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Generalizable disease detection 
using model ensemble on chest 
X‑ray images
Maider Abad 1*, Jordi Casas‑Roma 1,2,3 & Ferran Prados 1,4,5

In the realm of healthcare, the demand for swift and precise diagnostic tools has been steadily 
increasing. This study delves into a comprehensive performance analysis of three pre-trained 
convolutional neural network (CNN) architectures: ResNet50, DenseNet121, and Inception-
ResNet-v2. To ensure the broad applicability of our approach, we curated a large-scale dataset 
comprising a diverse collection of chest X-ray images, that included both positive and negative cases 
of COVID-19. The models’ performance was evaluated using separate datasets for internal validation 
(from the same source as the training images) and external validation (from different sources). Our 
examination uncovered a significant drop in network efficacy, registering a 10.66% reduction for 
ResNet50, a 36.33% decline for DenseNet121, and a 19.55% decrease for Inception-ResNet-v2 in 
terms of accuracy. Best results were obtained with DenseNet121 achieving the highest accuracy 
at 96.71% in internal validation and Inception-ResNet-v2 attaining 76.70% accuracy in external 
validation. Furthermore, we introduced a model ensemble approach aimed at improving network 
performance when making inferences on images from diverse sources beyond their training data. 
The proposed method uses uncertainty-based weighting by calculating the entropy in order to assign 
appropriate weights to the outputs of each network. Our results showcase the effectiveness of the 
ensemble method in enhancing accuracy up to 97.38% for internal validation and 81.18% for external 
validation, while maintaining a balanced ability to detect both positive and negative cases.
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Recent technological advancements in computer vision based on artificial intelligence (AI) applications have 
led to significant progress in X-ray image classification tasks1–4. Promising results point to its potential use as 
a supporting tool for clinicians; however, performance drops significantly when the models are deployed in 
real-world scenarios5,6. The challenges of achieving optimal results can be attributed to several factors. First, the 
difficulty generalizing the models implemented. Second, the limited availability of publicly accessible medical 
images with supervised pathological labels validated by qualified medical professionals presents a significant 
hurdle. Furthermore, the relatively small sample size of these data and the lack of agreement on labelling further 
compound the challenges of achieving robust, accurate results.

In situations where the available data is limited, transfer learning is a valuable and proven deep learning 
technique7. Transfer learning involves repurposing a model that was originally designed to tackle a different, but 
related problem or task. This approach has gained popularity in scenarios where there is a scarcity of annotated 
images and limited computational resources to train new models from scratch8. By leveraging pre-trained model 
architectures, transfer learning enables faster training processes with fewer input data, while improving overall 
model efficiency and generalization. This approach has significantly contributed to advancements in medical 
image artificial intelligence applications, as researchers and practitioners have successfully applied pre-trained 
models to enhance diagnostic capabilities across various medical imaging domains9,10.

COVID-19 diagnosis using medical imaging (i. e. chest X-rays) has accelerated thanks to computer vision 
techniques such as transfer learning. Apostolopoules and Mpesiana11 explored the effectiveness of convolutional 
neural network (CNN) models in detecting COVID-19, employing transfer learning techniques by utilizing 

OPEN

1Universitat Oberta de Catalunya, e-Health Center, Barcelona, Spain. 2Department of Computer Science, 
Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain. 3Computer Vision Center (CVC), Universitat 
Autònoma de Barcelona (UAB), Bellaterra, Spain. 4Queen Square MS Centre, Department of Neuroinflammation, 
UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London, London WC1N 
3BG, UK. 5Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, 
University College London, London WC1V 6LJ, UK. *email: mabdvz@uoc.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-56171-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5890  | https://doi.org/10.1038/s41598-024-56171-6

www.nature.com/scientificreports/

pre-trained models from ImageNet to identify COVID-19 cases among various abnormalities. The MobileNetV2 
model achieved 96.78% accuracy for COVID-19 positive (COVID-19+) and negative (COVID-19−) classifica-
tion. A study by Chowdhury et al.12 trained and validated several models, including ResNet101, MobileNetV2, 
CheXNet, SqueezeNet, and DenseNet201, for both 2-class (COVID-19+ and COVID-19−) and 3-class (COVID-
19+, COVID-19−, and Pneumonia) classification tasks. Among these models, DenseNet201 demonstrated the 
highest performance, achieving an accuracy of 99.7% for COVID-19 detection in the 2-class classification and 
an accuracy of 97.9% in the 3-class classification. Furthermore, a study by Manjural Ahsan et al.13 assessed the 
performance of six different pre-trained models for detecting COVID-19 from chest X-ray images and the results 
showed that VGG16 and MobileNetV2 gave the best outcomes, with up to 100% accuracy.

