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Mouse models of disease play a pivotal role at all stages of cancer drug development. Cell-line derived subcuta-
neous tumour models are predominant in early drug discovery, but there is growing recognition of the impor-
tance of the more complex orthotopic and metastatic tumour models for understanding both target biology in
the correct tissue context, and the impact of the tumourmicroenvironment and the immune system in responses
to treatment. The aim of this review is to highlight the value that orthotopic and metastatic models bring to the
study of tumour biology and drug development while pointing out those models that are most likely to be en-
countered in the literature. Important developments in orthotopicmodels, such as the increasing use of early pas-
sage patient material (PDXs, organoids) and humanised mouse models are discussed, as these approaches have
the potential to increase the predictive value of preclinical studies, and ultimately improve the success rate of an-
ticancer drugs in clinical trials.

© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

While significant progress has been made in cancer treatment over
recent decades (Howlader et al., 2021; Scott et al., 2023), novel ap-
proaches to the development of new drugs remains crucial to address
continuing unmet clinical needs (Cui et al., 2020; Kunnumakkara
et al., 2019; Schlander, Hernandez-Villafuerte, Cheng, Mestre-
Ferrandiz, & Baumann, 2021; Sonawane, Wagh, Dhumane, & Deore,
2019). Several major (Belluomini et al., 2022; Bupathi, Kaseb, Meric-
Bernstam, & Naing, 2015; Krishnan, 2023; Moss, Beal, & Tabar, 2022)
and rare cancer types (Wang et al., 2023) have limited or no effective
treatment options for advanced disease; patients develop resistance to
existing treatments (Cree & Charlton, 2017; Nussinov, Tsai, & Jang,
2021) leading to treatment failure and disease progression, and drugs
that target metastatic processes, such as tumour cell migration, inva-
sion, and colonization, are needed to prevent and treat metastatic dis-
ease (Gomez-Cuadrado, Tracey, Ma, Qian, & Brunton, 2017).

In vivo tumour models provide a critical bridge between preclinical
research and clinical trials in anti-cancer drug development (Fiebig,
Maier, & Burger, 2004; Ireson, Alavijeh, Palmer, Fowler, & Jones, 2019;
Ruggeri, Camp, & Miknyoczki, 2014; Sausville & Burger, 2006; Teicher,
2005; Teicher, 2006; Teicher, 2009; Workman et al., 2010). These
models are used to evaluate drug pharmacology, pharmacokinetics,
pharmacodynamics, efficacy, toxicity, and safety profiles, as well as fa-
cilitating biomarker development and patient selection strategies
(Teicher, 2005; Teicher, 2006; Teicher, 2009). In vivo tumour models
also play an essential role in lead optimization before candidate drugs
are selected and advanced into GLP toxicology studies prior to human
trials (Ireson et al., 2019; Teicher, 2005; Teicher, 2006; Teicher, 2009).

Subcutaneous tumours are the most widely used in vivo model in
preclinical cancer research because of the practical advantages they
offer (Gengenbacher, Singhal, & Augustin, 2017). Subcutaneous tu-
mours are generally straightforward to establish and monitor, and
they grow rapidly and reliably, making them convenient models for
screening the effects of new molecules on tumour growth, regression,
or response to treatment thereby providing valuable data to guide the
future design and prioritization of potential drug candidates (Morton
&Houghton, 2007; Stribbling&Ryan, 2022). Nonetheless, subcutaneous
tumours lack the complexmicroenvironment and interactions found in
the original organ/tissue, potentially limiting the translatability of re-
sults to clinical settings (Gengenbacher et al., 2017). Therefore, addi-
tional models, such as orthotopic and metastatic models, are
employed to complement the findings from subcutaneous models and
provide a better understanding of cancer biology in response to therapy.

Orthotopic and metastatic tumour models allow drugs to be evalu-
ated in more clinically relevant biological contexts. By considering tar-
get expression, drug distribution and the interactions between tumour
cells, non-tumour stromal components, blood vessels and the host im-
mune system, these models provide a more comprehensive assessment
of treatment responses. Data generated in orthotopic models maymore
closely resemble the clinical disease and may be a more accurate guide
to biomarker development and decision-making in clinical trials
thereby improving the predictive value of preclinical findings
(Antonello & Nucera, 2014; Bibby, 2004; Cook, Jodrell, & Tuveson,
2012). However, the use of orthotopic and metastatic tumour models
for drug evaluation poses some practical difficulties. For example, the
surgical procedures, post-operative care, and monitoring of tumour
growth at specific anatomical sites all add complexity and can increase
overall experimental timelines (Cook et al., 2012). Additionally,
orthotopic tumourmodels generally have higher experimental variabil-
ity compared to subcutaneous models (Flatmark, Maelandsmo,
Martinsen, Rasmussen, & Fodstad, 2004; Lv et al., 2020) meaning larger
group sizes may be required to reliably assess drug effects.

The aim of this review is to review the use of orthotopic and metas-
tatic tumour models in preclinical cancer research, outlining some of
their main advantages and limitations, and highlighting considerations
2

associated with the use of orthotopic and metastatic tumour models
as part of anti-cancer drug development.

2. Orthotopic tumour models

Orthotopic tumour models aim to replicate the clinical setting of tu-
mour growth and progression by implanting tumour cells or tissues at
their anatomically correct or appropriate location within the body of
an experimental animal (Bibby, 2004; Hiroshima et al., 2016; Killion,
Radinsky, & Fidler, 1998a; Talmadge, Singh, Fidler, & Raz, 2007). The
term “orthotopic” comes from the Greek words “ortho,” meaning cor-
rect or proper, and “topos,” meaning pertaining to a place, and it can
be defined as “located in the proper anatomical position”. A goal of
orthotopic tumour models is to recreate the natural microenvironment
of the tumour site, including tissue-specific architecture, cell-cell inter-
actions, and vasculature, to better mimic the complex interactions and
behaviour of tumours in the human body (Bibby, 2004; Hiroshima
et al., 2016; Killion et al., 1998a).

Unlike subcutaneous models, which involve the ectopic (“out of
place” or “abnormal place or position”) implantation of tumour cells or
tissue fragments beneath the skin, orthotopicmodels reproduce the pri-
mary tumour location by, for example, injecting cells or fragments of
glioblastoma (Joo et al., 2013; Zhao et al., 2012), prostate cancer
(Cifuentes, Valenzuela, Contreras, & Castellon, 2015; Hughes, Simons,
& Hurley, 2017; Saar et al., 2015; Wang et al., 2005) or non-small cell
lung cancer (Justilien & Fields, 2013; Shibuya et al., 2007; Takahashi
et al., 2012a; Wang, Fu, Kubota, & Hoffman, 1992) into the brain, pros-
tate or lung, respectively.

Many anatomical sites have been used to set up orthotopic tumour
models inmice reflecting thewide variety of human cancers being stud-
ied. As well as the four most commonly diagnosed cancers – breast,
prostate, lung and colon (Cifuentes et al., 2015; Fu, Besterman,
Monosov, & Hoffman, 1991; Fu, Le, & Hoffman, 1993; Okano et al.,
2020; Saar et al., 2015; Wang et al., 2005; Wang, Fu, Kubota, &
Hoffman, 1992) - there are significant proportions of patients with
newly diagnosed cancers at other anatomical sites including pancreas,
bladder, ovary and liver, and each anatomical site represents an impor-
tant disease for orthotopic cancer models (Decio & Giavazzi, 2016;
Erstad et al., 2018; Fu, Guadagni, & Hoffman, 1992; Fu & Hoffman,
1993; Naito, Higuchi, Shimada, & Kakinuma, 2020; Wang, Luan, Goz,
Burakoff, & Hiotis, 2011).

