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Abstract

INTRODUCTION: Increasing evidence suggests that amyloid reduction could serve

as a plausible surrogate endpoint for clinical and cognitive efficacy. The double-blind

phase 3 DIAN-TU-001 trial tested clinical and cognitive declines with increasing doses

of solanezumab or gantenerumab.
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METHODS:We used latent class (LC) analysis on data from the Dominantly Inherited

Alzheimer Network Trials Unit 001 trial to test amyloid positron emission tomography

(PET) reduction as a potential surrogate biomarker.

RESULTS: LC analysis categorized participants into three classes: amyloid no change,

amyloid reduction, and amyloid growth, based on longitudinal amyloid Pittsburgh com-

pound B PET standardized uptake value ratio data. The amyloid-no-change class was

at an earlier disease stage for amyloid amounts and dementia. Despite similar baseline

characteristics, the amyloid-reduction class exhibited reductions in the annual decline

rates compared to the amyloid-growth class across multiple biomarker, clinical, and

cognitive outcomes.

DISCUSSION:LCanalysis indicates that amyloid reduction is associatedwith improved

clinical outcomes and supports its use as a surrogate biomarker in clinical trials.
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Highlights

∙ Weused latent class (LC) analysis to test amyloid reductionas a surrogatebiomarker.

∙ Despite similar baseline characteristics, the amyloid-reduction class exhibited

remarkably better outcomes compared to the amyloid-growth class across multiple

measures.

∙ LC analysis proves valuable in testing amyloid reduction as a surrogate biomarker in

clinical trials lacking significant treatment effects.

1 BACKGROUND

Accumulation of amyloid beta (Aβ) species in the brain is a pri-

mary pathological feature of Alzheimer’s disease (AD), believed to

trigger downstream pathologies, neurodegeneration, and cognitive

decline.1–3 There is a growing body of evidence supporting the notion

that amyloid reduction could serve as a surrogate endpoint for clini-

cal benefits.4 Both the phase 3 lecanemab and donanemab trials led

to robust amyloid removal, and significant treatment effects across

multiple clinical and cognitive endpoints5,6 whereas in two identically

designed phase 3 trials of gantenerumab with only partial amyloid

removal, consistent treatment effects favoring gantenerumab were

seen, but these effects were minimal and did not achieve significance

in their primary endpoint.7 While these seemingly diverse treatment

effects can be attributed to factors such as the rate and degree of

amyloid removal associated with each drug,8 they have provided dis-

cussion and controversy regarding the amyloid hypothesis, with issues

including understanding why some trials targeting Aβ have not shown
efficacy,9,10 and understanding the relationship between degree of

cerebral amyloid reduction on positron emission tomography (PET)

imaging and degree of clinical efficacy.11 Nonetheless, these diverse

findings underscore the need for a comprehensive evaluation of amy-

loid PET reduction as a surrogate endpoint for clinical and cognitive

benefits.

A surrogate endpoint is a measure used in clinical trials as a sub-

stitute for a direct assessment of core therapeutic targets such as a

patient’s well-being, functional status, or survival. Its primary purpose

is to predict the clinical benefit, rather than serving as a direct mea-

sure of that benefit. Typically, additional clinical trials are required to

demonstrate that the surrogate endpoint reliably predicts or corre-

lates with the desired clinical outcomes. The successful clinical trials

of the anti-amyloid treatments, lecanemab and donanemab, provided

strong validation that significant reduction of brain amyloid plaque to

normal levels is associated with a decrease in clinical decline over 18

months, making measures of amyloid plaques a potential surrogate

biomarker. Our goal is to further validate this surrogate biomarker

using clinical trials with small or non-significant overall effects in

clinical or cognitive endpoints.

