases from modifying the donors in the covalent
downstream covalent process.
D-loops are also important intermediaries during homolo-

gous recombination and a crucial step in the DNA double-
strand break repair (DSBR) pathway.84 DSBR is a highly
intricate process organized by a sophisticated interplay of
enzymes and proteins. Key players in this regulatory network
include ataxia-telangiectasia mutated (ATM) and ataxia-
telangiectasia and RAD3 (ATR) related kinases, vital
checkpoint enzymes finely attuned to detect DNA damage
and activate the ensuing DNA damage response (DDR).19

ATM primarily addresses double-strand breakages, while ATR
is specialized in responding to single-strand DNA damage.
Both kinases phosphorylate downstream targets, instigating the
initiation of repair processes.85 Another critical enzyme in this
repair cascade is the MRN complex, comprising MRE11,
RAD50, and NBS1 (also known as NBN).88 This multifaceted
complex assumes a pivotal role in recognizing DSBs,
processing DNA ends, and activating ATM. It serves to
prime DNA ends for repair and is implicated in both
nonhomologous end joining (NHEJ) and homologous
recombination.89 RAD51, another essential enzyme, operates
as a recombinase protein pivotal to homologous recombination
(HR). It orchestrates the formation of nucleoprotein filaments
on single-stranded DNA, facilitating the intricate process of
strand exchange during HR.92

Beyond DSBR, several proteins, such as telomerase and
shelterin complex components, rely on the structural proper-
ties of the telomeric DNA, including the D-loop, to carry out
their functions.81 The D-loop within the telomeric DNA
provides a structural feature that guides the telomerase to the
appropriate location on the chromosome ends. It serves as a
recognition site or a platform for telomerase to bind and
accurately extend telomeric repeats. Without the D-loop,
telomerase might have difficulty accessing and lengthening the
telomeres effectively. The D-loop contributes to the proper
assembly and stability of the shelterin complex. The D-loop
provides structural cues that assist in the recruitment and
positioning of shelterin proteins, ensuring the protection of
telomeres from unwanted DNA damage responses.25,81

Figure 3. T-loop structures: (A) The integration of the 3′ terminal,
which can serve as a replication origin, in both the structures depicted
in A and B. Here, only the 3′ single-stranded overhang from the G-
rich strand, annealed into the double-stranded DNA, is depicted in
the conventional T-loop junction. (B) Terminal strands from a DNA
molecule with blunt ends can be introduced to form a more stable T-
loop structure. (C) Within the T-loop, an embedded replication
origin and a Holliday junction can be observed. The presence of a
classical Holliday junction is indicated by the topological equivalence
between the structures in B and C. (D) Following resolution of the
Holliday junction with resolvases like Gen1 or SLX1/4, a rolling circle
replication template is generated.
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The length of the D-loops in human telomeric DNA may
become longer, making it more difficult to break the D-loop.
Therefore, it is possible that the DNA strand invasion
machinery (which is by definition a propulsion mechanism
for the route forward) is already inducing the reverse reaction
by dictating the shape of the D-loop.81 If that is the case, it may
be a component of the regulatory branch, which is responsible
for promoting genome stability, and to prevent errors, maintain
genomic integrity, safeguarding against mutations and diseases
like cancer and act as a quality control system for DNA
repair.81,128