Human tumour cell-line derived xenografts (CDXs) (from “xeno-”
foreign; graft from one species to an unlike species) are themostwidely
used subcutaneous tumour model (Gengenbacher et al., 2017; Oliveira,
Abrantes, Tralhao, & Botelho, 2020) and they are also a widely used
orthotopic tumour model system (Table 1a). For xenograft models
such as these, tumour cells/fragments are injected/implanted into
immune-deficient mice, many strains of which are now available
(Table 2) (Chulpanova, Kitaeva, Rutland, Rizvanov, & Solovyeva, 2020;
Olson, Li, Lin, Liu, & Patnaik, 2018; Puchalapalli et al., 2016; Stribbling
& Ryan, 2022). In contrast, murine tumour cell lines (Table 1b) can be
grown in genetically matched (syngeneic) fully immune-competent
mice, using widely available inbred strains such as C57BL/6 and BALB/c
(Chulpanova et al., 2020; Li, Feuer, Ouyang, & An, 2017; Nolan et al.,
2020; Potter, 1985).

Syngeneic and CDX tumour models are usually set up using
immortalised tumour cell lines that have been sub-cultured/passaged
overmany years either in vitro (in growth-factor rich tissue cultureme-
dium), grown adhered to tissue culture plates and dissociated with
trypsin/EDTA or alternatively in vivo, as subcutaneous tumours, which
are excised and cut into fragments or disaggregated before re-
implantation. These culturing methods select for rapid tumour growth
and survival (either on plastic or subcutaneously) and can cause sub-
stantial and irreversible changes to cell biology (Daniel et al., 2009;
Gillet et al., 2011; Hausser & Brenner, 2005), such that these cell line
models may have limited predictive value (Johnson et al., 2001).



Table 1
Examples of human xenograft and mouse syngeneic orthotopic tumour models.

(a) Human cell line derived orthotopic xenograft tumour models

Cancer type Cell line Injection site Refs.

Breast T-47D mammary fat pad (s.c.) Abu Quora et al. (2021)
BT-549 mammary fat pad (s.c.) Abu Quora et al. (2021)
MDA-MB-231-mCherry lactiferous duct Malin, Chen, Schiller, Koblinski, and Cryns (2011)

Prostate PC-3luc dorsal lobe McGovern et al. (2021)
LNCaP-luc dorsal lobe McGovern et al. (2021)
PC-3 right anterior lobe Cifuentes et al. (2015)
LNCaP left or right dorsal lobe Liu, Zhu, Ye, Zhu, and Wang (2022)

Lung Calu-6-luc left lateral thorax Willoughby et al. (2020)
H1299-GFP-luc middle/upper lobe, right lung Sosa Iglesias et al. (2019)
A549-luc left lung Mordant et al. (2011)
H441 left lung Wu et al. (2007)
H460 left lung Takahashi et al. (2012b)

Colon HCT-116-luc caecal wall Ravoori et al. (2019)
HT-29 caecal wall Georges et al. (2019)
RKO caecal wall Georges et al. (2019)

Pancreas Panc-1 tail of pancreas Chen et al. (2022a)
MIAPaca-2 pancreas Huynh et al. (2011)
L3.6pl pancreas Kleespies et al. (2005)

Ovarian SKOV3-luc ovarian bursa Guo et al. (2017)
IGROV-1 under ovarian bursa Decio and Giavazzi (2016)

Stomach TMK-1 wall of mid-stomach McCarty et al. (2004)
AGS-GFP-luc serous side of stomach Busuttil et al. (2018)

Liver Huh7-Luci median lobe surface Qiu et al. (2021)
PL5-luc left hepatic lobe Lu et al. (2007)

Kidney Caki-2 left renal capsule Linxweiler et al. (2017)
786-O-luc kidney Cho et al. (2016)

Head & Neck UM-SCC-1 floor of mouth Simon et al. (1998)
MDA1986 tongue Myers, Holsinger, Jasser, Bekele, and Fidler (2002)
ACC3, ACCM parotid gland Choi et al. (2008)

Oesophagus TE-4 wall of oesophagus Ohara et al. (2010)
TE-8-luc abdominal oesophagus Kuroda et al. (2014)

Skin (melanoma) A375 intradermal Rozenberg, Monahan, Torrice, Bear, and Sharpless (2010)
Brain U-87-MG cortex/striatum junction Bianco et al. (2017)

U-87 MG right brain Sun et al. (2020)
Mesothelioma EHMES-1, −10 thoracic cavity Ogino et al. (2008)
Colon (liver metastases) LS174T intrasplenic Kalber, Waterton, Griffiths, Ryan, and Robinson (2008)

(b) Murine cell line derived orthotopic syngeneic tumour models

Cancer type Cell line injected Injection site Refs.

Breast 4 T1 second mammary fat pad Carrillo et al. (2023)
4 T1-luc fifth left breast Dos Santos et al. (2018)
EMT6-luc mammary fat pad Piranlioglu et al. (2019)
EMT6 mammary fat pad Amini et al. (2019)

Prostate TRAMP-C2-luc prostate Lardizabal, Ding, Delwar, Rennie, and Jia (2018)
Myc-CaP anterior prostate lobe Anker, Mok, Naseem, Thumbikat, and Abdulkadir (2018); Hughes et al. (2017)

Lung LLC1-luc left lung Liu, Zhao, Senovilla, Kepp, and Kroemer (2021)
LLC1 left lung Hung et al. (2020)
KLN205 lung parenchyma Porrello et al. (2018)

Colon MC38 caecal wall Greenlee and King (2022)
MC38-luc rectal wall Uccello et al. (2022)
CT-26 caecal wall Kruse et al. (2013)
CT26-luc caecum Evans et al. (2019)

Bladder MB49 bladder wall Cai et al. (2022)
MBT-2 intravesical space Chan et al. (2009)

Pancreas Panc02 head of pancreas Partecke et al. (2011)
Pan02-CAG-luc2 tail of pancreas Luheshi et al. (2016)

Ovary ID8-F3mCherryluc intra-peritoneal Gonzalez-Pastor et al. (2019)
ID-8 GFP-luc intra-bursal Lin, Sun, Wu, and Wang (2017)

Liver Hepa1–6 beneath Glissons capsule Wang et al. (2011)
Hepa1–6 GFP portal vein Limani et al. (2016)
TIB-75 GFP portal vein Limani et al. (2016)

Kidney Renca renal subcapsule Matin et al. (2010)
Renca-luc kidney parenchyma/capsule Ding, Wang, and Chang (2018)

Skin (melanoma) B16F10 intra-dermal (flank) Rossi et al. (2019)
B16F10 intra-dermal (left pinna) Fowlkes et al. (2019)

Brain GL261 right cerebral hemisphere Lumniczky et al. (2002)
GL261-GFP-Fluc right hemisphere Khalsa et al. (2020)

(c) Human patient-derived orthotopic xenograft (PDOX) tumour models

Cancer type Material engrafted Engraftment site Refs.