The excellent performance demonstrated in these studies can be attributed to the similarity between the train-
ing and the validation images in the data sets. However, when these top-performing models are extrapolated to 
different data sources, the lack of diversity in the training set and validation set images significantly decreases 
their performance. This means that current models lack the required robustness to be used in a clinical setting. 
Roberts et al.14 point out that while machine learning methods promise fast and accurate COVID-19 diagnosis 
and prognosis from chest X-ray images and computed tomography (CT), none of the models identified in their 
systematic review were of clinical utility due to methodological flaws and/or underlying biases. Additionally, 
Garcia Santa Cruz et al.6 emphasize the importance of rigorous evaluation of datasets used in AI models to 
ensure their validity and avoid biases in clinical practice. In their study, only nine out of over a hundred evaluated 
datasets met the criteria for proper assessment of the risk of bias, raising concerns about the suitability of models 
based on these datasets for clinical use. Furthermore, DeGrave et al.’s5 discussion of findings on the accuracy and 
robustness of AI systems in detecting COVID-19 from chest X-rays reveals that current deep learning systems 
rely on confounding factors rather than medical pathology, leading to potential failures when applied in new 
hospitals. The study also highlights that the data collection approach allows AI to learn spurious shortcuts, which 
is a widespread issue in AI-driven medical imaging.

These findings indicate that current models exhibit limitations and biases, highlighting that certain challenges 
remain unresolved before achieving successful clinical application. The main problem lies in the data utilized 
for training the model, as it is crucial to avoid bias by incorporating data from different sources than those used 
for training when assessing the model’s ability to generalize. This ensures a more robust evaluation and reduces 
the risk of the model being overly specialized to a particular dataset.

Another approach that enhances the model’s generalization capability is employing model ensemble tech-
niques. This involves combining multiple models, each trained on different subsets of data or using different 
algorithms, to create a more powerful and diverse predictive system. Leveraging the collective knowledge and 
strengths of these models improves both performance and adaptability to unseen data. Ensembling can help 
mitigate individual model limitations, thus increasing overall accuracy and reliability.

In recent years, several studies have emerged focusing on the application of ensemble modeling for COVID-19 
detection. Chowdhury et al.15 employed both hard-voting (majority voting) and soft-voting (averaging) tech-
niques with EfficientNet family networks to classify COVID-19, normal, or pneumonia. During their validation, 
they utilized 1579 images, which included 100 COVID-19+ cases and originated from the same sources as the 
training data, leading to an overall accuracy of 96.07%.

Das et al.16 applied averaging for ensemble modeling, incorporating DenseNet201, ResNet50V2, and Incep-
tionv3 for binary classification. The internal validation was performed using images from the same sources as the 
training data, specifically the used 117 images, including 57 COVID-19+ cases, achieving an accuracy of 91.60%.

Meanwhile, Paul et al.17 proposed an ensemble method based on an inverted bell curve weighted ensem-
ble, employing Densenet-161, ResNet18, and VGG-16 networks. Their binary and 3-class classifications were 
conducted on an internal validation dataset comprising 1214 images, including 683 COVID-19+ cases, with an 
outstanding accuracy of 99.84%.

It’s worth noting that only a limited number of authors have undertaken external validations to assess the 
robustness of their models. Deb et al.18 implemented feature concatenation on VGGNet, GoogleNet, DenseNet, 
and NASNet networks for binary and three-class classification (COVID-19, normal, and community-acquired 
pneumonia). Their validation included an internal dataset of 1626 images (136 COVID-19+) and an external 
dataset of 92 images (29 COVID-19+) sourced from a single origin. The outcomes exhibited an accuracy of 
98.58% for internal binary classification validation and 95.65% for external validation. Wehbe et al.19 advocated 
for the usage of a weighted average in ensemble modeling with DenseNet-12, ResNet-50, InceptionV3, Inception-
ResNetV2, Xception, and EfficientNet-B2 networks. The binary classification was conducted with external valida-
tion on 2214 images (1192 COVID-19+) from a singular source, resulting in an accuracy of 82.00%.

Other researchers proposed a strategy employing the same architectural framework with multiple instances 
for ensemble modeling. Kuo et al.20 applied an equally weighted ensemble to four instances of RadGenX. Exter-
nal validation for binary classification was executed on 5894 images (2747 COVID-19+), yielding an AUC of 
79.00%. Similarly, Miyazaki et al.21 employed an averaging ensemble approach on five instances of EfficientNet 
for binary classification. Validation on an external dataset of 180 images (60 COVID-19+) from a singular source 
produced an accuracy of 73.30%. Many studies in the current literature concentrate on conducting validations 
using images from the same sources as those used in training. Only a few have implemented external validation, 
but they typically rely on a single external data source. Furthermore, the prevalent ensemble methods often rely 
on techniques like averaging or weighted ensemble.

Given these challenges, our paper introduces a novel ensemble methodology grounded in entropy to weigh 
models’ outputs, contributing to advancements in medical image classification and fortifying methodologies 
within the healthcare sector. The primary contributions are as follows:
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•	 Creating a robust COVID-19 detection model through transfer learning on pre-trained CNNs from Ima-
geNet.

•	 Assessing the model’s generalization on diverse internal and external validation sets, validating its ability to 
generalize across different datasets.

•	 Introducing a novel entropy technique to weigh model outputs, striving for a more accurate overall result 
when combining the models.

We work under the assumption that training with a comprehensive dataset covering all possible medical images 
worldwide is impractical. Instead, we acknowledge that models available for use have been trained on datasets 
that differ from those specific to individual hospitals. The core idea is that combining various models can offer an 
enhanced solution, addressing the variability in image datasets encountered across different healthcare facilities.