i-Loop Structures. Damage-induced loops are key
intermediates (termed i-loops) that link telomere damage to
telomere erosion and the generation of extrachromosomal
telomeric t-circles (Figure 4A).129,130 The development of t-
circles might be viewed as a result of chronic telomeric damage
brought on by long-term chemotherapeutic actions that
promote telomere shortening. Elements that prevent the
exchange of chromosomal strands or cause inappropriate
single-strand annealing at telomeres hinder the development of
i-loops at the site of damage and eventually resist the
development of extra-chromosomal t-circles. Additionally,
damage to the telomeres would explain why many mutant
genes involved in telomere maintenance have t-circles. Branch
migration of i-loops, facilitated by specialized helicases such as
RTEL1, BLM, and WRN, is self-induced when i-loops act as a
substrate for these proteins at telomeric repeats.130 This
process affects i-loop excision, which may reduce the
probability of telomerase loss. Noncanonical telomeric repeats
present in cells can also cause hindrance to telomerase loss in
ALT (alternative lengthening of telomere) cells.131 Moreover,
in yeast to humans, the development of circular DNAs may
occur due to i-loops being produced from telomere damage,
which occurred in other tandem repeats. Therefore, the i-loop
rate would produce more repetitive elements with shorter
repeated motifs due to the exposed complementary sequences
after telomere damage. Extrachromosomal circles are most
likely to be produced by telomeres with a repeat unit of 6 nt as
compared to most other lengthy repeat units. The strong
proclivity of telomeric repeats to form i-loops that may be
excised as circles, resulting in continuous and random
variations in the number of repeats, is one explanation for
the diversity in the amplitude of telomere length across
different chromosomes and cells.130

R-Loop Structures. R-loops are unique nucleic acid
structures generated when a newly transcribed RNA strand
intrudes into the double-stranded DNA region following RNA
polymerases, establishing an RNA-DNA hybrid (depicted in
Figure 1). This process leads to the displacement of the
nontemplate DNA strand, resulting in the formation of a
single-stranded DNA (ssDNA) region. In the context of gene
transcription, R-loops conventionally stem from regions rich in
guanine clusters, also known as G-clusters (as illustrated in
Figure 4B).132 Newly produced RNA is more likely to anneal
with complementary ssDNA when these clusters are
present.133 After the formation of the R-loop, stabilization
and extension of the RNA-DNA hybridization are achieved,
extended by the addition of successive guanine-rich (G-rich)
regions. Elongation loses benefits as the structure breaks and
the G-rich content decreases.133

The necessity for G-rich sequences is diminished, and R-
loop formation is facilitated by additional variables. For
example, interactions between the template strand and newly
transcribed RNA are more likely when there is more negative
supercoiling on the transcription bubble’s following fork.
Moreover, even when the G-rich area is distant from the
original G-cluster, nicks in the nontemplate strand can
encourage DNA-RNA hybridization of developing RNA to
the template strand.133 Among the many processes that
contribute to maintaining the integrity of the transcription
bubble and preventing R-loop accumulation are nuclease
activity and topological stress reduction. These mechanisms
are thoroughly described in recent review papers.132−135 To
summarize, many enzymes work in tandem to prevent the
accumulation of R-loops. RNase H1 and RNase H2 use 5′-3′
exonuclease activity to remove RNA from the loop. Since
RNA-specific ribonucleases are the only enzymes that are
known to break down hybridized RNA, these have been
preserved throughout evolution in both prokaryotes and
eukaryotes.95 In addition to RNase H1/2, cells include
helicases like mammalian DHX9 and Aquarius that “untangle”
DNA-RNA lesions (AQR). Two more helicases that are
known to demolish R-loop structures are ATP-dependent
DNA helicase senataxin and PIF1, an ortholog of the yeast
Sen1p.98

Recently, structural motifs with cooperative relationships
between G4s, TERRA (see below), and R-loops have been
reported.136 These unique structures, termed G-loops, have
been observed in ALT cells, where G4 and R-loop form on