Breast tumour fragments mammary fat pad (s.c.) Sommaggio et al. (2020)
tumour fragments mammary fat pad (s.c.) Okano et al. (2020)

(continued on next page)
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Table 1 (continued)

(c) Human patient-derived orthotopic xenograft (PDOX) tumour models

Cancer type Material engrafted Engraftment site Refs.

tumour cell suspension intra-ductal Behbod et al. (2009)
tumour fragments mammary fat pad (s.c.) Fu et al. (1993)

Prostate tumour fragments sub-renal capsule Salem et al. (2020)
tumour fragments sub-renal capsule Wang et al. (2005)
tumour fragments dorsal prostate lobe Saar et al. (2015)

Colon tumour cell suspension wall of colon Puig et al. (2013)
tumour cell suspension wall of colon De Angelis et al. (2022)
tumour fragments surface of intestine Fu et al. (1991)

Lung tumour fragments left lung Wang, Fu, and Hoffman (1992)
tumour fragments parietal pleura Astoul, Wang, Colt, Boutin, and Hoffman (1996)

Ovary tumour fragments beneath ovarian capsule Fu and Hoffman (1993)
Pancreas tumour fragments surface of pancreas Fu et al. (1992)
Stomach tumour fragments stomach serosa Furukawa, Kubota, Watanabe, Kitajima, and Hoffman (1993)
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The problem can be overcome to a certain extent by using patient-
derived xenograft (PDX) models (Abdolahi et al., 2022; Hidalgo et al.,
2014). Fresh tumour tissue derived from treatment-naïve primary or
metastatic tumours is obtained during surgery or from biopsies (or oc-
casionally, from ascites) (Abdolahi et al., 2022; Calles, Rubio-Viqueira,
& Hidalgo, 2013; Kim et al., 2009; Whittle, Lewis, Lindeman, &
Visvader, 2015). Typically, the tumour is cut into small (∼1–2 mm3)
pieces or disaggregated enzymically or mechanically to give a cell
suspension, and then engrafted or injected ectopically into immune-
deficient mice, with a number of potential sites being available, includ-
ing subcutaneously in the flank, in the anterior compartment of the eye,
under the renal capsule, or into the intracapsular fat pad (Abdolahi et al.,
2022). More recently, PDX models have also been established from
patient-derived circulating tumour cells (CTCs) rather than the tumour
itself (Ramani et al., 2019; Tayoun et al., 2019). PDX tumours can also be
engrafted orthotopically into the same organ as the original tumour and
grown as patient-derived orthotopic xenografts (PDOXs). PDX and
PDOX tumours maintain much of the structure and composition of the
parent tumour and more accurately recapitulate the human disease
(Day, Merlino, & Van Dyke, 2015; DeRose et al., 2011; Pompili, Porru,
Caruso, Biroccio, & Leonetti, 2016; Rubio-Viqueira et al., 2006;
Talmadge et al., 2007; Tentler et al., 2012; Zhao et al., 2012). As a result,
the response of patients to certain types of therapy may be more accu-
rately predicted (Garrido-Laguna et al., 2011; Pompili et al., 2016;
Rosfjord, Lucas, Li, & Gerber, 2014; Talmadge et al., 2007). Importantly,
PDOX models better mimic clinical metastases than subcutaneous PDX
models, suggesting they have greater biological and clinical relevance
(Hoffman, 2015). Examples of PDOX models set up using fresh human
tumour tissue are given in Table 1c.

PDX tumours are routinely grown and expanded subcutaneously,
where human stromal tissue initially present is replaced by mouse
stroma over a small number of passages (Chao et al., 2017; Invrea
et al., 2020), and later passages may favour genetic drift or tumour
cells that grow and survive better in the subcutaneous setting of the
mouse (Zhuo et al., 2020). Because of this, PDX and PDOX studies are
often conducted using low passage tumours due to the possibility that
Table 2
Immune-deficient mouse strains commonly used for orthotopic and experimental metastasis m

Name Strain B cells T cells Dendritic cells M

Nude Foxn1nu Yes No Yes
SCID Prkdcscid No No Yes
NOD SCID NOD. Prkdcscid No No Yes
NSG NOD. Prkdcscid Il2rgtm1Wjl No No Defective
NOG⁎ NOD. Prkdcscid Il2rgtm1Sug No No Defective

⁎ NOGmice have an Il2rgmutation producing a protein that will bind cytokines but not signa
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each passage to a new host may dilute the features present in the orig-
inal patient tumour (Chao et al., 2017; Rosfjord et al., 2014; Shi, Li, Jia, &
Fan, 2020).

Orthotopic tumour models have both advantages and disadvan-
tages (Bibby, 2004) (Table 3), with the site of tumour growth itself
being something of a double-edged sword: it makes it possible to re-
capitulate and accurately model human disease; but it also makes
model preparation and the subsequent determination of tumour
growth and metastasis more difficult than with subcutaneous
models. In addition, there are important ethical concerns when con-
sidering the use of orthotopic models. Because the implantation of
cancer cells to create an orthotopic model is an invasive procedure,
sometimes requiring complex surgery, researchers have to consider
the overall well-being of the animals and ensure that procedures are
performed with the utmost care to minimize discomfort, pain, and
distress. Ethical guidelines typically require the use of anaesthesia,
proper analgesia, and other measures to ensure humane treatment.
For example, careful consideration is required to accurately deter-
mine both the extent and position of tumour growth so that animal
welfare is not significantly negatively impacted during a study
(Workman et al., 2010). Because of the potential welfare issues a
strong justification for the use of orthotopic models based on the sci-
entific necessity and relevance of the model to the research question
is required in order to balance the potential benefits to human health
or scientific knowledge and the potential harm to the animals. Most
countries have established strict regulatory and reporting guidelines
to ensure ethical and humane treatment of animals in research, for
example the Animals (Scientific Procedures) Act 1996 [UK], the An-
imal Welfare Act [USA], and Directive 2010/63/EU on the Protection
of Animals Used for Scientific Purposes [EU] (Workman et al., 2010).

Although haematological tumours (e.g. lymphoma (Michel, Rosario,
Andrews, Goldenberg, & Mattes, 2005), leukemia (Griessinger et al.,
2018), myeloma (Lwin, Edwards, & Silbermann, 2016)) can be grown
ectopically in non-physiological locations (e.g. as subcutaneous tumour
or ascites), they can also be grown orthotopically as syngeneic, CDX or
PDX/PDOX models (Kohnken, Porcu, & Mishra, 2017). For PDX studies,
odels (Adigbli et al., 2020; Chen et al., 2022b; Nagatani et al., 2019; Shultz et al., 2014).

acrophages NK cells Complement Spontaneous tumours Leaky

Yes Yes Yes No No
Yes Yes Yes No Yes

Defective Defective Defective Yes Yes
Defective No Defective No No
Defective No Defective No No

l. NSGmice have a nullmutationwhereby no Il2rg is expressed and cytokines cannot bind.



Table 3
Advantages and disadvantages of orthotopic tumour models.

Advantages Refs.

• Cell-derived and patient-derived tumours grow in their tissue of origin, preserving many
biological characteristics of the original tumour. This results in a more accurate recapitula-
tion of the human disease, enhancing the predictive value of the models and the clinical
significance of the results obtained.

Bibby (2004); DeRose et al. (2011); Fiebig et al. (2004); Hiroshima et al.
(2016); Manzotti, Audisio, and Pratesi (1993); Mattie et al. (2013); Ruggeri
et al. (2014); Teicher (2006); Tentler et al. (2012); Walters et al. (2013);
Waters, Janovitz, and Chan (1995); Whiteford et al. (2007); Zhao et al. (2012)

• A variety of human and murine tumour cell lines are available for orthotopic injection, and
increasingly these have been stably transfected to enable the production of a bioluminescent
signal.

ATCC (2023); ECACC (2023); PerkinElmer (2023); RIKEN (2023); Teicher
(2006)

• Tumour cells stably expressing luciferase enables solid tumour growth, metastasis and any
therapeutic response (s) to be measured by bioluminescence (BLI, a method of choice) in a
high-throughput, non-invasive manner.