This research not only serves as a proof of concept for streamlining the medical image classification process 
but also contributes to the advancement and fortification of these methodologies within the healthcare sector.

Materials and methods
The following section outlines the datasets and methods used in this research.

Dataset
The datasets used:

•	 The COVIDx CXR-3 dataset22 comprises 30,386 X-ray images, including 16,194 positive COVID-19 cases 
and 14,192 negative cases. The COVIDx CXR-3 dataset was compiled from 8 different public data sources. 
No metadata is associated with the images in this database.

•	 The COVIDGR dataset23 is a curated collection of chest X-ray images annotated with findings related to 
COVID-19, and contains 426 positive cases and 426 negative cases. Positive cases have accompanying meta-
data indicating the severity of the illness on a scale ranging from severe to moderate, mild, and normal-PCR+.

•	 The Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images for Classification dataset24 
is a publicly available collection of chest X-ray and OCT images. The chest X-rays were obtained from the 
University of California San Diego and are labeled as either “normal” or “pneumonia” to indicate the presence 
or absence of the disease. The total dataset comprises 1583 normal and 4273 pneumonia images. For this 
study, which aims to differentiate between COVID-19+ and COVID-19− images, only the images labeled 
“normal” were used. No metadata is associated with the images in this database.

Table 1 provides information on the data sources and database division for the training, internal validation, and 
external validation groups. These groups comprised 13,534 COVID-19+ and 12,513 COVID-19− images for 
training, 1294 COVID-19+ and 1382 COVID-19− images for internal validation, and 1792 COVID-19+ and 2306 
COVID-19− images for external validation. The absence of metadata underscores the importance of carefully 
selecting an external validation dataset, ensuring that the source of the images differs from those used in internal 
validation or training. It is crucial to highlight that this divergence involves images originating from different 
hospitals, each utilizing various imaging acquisition machines. Additionally, ensuring the proper calibration of 
both positive and negative cases has been implemented.

The external validation dataset comprised images from a number of sources, one of which was COVIDGR23. 
From this source, a total of 426 images of positive cases were utilized, with severity data available on the Severe-
Moderate-Mild-Normal-PCR+ scale, which includes 79 Severe cases, 171 Moderate cases, 100 Mild cases, and 
76 Normal-PCR+ cases.

Table 1.   Summary of the datasets used in the research.

Database name Data source Number of images per class Train, internal or external validation

COVIDx CXR-322

Covid-chestxray-dataset25

Figure 1 COVID-19 Chest X-ray Dataset 
Initiative26

Actualmed COVID-19 Chest X-ray Dataset 
Initiative27

Italian Society of Medical and Interventional 
Radiology (SIRM)28

RSNA Pneumonia Detection Challenge29

RSNA International COVID-19 Open Radiology 
Database (RICORD)30

BIMCV-COVID19+: a large annotated dataset of 
RX and CT images of COVID19 patients31

Stony Brook University COVID-19 Positive Cases 
(COVID-19-NY-SBU)32

270 COVID-19+, 297 COVID-19−
24 COVID-19+
25 COVID-19+, 107 COVID-19−
943 COVID-19+
13,788 COVID-19−
1096 COVID-19+
200 COVID-19+
13,636 COVID-19+

External validation
Train-internal validation
Train-internal validation
Train-internal validation
Train-internal validation
External validation
Train-internal validation
Train-internal validation

COVIDGR23 Hospital Universitario Clínico San Cecilio, 
Granada, Spain 426 COVID-19+, 426 COVID− External validation

Labeled optical coherence tomography (OCT)  
and chest X-ray images for classification24 The University of California, San Diego, CA 1583 COVID− External validation
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Study design
Five main steps were followed: 

1.	 All the images by source and category (positive and negative) were collected and grouped.
2.	 The dataset was divided into three sets: training, internal validation, and external validation. Without meta-

data for in-depth analysis, the preparation of the dataset before feeding it to the neural network has been 
based on ensuring balanced classification and avoiding overlap between image sources in the training and 
internal validation sets compared to those in the external validation set. The inclusion of images of the same 
subject in the same set was consistently maintained. Consequently, due to these constraints, the percentages 
for each class may slightly deviate from the intended values of 75% for training, 10% for internal validation, 
and 15% for external validation.

3.	 Transfer learning was applied to three pre-trained networks using ImageNet.
4.	 The models’ performance was assessed using both internal and external datasets. Internal validation refers to 

using images from the same source as the training images, while external validation involved using images 
from different sources.

5.	 The outputs of all the models were combined to obtain a joint solution.

Figure 1 shows the project workflow.

Model training
The study used three pre-trained CNN architectures, namely Inception-ResNet-v2 (IRV2)33, ResNet5034, and 
DenseNet12135, all of which were originally trained on the ImageNet dataset. The selection of the networks was 
driven not by their distinctiveness but by their widespread use in image classification19,36,37. Opting for these 
architectures, instead of more sophisticated alternatives, was intended to streamline reproducibility and enhance 
experiment understanding, ultimately emphasizing the inherent difficulty of generalizing the models. Impor-
tantly, this pipeline proposal remains flexible and does not preclude the utilization of other pre-trained models. To 
apply transfer learning, all layers in the CNNs were frozen, and a classifier was added to the top of each network.