Figure 4. (A) DNA i-loop formation is a crucial step in gene transcription regulation. The DNA double helix serves as the backdrop, with RNA
polymerase representing transcription initiation. Surrounding the DNA, transcription factors influence gene expression, and a specific activator
protein (pink) triggers transcription in a precise DNA region. (B) The process of transcription with the formation and resolution of an R-loop is
facilitated by the presence of RNA polymerase and the enzymatic action of senataxin. RNA polymerase initiates transcription by unwinding a
section of the DNA, synthesizing a complementary RNA strand, and temporarily forming an R-loop as the nontemplate DNA strand is displaced
and hybridized with the RNA. Senataxin (Sen1/SETX), depicted in purple, plays a critical role in resolving the R-loop, separating the DNA-RNA
hybrid, allowing transcription to continue, and maintaining genomic stability. This process ensures the accurate synthesis of RNA transcripts and
the proper functioning of transcription machinery.
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opposing strands137 (Figure 5B). The high G-loop levels in
ALT cells suggest a plausible role these structural motifs play in

the ALT maintenance mechanism. Moreover, the presence of
G-loops is being presented as ALT biomarkers and potential
therapeutic targets.137

TERRA. Eukaryotic telomeres are transcribed into telomeric
repeat-containing RNA (TERRA) despite the fact that they are
heterochromatic structures.4,18 From several, if not all,
chromosomal ends, TERRA molecules are translated in the
direction of the telomeric DNA. They have UUAGGG repeats
formed from transcription of telomeric regions and sub-
telomere-derived sequences (Figure 5A).138 It has been
demonstrated that an increase in TERRA�the G-rich
RNA�during the transcription of telomeres may also result
in an increase in homologous recombination.139 Moreover, it
has also been proposed that TERRA interferes with telomerase
activity, which is responsible for lengthening the telomeric
DNA at the ends of the chromosomes. Mammalian TERRA
molecules have 5′-UUAGGG-3′ sequences that complement
the hTR component of the telomerase enzyme’s template
region.104 Since the TERRA and hTR components comple-
ment one another, it is possible that they will attach to
telomerase directly and influence its activity. This theory is
supported by the discovery that in cell extracts TERRA
molecules are linked to human telomerase. Independent of
hTR, researchers provided compelling evidence that TERRA
molecules engage in interactions with hTERT.104

A cellular quality control system called NMD (nonsense-
mediated decay) recognizes and breaks down aberrant RNA

molecules with early stop codons, halting the synthesis of
truncated or dysfunctional proteins.103 It helps ensure the
accuracy and integrity of gene expression by eliminating
potentially harmful or nonfunctional RNA transcripts. NMD
factors are crucial in maintaining genomic stability, especially
at telomeres. These factors physically interact with telomeric
chromatin, the DNA−protein complex at telomeres. When
they do so, two important actions take place regarding
TERRA. First, NMD factors can displace TERRA from its
telomeric position by competitively binding to it and in the
process effectively removing it from the telomeric region.
Second, NMD factors can contribute to the degradation of
TERRA, thereby marking it for disposal when it is displaced or
targeted by these factors (Figure 5B).104

In complex eukaryotes like humans, the recruitment and
activation of telomerase at chromosomal ends is not well-
known, and the function of EST1A (Ever Shorter Telomeres
1)/SMG6 in this process is unclear although human EST1A/
SMG6 physically interacts with telomerase in a manner similar
to yeast Est1.104 Though its effects on TERRA displacement at
telomeres imply that EST1A/SMG6 may regulate telomerase
through TERRA, its relationship with telomerase is consistent
with a role in telomerase regulation.18 It has been hypothesized
that TERRA may control telomerase in a telomere-length-
dependent way, since TERRA is more prevalent when
telomeres are long and the TERRA-mimicking RNA
oligonucleotide (UUAGGGG)3 suppresses telomerase activity
in vitro as evaluated by the TRAP assay.140 The discovery that
some cancers had lower levels of TERRA than the equivalent
normal tissue is also consistent with the idea that TERRA
regulates telomerase negatively.18,138

By physically interacting with telomerase, hEST1A/SMG6
plays a significant function among the many proteins of the
NMD process.103 Thus, it is possible to hypothesize that
human EST1A/SMG6 may affect telomerase via TERRA
regulation. Studies both in vivo and in vitro have demonstrated
that TERRA at least partially controls the telomerase.141