Alsawaftah, Farooq, Dhou, and Majdalawieh (2021); Edinger et al. (2002);
Jenkins et al. (2003); Liu, Su, Lin, and Ronald (2021); Sekar and Paulmurugan
(2014); Weissleder (2002)

• Some tumour cell lines will only form solid tumours in vivo if injected orthotopically. Kung (2007); Stephenson et al. (1992)
• Different strains of immune-competent and immune-deficient mice are commercially avail-
able to support the growth of orthotopic tumours.

Charles_River (2023); INOTIV (2023); Teicher (2006);
The_Jackson_Laboratory (2023)

Disadvantages Refs.

• The establishment of orthotopic tumour models often requires surgery, which can be tech-
nically challenging, expensive and time-consuming; as a result, low numbers of mice may be
used per study reducing the statistical power of the experiments.

Bibby (2004); Loi et al. (2011); Richmond and Su (2008); Ruggeri et al.
(2014); Smith, Merritt, Barr, and Thorley-Lawson (2011); Teicher (2006)

• The majority of orthotopic models are established in immune-deficient mice, making any
study of the role of the immune system in tumour biology or therapy very difficult.

Herter-Sprie, Kung, and Wong (2013); Talmadge et al. (2007)

• Orthotopic tumours (except skin and mammary fat pad tumours) are not visible to the
naked eye. Expensive, specialised non-invasive imaging techniques such as BLI, PET, CT, MRI
and US are required to follow tumour growth and metastasis.

Kaijzel, van der Pluijm, and Lowik (2007); Liu, Su, et al. (2021); Lyons (2005);
Sahai (2007); Sekar and Paulmurugan (2014); Serkova et al. (2021); van der
Horst, Buijs, and van der Pluijm (2015); Weissleder (2002)

• The complexity of orthotopic models increases animal welfare considerations; the accurate
determination of humane experimental end-points is challenging; the take rate for PDOX
models is variable; and, tumour latency can be as long as 12 months.

Bibby (2004); Pompili et al. (2016); Ruggeri et al. (2014); Workman et al.
(2010)

• A fresh tumour specimen is required to establish a patient-derived orthotopic model; ethical
review processes together with obtaining the appropriate patient consents and permissions
for future work can be time-consuming.

UK_Research_and_Innovation_(UKRI) (2023)

Table 4
Examples of organoid-derived orthotopic tumour models (Wang, Xiang, Zhang, & Wang,
2022).

Cancer
type

Mouse
strain

Injection site Refs.

Breast Nude 4th mammary fat pad Sachs et al. (2018)
PDAC Nude Tail region of the pancreas Boj et al. (2015); Boj et al. (2016)
GBM NSG Right cerebral cortex Hubert et al. (2016); Jacob et al.

(2020)
Rectum NSG Rectum (endoluminal) Ganesh et al. (2019)
CRC NSG Colon lamina propria

(mucosal)
Roper et al. (2017)

Ovary NSG Ovary (bursa) Kopper et al. (2019)
Bladder NOG Bladder wall (submucosal) Lee et al. (2018)

S.M. Stribbling, C. Beach and A.J. Ryan Pharmacology & Therapeutics 257 (2024) 108631
a distinct advantage of haematological tumours is that the sourcemate-
rial is more readily available and easier to access than for solid tumours.
Multiple patient samples can be obtained throughout the course of dis-
ease to model disease progression, and engraftment can recapitulate
orthotopic systemic/disseminated disease (by i.v. injection) or
orthotopic primary site disease (by intra-tibial or intra-femoral injec-
tion) (Griessinger et al., 2018; Richter et al., 2022).

3. Tumour organoid models

An organoid can be defined as a 3D structure grown from stem cells
and consisting of organ-specific cell types that self-organizes through
cell sorting and spatially restricted lineage commitment (Clevers,
2016). There has been growing interest in extending the concept of tis-
sue organoids to encompass the use of patient-derived tumour
organoids to create in vivo models (Bleijs, van de Wetering, Clevers, &
Drost, 2019). To establish organoids, tumour cells can be derived from
patient biopsies, surgically resected tumours, PDX tumours, or geneti-
cally engineered mouse models (Yoshida, 2020). Tumour cells are
embedded in an extracellular matrix or scaffold that provides a
three-dimensional structure for growth. Specific growth factors and nu-
trients are added to support the growth and survival of tumour cells
and, over time, the tumour cells in 3D culture self-organise into
organoids, forming tissue-like structures mimicking the cellular hetero-
geneity seen in the original tumour with expression of cell-specific
markers and the development of differentiation-associated properties
such as secretory functions in glandular tumours (Clevers, 2016; Jin
et al., 2018; Porter, Murray, & McLean, 2020; Weeber, Ooft, Dijkstra, &
Voest, 2017; Zhou, Cong, & Cong, 2021). Patient-derived tumour
organoids have been established for a broad range of tumour types
and have several practical advantages over patient-derived xenografts
including a higher establishment success rate,more rapid establishment
and the potential to generate matched normal control tissue (Nagle,
Plukker,Muijs, van Luijk, & Coppes, 2018). Cancer cells can be converted
between organoid culture and xenografts with high efficiency (Wang
et al., 2022a)with the result that patient derived organoids have certain
5

benefits of both 2-D cultured cells (e.g. ease of growth, genetic manipu-
lation, implantation success) and PDXs (e.g. orthotopic implantation
and metastasis, disease-relevant tumour microenvironment/stroma)
(Okazawa et al., 2018; Yoshida, 2020). Examples of the use of
organoid-derived orthotopic models are shown in Table 4. Orthotopic
implantation of tumours or tumour organoids is also finding an impor-
tant role as an adjunct to genetically engineered mouse models where
the technique provides better control of tumour position and growth
than stochastic tumour development (Jackstadt et al., 2019). and also al-
lowsmore simple and rapid geneticmanipulation thereby curtailing the
need for further in vivo model development (Fumagalli et al., 2017).

Organoids have somepotential limitations, such as decreased cell di-
versity and heterogeneity comparedwith PDXs (Long, Xie, Shen, &Wen,
2022), and lack of accepted standardized methods for culture/propaga-
tion (Zhou et al., 2023a) but the benefits of these cells for establishing
orthotopic/metastatic models and the ongoing development of
disease-specific organoid biobanks (Andreatta et al., 2020; Beshiri,
Agarwal, Yin, & Kelly, 2023; Betge & Jackstadt, 2023; Chang, Wu,
Harnod, & Ding, 2022; Hollins & Parry, 2016; Jin et al., 2018;
Kretzschmar, 2021; Lee et al., 2018; Li, Liu, & Chen, 2022; Low et al.,
2021; Meijer, 2021; Ren, Chen, Yang, Li, & Xu, 2022; Seidlitz & Stange,



Table 5
Biological steps leading to tumour metastasis.

Step Biological Process

1. Tumour initiation (mutation, oncogene expression, loss of tumour
suppressor genes)

2. Primary tumour formation and growth
3. Local invasion (metastatic cells from the primary tumour migrate into the

basement membrane and penetrate the underlying stroma)
4. Intravasation (detached metastatic cells enter the general circulation

(lymph, blood vessels) as circulating tumour cells (CTCs))
5. Circulation (CTCs transported away from the primary tumour to distant

sites around the body)
6. Arrest (CTCs arrest or adhere to vessel walls in distant favourable capillary

beds; pre-metastatic niches)
7. Extravasation (viable CTCs cells invade vessel walls and then into the new

tissue site)
8. Initial growth (the tumour cells grow, and establish a conducive

microenvironment for the formation of micrometastases by stimulating
processes essential for their survival such as angiogenesis)

9. Colonization (secondary tumour growth; micrometastases grow into
clinically detectable metastases)

10. Further metastasis (metastasis can occur from the initial metastases:
“metastases from metastases”)

Table 6
Most common sites of metastases (in Patients with Metastatic Disease).

