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Abstract

We explore the galaxy-halo connection information that is available in low-redshift samples from the early data
release of the Dark Energy Spectroscopic Instrument (DESI). We model the halo occupation distribution (HOD)
from z= 0.1 to 0.3 using Survey Validation 3 (SV3; a.k.a., the One-Percent Survey) data of the DESI Bright
Galaxy Survey. In addition to more commonly used metrics, we incorporate counts-in-cylinders (CiC)
measurements, which drastically tighten HOD constraints. Our analysis is aided by the Python package,
galtab, which enables the rapid, precise prediction of CiC for any HOD model available in halotools. This
methodology allows our Markov chains to converge with much fewer trial points, and enables even more drastic
speedups due to its GPU portability. Our HOD fits constrain characteristic halo masses tightly and provide
statistical evidence for assembly bias, especially at lower luminosity thresholds: the HOD of central galaxies in
z∼ 0.15 samples with limiting absolute magnitude Mr < −20.0 and Mr < −20.5 samples is positively
correlated with halo concentration with a significance of 99.9% and 99.5%, respectively. Our models also favor
positive central assembly bias for the brighter Mr < −21.0 sample at z∼ 0.25 (94.8% significance), but there is
no significant evidence for assembly bias with the same luminosity threshold at z∼ 0.15. We provide our
constraints for each threshold sample’s characteristic halo masses, assembly bias, and other HOD parameters.
These constraints are expected to be significantly tightened with future DESI data, which will span an area 100
times larger than that of SV3.
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Unified Astronomy Thesaurus concepts: Galaxy dark matter halos (1880); Two-point correlation function (1951);
N-body simulations (1083); Astronomical models (86); Astronomy software (1855); Cosmological evolution
(336); Extragalactic astronomy (506)

1. Introduction

The large-scale distribution of galaxies in the universe is a
powerful probe of cosmological models (e.g., Beutler et al.
2011; Anderson et al. 2012; Abbott et al. 2018). This is because
galaxies trace the dark-matter distribution, whose distribution is
set by cosmological parameters and is well characterized by
modern simulations (e.g., Klypin et al. 2016; Ishiyama et al.
2021). However, for accurate cosmological inference, it is
necessary to marginalize over the possible relationships
between observational probes and the theoretical matter
distribution. Therefore, leveraging large-scale structure to
constrain cosmology requires flexible models of the galaxy-
halo connection, and necessitates incorporating as much
empirical information as possible to tightly constrain such
flexible models.

Halos are thought to form central galaxies in their dense
centers and accrete subhalos, which bring along their own
central galaxies, becoming satellite galaxies of the primary
halo. Therefore, the spatial clustering of most galaxy samples
can be described well by a halo occupation distribution (HOD;
e.g., Berlind & Weinberg 2002; Zheng et al. 2007), which
probabilistically connects the average number of central and
satellite galaxies that a dark-matter halo hosts to its mass. Due
to its simplicity, the HOD can be a useful tool for cosmological
analyses (e.g., Zheng et al. 2007; Tinker et al. 2012;
Villaescusa-Navarro et al. 2014). This formalism can be
extended through additional parameters that lead to correlations
between galaxy abundance and secondary halo properties (i.e.,
galaxy assembly bias), which can improve fit quality and
reduce biased inference on other parameters of interest (Zentner
et al. 2014; Hearin et al. 2016). Several past studies have found
some evidence for assembly bias with various halo and galaxy
properties (e.g., Sato-Polito et al. 2019; Zentner et al. 2019;
Contreras et al. 2021; Yuan et al. 2021; Wang et al. 2022). As
the data continues to improve, further variations to HOD
models should be explored, e.g., by relaxing the assumption of
a log-normal stellar-to-halo-mass relation or of a spatially
isotropic Navarro–Frenk–White (NFW) distribution of satellite
galaxies.

The most common observables used to constrain the galaxy-
halo connection via spectroscopic galaxy samples are the
number density and the projected two-point correlation
function wp(rp) (e.g., Zehavi et al. 2005; Reddick et al. 2013).
However, Wang et al. (2019) has shown that the counts-in-
cylinders (CiC) distribution P(NCiC) offers significant com-
plementary information on the parameters of interest, particu-
larly those that control satellite occupation and assembly bias.
In practice, CiC has been an effective measure of clustering in
observational studies (e.g., Reid & Spergel 2009; Wang et al.
2022). Alternatively, as demonstrated by Storey-Fisher et al.
(2024), it is also possible to quantify clustering information
beyond the two-point function using other metrics, such as the
underdensity probability function and the density-marked
correlation function. These studies highlight that even with
existing data sets, incorporating different measurements of the
large-scale structure can help optimize model fitting.