Traditional validation of a surrogate endpoint involves estimat-

ing the correlation between biomarker changes and clinical/cognitive

endpoints.11 While intuitive, this approachmay overlook crucial differ-

ences in disease stages and treatment effects. Participants at different

disease stages may exhibit varying clinical benefits, even with similar

treatment effects on amyloid biomarkers. For example, a reduction of

20 Centiloid from baseline might mean a different treatment effect

for a baseline Centiloid of 40 (early disease stage) versus a baseline

of 90 (late disease stage) although it is treated the same in the cor-

relation estimation. Alternative approaches that can distinguish these
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WANG ET AL. 3

subtle differences, like latent class (LC) analysis,12 may offer a bet-

ter chance to validate amyloid reduction as a surrogate biomarker in

clinical trials without significant clinical benefits. LC analysis aims to

identify distinct subgroups with different properties that may impact

the clinical treatment effects. LC analysis does not require prior spec-

ification of these properties; instead, it only requires determining the

number of classes to be identified beforehand. In the context of AD,

these properties could represent disease stages (e.g., characterized by

varyingmean baseline amyloid standardized uptake value ratio [SUVR]

values) or different patterns of disease progression with or with-

out drug intervention (e.g., distinct annual rates of change in amyloid

SUVR).

Our research hypothesis is that amyloid lowering during treat-

ment is associated with slowed clinical and cognitive decline. Amyloid

changes can manifest in three distinct ways: reduction from baseline,

growth from baseline, or no significant change (flat) from baseline.

Guided by this rationale, we pre-specified three classes to be iden-

tified in the LC analysis. By using LC analysis, we aim to understand

the relationship between amyloid reduction and clinical/cognitive ben-

efits using data from the Dominantly Inherited Alzheimer Network

Trials Unit (DIAN-TU)−001 trial. Noticeably, findings from these post

hoc analyses are descriptive in nature and should be interpreted in

terms of what is clinically meaningful rather than based on statistical

significance.

2 METHODS

2.1 Study oversight

The DIAN-TU study was conducted in accordance with the Declara-

tion of Helsinki and the International Council for Harmonization and

Good Clinical Practice guidelines and had ethics committee approval

at each participating site. All participants provided written informed

consent.

2.2 Study participants

The DIAN-TU-001 trial is a multicenter study, randomized, double-

blind, placebo-controlled, cognitive endpoint, phase 2/3 trial that

investigates potential disease-modifying therapies (gantenerumab and

solanezumab) in individuals with dominantly inherited AD mutations.

The trial enrolled a total of 193 participants, including 144 muta-

tion carriers (MCs) and 49 non–mutation carriers (NMCs). Further

information regarding the study participants can be found in previous

publications.13,14 These participants were either cognitively normal

(Clinical Dementia Rating [CDR = 0]) or exhibited early-stage disease

(CDR 0.5 or 1, representing very mild or mild dementia) at the time

of enrollment. The trial used a common-close design, ensuring that

the double-blind treatment continued for all participants (unless they

dropped out early) until the last enrolled participant reached 4 years.

All data collected during the follow-up period were used in this report.

RESEARCH INCONTEXT

1. Systematic review: The authors conducted a comprehen-

sive literature review using both traditional sources like

PubMed, as well as abstracts and presentations from sci-

entific meetings. They identified and appropriately cited

relevant publications related to the establishment of sur-

rogate biomarkers for Alzheimer’s disease (AD) clinical

trials.

2. Interpretation: Accumulating evidence suggests that the

reduction of amyloid plaques could serve as a credible

surrogate endpoint for assessing clinical and cognitive

efficacy in AD research. Latent class (LC) analysis classi-

fied participants in the Dominantly Inherited Alzheimer

Network Trials Unit study into three distinct groups

based on their longitudinal amyloid Pittsburgh compound

B positron emission tomography standardized uptake

value ratio data: those with no change in amyloid lev-

els, those with amyloid reduction, and those with amyloid

growth. Remarkably, despite similar baseline character-

istics, the group with amyloid reduction exhibited a

reduction in the annual decline rates compared to the

groupwith amyloid growth across a spectrumof biomark-

ers, clinical parameters, and cognitive assessments. These

findings derived from the LCanalysis strongly support the

notion that amyloid reduction is closely associated with

improved clinical outcomes.

3. Future directions: If the LC analysis results can be val-

idated in trials with larger sample sizes, it could play

a crucial role in validating a surrogate biomarker. This

validation, in turn, could significantly expedite the devel-

opment of therapies for anti-amyloid drugs.