Primary site Proportion (%) of patients with metastases at organ site⁎

Breast Bone 55%, Liver 36%, Lung 30%, Brain 18%
Prostate Bone 89%, Liver 10%, Lung 7%
Colon Liver 69%, Lung 31%, Peritoneum 14%, Bone 8%
Lung Brain 41%, Bone 34%, Liver 23%, Lung 11%
Kidney Lung 55%, Bone 35%, Liver 22%, Brain 18%
Ovary Peritoneum 62%, Liver 20%, Pleura 14%, Lung 13%
Pancreas Liver 77%, Lung 17%, Peritoneum 15%
Bladder Bone 40%, Lung 31%, Liver 30%
Stomach Liver 51%, Peritoneum 26%, Lung 13%, Bone 10%
Oesophagus Liver 50%, Lung 35%, Bone 19%, Brain 9%
Liver Liver 66%, Lung 19%, Peritoneum 16%, Bone 10%
Melanoma Brain 47%, Lung 40%, Liver 28%, Skin 19%, Bone 17%
All sites Liver 38%, Lung 27%, Bone 22%, Brain 13%, Peritoneum 11%

Data recalculated from Riihimaki et al. (2018).
⁎ Only most common sites shown. Totals may exceed 100% due to multiple sites of

metastases in some patients.
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2021;Weeber et al., 2017; Yang,Wang,Wang, Zhang, &Wang, 2021; Yu
et al., 2022; Zhou et al., 2021) suggest that theywill find increaseduse in
the future across a broader range of tumour types, including rare can-
cers (Li et al., 2022). Importantly, it has been shown that orthotopically
implanted, patient-derived organoids have the potential to recapitulate
patient responses in the clinic (Vlachogiannis et al., 2018).

4. Humanised mice

Human CDX, PDX and organoid orthotopicmodels require the use of
immune-deficient mice with strains that exhibit severe immune defi-
ciencies such as the NOD-SCID-IL2R gamma null (NSG) strain which is
most often used for engraftment of primary human samples (Table 2)
(Bresnahan, Lindblad, Ruiz de Galarreta, & Lujambio, 2020; Ito et al.,
2002; Puchalapalli et al., 2016; Zhou, Facciponte, Jin, Shen, & Lin,
2014). The lack of an intact immune system is a significant limitation
of orthotopic models grown in immune-deficient mice, but more re-
cently NSG mice in particular have been used to establish humanised
mouse models, where the defective mouse immune system is replaced
(“humanised”) with e.g. human peripheral blood mononuclear cells
(PBMCs) or hematopoietic stem cells (HSCs) to recapitulate the
human immune system. This approach has enabled the role of the im-
mune system in cancer therapy to be investigated using xenografted
human tumours rather than syngeneic mouse tumour models (Cogels
et al., 2021; Theocharides, Rongvaux, Fritsch, Flavell, & Manz, 2016;
Tian, Lyu, Yang, & Hu, 2020; Zitvogel, Pitt, Daillere, Smyth, & Kroemer,
2016). Although humanised mice have several advantages, there are
several potential limitations: they do not fully recapitulate the human
immune system (Chen, Liu, Liu, & Yang, 2023); the human-derived
PBMCs or HSCs are not patient-matched to the tumour (Ma, Pilvankar,
Wang, Giragossian, & Popel, 2021); and, development of graft-versus-
host disease (Ehx et al., 2018; Poirier, Dilek, Mary, & Vanhove, 2012)
due to the interaction of the humanised immune system with mouse
tissues may occur. Approaches to address some of these shortcomings
are being investigated. For example, an immune-deficient mouse
model has been developed which expresses human HLA instead of
mouse MHC where the immune-deficiency can be corrected by trans-
ferring functional HLA-matched PBMCs resulting in an immune-
competent mouse with a more human-like immune system (Morillon
2nd, Sabzevari, Schlom, & Greiner, 2020; Zeng et al., 2017). However,
the potential impact of a humanised immune system on orthotopic tu-
mours has not been widely studied, although a humanised tumour mi-
croenvironment enhanced both prostate tumour growth andmetastasis
(McGovern et al., 2018; McGovern et al., 2021) suggesting that tumour
biology and response to therapy could be significantly affected.

5. Metastatic models

Metastasis (change, movement from one point to another) is the
spread of cancer cells from the primary site of disease to another part
of the body and along with invasion represents a key hallmark and dif-
ferentiating feature between benign and malignant tumour growth
(Hanahan & Weinberg, 2000; Hanahan & Weinberg, 2011). The metas-
tatic process is of great significance since the majority of cancer-related
deaths are due to the establishment and growth of metastases rather
than to the growth of the primary tumour itself (Dillekas, Rogers, &
Straume, 2019; Mehlen & Puisieux, 2006; Riihimaki, Thomsen,
Sundquist, Sundquist, & Hemminki, 2018).

Metastasis is a highly complex process that can be broken down into
a series of discrete steps commonly referred to as the metastatic cas-
cade. These have been described in detail elsewhere (Fares, Fares,
Khachfe, Salhab, & Fares, 2020; Ganesh & Massague, 2021; Welch &
Hurst, 2019) and are outlined in Table 5.

The transport of tumour cells from the primary to distant sites occurs
mainly via the circulatory and lymphatic systems (Sleeman, Nazarenko,
& Thiele, 2011), in theory enabling viable circulating tumour cells
6

(CTCs) to spread and colonise almost any tissue in the body. However,
in practice, for many primary tumours, the potential anatomical sites
of secondary tumour growth are more restricted. Predating our current
understanding, Paget in 1889 suggested that the outcome of metastasis
depends upon interactions between the tumour cells and the host tis-
sue, with the metastatic tumour cell (“seed”) being able to grow into a
secondary tumour only once it has reached a sustaining organ environ-
ment (“soil”) (Fidler, 2003; Paget, 1989). Today, we can think of the
seed in terms of e.g. cancer stem cells, progenitor cells or initiating
cells, whereas the soil encompasses specific stromal and microenviron-
mental factors that together constitute an amenable pre-metastatic
niche (Langley & Fidler, 2007; Talmadge & Fidler, 2010). In conse-
quence, the site of formation ofmetastases can dependon specific inter-
actions between the CTCs and the prospective host growth site leading
to specific patterns of metastatic spread for specific cancer types, with
the main organ sites of metastasis for the commonest cancers being
liver, lung, bone and brain (Table 6).