In this paper, we extend previous analyses by incorporating a
novel spectroscopic data set; implementing a new, more
efficient CiC prediction framework; and demonstrating the
gain these provide. We leverage data from the Dark Energy
Spectroscopic Instrument (DESI; DESI Collaboration et al.
2022), which will ultimately obtain spectroscopic redshifts of
40 million galaxies in an effort to precisely map the large-scale
structure of a large volume of the observable universe. While
the full data set is still being collected, this work utilizes
redshift measurements for more than 40,000 galaxies obtained
by the Survey Validation 3 (SV3) component of the DESI early
data release (DESI Collaboration et al. 2023).
We approximately adopt the best-fit flat-universe cosmology

from Planck Collaboration et al. (2020). The relevant cosmolo-
gical parameters that we use are as follows: h= 0.6777,
Ωm,0 = 0.30712, Ωb,0 = 0.048252, and TCMB = 2.7255 K.
However, we scale all distance and distance-dependent values
to units equivalent to setting the Hubble parameter to h= 1
(e.g., h−1 Mpc).
This paper is organized as follows. We describe our data,

model, and summary statistics in Section 2. We detail our novel
methodologies for measuring and predicting CiC, through the
galtab package, in Section 3. We explain our parameter
inference technique in Section 4, and discuss our conclusions in
Section 5.

2. Data

2.1. Desi Bgs

The DESI Bright Galaxy Survey (BGS) is a highly complete
magnitude-limited spectroscopic survey of z < 0.5 galaxies,
which aims to target galaxies over at least 14,000 square
degrees down to a limit roughly two magnitudes fainter than
the Sloan Digital Sky Survey (SDSS; Abazajian et al. 2009).
Our analyses only use the BGS Bright sample, which is
complete down to an apparent r-band magnitude of mr < 19.5.
Because the DESI survey is still in progress at the time of this
writing, we analyze only data from the Survey Validation 3
(SV3; DESI Collaboration et al. 2023) data set (also known as
the One-Percent Survey as it contains approximately 1% of the
anticipated volume of DESI). These data were obtained in over
20 sky regions totaling an area of 173.3 sq deg, as shown in
Figure 1. A significantly higher fraction of potential targets was
observed in the SV3 fields than will be the case for typical
DESI survey data due to the use of a denser tiling strategy,
simplifying the corrections needed for our analysis.
We specifically use the SV3 Large Scale Structure (LSS)

catalogs, which only include sources with secure spectroscopic
redshift measurements, as described in DESI Collaboration et al.
(2023). These catalogs are well suited for clustering measure-
ments since they are paired with 18 random realization files,
each containing 2500 objects per deg2 of sky coverage, and
weights from 128 fiber assignment realizations. We also utilize
r-band absolute magnitude measurements from fastspecfit
(J. Moustakas et al. 2024, in preparation32), which are computed
for an SDSS r-band response curve K corrected to the z= 0.1

32 https://fastspecfit.readthedocs.io/
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reference frame using photometry from the Dark Energy
Camera Legacy Survey (DECaLS; Dey et al. 2019) and
spectroscopic redshifts from DESI. Note that all references to
absolute magnitudes in this paper, Mr, are scaled to h= 1 units;
therefore, they are equivalent to M h5 logr - for all other
values of the Hubble parameter.

We break this data into three volume-limited samples that
each cover the redshift range 0.1 < z < 0.2, constructed with
r-band absolute magnitude limits of Mr < − 20.0, −20.5, and
−21.0. We also define a fourth sample covering a slightly
higher redshift range of 0.2 < z < 0.3 with limit Mr <
− 21.0. We plot each sample cut in Figure 2 and summarize
these samples in Table 1. Unless otherwise specified, all
observational measurements in this paper are measured from
one of these samples.

2.2. Model Galaxies

2.2.1. Small MultiDark Planck

To study the galaxy-halo connection, we must compare
DESI galaxy clustering data to an assumed distribution of
underlying dark-matter halos. For this halo distribution prior,
we adopt the Small MultiDark Planck simulation (SMDPL;
Klypin et al. 2016), which uses the same Planck cosmology
that we assume in this work. This simulation was performed
with 38403 particles, but our analysis is based only upon the
halo catalogs produced by applying the Rockstar halo finder
(Behroozi et al. 2013). We adopt the virial mass from Rockstar
as our halo mass, Mh.

The particle mass of this simulation is roughly 108Me, so all
halos contributing to our analysis contain over 103 particles.
SMDPL covers a 400 h−1 Mpc periodic cube, which is over 10
times the volume of our SV3 samples. This is sufficiently large
so that cosmic-variance-like uncertainties from the data
dominate over the sample variance of this simulation volume.
However, future studies will need to use larger volume
simulations to compensate for DESI’s volume, which will be
100 times that of SV3.

2.2.2. HOD Model

We place model galaxies into the simulation cube by
assuming that each halo hosts some number of central and
satellite galaxies. To do this, we employ a decorated HOD
model, where each central galaxy is placed at the center of its
host halo, while the positions of satellite galaxies are drawn

Figure 1. Footprint of the DESI Survey Validation 3 (SV3). The left panel displays the entire survey, broken up into 20 regions that are for the most part spatially
isolated from each other. The right panel presents a close-up of the region labeled by the number 11 in the left panel. The points shown in orange, which are located
primarily near the edge of the region, indicate objects excluded as cylinder centers in our CiC measurement, as described in Section 3.2.