Researchers have shown that there should be a sufficient
equilibrium between TERRA formation, telomerase avail-
ability, RNA binding protein hnRNPA1, as well as free 3′
overhang of telomeric DNA at a specific period.142 When
TERRA production exceeds hnRNPA1 abundance, hnRNPA1
can access the 3′ end of telomeric DNA and prevent
telomerase from extending it, preventing it from binding to
the telomeres.18,138

Direct correlations between TERRA and homologous
recombinant (HR) factors such as RAD51, BRCA1, and
RTEL have been shown in recent studies.93,108,143,144 It was
demonstrated that TERRA stimulates R-loop formation at
telomeres and starts strand invasion, which is reliant on
RAD51. Similarly, RNA binding activity is shown in RAD51-
associated protein 1 (RAD51AP1), a component that plays
important roles in ALT pathways. Through specific HR
intermediates known as DR-loops, RAD51AP1 uses RNA as
part of a system that creates R-loops and displacement (D)-
loops. The HR-driven DSB repair (HR-DSBR)18 factor
BRCA1 (p220) also deals with ssDNA damage at the R-loop
termination sites. A recent study has also shown the role of
TERRA and RAD51API to the ALT pathways in RAD52
knockout cells by promoting telomeric R-loop formation that
leads to G4 formation in telomeres.106 The dynamic telomeric
R-loops generated by TERRA and RAD51AP1 activate the
RAD52-independent ALT pathway, which in turn triggers G4

Figure 5. TERRA is a crucial component of telomeric hetero-
chromatin, which also contains UUAGGG repeats formed from the
transcription of telomeric regions and subtelomere-derived sequences.
(A) A composite image highlighting known structural elements along
with 3D spacial arrangements with the necessary rotational alignment
and resulting topological complexity of these arrangements, R loop
with insertion providing the framework for G4 formation. (B) The
formation of the G-loop where the R-loop and G4 occur on opposing
strands. (C) The NMD factors that interact with telomeric chromatin
physically displace or degrade TERRA at telomeres.
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to orchestrate an R-to-D-loop transition at telomeres to drive
break-induced replication of telomeres.106 These mechanisms
are being widely studied for their role in cancer therapies.
i-Motif. i-Motifs are four-stranded DNA structures that are

formed in sequences rich in cytosines in the adjacent unpaired
DNA strand, just like the G-rich sequences form G4s.145 The
two parallel stranded duplexes associate in a head-to-tail
orientation within the i-motif upon the intercalation of the CC
+ base pair (Figure 6A).146 At low pH values, this structure is

stabilized by the protonation of cytosines. It has been proposed
that this structure may affect the dynamics of the telomeric
DNA duplex and promote its opening.147 The i-motifs may be
classified into two main intercalated topologies: the 3′-E
topology, where the outermost base pair (C−C) is located at
the 3′-end, and the 5′-E topology, where the outermost base
pair (C−C) is located at the 5′-end. Between these two
topologies, the 3′-E topology is also more stable.148 The
interactions between sugar−sugar contacts along the tiny
grooves, which encourage optimal backbone twisting and the
formation of stacking bases, are responsible for the molecule’s
stability.149 The overall stability of i-motif structures, however,
is determined by the number of cytosine residues that interact
with one another. This suggests that when more cytosine
residues form hydrogen bonds, the molecule will be more
stable. In addition, other factors that affect the stability of the i-
motif include temperature, salt content, and environmental
pH.150 A great deal of research has been conducted to