All input images were in either png, jpg, or jpeg format and were preprocessed by normalizing their pixel 
values to between 0 and 1. The images were also resized to the standard 256× 256× 3 pixels using bilinear 
interpolation, with the same image repeated in all colour channels. This resizing approach calculates pixel val-
ues in the resized image through linear interpolation, referencing surrounding pixel values from the original 
image. The choice of this image size was selected to strike a balance between model accuracy and computational 
efficiency38,39.

To construct the classifier, a series of layers were added to the pre-trained CNN architectures. These included 
a global average pooling layer, three fully connected (FC) layers with 128 (FC1-Dense), 64 (FC2-Dense), and 16 
nodes (FC3-Dense), respectively, and ReLU activation. A dropout layer was added after each fully connected layer 
with a rate of 0.3 to prevent overfitting, and the 2-node dense output layer was activated by the softmax function.

The global average pooling layer computes the average of each feature map in the final convolutional layer, 
giving a fixed-length vector for each image. This vector was then fed into the subsequent layers. The fully con-
nected layers performed a series of linear transformations on the input data and the ReLU activation function 
was applied to introduce non-linearity. The dropout layer randomly eliminated some nodes to prevent overfit-
ting. Finally, the softmax function was applied to the output dense layer to predict probabilities for each class. 
These layers worked together to transform the CNN output into a probability distribution over the two classes.

The models were trained for 50 epochs, with a batch size of 128 and an Adam optimizer with a learning rate 
of 10−4 . To prevent overfitting during training, the regularization technique employed was early stopping, where 
training was stopped on the criterion of a significant increase in loss. The CNN architectures and associated lay-
ers were selected and optimized to achieve accurate, efficient classification of images into two classes. Figure 2 
illustrates the transfer learning architecture.

Figure 1.   Proposed model ensemble architecture for COVID-19 detection.
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Model ensemble
In this study, we applied uncertainty-based weighting and entropy calculation to weight the outputs of different 
networks. Uncertainty-based weighting is a technique that aims to improve the accuracy of ensemble models 
by assigning different weights to each model output based on its level of uncertainty40–42. In this case, entropy is 
used as a measure of uncertainty, with higher entropy indicating greater uncertainty in the model’s predictions.

This weighting technique involves calculating the entropy for each model’s prediction for a given input data 
point x. The entropy H(Oi(x)) of each model i is calculated using Eq. (1),

where pi(j) is the predicted probability of class j for model i, and c is the total number of classes. In our case, 
c = 2 as the variable j can take on two values: 1 or 2 (COVID-19− or COVID-19+). When pi(j = 1) means that 
the predicted probability that the data point x belongs to the COVID-19− class using the model i. Conversely, 
pi(j = 2) represents the probability that image x belongs to the COVID-19+ class using the model i.

The negative exponential of the entropies for each model is then summed up to obtain the denominator for 
the weight calculation using Eq. (2),

where m is the total number of models, as three different models are used: ResNet50, DenseNet121 and IRV2, 
m = 3.

The weight w for each model i is calculated using Eq. (3), in which the negative exponential of the entropy of 
the models (Eq. 1) is divided by the sum of all negative exponentials of the entropies (Eq. 2).

Finally, the total weighted output O(x) for each class j and model i is calculated using Eq. (4),

where wi is the weighting factor for the model i and pi(j) is the predicted probability of class j for model i.
Using uncertainty-based weighting with entropy calculation, we can exploit the strengths of different models, 

thus improving the overall performance of the ensemble model. This technique also helps reduce the impact of 
outliers or poorly performing models, as their weights are lower due to their higher level of uncertainty. Fur-
thermore, the use of entropy provides a mathematically rigorous method for measuring uncertainty, which can 
be particularly useful in complex or high-dimensional data.

(1)H(Oi(x)) = −

c∑

j=1

pi(j)× log2(pi(j))

(2)
m∑

k=1

e−H(Ok(x))

(3)wi =
e−H(Oi(x))

∑m
k=1 e

−H(Ok(x))
, where i ∈ [1, . . . ,m]

(4)O(x) =

m∑

i=1

wi × pi(j)

Figure 2.   Flowchart of proposed transfer learning model.
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Evaluation metrics
Various metrics were employed to assess the model’s performance. These included accuracy, sensitivity/recall, 
specificity, precision, F1 score, and area under the curve (AUC). These measures were labelled thus: true positive 
(TP); true negative (TN); False positive (FP); and false negative (FN). TP refers to a subject with COVID-19 who 
tests positive; TN denotes a subject who does not have the disease and tests negative. FP corresponds to a subject 
who does not have COVID-19 but tests positive, and FN denotes a subject who has COVID-19 but tests negative.

Sensitivity, as shown in Eq. (5), is particularly noteworthy. A classifier with 100% sensitivity correctly identi-
fies all positive cases with the disease, which is crucial for detecting severe illnesses.