Figure 2. Distribution of r-band absolute magnitude Mr vs. redshift. The full
DESI BGS SV3 sample is shown by the gray points. Our four volume-limited,
absolute magnitude-thresholded samples are constructed through the cuts
represented by the corresponding colored boundaries.

Table 1
DESI Subsamples Used for Our Analyses

Mr Threshold Redshift Range Ntot Ncyl

−20.0 0.1 < z < 0.2 20,241 15,936
−20.5 0.1 < z < 0.2 11,036 8686
−21.0 0.1 < z < 0.2 5096 4031
−21.0 0.2 < z < 0.3 14,874 12,543

Note. The full sample size is given by Ntot, while Ncyl is the number of centers
of the cylinders that meet our spatial completeness criteria.
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from their host halo’s NFW profile. For a given halo, we
assume that the number of central galaxies is drawn from a
Bernoulli distribution, while the number of satellite galaxies is
drawn from a Poisson distribution. In the standard Zheng et al.
(2007) HOD formalism, their means are functions of halo mass
Mh alone, described by

⎜ ⎟
⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟N M

M M1

2
1 erf

log
, 1h

h

M
cen std

min

log
( ) ( ) ( )

s
á ñ = +
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⎛
⎝

⎞
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N M
M M

M
, 2h

h
sat std

0

1
( ) ( )á ñ =

- a

where Mlog min, Mlogs , α, logM1, and logM0 are free parameters
controlling the shape of the mean occupation functions. These
parameters must be tuned separately for each magnitude
threshold and redshift sample. We further parameterize logM0

into Q0 using

M M Q M Mlog log log log , 30 min 0 1 min( ) ( )= + -

which helps us ensure that logM0 always stays between
Mlog min and logM1 to preserve its sensitivity to, and the

stability of, our summary statistics.
Adding further flexibility into our model, we include

assembly bias parameters Acen and Asat to introduce a halo
occupation dependence on the NFW concentration. By defini-
tion, each of these parameters can only range from [−1, 1], and
allow for the redistribution of central and satellite occupation,
respectively, from low to high concentration halos for positive A,
or vice versa. Following Zentner et al. (2019), we modify the
halo occupations according to a perturbation δNgal, with a sign
dependent on whether a halo is in the upper or lower 50th
percentile of concentration (chigh or clow) in a narrow mass bin,
such that

N M c N N, 4hgal high gal std gal( ) ( )dá ñ = á ñ +

N M c N N, , 5hgal low gal std gal( ) ( )dá ñ = á ñ -

where

N A N 6sat sat sat std ( )d = á ñ

N A N0.5 0.5 . 7cen cen cen std( ∣ ∣) ( )d = - - á ñ

For all samples, we adopt uniform priors on our model parameters
with the following bounds: Mlog 9, 16 ;min [ ]Î 10 , 5 ;Mlog

5[ ]s Î -

Mlog 10, 16 ;1 [ ]Î Q0ä [0, 1];αä [10−5, 5];Acenä [− 1, 1];
and Asatä [− 1, 1]. These bounds are very wide compared to our
data constraints, so they do not strongly influence our fits, except
for the upper limit on Acen.

2.3. Summary Statistics

To extract clustering information from each galaxy sample,
we use three summary statistics: number density ngal, the
projected two-point correlation function wp(rp), and the CiC
distribution P(NCiC). We seek a good agreement of these
summary statistics, as measured in the model galaxies versus
the DESI data, to validate our model. We display our best-fit
models against the corresponding observations of these three
summary statistics for each sample in Figure 7.

The number density is calculated via the sum of the inverse
individual probability (IIP; see Section 3.2) weights of the

galaxies in the sample divided by the comoving volume they were
sampled from. For the HOD number density predictions, the
comoving volume of SMDPL is 4003h−3Mpc3, while the
volumes of the DESI samples depend on the redshift cuts and
the survey area. The DESI SV3 BGS survey area is 173.3 sq deg,
which corresponds to comoving volumes of 2.83× 106h−3Mpc3

and 6.95× 106h−3Mpc3 for samples with redshift ranges of
0.1 < z < 0.2 and 0.2 < z < 0.3, respectively.
The projected two-point correlation function is a common

way to quantify spatial clustering in redshift space at various
physical scales. By integrating over the line-of-sight dimen-
sion, this statistic decreases the dependence of the inferred
clustering on redshift-space distortions. It is defined by

w r r d2 , 8p p
0

p
max

( ) ( ) ( )ò x p p=
p

where ξ is the two-point correlation function, π is line-of-sight
separation distance, and rp is perpendicular separation distance.
For consistency with Wang et al. (2022), we choose maxp =