understand how i-motif structures behave in various environ-
ments. This includes examining the effects of altering the
lengths of the cytosine tract and loop, utilizing cytosine analogs
that have been epigenetically modified, and changing the DNA
backbone as well as other modifications.151 Since pH plays a
crucial part in regulating folding, its impact on the i-motif has
been well studied, including how stable it is at various pH
levels and how it affects the structure’s kinetic and
thermodynamic characteristics.152−154 It should be noted that
the thermodynamic and thermal stability are related but not
identical properties of i-motifs.155 Conversely, the impact of
the temperature on the structure has received far less attention.
Unusual effects related to temperature have been previously
noted in the i-motif while investigating its pH-responsive-
ness.148,156,157 This includes the isothermal hysteresis in pH
transitions158 and the hysteresis that is frequently seen between
thermal melting and annealing curves for the structure.159 It
has also been discovered that kinetic partitioning occurs when
a pH drop causes the i-motif to fold quickly into one
conformation at first, but over time, it unfolds and refolds to a
slower-forming, more stable conformation. As a result, the i-
motif structure was described as residing in an equilibrium at a
specific pH and temperature where conformers were slowly
interconverting.159 The influence of the temperature is a
significant variable that warrants careful examination because
of its dynamic character.
The most stable pH range for human telomeric i-motif

complexes is ∼6.0.159 The use of a free proton by the nucleic
acids during the folding process has been found to allow
certain i-motifs to form at neutral pH.148 To detect the i-motif
complexes, certain parameters must be met, including
molecular crowding, negative superhelicity, and a temperature
of 4 °C.160 Furthermore, for i-motifs to be stable at a neutral
pH, the superhelicity must remain negative.161

■ HOLLIDAY JUNCTIONS AND TELOMERES
Holliday junctions (HJ) reflect branched nucleic acid
structures that consist of two pairs of double-stranded arms
joined together.162 HJs are intermediates of homologous
recombination (HR).163 HR is critical during meiosis because
it promotes genetic variety by allowing the flow of genetic
material across cells. HJs form a covalent bond between DNA
molecules that are undergoing recombination during mitosis,
and as a result, they must be removed before the chromosomes
are segregated.164 The inability of the HJ to resolve results in
severe mitotic repercussions resulting in the creation of DNA
breaks and chromosomal abnormalities.165 Although high-
density lipoproteins are produced to aid in the effectiveness of
DNA repair, they are also believed to be toxic, because they
have the ability to interfere with proper chromosome
segregation (chromosome separation). The primary aim of
the HJ is to allow the exchange of distinct portions of genetic
information. Three structural arrangements of telomeric HJs
have been reported including single, double, and protein-
associated HJs (Figure 7A).166

In vivo, HJ exhibits different structural variants. When the HJ
is free in solution, it acquires a variety of different
interconvertible configurations (Figure 7B).167 The junction
expands to an open form in the presence of low salt conditions
and absence of multivalent ions, which lessens the repulsion
between the negatively charged phosphates concentrated at the
junction.166,168 When either a large concentration of
monovalent cations or a high concentration of multivalent

Figure 6. Models of motifs formed from human telomeric sequences.
(A) Telomeric dsDNA bound by TRFII and TRFI (PDB 1W0U)
adjacent to a bubble allowing the formation of G4 on the G-rich
strand (PDB 1KF1) and an i-motif on the C-rich strand (PDB 1EL2).
(B) The cryo-EM model of a G4 within the context of an open bubble
containing a central G4 was determined (PDB 8DUT). Red arrows
show the G-rich DNA direction, and blue arrows show the C-rich
DNA 5′-3′ direction. A hemiprotonated cytosine-cytosine (C−C+)
base pair and a G-tetrad have also been shown to highlight the
hydrogen bonding patterns. The corresponding PDB identifiers are
also listed below each subfigure.
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cations is present, the junction overcomes electrostatic
repulsion and folds into one of two stacked conformers.167,168

Although HJs are produced to aid in the effectiveness of DNA
repair, they are also regarded to be toxic because they have the
potential to interfere with normal chromosome segregation.169

The ability to recognize distinct physical and geometric
features of the junctions is necessary to comprehend how
the HJ is processed by proteins.