The way in which in vivo models can recapitulate the different ele-
ments of the metastatic cascade depends on how they are set up. Al-
though implantation of tumour cells orthotopically into the tissue site
of origin can recapitulate themajority of the biological steps of metasta-
sis (Table 5), the process is difficult to study experimentally (Hoffman,
1999). As a consequence, studying the spread and growth of tumours
at clinically relevant sites of metastasis (rather than at the site of the
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primary tumour) has required the development of specialised metasta-
sis models. In vivomodels of metastasis can broadly be divided into two
types: experimental and spontaneous, which can recapitulate different
steps of themetastatic cascade or the entire cascade itself. Experimental
models of metastasis are set up by the direct injection of tumour cells
into the general circulation and depending upon the injection site
used, metastases will subsequently develop at specific anatomical loca-
tions. The main injection routes used are:

• Intravenous (i.v., lateral tail vein): tumour cells become trapped in
the lung microvasculature to recapitulate the formation of lung
metastases;

• Intra-caudal (tail artery): tumour cells form metastases in the bones
of (primarily) the hind limbs;

• Intracardiac (i.c., left ventricle): by bypassing the lung microvascula-
ture the tumour cells disseminate more widely, promoting the
formation of bone and liver metastases;

• Carotid artery: this takes tumour cells directly to the brain and is used
for the formation of brain metastases;

• Intra-splenic/portal vein/mesenteric vein: these routes deliver tu-
mour cells to the liver, which is a primary site ofmetastasis for several
solid tumours such as colon cancer;

• Intra-iliac artery: this artery supplies blood to the legs, pelvis and pel-
vic organs and is primarily used for the formation of bonemetastases;

• Intra-peritoneal (i.p): this route is used for the local dissemination of
ovarian cancer cells and is also used to recapitulate orthotopic tumour
formation in the peritoneal cavity;
Table 7
Examples of experimental and spontaneous in vivo models of metastasis.

(a) Experimental models

Tumour Cell line Model Route of injection Main si

Breast MDA-MB-231 xenograft i.v. (lateral tail vein) lung
Breast 4 T1 syngeneic i.v. (lateral tail vein) lung
Breast MDA-MB-231 xenograft i.c. (left ventricle) bone
Prostate RM1 syngeneic i.c. (left ventricle) bone
Ovarian A2780 xenograft i.p. mesent
Ovarian various xenograft i.p. periton
Melanoma K1735 syngeneic intra-carotid brain
Breast MDA-MB-231 xenograft intra-carotid brain
Prostate various xeno/syn intra-splenic liver
Colon LoVo xenograft intra-splenic liver
Colon HT29 xenograft intra-splenic liver
Colon various syngeneic intra-portal liver
Colon HT-29 xenograft intra-portal liver
Colon SW-620 xenograft intra-portal liver
Breast various syngeneic intra-portal liver
Breast various xenograft intra-iliac bone
Prostate various xenograft intra-iliac bone
Breast MDA-MB-231 xenograft intra-tibial bone
Prostate VCaP xenograft intra-tibial bone
Various various xeno/syn intra-caudal bone
Breast MCF7 xenograft intra-caudal bone

(b) Spontaneous models

Tumour type Cells or tissue Model type Site of engraftment Main s

Breast MDA-MB-231 cells xenograft MFP lymph
Breast patient specimen xenograft MFP lungs, l
Breast patient specimen xenograft MFP lungs
Prostate tumour fragments xenograft prostate gland lymph
Prostate patient specimen xenograft anterior prostate lymph
Colon patient specimen xenograft caecum wall liver, lu
Colon patient specimen xenograft colon wall liver, lu
Colon patient specimen xenograft colocaecal lymph
Lung patient sample xenograft left upper lung left and
Lung patient sample xenograft parietal pleura pleural
Ovarian patient sample xenograft under ovary capsule parieta
Pancreatic patient sample xenograft surface of pancreas lymph

duoden
Stomach patient specimen xenograft stomach serosa lymph

7

• Intra-tibial (i.t.): tumour cell injection into this bone can be used to
study the effects of metastases on bone structure and growth, espe-
cially osteolysis.

The tail vein, tail artery and i.p. routes of injection have the advan-
tage that they do not require the mouse to be anaesthetised or undergo
any surgical procedure and are thus relatively straightforward to per-
form. Other routes are technically more demanding, requiring both an-
aesthesia and surgery.

Table 7 gives examples of different tumour cell types injected via the
routes described above to establish different experimental models of
metastasis. It should be noted that injection of the same tumour cell
line by different routes can be used to set up models that, when taken
together, recapitulate the metastatic spread seen in the human disease.
For example, if MDA-MB-231 human breast tumour cells are injected
into the tail vein (i.v), metastases form primarily in the lungs, whereas
metastases are seen primarily in the bone and liver if the intra-caudal
route is used, and in the brain if the carotid artery route is used
(Table 7a).

Experimental models of metastasis have a significant disadvantage
in that they donot recapitulate the initial steps of themetastatic cascade
such as growth at the primary tumour site, tissue invasion and/or
intravasation (Gomez-Cuadrado et al., 2017). Spontaneous models of
metastasis can recapitulate the entire metastatic cascade. A primary
tumour can be established at subcutaneous or orthotopic sites and
although metastasis is common in many orthotopic tumour models it
is only very rarely seen in subcutaneous models, with some notable
te(s) of metastasis Refs.

Minn et al. (2005)
Pillar, Polsky, Weissglas-Volkov, and Shomron (2018)
Dunn et al. (2009)
Jung et al. (2013)

ery Shaw, Senterman, Dawson, Crane, and Vanderhyden (2004)
eal cavity De Haven Brandon et al. (2020)

Zhang, Lowery, and Yu (2017)
Zhang et al. (2017)
Simons, Dalrymple, Rosen, Zheng, and Brennen (2020)
Kim et al. (2020)
Lavilla-Alonso et al. (2011)
Limani et al. (2016)
Thalheimer et al. (2009)
Thalheimer et al. (2009)
Goddard, Fischer, and Schedin (2016)
Yu et al. (2016)
Nunez-Olle, Guiu, and Gomis (2021)
Peramuhendige et al. (2018)
Eswaraka et al. (2014)
Kuchimaru et al. (2018)
Han et al. (2020)

ite (s) of metastases Refs.

nodes, lungs Sommaggio et al. (2020)
ymph nodes Sommaggio et al. (2020)

Fu et al. (1993)
nodes, pancreas, testis, liver Salem et al. (2020)
nodes, lungs, liver, bone, kidneys, spleen Wang et al. (2005)
ng, abdominal cavity Puig et al. (2013)
ng De Angelis et al. (2022)
nodes, liver, abdominal cavity Fu et al. (1991)
right lung, lymph nodes, chest wall pericardium Wang, Fu, and Hoffman (1992)
cavity, lymph nodes Astoul et al. (1996)
l peritoneum, colon, omentum, ascites Fu and Hoffman (1993)
nodes, liver diaphragm, adrenal glands, stomach,
um, abdominal wall

Fu et al. (1992)

nodes, liver, peritoneum Furukawa et al. (1993)
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examples being the murine B16 melanoma and Lewis lung carcinoma
(LLC) cell lines (Bertram & Janik, 1980; Fidler, 1973; Fidler, 2006;
Gomez-Cuadrado et al., 2017).

As was described above, tumours growing orthotopically interact
with their tissue of origin and more accurately recapitulate the human
disease which may affect the initial steps of the metastatic cascade, en-
hancing the formation of metastases (Fidler, 2006). In certain models,
such as themammary fat padmodel, a primary tumour can be surgically
resected and the survival of the mouse prolonged allowing time for
CTCs derived from the primary to develop into established metastases
(Munoz et al., 2006). Although orthotopic CDX models are more com-
mon, PDOXmodels are increasingly being used as models of metastasis
as they retain many of the characteristics of the original tumour in the
patient. Examples of spontaneous models of metastasis using fresh
human tumourmaterial andwhich showmetastatic spread in vivo sim-
ilar to the human disease are shown Table 7b.