h40 Mpc1- and use 12 logarithmically spaced bins between rp
of 0.158h−1 Mpc and 39.81h−1 Mpc. We concatenate all 18
random files from the SV3 LSS catalogs but draw a random
20% subsample, which is sufficient so that the randoms
contribute negligibly to our uncertainties. We utilize the
pycorr33 package to apply the Landy & Szalay (1993)
estimator, line-of-sight integration, and fiber assignment
weights. The performance-critical pair searching is powered
by Corrfunc (Sinha & Garrison 2020).
We choose to use projected statistics, which integrate over

line-of-sight separations up to 40h−1 Mpc for wp(rp) and
10h−1 Mpc for CiC. Since the line-of-sight position is
significantly more uncertain (due to peculiar velocities) than
the other two coordinates, there is more clustering information
per degree of freedom when the line-of-sight direction is
discretized into broader bins. However, it is possible to
summarize the clustering information even more thoroughly
by replacing wp(rp) with the monopole and quadrupole of the
redshift-space two-point correlation function, at the expense of
additional degrees of freedom.
Counts in cylinders (CiC) is a type of counts-in-cells statistic

(i.e., it quantifies the local density of points in a cell of a given
geometry; the development of such metrics has a long history;
e.g., Hubble 1936; Zwicky 1957; White 1979; Adelberger et al.
1998) that defines neighbors using a cylindrical cell along the
line-of-sight direction. As done by Wang et al. (2022), we
center a cylinder of radius RCiC = 2h−1 Mpc and half-length
LCiC = 10h−1 Mpc around each galaxy in the sample. We
count the number of near neighbors there are around each
galaxy, NCiC, enclosed by this cylindrical cell, excluding self-
counting, so that NCiC = 0 is possible. Cylinders of this scale
primarily probe the number of intra-halo galaxies and are
therefore sensitive to satellite occupation as well as assembly
bias (see Wang et al. 2019 and references within). Conve-
niently, using a small cylindrical volume is also a computa-
tionally favorable choice. In principle, further information
could be obtained by simultaneously fitting several different
cylinder sizes (i.e., varying LCiC or RCiC), although this is
unlikely to be worth the extra computational expense. We
evaluate the CiC distribution P(NCiC) in bins of NCiC, for which
we use 10 linearly spaced bins bounded by −0.5 and 9.5 plus

33 https://github.com/cosmodesi/pycorr
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20 logarithmically spaced bins between 9.5 and 149.5.
Alternatively, if the run time or covariance matrix dimension-
ality is a major concern, the majority of available information
can be captured by computing the first three to five moments of
the NCiC distribution (importance shown in Figure 3). We
describe our methods used to compute counts in cylinders in
detail in Section 3.

We test the ability of each summary statistic to inform the
HOD by sampling uniformly from HOD parameters around
their 1σ confidence interval from the Wang et al. (2022)
Mr < − 20.5 sample. See Appendix A for a detailed
discussion of this procedure. In brief, we predict each of our
summary statistics including the first 10 CiC moments. We
then train a random forest (Breiman 2001) to predict the HOD
parameters from these summary statistics and provide a
visualization of the resulting SHapley Additive exPlanations
(SHAP; Lundberg & Lee 2017) feature importance in Figure 3.
We can conclude that number density is highly important for
predicting Mlog min, the two-point correlation function is
broadly informative across all parameters, and the first few
CiC moments are particularly important for constraining
satellite HOD parameters.

2.3.1. Covariance of Summary Statistics

To constrain our HOD model, we compare the following
summary statistics as measured in our data to model
predictions: number density; the two-point correlation function
(computed in 12 bins in rp); and CiC (for 28 bins in NCiC). We
calculate the covariance matrix of these summary statistics by
jackknife resampling using the 20 regions displayed in
Figure 1.

To do this, we perform a measurement of every summary
statistic simultaneously on the subset of data that includes all
but one jackknife region. We repeat this process for each
combination of 19 jackknife regions to obtain NJ = 20
jackknife realizations. The covariance matrix of our summary
statistics can then be estimated by

N

N
x x x x

1
, 9ij

k

N

ik i jk j
J

J 0

J

( ¯ )( ¯ ) ( )åS =
-

- -
=

where xi¯ is the ith summary statistic measured in the entire data
set, and xik is the ith summary statistic measured in the kth
jackknife realization.
Using only 20 jackknife regions for this purpose is a

somewhat noisy estimator of the covariance matrix. However,
breaking them into even smaller regions would severely violate
the assumption that the jackknife regions are independent of
each other. Note that calculating CiC in small regions is
particularly problematic because data near the edges must be
removed.