Single HJs represent structures that occur independently. In
mitotic cells, single HJs are resolved by structure-selective
endonucleases known as HJ resolvases.170 This type of
junction typically consists of a symmetrical sequence that
allows them to move freely, which means that the four single
arms can slide in a particular pattern through the junction
depending on the base-pairing.171 The main goal of single HJs
is to facilitate the repair of the breaks encountered in double

Figure 7. Potential Holliday junction conformations. (A) Crystal structure of a single Holliday junction formed from telomeric DNA folded in the
stacked X-conformation (PDB 6DGH). Strand exchange occurs via the C-rich strand. Red arrows depict the G-rich strand; blue arrows depict the
C-rich strand. (B) Three conformations of a Holliday junction parallel, open, and stacked-X antiparallel HJs. In the presence of magnesium ions,
the HJ formation undergoes a transition from an open to a stacked antiparallel topological state.

Figure 8. Regulation of double HJ resolution. Several helicase molecules can bring double-Holliday junctions very near together, and then, the
Holliday junction can be resolved by resolvases such as Gen1 or SLX1/4.
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strands. A study initiated by Haider et al. revealed that the C-
rich lagging strand contains structural features that constrain
crossover geometry and allow the formation of the telomeric
HJs.166

When two single HJs are topologically linked within shared
proximity, they are defined as double-Holliday junctions (dHJ;
Figure 8). Like single HJs, dHJs also reflect the critical
intermediates of the homologous recombination process.172

The components consist of separate links that can be cleaved
via DNA structure-selective endonucleases, popularly referred
to as HJ resolvases.173 In other instances, dHJ can undergo
processing via a reaction known as “the dissolution of double-
Holliday junction”, which requires the cooperative action of
several enzymes.172 dHJs play the critical role of ensuring the
migration of different HJs toward each other to establish a
hemicatenated intermediate, which can undergo decatenation
via topoisomerase during the dissolution procedure.172

At the telomeres, the dHJ helps in restructuring the
telomeric proteins within the cells so that the potential chance
of cancer can be reduced. Single and double HJs are key
intermediates of the ALT pathway.174 This recombination-
mediated telomere maintenance method progresses via the
formation of HJ intermediates and is central to telomerase-
negative maintenance of telomeres.174

■ CONCLUSION
The ends of chromosomes of eukaryotes are preserved by the
telomere, which are structurally composed of nucleoprotein
complexes. The telomere is especially exposed to continuous
shrinkage as the DNA replicates during the continuous
regeneration of tissue, thereby conferring a high risk of
chromosomal instability. Telomeric erosion has been observed
in aging tissues and hyperproliferative disease states�both of
which are associated with an elevated risk of cancer. Telomere
protection failure can result in either degenerative aging or
malignancy, with the specific outcome determined by the
integrity of DNA damage checkpoint responses. It is important
to note that the reactivation of telomerase helps to preserve
telomere length in many of the advanced cancers, such as
epithelial cancers. Numerous regulatory pathways for telomere
length regulation have been reported, and genome-scale
investigations have aided in the identification of genes involved
in telomere length management. These observations underpin
the premise that the degradation of telomeres identified in
aging people may support the various aging phenotypes.
Consequently, a degraded telomere is a representation of a
significant genotoxic indicator, which can trigger DNA damage
indicating pathways with the ability to speed up aging. It is
essential to secure the chromosome ends from the reaction to
the triggers due to damage of DNA. The mending of DNA
pathways is accomplished by the activity of particular proteins
that produce telomeres at the ends of chromosomes.
Telomeres must be regulated and maintained because they
are heterochromatic and fold into certain configurations (T-
loops), or with the formation of G4s at the 3′ ssDNA ends,
which might obstruct DNA replication. Telomeres with altered
shape or chromosome ends that are severely short generate
defective telomeres and eventually result in replicative
senescence or chromosome instability. Emerging data suggest
that TERRA, a type of long noncoding RNA transcribed at
telomeres, is involved in the mechanisms governing telomere
preservation and chromosomal end-protection.
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