In addition to sensitivity, the study also assessed the specificity of the model, which measures the proportion 
of true negatives the model correctly identifies. Specificity is calculated using Eq. (6),

The accuracy of the model was also evaluated. Accuracy is a widely used parameter in evaluating classifier 
performance and provides an overall assessment of the model’s effectiveness. It is defined using Eq. (7),

Precision and the F1 score, as indicated in Eqs. (8) and (9), were also calculated to assess the model’s perfor-
mance. Precision indicates how well the model correctly identifies positive cases and is represented as,

The F1 score is a statistical measure that considers the model’s precision and recall in its calculation and 
yields a value between 0 and 1.

For all metrics, 95% confidence intervals (CI) have been calculated. Additionally, a two-tailed t-test has been 
conducted to compare the performance of the proposed ensemble method with the rest of the classifiers. The 
Null Hypothesis (H0) suggests that there is no significant difference between the means of the two models. A p 
value below 0.05 was considered statistically significant; therefore, if the p value is less than 0.05, there would be 
sufficient evidence to reject the null hypothesis.

Results and discussion
Performance on internal validation dataset
In the first experiment, we used the internal validation set to evaluate the performance of the three networks 
alone. The confusion matrix obtained for each network is shown in Fig. 3. A more detailed analysis of the corre-
sponding data is provided in Table 2. The best results were obtained using DenseNet121, achieving an accuracy of 
96.71%, precision of 96.82%, sensitivity of 96.37%, specificity of 97.03%, F1 score of 96.59% and AUC of 96.70%.

(5)Sensitivity = Recall =
TP

TP + FN

(6)Specificity =
TN

FP + TN

(7)Accuracy =
TP + TN

TP + TN + FP + FN

(8)Precision =
TP

TP + FP

(9)F1 = 2×
Precision× Recall

Precision+ Recall
=

2TP

2TP + FP + FN

Figure 3.   Confusion matrix of transfer learning models on the internal dataset.
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Performance on external validation dataset
In the second experiment, we used an external dataset comprising images taken from different sources to those 
used for training or internal validation. The confusion matrix obtained for each network is shown in Fig. 4. A 
more detailed analysis of the corresponding data is provided in Table 3.

The models’ performance shows a notable decline in this scenario, with ResNet50 yielding the best results at 
accuracy at 78.38%, precision at 78.93%, specificity at 85.69%, F1 score of 78.15% and AUC of 77.33%. In terms 
of sensitivity, DenseNet121 achieved the best results at 82.91%.

Furthermore, our research focused on examining the effectiveness of severity-based COVID-19 detection 
by analyzing images from the COVIDGR23 dataset. The TP percentages for each class are presented in Table 4. 
Overall, the models demonstrated a higher accuracy in correctly identifying more severe cases; but faced chal-
lenges in accurately classifying milder cases.

On analyzing the origin of the images, 70.44% of the images classified as FN were found to belong to the 
COVIDGR database23, and 53.59% of the images classified as FP belonged to the covid-chestxray-dataset25 (one of 
the 8 data sources making up the COVIDx CXR-3 dataset). This source contains samples from patients who have 
tested positive or are suspected of having COVID-19 and samples from patients with other viral and bacterial 

Table 2.   Comparing internal validation results for the proposed ensemble model against transfer learning 
models. 95% CI is represented as [lower bound–upper bound]. Significant values are in [bold]. ∗ A statistically 
significant difference (p < 0.05) when comparing against the proposed assembling method.

Model Accuracy (%) Precision (%) Sensitivity (%) F1 score (%) Specificity (%) AUC (%)

ResNet50
87.73* 86.19* 88.85* 87.50* 86.69* 88.77*

[86.02–89.46] [84.00–88.57] [87.26–90.48] [86.02–89.21] [84.16–89.21] [86.07–89.48]

DenseNet121
96.71 96.82* 96.37 96.59 97.03* 96.70

[96.04–97.39] [96.04–97.61] [95.26–97.47] [96.03–97.39] [96.28–97.78] [96.02–97.38]

IRV2
95.44* 95.85* 94.67* 95.26* 96.16* 95.42*

[94.53–96.36] [94.55–97.23] [93.21–96.13] [94.52–96.36] [94.88–97.46] [94.50–96.34]

Proposed assembling
97.38 98.12 96.45 97.38 98.26 97.35

[96.76–98.01] [97.48–98.77] [95.25–97.64] [96.75–98.01] [97.66- 98.87] [96.71–98.00]

Table 3.   Comparison of performance of external validation for proposed assembling model and transfer 
learning models. 95% CI is represented as [lower bound-upper bound]. Significant values are in [bold]. ∗ A 
statistically significant difference (p < 0.05) when comparing against the proposed assembling method.