6. Visualisation of orthotopic and metastatic models

Subcutaneous tumourmodels are both relatively simple to set up and
easy to monitor. Due to the site of tumour growth, the condition of the
tumour can be monitored visually and its size measured using callipers,
as has been described elsewhere (Stribbling & Ryan, 2022; Tomayko &
Reynolds, 1989). However, with the exception of tumours growing in
the skin or in themammary fat pad, more sophisticated methods are re-
quired tomonitor tumours growing orthotopically. Several non-invasive
methods exist to evaluate tumour burden, distribution and response to
therapy (Table 3). Of these, bioluminescence imaging (BLI) is the most
common (Shen et al., 2020). A disadvantage of BLI is that cells require ge-
netic modification (e.g. to express firefly luciferase) prior to implanta-
tion. To detect tumour cells, mice are injected with luciferin. Tumour
cells expressing luciferase in the presence of luciferin and oxygen will
produce oxyluciferin, CO2 and photons (540 nm) in an ATP-dependent
reaction. The light produced can be imaged and quantified and can be
obtained from the same mouse over a prolonged time period (weeks/
months) and so the technique is suitable for following both tumour
growth andmetastasis. Although BLI has limitations, it is technically sim-
ple to perform (requiring an i.p. injection followed by brief anaesthesia
while the image is obtained), the data is simple to acquire and the images
are straightforward to interpret and understand. Alternative approaches
such as fluorescence imaging have similar advantages/disadvantages re-
quiring geneticmodification, but are currently lesswell developed. Tech-
niques such as ultrasound, CT, MRI, PET, and SPECT have all been used to
image orthotopic tumour growth, but are limited by technical complex-
ity and sensitivity and/or the need to use radiation or radiotracers which
are less suitable for longitudinal studies (de Jong, Essers, & vanWeerden,
2014; Lauber et al., 2017; Serkova et al., 2021). For some specialised tu-
mour models such as orthotopic rectal/colorectal cancers, it is possible
to use colonoscopy which can provide a detailed visual and quantitative
assessment of the primary tumour, but it is not suitable for assessing
metastatic spread (Kodani et al., 2013).

7. Summary, challenges and future directions

In addition to advancing our understanding of the basic biological
processes underlying cancer development, mouse models have played
an essential role in the discovery and development of new anti-cancer
medicines (Ruggeri et al., 2014), and these new drugs are now contrib-
uting to the significant decreases recently seen in cancermortality rates
(Siegel, Miller, Wagle, & Jemal, 2023), at least in some disease settings
(Davis et al., 2017; MacEwan et al., 2020; Moreau Bachelard, Coquan,
du Rusquec, Paoletti, & Le Tourneau, 2021). Within the context of both
biology and drug development it seems likely that orthotopic, metasta-
tic and PDX human tumour models in mice will play an increasing role
in improving the success rate of translating preclinical data into im-
proved clinical outcomes (Antonello & Nucera, 2014; Gao et al.,
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2015a). Crucially, the source material (cell lines, organoids, PDXs) for
orthotopic models can be selected to represent the full range of the
stages of cancer from early establishment at the primary site to ad-
vancedmetastases, and each approach has its advantages and disadvan-
tages (Table 8) (Ireson et al., 2019). In addition, orthotopic models
capture the key stages of cancer development from initial growth and
invasion to growth at metastatic sites. Treatment of advanced disease
can encounter intrinsic or acquired drug resistance – a major limitation
to current therapies. Importantly, there is a high clinical concordance of
drug resistance in PDOX models (Higuchi et al., 2023), reinforcing the
clinical relevance of orthotopic models for identifying novel treatment
options.

Compared with conventional small molecule or antibody-based
anti-cancer drugs, targeted drug delivery systems such as nanoparticles
are anticipated to have several advantages especially active tumour-
targeting and limited normal tissue localisation (Liu et al., 2021). Impor-
tantly, orthotopic models, often combined with non-invasive imaging,
have provided a key platform to confirm tumour targeting within a rel-
evant tissue setting across a wide range of tumour sites and different
targeting platforms (de Paiva et al., 2022; Elumalai, Srinivasan, &
Shanmugam, 2024; Jing et al., 2022; Liu et al., 2022; Lu et al., 2013;
Wang et al., 2022b). Nonetheless, few targeted drug delivery therapeu-
tics have been approved as anti-cancer therapies (Liu et al., 2021), so it
may be important for future studies to investigate whether tumour
targeting is retained inmore clinically relevant PDOXmodels in the con-
text of a humanised immune system.

The increasing number of antibody-based therapies and drugs
targeting the immune system in development has highlighted the
need for the future development both of mouse models that more
completely reflect the human immune system (Allen et al., 2019) and
for genetically modified mouse models that express functional human
versions of mouse proteins that can be targeted by human-specific
antibody-directed therapies (Allen et al., 2019).

A limitation of most orthotopic human tumour models is the ab-
sence of human cell types in the tumourmicroenvironment inmice. Al-
though some components of the human immune system can be
included by transplantation of precursors into immune-deficient mice,
other key stromal cell types such as endothelial cells and fibroblasts,
whichmay be important in therapy response or establishingmetastatic
niches, are absent and maintaining a fully functioning humanised hae-
matological system (neutrophils, erythrocytes, platelets, lymphatics) is
not yet possible, although some significant advances have been made
(Shultz, Brehm, Garcia-Martinez, & Greiner, 2012; Theocharides et al.,
2016; Zhou et al., 2023b).

Monitoring tumour growth in orthotopic and metastatic tumour
models remains a significant challenge (de Jong et al., 2014; Lauber
et al., 2017).Whilst bioluminescence imaging is widely used and is gen-
erally considered a reliable method to assess tumour burden (Shen
et al., 2020), it has technical and biological limitations (Baklaushev
et al., 2017; Shen et al., 2020), including the need to genetically modify
tumour cells to express luciferase which may affect immune responses
(Podetz-Pedersen, Vezys, Somia, Russell, & McIvor, 2014). Alternative
optical imaging approaches such as expression of fluorescent proteins
are possible (Cool, Breyne, Meyer, De Smedt, & Sanders, 2013), but
also require genetic modification and are additionally limited by tissue
penetration by light, although this may be addressed by advances in to-
mography methods and use of near-infrared fluorophores (de Jong
et al., 2014) but these approaches have yet to find widespread use.

Non-invasive imaging techniques such asMRI (Ravoori et al., 2019),
CT (Myers et al., 2022), and US (Curiel-Garcia, Decker-Farrell, Sastra, &
Olive, 2022) allow the detection and monitoring of non-genetically
modified orthotopic tumours andmay have an advantage over biolumi-
nescence imaging because no geneticmanipulation is required and they
are more directly translatable to the clinic (de Jong et al., 2014). An im-
portant area for further investigation is multimodal imaging of tumours
which can combine the benefits of both optical and non-invasive



Table 8
Advantages and Disadvantages of Different Orthotopic tumour models.

Orthotopic Model Main Characteristics Advantages Disadvantages Main application

Cell line derived
xenograft (CDX) or
syngeneic tumour

Xenograft: human tumour cells are
injected into their tissue of origin in
immune-deficient mice.
Syngeneic: murine tumour cells are
injected into their tissue of origin in
immune-competent mice.

Very straightforward to set up.
Many different well-characterised tumour
cell lines are very widely available.
Intact immune system (syngeneic only).

Cell lines may highly differ from
original source tumour.
Homogeneous tumour with
poorly developed
microenvironment.
No intact immune system
(xenograft).

Confirmation in a disease
relevant setting of in vitro
and in vivo findings (from
subcutaneous models).

Patient-derived
xenograft (PDX)

Fresh human tumour tissue from a
biopsy or surgery is propagated
subcutaneously and transplanted
into its tissue of origin in
immune-incompetent mice.