2.3 Clinical, cognitive, imaging, and cerebrospinal
fluid biomarker outcomes

Theanalyzed clinical outcomesencompassed theCDR–SumofBoxes15

(CDR-SB) and Functional Assessment Scale (FAS).16 Cognitive out-

comes included the Mini-Mental State Examination (MMSE),17 the

Wechsler Memory Scale-Revised Logical Memory Delayed Recall Test

(Logical Memory),18 the Wechsler Adult Intelligence Scale Digit Sym-

bol Substitution Test (Digit Symbol),18 and the International Shopping

List Test (ISLT) Delayed Recall score.19,20 Imaging and cerebrospinal

fluid (CSF) biomarker outcomes consisted of Pittsburgh compound

B (PiB)-PET standardized uptake value ratio (SUVR) composite, flu-

orodeoxyglucose (FDG)-PET SUVR composite, magnetic resonance

imaging (MRI)-derived volumetrics, CSF total tau, CSF phosphory-

lated tau (p-tau)181, and CSF neurofilament light (NfL). The methods

used for processing imaging and CSF biomarkers have been previously

described.21–23 All study personnel (includingCDR-SB and FAS raters),
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4 WANG ET AL.

TABLE 1 Distribution of each treatment arm by the three latent classes.

Latent classes

Treatment arm Amyloid no change (N= 47) Amyloid reduction (N= 24) Amyloid growth (N= 68) Total

Gantenerumab 18 (34.6%) 20 (38.5%) 14 (26.9%) 52

Placebo 11 (27.5%) 1 (2.5%) 28 (70.0%) 40

Solanezumab 18 (38.3%) 3 (6.4%) 26 (55.3%) 47

TABLE 2 Baseline characteristics for the three latent classes.

Outcomes

Amyloid no change

(N= 47)

Amyloid reduction

(N= 24)

Amyloid growth

(N= 68) P value*

CDR= 0, N (%) 40 (85%) 12 (50%) 30 (44%) 0.62

CDR> 0, N (%) 7 (15%) 12 (50%) 38 (56%)

Digit symbol 54.19± 17.87 40.75± 19.90 43.47± 19.69 0.55

MMSE 27.91± 3.44 26.88± 3.65 26.21± 3.95 0.45

Logical memory 12.09± 5.06 8.63± 6.70 8.71± 6.87 0.96

International shopping list 7.72± 3.47 5.17± 3.55 5.37± 4.41 0.83

CDR-SB 0.72± 1.81 1.54± 2.04 1.71± 1.96 0.72

PiB PET SUVR 1.51± 0.47 3.23± 0.96 3.28± 1.15 0.82

EYO −5.8 (7.5) −0.22 (7.1) −0.87 (6.2) 0.69

Abbreviations: CDR, Clinical Dementia Rating; CDR-SB, Clinical Dementia Rating Sum of Boxes; EYO, estimated years from symptom onset; MMSE, Mini-

Mental State Examination; PET, positron emission tomography; PiB, Pittsburgh compound B; SUVR, standardized uptake value ratio.

*P values are for the comparison between amyloid-reduction class and amyloid-growth class only.

sponsors, and participants were blinded to the active or placebo

assignment but not to the study drug arm.

2.4 Statistical analysis plan

To classify all participants into three groups based on amyloid change

(amyloid reduction from baseline, amyloid growth from baseline, or

amyloid no significant change from baseline), we used a linear mixed

effects (LME) LCmodel. Thismodel leveragesboth thebaseline amyloid

level and the post-baseline amyloid reduction, offering distinct advan-

tages. Each underlying class in the LME LC model follows a different

LME model with distinct intercepts and slopes that will be estimated

by the LC model. Participant classification is determined based on

the individual probability of belonging to each class. To identify these

underlying classes, we used longitudinal data from amyloid PiB PET

SUVR, which is a widely used standard amyloid biomarker in clinical

trials.

After the identification of the three underlying classes, we reported

their baseline characteristics. For amyloid biomarkers, downstream

biomarkers, and clinical/cognitive endpoints, we presented both the

baselinemean and the longitudinal annual rate of change.

All analyses were performed using SAS software, version 9.4. Two-

sided t tests with a type I error of 0.05were used, and nominal P values

were reported. Confidence intervals (CIs) were presented as 95%

CIs.

3 RESULTS

3.1 Latent classification and baseline
characteristics

The LC analysis included a total of 139 participants with longitudinal

PiB PET data. Among them, 24 participants (17.3%) were classified

as amyloid reduction, 68 participants (48.9%) as amyloid growth, and

47 participants (33.8%) were classified as being amyloid no change

(Table 1). Twenty-three of 24 in the amyloid reduction group were

from the treated arms, indicating the effectiveness of the treatment

in reducing amyloid for this subset. However, one participant from the

placebo group exhibited a negative rate of change in amyloid during the

follow-up andwas classified by themodel as amyloid reduction.