Model Accuracy (%) Precision (%) Sensitivity (%) F1 score (%) Specificity (%) AUC (%)

ResNet50
78.38* 78.93* 68.97* 78.15* 85.69* 77.33*

[76.93–79.82] [77.15–80.72] [66.51–71.44] [76.67–79.63] [84.36–87.02] [75.80–78.87]

DenseNet121
61.49* 53.93* 82.91* 60.48* 44.89* 63.88*

[59.31–63.71] [52.23–55.63] [80.77–85.06] [58.07–62.87] [41.86–47.92] [61.78–66.02]

IRV2
76.79* 71.42* 78.50* 76.87* 75.46* 76.96*

[74.69–78.89] [68.75–74.10] [76.08–80.83] [74.79–78.95] [72.78–78.21] [74.91–79.04]

Proposed assembling
81.16 77.11 80.97 81.20 81.31 81.14

[78.99–83.33] [74.69–79.53] [78.21–83.73] [79.04–83.37] [79.26–83.36] [78.99–83.33]

Figure 4.   Confusion matrix of transfer learning models on the external dataset.
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pneumonia such as MERS, SARS or ARDS. This may have led to some images with different pathologies being 
interpreted as positive cases.

Model ensemble
The confusion matrix of the assembling model and the comparison between each individual model’s performance 
and the ensemble are shown in Fig. 4 and Table 3.

The combination of models demonstrates improved classification for cases of both COVID-19+ and COVID-
19−. Regarding internal validation, the model assembly enhances the results obtained by individual networks, 
achieving an accuracy of 97.38% and AUC of 97.35, as shown in Table 2. During external validation, certain 
aspects, such as sensitivity and specificity, performed better in other models, as shown in Table 3. However, these 
models exhibited weaknesses in other areas; for instance, ResNet50 achieved a specificity of 85.69% (p < 0.05), 
but its sensitivity was only 68.97% (p < 0.05), whereas DenseNet121 attained a sensitivity of 82.91% (p < 0.05), 
but its specificity dropped to 44.89% (p < 0.05). Therefore, the proposed model assembly in this study achieved a 
balanced solution, yielding a sensitivity of 80.97% and a specificity of 81.31%. These values represent the highest 
overall accuracy of 81.16% and AUC of 81.14%.

Regarding the severity study, the results in Table 4 indicate that both individual models and the model 
ensemble have higher detection rates for cases labeled as severe than cases classified as mild or normal-PCR+.

Benchmarking ensembling models
To assess the robustness of our ensemble model, we first conducted a performance comparison with other com-
monly used ensemble models using our external validation dataset. Specifically, we chose soft-voting methods 
that involve averaging and weighted averaging. For weighted averaging, we adopted an approach where weights 
are generated randomly using a Dirichlet distribution43. Additionally, we considered hard-voting methods based 
on majority voting. The findings in Table  5 reveal that, for the external validation dataset, the approach proposed 
in this article demonstrates superior overall performance compared to the other three methods. The only excep-
tion arises in the sensitivity measurement between averaging soft voting and the proposed ensemble method, 
where no statistically significant difference has been observed (p > 0.05).

Comparison to the state‑of‑the‑art results
This article has conducted a comparative analysis contrasting our proposed ensemble approach with various 
state-of-the-art ensemble models applied to COVID-19 classification. Table  6 presents the results of these studies 
along with the methodologies employed and the type of validation performed.

Among the 14 studies scrutinized in the ensemble methods comparison for COVID-19 detection within the 
state of the art, merely 4 conducted external validation using images from sources distinct from those used in 
internal training and validation. Of these 4 studies, only 2 utilized more than one network and demonstrated 
results surpassing those of our model.

Table 4.   Analysis of true positive (TP) percentages in COVID-19 detection based on severity levels using the 
COVIDGR dataset. Significant values are in [bold].

Severe (%) Moderate (%) Mild (%) Normal-PCR+ (%)

ResNet50 44.31 50.29 40.00 31.5%

DenseNet121 77.22 58.48 50.00 46.05

IRV2 81.01 54.97 35.00 26.32

Proposed assembling 75.32 57.31 40.00 27.37

Table 5.   Comparing performance of external validation for the proposed ensemble model against other 
ensemble methods. 95% CI is represented as [lower bound–upper bound]. Significant values are in [bold]. 
∗ denotes a statistically significant difference (p < 0.05) when comparing against the proposed assembling 
method.

Category Method Accuracy (%) Precision (%) Sensitivity (%) F1 score (%) Specificity (%) AUC (%)

Soft-voting

Averaging
80.64* 76.21* 81.02 80.69* 80.36* 80.64*

[78.59–82.70] [74.04–78.38] [78.14–83.89] [78.65–82.74] [78.56–82.16] [78.56–82.81]

Weighted 
averaging

78.24* 72.93* 80.08* 78.35* 76.89* 78.48*

[76.07–80.50] [70.62–75.24] [76.94–83.22] [76.15–80.56] [74.73–79.05] [76.20–80.76]

Hard-voting Majority voting
79.64* 74.89* 80.46* 79.70* 79.01* 79.73*

[77.51–81.78] [72.45–77.33] [77.70–83.21] [77.58–81.83] [76.79–81.24] [77.57–81.90]

Proposed assembling
81.16 77.11 80.97 81.20 81.31 81.14

[78.99–83.33] [74.69–79.53] [78.21–83.73] [79.04–83.37] [79.26–83.36] [78.99–83.33]
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Article Method Model # Classes

Validation 
type
(external/
internal)

Validation 
sample

Accuracy 
(%)

Precision 
(%)

Sensitivity 
(%) F1 (%)

Specificity 
(%) AUC (%)