3. Counts in Cylinders

Counts in cylinders (CiC; derived in Peebles 1980 and
previously used by Reid & Spergel 2009; Wang et al. 2022) is
sensitive to higher-order n-point functions, which makes it
complementary to two-point statistics commonly used in the
literature. Despite its utility, CiC is not widely adopted in
galaxy-halo connection studies, due to difficulties in correcting
for systematics, excessive computational time, and significantly
increased dimensionality of the full covariance matrix. In this
section, we present our methodology to mitigate all of these

Figure 3. SHAP feature importances for each of our summary statistics for inferring HOD parameters. Each panel plots the importance of each feature (i.e., each
quantity that is used to predict the HOD parameters via a machine learning model), calculated by the mean absolute SHAP value for the given HOD parameter.
Summary statistics with high feature importance are more useful for predicting the parameter. For the satellite HOD parameters (bottom row), the first few CiC
moments provide the majority of the constraining information. See Figure 9 for beeswarm plots of the full distribution of SHAP values of the six most important
features for each parameter.
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problems and implement each of these methods in an open-
source Python package galtab.34

After a brief explanation of our observational cylinder
geometry in Section 3.1, we present our weighting method in
Section 3.2 based on individual inverse probabilities and
inverse conditional probabilities (IIP× ICP), which corrects
CiC calculations to account for clustering bias in surveys with
fiber collisions. This approach is analogous to and inspired
by pair inverse probabilities (PIP) weighting (Bianchi &
Percival 2017), which we used to correct our wp(rp)
measurement. To minimize the dimensionality of the covar-
iance matrix, we suggest using only the first three to five
moments of the CiC distribution, defined in Section 3.3, which
retain most of the constraining information. Our analysis uses
information from the entire CiC distribution, but the constrain-
ing power should not be significantly diminished by using only
the first five CiC moments instead.

Additionally, we present a galaxy placeholder pretabulation
method in Section 3.4 to speed up our Markov chain Monte
Carlo (MCMC) procedure. This makes our CiC prediction run
time comparable to traditional Monte Carlo wp(rp) prediction
methods but with the significant advantage of producing
precise, deterministic values, which yield much higher MCMC
sampling efficiency than stochastic Monte Carlo predictions. In
Sections 3.5 and 3.6, we present two different CiC prediction
frameworks and discuss their respective use cases.

3.1. Observational Cylinder Geometry

While a cylinder perfectly aligns with the velocity distortion
in an idealized simulation, for observations, we must slightly
distort its curved rectangular face into a truncated cone so that
it is parallel to the line-of-sight direction (like a light cone). We
also allow a slight curve to this truncated cone’s top and bottom
circular faces, so they are normal to the line of sight. Therefore,
we only have two search criteria in our CiC search: maximum
angular and line-of-sight separations. The line-of-sight separa-
tion cut is LCiC and we define the angular separation cut to be

⎜ ⎟
⎛
⎝

⎞
⎠

R L

d L d L
arccos 1

3
, 10CiC

CiC
2

CiC

CiC
3

CiC
3( ) ( )

( )q = -
+ - -

where d is the comoving distance to the galaxy centered by the
“cylinder.” This ensures that its volume is still precisely

R L2 CiC
2

CiCp , and θCiC≈ RCiC/d as d→∞ .

3.2. IIP× ICP Weighting

In order to account for fiber collisions, the DESI Large-Scale
Structure catalogs come with “bitweights” columns. These
columns represent 128 true (1) or false (0) values for each
object corresponding to 128 fiber assignment realizations
stored as a bitmask. To make the realizations independent of
one another, the targets are randomly assigned sub-priority
values, and the survey footprint is slightly dithered, following
the methods outlined in Smith et al. (2019). The true fiber
assignments for the One-Percent Survey are effectively a 129th
realization in which all data in our sample have an understood
simultaneous true value. Therefore, the probability of assigning

a fiber to the ith galaxy is

P i
129

, 11( ) ( [ ]) ( )=
+sum bitweights i 1

while the probability of simultaneously assigning fibers to both
the ith and jth galaxies is

12

P i j&
&

129
,

( )

( ) ( [ ] [ ])
=

+sum bitweights i bitweights j 1

where sum and & are bitwise operations. Thanks to the high
fiber completeness of SV3, the average value of P(i) is 0.984.
In order to measure the CiC distribution, we must calculate

the expectation value of the number of galaxies we expect to
find in the cylinder around every galaxy individually, NCiC,i.
For this task, we sum the inverse conditional probabilities
(ICPs) of each neighboring galaxy’s fiber assignment (condi-
tional on the fiber assignment of the cylinder’s central galaxy).
Using the definitions from Equations (11) and (12),

P i

P i j
ICP

&
, 13j i

( )
( )

( )∣ =

N
f

1
ICP , 14i

j C
j iCiC,

rand i

( )∣å=
Î

where Ci is the set of indices of galaxies contained by the
cylinder surrounding the ith galaxy (excluding the ith galaxy
itself), and frand is the number of randoms enclosed in its
cylinder’s angular selection divided by the expected number
occupying a circle of angular radius θCiC, which accounts for
incompleteness in footprint coverage. Note that we do not
include cylinders with frand < 0.9. This cut excludes approxi-
mately 21% of the cylinders at z∼ 0.15 and 16% of the
cylinders at z∼ 0.25, as listed in Table 1. The excluded
galaxies are primarily located near the edge of the footprint, as
seen in Figure 1.
We measure P(NCiC) from the sample distribution of NCiC,i

values, but we need to overweight objects in dense regions of
the sky that have been undersampled. Therefore, we weight
objects by their inverse individual probability (IIP). The IIP of
the ith galaxy is simply