The amyloid-reduction class and the amyloid-growth class demon-

strate comparable baseline characteristics, as shown in Table 2, sug-

gesting a balanced representation. Both classes appear to be in a more

advanced disease stage compared to the amyloid-no-change class, as

evidencedby their amyloid burden and clinical characteristics (Table 2).

3.2 Comparison of amyloid reduction and
downstream biomarker progression by latent classes

Figures 1 and S1 in supporting information illustrate the estimated

annual rates of change for PiB PET SUVR and other downstream
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WANG ET AL. 5

F IGURE 1 Estimated annual rate of change and 95% confidence interval (CI) by latent classes. 𝙸 bars (i.e., 95%CI) covering 0 indicate a
non-significant rate of change at a two-sided type I error of 0.05. CSF, cerebrospinal fluid; MRI, magnetic resonance imaging; PET, positron
emission tomography; PiB, Pittsburgh compound B; p-tau, phosphorylated tau; SUVR, standardized uptake value ratio.

imaging and CSF biomarkers. Because PiB PET SUVR was used in

the LC model, it was anticipated to demonstrate varying rates of

change across the three classes. Consistent with the classification, the

amyloid-no-change class showed a minimal rate of change during the

follow-up period. The amyloid-reduction class exhibited a noteworthy

negative rate of change, indicating a reduction in amyloid. On the other

hand, the amyloid-growth class demonstrated a significant positive

rate of change, indicating substantial amyloid accumulation.

For tauPET composite SUVR, participants in the amyloid-no-change

class exhibited slower rates of annual change compared to those in

the amyloid-reduction class who, in turn, demonstrated slower rates

than those in the amyloid-growth class (Table S1 in supporting infor-

mation). Similar patternswere observed forMRI hippocampal volumes

and MRI precuneus thickness although the differences between the

amyloid-reduction class and the amyloid-growth class were much

smaller (Table S1). Conversely, for FDG-PET composite SUVR, both the

amyloid-reduction class and the amyloid-growth class exhibited com-

parable rates of decline (Table S1). In terms of CSF NfL, numerically

the smallest progression was observed among the amyloid-reduction

class. Furthermore, only the amyloid-reduction class displayed signif-

icant reductions in CSF p-tau181 and CSF total tau (Figures 1 and

S1), highlighting the association of these biomarkers with amyloid PET

reduction.

A sensitivity analysis was conducted, excluding the single placebo

participantwhowas classified into the amyloid-reduction class, and the

results were found to be consistent (Figure S1).

3.3 Comparison of clinical and cognitive
progression by latent classes

Figures 2 and S2 in supporting information display the estimated

annual rates of change for clinical and cognitive outcomes. Partic-

ipants in the amyloid-no-change class showed an improvement in

logical memory and displayed the least decline across all other out-

come measures compared to the other two classes. Despite having

similar baseline characteristics, the amyloid-reduction class exhibited

a reduction in the annual decline rate compared to the amyloid-growth

class acrossmultiplemeasures: CDR-SBdeclinewas reducedby47.1%,

MMSE by 31.8%, Digit Symbol by 48.2%, ISLT by 56.3%, and FAS by

40.3% (Table S2 in supporting information). Three sets of sensitivity

analyses were performed to examine the robustness of the potential

association between amyloid reduction and clinical/cognitive bene-

fits. These included the exclusion of the single placebo participant

(Figure S2), the use of only the first 24months of clinical/cognitive data

(Figure S3 in supporting information), and the inclusion of additional
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6 WANG ET AL.

F IGURE 2 Estimated annual rate of change and 95% confidence interval (CI) by latent classes. 𝙸 bars (i.e., 95%CI) covering 0 indicate a
non-significant rate of change at a two-sided type I error of 0.05. CDR SB, Clinical Dementia Rating Sum of Boxes; MMSE,Mini-Mental State
Examination; Digit Symbol, Digit Symbol Substitution Test; Logical Memory, logical memory delayed recall test; ISLT, International Shopping List
Test-Delayed Recall; FAS, Functional Assessment Scale.

key covariates (Figure S4 in supporting information). The results from

these sensitivity analyses align with themain findings in this report.