The tumour retains the original genetic and
histological characteristics, 3D architecture
and defined stromal structure.
Results are more predictive of the human
disease.
Fresh tissue enables work with minimally
manipulated tumour samples.
Tissue obtained pretreatment, on-treatment
and post-treatment allows study of various
stages of therapy response.

Lengthy time required for
tumour establishment and
passaging.
Low/variable take rate.
Human stroma slowly replaced
by murine stroma.
No intact immune system.

Preclinical trials to predict
patient responses in the
clinic.

Patient-derived
organoid
xenograft

Organoids are derived from fresh
human tumour tissue from a biopsy
or surgery. They are propagated
in vitro and transplanted into its
tissue of origin in immune-deficient
mice.

In vitro propagation is relatively simple.
The tumour retains many (but not all) of the
original heterogeneous genetic and
histological characteristics, 3D architecture
and defined stromal structure.
Results may be predictive of responses in
human disease.

Methods for the derivation and
culture of organoids are not
standardized.
Tumour organoids may not fully
capture the heterogeneity
present in original tumours.
In vitro cell culture propagation
may lead to genetic and
phenotypic drift.
No intact immune system

A potentially more accessible
and practicable alternative to
PDX

Cell line or organoid
derived from
genetically
engineered mouse
(GEM).

Cell lines or organoids are
established from tumours isolated
from genetically engineered mice.

Straightforward to set up.
Tumours arise in defined conditions with
known natural history.
Tumours are genetically defined and may
have conditional activation/inactivation of
multiple target genes.
Tumours have well-defined stroma and
same-species molecular interactions
Intact immune system.

Tumours do not have the high
level of genetic heterogeneity
present in human tumours.
Tumours do not generally
metastasise.
Tumour responses may not be
predictive of (more complex)
human disease.

Most refined models for
investigating tumour biology.
Identifying and validating
new tumour targets.
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approaches (Haldorsen et al., 2015; Scheepbouwer, Meyer, Burggraaf,
Jose, & Molthoff, 2016; Wu et al., 2016).

Positron-emission tomography (PET), most notably 18F-
fluorodeoxyglucose (FDG) PET is used clinically for the detection of
tumours and metastases but is not used widely in preclinical studies
of orthotopic tumour growth or response to therapy, primarily be-
cause of its lack of spatial resolution (2–3 mm), high cost, and tech-
nical complexity. Nonetheless, by combining with optical imaging
studies, PET studies can provide important functional information
(e.g. metabolism, hypoxia, proliferation) on the effects of treatment
on orthotopic tumours which is directly relevant to clinical develop-
ment (Fu et al., 2016; Fushiki et al., 2013; Haldorsen et al., 2015;
Song et al., 2016). In addition, with recent developments of thera-
nostic agents (which couple an 18F-labelled diagnostic biomarker
and a radiolabelled therapeutic agent) (Bodei, Herrmann, Schöder,
Scott, & Lewis, 2022) there is increasing interest in studying 18F-
labelled ligands such as PSMA and FAPI as PET tracers to determine
tumour growth in orthotopic tumour models, again with the poten-
tial for direct translation to the clinic (Holzgreve et al., 2021;
Kirchner et al., 2021; Zhang et al., 2022).

Established tumour cell lines have been most widely used for
orthotopic and metastatic tumour models because they are easy to cul-
ture, have been studied in multiple laboratories and importantly are
readily available from international tumour cell line banks such as
ATCC (www.atcc.org), ECACC (www.ukbrcn.org), and RIKEN (cell.brc.
riken.jp). Biobanks of PDX tumours, usually focussing on a particular
disease site are being developed (Abdirahman et al., 2020; Bürtin
et al., 2021; Damhofer et al., 2015; Elst et al., 2022; Manzella et al.,
2020; Matschos et al., 2021; Moy et al., 2022; Tanaka et al., 2022) but
the complexities of their growth, maintenance and distribution will
likely limit their more widespread use in preclinical studies. However,
9

the recent rapid growth of disease-specific organoid biobanks, including
in the major cancer types (Beshiri et al., 2018; Ebisudani et al., 2023;
Farin et al., 2023; Shi et al., 2020; Shu et al., 2022) suggests that organoid
methodology will play an increasing role in orthotopic tumour models
in the future, especially where matched PDX/organoid samples are
available (Beshiri et al., 2018; Xu et al., 2023).

A large-scale investigation of established therapies of approximately
1000 subcutaneous PDX tumours representing the major tumour types
demonstrated that these models had good predictive value for clinical
efficacy (Gao et al., 2015b). Nonetheless, the study also revealed that
only a proportion of PDXs for a specific tumour responded to disease-
specific therapies, in line with observed interpatient heterogeneity in
response observed in clinical studies (Gao et al., 2015b). Consequently,
studies using a single or a small number of PDXmodels to study biology
or drug responses may be insufficient to draw firm conclusions, and
multiple PDXs of a particular disease type (representing individual pa-
tients) may be needed to better estimate clinical efficacy. Importantly,
although orthotopic models are thought to be more clinically relevant
and therefore potentially more predictive of drug efficacy in patients
than subcutaneous tumours (Garber, 2006; Ireson et al., 2019; Killion,
Radinsky, & Fidler, 1998b; Villarroel et al., 2009), a comprehensive
study to confirm this using patient-derived tumours and up-to-date
therapies has yet to be carried out.

Many of the research examples that have been highlighted are from
the most common cancer types. However, a significant gap exists in
using in vitro and in vivo models, including orthotopic and metastatic
models, to study a broad range of rare cancer (defined as incidence of
<6 cases per 100,000 people per year) (Gatta et al., 2011) which as a
group are often overlooked in terms of research attention. Importantly,
when taken together, rare cancers constitute approximately 24% of all
prevalent cancers (Gatta et al., 2011) representing an important
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underserved disease group. However, the ongoing development of
disease-specific banks of PDXs and organoids present an important op-
portunity that should facilitate bringing a broader range of rare tumour
types into orthotopic and other mouse models (Li et al., 2022).

Although more technically difficult, more expensive, and placing a
greater burden on animal welfare than subcutaneous tumour models,
the promise of greater clinical predictivity has driven a growing interest
in the use of orthotopic tumourmodels earlier in the drug development
process.

In addition to the insights provided into the biological processes of
oncogenesis and metastasis, orthotopic and metastatic models can be
utilised at multiple stages of the drug discovery process, each serving
specific purposes. In early discovery, orthotopic models can provide
stronger validation of potential targets, by implanting cancer cells in
the organ of origin to assess the relevance of a specific molecular target
in a physiologically relevant context. In later stages (hit-identification
and lead optimisation), as drug candidates emerge, orthotopic and me-
tastatic models help assess anti-tumour efficacy and specificity in a
more realistic tumour microenvironment. At candidate selection,
when comparing several molecules, orthotopic models provide the
most relevant physiological setting for choosing potential clinical candi-
dates. As novel agents progress into the clinic, orthotopic models can
bridge the gap between preclinical and clinical studies where insights
can identify biologically relevant biomarkers and inform the design of
early-phase clinical trials (Abou-Elkacem et al., 2013; Higuchi et al.,
2018; Kabraji et al., 2023; Patton et al., 2021).

Improved humanised mouse models and increased accessibility to
patient-derived tumours and organoids through the establishment of
biobanks seems likely to further accelerate this interest. In parallel, fur-
ther advances in non-invasive imaging techniques that accuratelymon-
itor growth of orthoptic and metastatic disease in mice offer a more
direct translation of preclinical findings into the clinic. In conclusion,
orthoptic tumour models now appear poised to take their place along-
side subcutaneous tumour models as an essential component of the
preclinical evaluation of new anti-cancer therapies.
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