P i
IIP

1
. 15i ( )

( )=

Finally, for our binned histogram measurements of P(NCiC),
we split each IIPi into two parts, IIPi+ and IIPi−. These weights
are applied to the integers above and below NCiC,i, respectively,
and are proportional to one minus that integer’s distance from
NCiC,i so that

N N
N

IIP IIP

IIP
. 16i i i i

i
i

CiC, CiC,
CiC,

⌈ ⌉ ⌊ ⌋ ( )+
=+ -

This allows us to only assign histogram values to integer
cylinder counts (⌈NCiC,i⌉ and ⌊NCiC,i⌋), even though NCiC,i is
not necessarily an integer. This step is necessary because
P(NCiC) is formally a probability mass function, not a
probability distribution.34 https://github.com/AlanPearl/galtab
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3.3. Calculating the CiC Moments

In order to decrease the dimensionality of the covariance
matrix, one may choose to condense the information contained
in the CiC distribution into its first few moments, which we
define as

w N , 17
i

N

i i1
1

CiC, ( )åm =
=

w N , 18
i

N

i i2
1

CiC, 1
2( ) ( )åm m= -

=

w N
1

. 19k k
i

N

i i
k

2
2 1

CiC, 1( ) ( )åm
m

m= ->
=

where NCiC,i (in practice, this is split into ⌈NCiC,i⌉ and
⌊NCiC,i⌋; see Section 3.2) is the number of neighbors inside
the cylinder surrounding a galaxy in the sample and wi is the
corresponding IIP weight, but normalized to ∑wi = 1. Note
that μ1 is the mean, μ2 is the standard deviation, and for k > 2,
μk are standardized central moments (skewness, kurtosis, etc.),
uncorrected for degree-of-freedom bias, which is a negligible
source of systematics for large sample sizes compared to other
uncertainties. In some figures, we refer to μk as CiCk to be
explicit that they are moments of CiC.

3.4. Pretabulation with Placeholder Galaxies

Predictions of CiC from Monte Carlo HOD realizations are
notoriously slow and noisy. This stochasticity reduces the
sampling efficiency of Monte Carlo explorations of model
parameter space by decreasing the acceptance rate, which, in
turn, increases the autocorrelation length of MCMC chains and

necessitates longer chains and run times. To remedy this, we
have developed a method to calculate precise, deterministic
CiC predictions by pretabulating placeholder galaxies inside
simulated halos.
Our procedure, illustrated in Figure 4, requires a fiducial

HOD model to compute the expected occupation, 〈Ncen〉 and
〈Nsat〉, for each halo. For our fiducial model, we choose the best
fit of Wang et al. (2022) that corresponds to the magnitude
threshold of each of our samples. We populate each halo with
Ncen, ph central placeholders and Nsat, ph satellite placeholders.
We determine the number of satellite placeholders for each
halo with the hyperparameter Wmax according to the equation

⎡
⎢⎢

⎤
⎥⎥

N
N

W
, 20sat,ph

sat

max
( )=

á ñ

which ensures that, for fiducial model predictions, there are
enough satellite placeholders that their individual weights are
less than or equal to Wmax.
For centrals, we define a hyperparameter Qmin that sets the

minimum quantile of central galaxies for which to populate a
central placeholder. In practice, we set Ncen,ph = 1 for all halos
with N Ncen cen miná ñ á ñ , and Ncen,ph = 0 otherwise. To solve
for Ncen miná ñ , we numerically integrate and invert

Q
N N d N

N N d N
, 21

N
min

1
cen cen cen

0

1
cen cen cen

cen min
( )

( )
( )

ò

ò
=

F á ñ á ñ á ñ

F á ñ á ñ á ñ

á ñ

where Φ(〈Ncen〉)d〈Ncen〉 is the number density of halos with
expected central occupation between 〈Ncen〉 and 〈Ncen〉+ d〈Ncen〉.
This essentially places a minimum halo mass that varies for our
HOD samples, ranging from ∼1−3×1011Me.

Figure 4. Demonstration of our placeholder algorithm used to pretabulate counts-in-cylinders pair indices. Given a fiducial model, we populate placeholder centrals
for most halos with a non-zero probability of hosting a halo. We populate many more placeholder satellites than expected in the fiducial model so that the resulting
binomial satellite occupation distribution sufficiently resembles the assumed Poisson distribution. We then tabulate the placeholder indices in each halo for rapid CiC
prediction using one of the two modes described in Sections 3.5 and 3.6.

7

The Astrophysical Journal, 963:116 (16pp), 2024 March 10 Pearl et al.