4 DISCUSSION

The testing of amyloid reduction as a surrogate biomarker is crucial

for enhancing our understanding of AD progression, as well as for

guiding drug development and the regulatory process. The significant

clinical decline slowing achieved by donanemab6,24 and lecanemab5

provides strong evidence that amyloid reduction is associated with

slower decline in cognition.Other clinical trialswith anti-amyloid drugs

that did not fully remove amyloid did not reach statistical signifi-

cance, although someexhibited small cognitivebenefits in theexpected

direction.13,25 This accumulating evidence presents an opportunity to

better determine the amount of amyloid reduction that may serve

as a surrogate biomarker and facilitate the acceleration of therapy

development in this area.

In this context, we demonstrate how LC analysis can offer an alter-

nativemethod of evaluating the effects of amyloid reduction on clinical

and non-amyloid biomarkers in clinical trials without significant clinical

treatment effects of the primary outcome. By better distinguish-

ing amyloid changes during the post-baseline follow-up, LC analysis

enables the analysis of surrogate endpoints in clinical trials in which

the primary analysis did not achieve significance, but evidence sug-

gests a clear impact on the primary target. For example, in theDIAN-TU

trial, although no overall treatment effect was observed in cognitive

outcomes and tau PET, significant amyloid reduction was observed in

the gantenerumab-treated group. The LC analysis successfully catego-

rized participants into three subgroups based on their post-baseline

amyloid changes and baseline amyloid levels: amyloid no change, amy-

loid reduction, and amyloid growth. Subsequent comparisons among

these subgroups provided a clearer understanding of the association

between disease stage and amyloid reduction and the deceleration of

cognitive decline and tau growth.

Notably, participants in the amyloid-no-change class demonstrated

minimum amyloid accumulation and much less unfavorable progres-

sion in other biomarkers compared to the other two classes. Table 2

indicated that the amyloid-no-change class was in earlier disease

stages than the other two classes, thus these findings underscore the

influence of disease stages on the magnitude of amyloid change over

time,2,26 which can subsequently be modified by treatment interven-

tion. Furthermore, the amyloid-no-change class experienced practice

effect in logical memory test and exhibited less decline in the other

clinical and cognitive outcomes (Figure 2) compared to those in later

stages (amyloid reduction and amyloid growth classes). This is again

likely due to the fact that the amyloid-no-change class was in an ear-

lier disease stage compared to the other two classes, as indicated

by the baseline amyloid burden, clinical scores, and cognitive scores

(see Table 2 for baseline comparison) and learned during the trial.27,28

Moreover, among the more advanced participants, those belonging

to the amyloid-reduction class demonstrated a remarkable reduc-

tion of > 30% in the annual clinical decline rate across five cognitive

outcomes compared to those in the amyloid-growth class. Interest-

ingly, these reductions are in line with the magnitudes observed with

donanemab6,24 and lecanemab.5 These findings reinforce the impor-

tance of considering the rate and extent of amyloid removal in the

context of negative clinical trials.29,30 They provide additional support

for the amyloid hypothesis and further validate amyloid reduction as

a potential surrogate biomarker. As an additional point, it is worth
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WANG ET AL. 7

mentioning that while we used amyloid PET as the outcome mea-

sure to determine the latent classes, other amyloid biomarkers such as

CSF Aβ42 can also be used. However, in the DIAN-TU trial, CSF Aβ42
was analyzed using different assays for participants treated with gan-

tenerumab and solanezumab. Consequently, it is not possible to pool

the results anduseCSFAβ42as theoutcomemeasure todetermine the

latent classes. Future work will examine other biomarkers, including

p-tau.

There are some limitations of the LC analysis. First, the model-

determined classes are not randomized, which may yield less robust

statistical inference compared to randomized clinical trials. Second, the

constrained sample size of the DIAN-TU study limits the complexity of

the underlying model in the LC analysis. Larger trials can explore other

longitudinal models with more parameters.31–33 Last, the LC analysis

necessitates pre-specifying the number of classes to be identified by

the model, which should be determined based on scientific judgment

and the overall sample size.

In summary, LC analysis harnesses the comprehensive profiles of

individuals to categorize participants based on response to treatment,

making it an informative tool for establishing associations between

variables or identifying subgroups that may benefit from treatment,

even when the overall trial does not demonstrate a clinical treatment

effect by randomization.
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