Hussain 
et al.44 Bagging

EfficientNet-B0, 
VGG-16, and 
DenseNet201

3 Internal 1131 (377 
COVID-19+) 97.00 96.00 95.00 97.00 – –

Chowdhury 
et al.15

Hard ensem-
ble and
Soft ensemble

EfficientNet fam-
ily networks 3 Internal 1579 (100 

COVID-19+)

96.07 (hard 
ensemble)
96.07 (soft 
ensemble)

94.17 (hard 
ensemble)
92.59 (soft 
ensemble)

97.00 (hard 
ensemble)
100.00 (soft 
ensemble)

95.57 (hard 
ensemble)
96.15 (soft 
ensemble)

– –

Tang et al.45 Weighted 
averaging

COVID-NET-M1 
toM6 3 Internal 1579 (100 

COVID-19+) 94.60 94.10 96.00 – – –

Das et al.16 Averaging
DenseNet201, 
ResNet50V2,and 
Inceptionv3

2 Internal 117 (57 
COVID-19+) 91.60 – 95.09 91.71 – 91.71

Paul et al.17

Inverted 
bell curve 
weighted 
ensemble

Densenet-161, 
ResNet18 and 
VGG-16

3
Internal

582 
(46COVID-
19+)

99.66 – – 99.75 – 99.99

2 1214 (683 
COVID-19+) 99.84 – – 99.81 – 99.99

Breve et al.46 Averaging

21 different CNN 
architectures; the 
best model was 
obtained
by ensembling 
five instances of 
DenseNet169

2 Internal 400 (200 
COVID-19+)

99.25 (best 
model)

100.00 (best 
model)

98.50 (best 
model)

99.24 (best 
model) – –

Balasubrama-
niam et al.47 Averaging

Support Vector 
Machine (SVM), 
CNN,
Optimized 
Neural Network 
(NN), and Ran-
dom Forest (RF)

2 Internal 3100 (100 
COVID-19+) 96.64 95.24 93.66 – 92.57 –

Pramanik 
et al.48 TOPSIS 3 customised 

CNNs 3 Internal

1229 (185 
COVID-19+) 
(Dataset 1)

98.78 98.47 98.26 98.37 – –

3030 (723 
COVID-19+) 
(Dataset 2)

98.61 97.84 97.85 97.85 – –

Deb et al.18 Feature con-
catenation

VGGNet, Goog-
leNet, DenseNet, 
and NASNet

3
Internal 1626 (136 

COVID-19+) 88.92 98.00 62.00 75.00 – –

External 92 (29 
COVID-19+) 93.48 100.00 86.00 93.00 – –

2
Internal 1626 (136 

COVID-19+) 98.58 87.41 97.05 91.97 – –

External 92 (29 
COVID-19+) 95.65 88.31 95.05 91.56 – –

Eshraghi 
et al.49

Weighted 
sum

MobileViT and 
MobileNetV3 2 Internal 400 (200 

COVID-19+) 97.75 97.04 98.05 97.78 – –

Wehbe et al.19 Weighted 
average

DenseNet-12, 
ResNet-
50,InceptionV3,
Inception-
ResNetV2, 
Xception, and 
EfficientNet-B2

2 External 2214 (1192 
COVID-19+) 82.00 – 71.00 – 93.00 88.00

Nishio et al.50 Majority 
voting

Five instances of 
EfficientNet 3 Internal

300 (100 
COVID-19+) 
(Dataset 1)

– – – – – 99.34

300 (100 
COVID-19+) 
(Dataset 2)

– – – – – 98.56

150 (50 
COVID-19+) 
(Dataset 3)

86.67 86.54 90.00 88.24 – 97.52

Kuo et al.20
Equally 
weighted 
ensemble

Four instances of 
RadGenX 2 External 5894 (2747 

COVID-19+) – – 79.10 – 60.50 79.00

Miyazaki 
et al.21 Averaging Five instances of 

EfficientNet 3 External 180 (60 
COVID-19+) 73.30 – 66.70 – 78.30 78.60

Our model Entropy
ResNet50, 
DenseNet121 and 
IRV2

2
Internal 2676 (1294 

COVID-19+) 97.38 98.12 96.45 97.38 98.26 97.35

External 4098 (1792 
COVID-19+) 81.16 77.11 80.97 81.20 81.31 81.14
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In the first case, Deb et al.18 implemented feature concatenation for four different models and assessed them 
using an external database comprising 92 images, with 29 belonging to the COVID-19+ class. They achieved an 
accuracy of 93.48% for the classification of 3 classes and 95.65% for binary classification. The number of images 
used in this study for external validation is considerably limited compared to our study, which involved a more 
extensive dataset comprising 4098 images, including 1792 COVID-19+ cases from four distinct sources.

In the second case, Wehbe et al.19 employed a weighted average ensemble with 6 different models for binary 
classification. They evaluated these models on an external database containing 2214 images, of which 1192 were 
COVID-19+ and originated from a single source. The results exhibited an accuracy gain of 0.84% compared to 
our method, along with an increase of 6.86% in AUC, 11.69% in specificity and a decrease of 9.97% in sensitivity. 
In our comparison with commonly used ensemble models, we applied the same methodology as presented in 
this article when comparing weighted averaging. Notably, in our case, the performance of the proposed ensem-
ble method remains statistically significantly superior to the weighted averaging approach as seen in Table  5.

Discussion
This study compared the performance of three pre-trained neural networks on an internal validation and an 
external validation dataset. Results showed that the models performed exceptionally well on the internal vali-
dation dataset, where the images are from the same source as the training dataset. DenseNet121 achieved the 
highest AUC (96.70%) on the internal validation dataset.

However, when we tested the same models on the external validation dataset, which contains images from a 
different source, performance dropped significantly. ResNet50 attained the highest AUC on the external valida-
tion dataset, reaching 77.33%.

Combining the output of the models has demonstrated improved classification performance, with AUC 
for the internal validation dataset rising to 97.35%, and external validation rising to 81.14%. This study used 3 
models as proof of concept to demonstrate the contribution of network ensemble. However, this methodology 
can be extrapolated to a larger number of networks to achieve more robust results.

Additionally, the results of the t-test, which compares the performance of the ensemble model against each 
individual network, indicate that, in the case of internal validation, the ensemble outperforms the IRV2 and 
ResNet50 networks statistically. For DenseNet121, no significant differences are observed, except in precision 
and specificity values, where our ensemble shows better performance with p < 0.05. Regarding external valida-
tion, the proposed ensemble has demonstrated significantly higher accuracy, F1 score, and AUC compared to 
each individual network.

Regarding the severity analysis, the results in Table 4 reveal that the proposed ensemble of models is not the 
most suitable for detecting COVID-19+ cases for the severity labels specified. Considering that the number of 
images in the dataset containing severity metadata is relatively small, this may potentially limit the generaliz-
ability of the findings. Furthermore, the limited sample size may affect changes in percentages within the same 
categories, and therefore its impact. Nevertheless, it is worth noting that there is a noticeable tendency to classify 
severe cases with greater accuracy.

To highlight the robustness of our ensemble methodology, a performance comparison was conducted with 
commonly used methods in the literature, such as soft-voting and hard-voting. The results demonstrated that our 
proposed ensemble achieves the best outcomes. Thus, by combining the strengths and mitigating the weaknesses 
of individual models, a global model was developed that significantly enhances performance. This research not 
only serves as a proof of concept for streamlining the medical image classification process but also contributes 
to the advancement and fortification of these methodologies within the healthcare sector. Furthermore, the 
exploration of combining results from networks trained under diverse circumstances underscores the potential 
to improve overall performance, particularly when confronted with data unfamiliar to any of the individual 
networks.

On analyzing the results of the external validation dataset, we noted two factors that may influence network 
performance.

First, we found the COVIDGR23 source highly effective for detecting severe cases of COVID-19, accuracy 
was lower regarding milder cases. These findings suggest that the models perform well when diagnosing severe 
cases, but may require further improvements to accurately detect milder cases. This also highlights the diffi-
culty confirming COVID-19 using other techniques such as polymerase chain reaction (PCR) testing, as well as 
potential bias stemming from false positives.

Second, when images of other pathologies similar to COVID-19 were included, this affected the model’s 
performance.

One of the major limitations of this study is the lack of metadata. Many of the currently available public 
databases contain no data on medical images. This drawback makes it difficult to convert current models into 
clinical applications. This research aimed to generate a database sufficiently representative of positive and nega-
tive COVID-19 cases. However, determining the variety of cases needs additional data such as age, sex, subject 
positioning, severity of the disease or contained pathologies.

Table 6.   Comparing state-of-the-art results obtained from published ensemble methods for COVID-19 
detection.
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Conclusion
We presented a domain adaptation study and we applied it in the context of COVID-19 detection using chest 
X-ray images. The study used 26,047 images from 6 different data sources to fine-tune 3 pre-trained networks: 
IRV2, ResNet50, and DenseNet121. For the internal validation of the model, 2676 images from the 6 different data 
sources in training were employed. External validation of the models used 4098 images from 4 different sources.

Evaluation of the models revealed promising results in the internal validation set, showcasing accuracies 
ranging from 87 to 95%. However, these performance levels witnessed a significant decline when applied to the 
external dataset, with accuracies ranging from 61 to 78%. This contrast underscores the critical importance of 
assessing machine learning models across diverse datasets to guarantee that their performance is both robust 
and generalizable.

To improve the individual performance of the models, results from the 3 networks were combined by taking 
the weighted average of the output of the nodes, taking into account their entropy. This resulted in a balanced 
network that can detect both positive and negative cases with an accuracy of 81.16%, sensitivity of 80.97%, and 
specificity of 81.31% on external datasets. It is worth noting that these results present an important step forward 
toward utilizing a computer-based solution, with near real-time capabilities, compared to the time-intensive 
assessments carried out by expert clinicians.

Future research should include more models and investigate other methods for weighting networks aimed 
at more precise results in the detection of COVID-19 as well as apply to other domains. Additionally, deeper 
analysis leveraging metadata could provide insights into the limitations of the current study. These considerations 
contribute to a comprehensive understanding of the model’s applicability and potential refinements for broader 
applications across various domains.

Data availability
All data analysed during this study is included in this published article.
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