To balance accuracy and run time (see Figure 10), we set
W 0.05max = and Q 10min

4= - . In galtab, these hyperpara-
meters can be tuned via the max_weight and min_quant
keyword arguments, respectively. After tabulation, one may
choose any parameters for the HOD model and obtain a new
prediction of 〈NX〉 for each halo and for each galaxy type denoted
by X: central or satellite. Each placeholder galaxy is then assigned
a probability value, Pi = 〈NX〉/NX,ph.

As is usually done in Monte Carlo HOD realizations, these
galaxy probability values are assumed to be independent.
Therefore, the halo occupation of centrals follows a Bernoulli
distribution, the same as typical Monte Carlo frameworks.
However, the halo occupation of satellites follows a binomial
distribution in our framework, which only converges to the
desired Poisson distribution in the low Pi 0.05 limit, hence
our choice of W 0.05max = .

Finally, a single counts-in-cylinder search is required (we
use the halotools implementation for this) to obtain a list of
the indices of possible neighbors for each placeholder. This
allows us to rapidly calculate our CiC metric, as described in
the following sections.

3.5. Pretabulated CiC Prediction: Monte Carlo Mode

In order to calculate the CiC distribution P(NCiC) from the
probability values of our pretabulated galaxies, we must
consider the probability of each possible value of NCiC,i for
each cylinder i. The full CiC distribution is simply the weighted
superposition of that of each cylinder. We write this as

P N
P P N

P
. 22i

N
i i

i
N

i
CiC

1 CiC,

1

( )
( )

( )=
å

å
=

=

In general, each P(NCiC,i) is a Poisson binomial distribution,
whose exact calculation scales exponentially with the number
of neighbors in the ith cylinder, which is infeasible. Therefore,
we approximate this distribution for each cylinder using a
Monte Carlo method. To do this, we pretabulate nMC random
seeds over [0, 1) for each galaxy, which we use as Bernoulli
quantiles after assigning the Pi of each placeholder. This
effectively creates nMC independent realizations that can
produce quasi-deterministic and almost continuous (but non-
differentiable) predictions of the Boolean values that decide
whether a given placeholder is populated. We construct each
P(NCiC,i) as a histogram of the number of populated neighbors
drawn by the nMC realizations. We find that nMC = 10
produces reasonably stable results without excessive run time.

As an alternative to the Monte Carlo mode predictions
described in this section, we have also implemented analytic
mode predictions, which we will describe in Section 3.6. The
analytic mode can predict CiC moments more efficiently,
without invoking random seeds, allowing them to be perfectly
continuous and differentiable. Therefore, when predicting CiC
moments, it is recommended to use the analytic mode
described in Section 3.6 (and this is the default functionality
for CiC moment prediction) instead of the Monte Carlo mode.

3.6. Pretabulated CiC Prediction: Analytic Mode

Although the full P(NCiC) distribution cannot be calculated
analytically from our galaxy placeholders, the moments of this
distribution can. As a simple example, the mean of this
distribution is simply the weighted average of the individual

means

N
P N

P
, 23i
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where

N P , 24i
j C

jCiC,

i

( )åá ñ =
Î

and Ci is the set of indices of galaxies contained by the cylinder
surrounding, but not including, the ith galaxy.
It is possible to calculate a similar relation for the standard

deviation and the higher standardized moments we have
defined in Equations (18) and (19). However, these relations
are much more complicated. Note that the mean is a special
case because it is the first raw moment (which allows
Equation (23)) as well as the first cumulant (which allows
Equation (24)).
Cumulants are a type of moment that have a special property

that they are additive for random variables which are the sum of
other random variables. For example, the number of neighbors
in the ith cylinder is a random variable, which is the sum of the
occupation of each of its pretabulated placeholder companions,
which themselves are random variables:

N X , 25i
j C

jCiC,

i

( )å=
Î

where Xj is the occupation of the jth placeholder, which follows
a Bernoulli distribution (0 or 1) with mean Pj. Therefore, the
first cumulant of this Bernoulli distribution is κ1(Xj) = Pj, and
the subsequent Bernoulli cumulants can be derived from the
recursion relation

X P P
d X

dP
1 . 26k j j j

k j
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k
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Given the first kmax Bernoulli cumulants of each placeholder
in Ci, we can calculate the first kmax Poisson binomial
cumulants of the ith cylinder. We simply take the kth cumulant
of each random variable on both sides of Equation (25):

N X . 27k i
j C

k jCiC,

i

( ) ( ) ( )åk k=
Î

From the moments of each NCiC,i, we would like the
moments of the combined CiC distribution, which is a
weighted superposition of each individual cylinder’s distribu-
tion, as expressed in Equation (22). For this step, the most
convenient set of moments to use are raw moments. The kth
raw moment of NCiC,i can be obtained from its first k cumulants
according to

N N N N . 28i
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From these individual kth raw moments, we can calculate the
kth raw moment of their superposition using a simple weighted
average:

N
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The first raw moment is μ1, but the remaining μk for
 k k2 max depend on central moments. Therefore, the final

nontrivial step of our analytic prediction framework is to
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calculate the central moments using the following binomial
expansion:

⎜ ⎟
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from which we can calculate the standard moments given in
Equations (17) through (19) using

N , 311 CiC ( )m = á ñ
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For our analysis of the computational performance of these
methods, and the tuning of hyperparameters introduced in
Section 3.4, see Appendix B

Figure 5. Posterior distribution of the HOD parameters of the −20.5 threshold sample from MCMC sampling. The 68% and 95% confidence regions are displayed by
contour lines for each two-dimensional projection, and the 68% confidence intervals are marked with dashed vertical lines for each one-dimensional projection.
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4. MCMC Inference

We use Markov chain Monte Carlo (MCMC) to constrain
the HOD model using each galaxy sample. We make use of the
emcee (Foreman-Mackey et al. 2013) implementation, in
which several walkers simultaneously sample a likelihood
function throughout parameter space, and occasionally trade
locations to construct MCMC chains. Ignoring the normal-
ization constant, the log-likelihood is given by

 x x x xln
1

2
, 34model data model data( ) ( ) ( )†= - - S -T

where Σ is the covariance matrix from Equation (9) and Σ† is
its Moore–Penrose pseudo-inverse (Penrose 1955), which is the
simplest way to invert a singular matrix to calculate sensible,
finite likelihood values, by performing a dimensionality
reduction. A singular covariance matrix arises when there are
at least as many summary statistics as the number of jackknife
realizations. We use the implementation available in the
logpdf method of the multivariate_normal class from
SciPy (Virtanen et al. 2020).

In addition, we rescale the summary statistics such that their
covariance matrix has a diagonal of ones. Mathematically, this
has no effect and is equivalent to an arbitrary change of units.
However, this circumvents machine precision errors where the
pseudo-inverse will delete the constraints of summary statistics
with low orders of magnitude, like number density.

We initialize our MCMC chains around the best-fit parameters
of the corresponding magnitude threshold sample fromWang et al.
(2022), with very slight variation between the MCMC walkers.
We let these chains run for 60,000 trial points (3000 iterations×
20 walkers), and conservatively remove a burn-in of 2000 trial
points to calculate our posteriors displayed in Figures 5, 6, and 11,
as well as the maximum-likelihood points and confidence regions
reported in Tables 2 and 3, respectively. Our relatively small
number of trial points is acceptable thanks to our deterministic
likelihood evaluations and our prior on logM0 that confines the
MCMC to a stable region of parameter space. The autocorrelation
lengths of our chains ended up ranging from 100 to 300. This is
about a factor of two shorter than the autocorrelation lengths we
obtain using Monte Carlo CiC evaluations, and possibly an order
of magnitude shorter than the result from Monte Carlo evaluations
of both wp(rp) and CiC.

To quantify how well our maximum-likelihood models agree
with the data, we calculate χ2 along with the probability of
measuring data with at least this value of χ2 by chance using
the chi-squared cumulative distribution function. In Table 2, we
report this probability and translate it into the z-score of a
Gaussian to quantify the “number of sigmas” of tension that
exists between our model and data.

5. Results and Discussion

The measurements from the DESI One-Percent Survey
shown in Figure 7 already produce reasonably tight constraints
on the HOD. For each of the four threshold samples defined in
Table 1, the corresponding best-fit HOD parameters are given
in Table 2, and 1σ confidence intervals are given in Table 3.
We have also summarized these constraints as a function of Mr

threshold and redshift into easier-to-digest plots in Figure 8. In
this figure, we show that, as luminosity increases from Mr of
−20.0 to −21.0, the characteristic halo mass for central
galaxies gradually increases from roughly 1012.0 to 1012.4Me.

We find a similar increasing trend for the characteristic halo
masses containing one (and two) satellite galaxies for each
sample; the inferred slope α of the 〈Nsat〉(Mhalo) relation does
not evolve significantly compared to the shown error bars.
Finally, we show the parameters that trace assembly bias; these
are significantly greater than zero for centrals in the lower two
magnitude threshold samples, while satellite assembly bias is
consistent with zero throughout. With only one z= 0.25
sample, we find no significant signals of redshift evolution.
Given the current relatively small sample sizes, the tightness

of our constraints can be attributed to the power of combining
information from wp and CiC. We find a 3σ detection of
assembly bias for central galaxies in the two lower luminosity
bins. More precisely, the strength of the evidence for central
assembly bias in each sample is as follows:

1. For our −20.0 and −20.5 samples, the posterior
probability that Acen > 0 is 0.9987 and 0.995, respec-
tively. Without CiC constraints, these probabilities are
only 0.860 and 0.737.

2. Positive assembly bias at Mr < − 21.0 is favored
significantly only in the z∼ 0.25 sample. For it, we find
a posterior probability for Acen > 0 of 0.948 (or 0.828
without CiC constraints).

3. Due to large uncertainties, we find very poor constraints
on assembly bias at Mr < − 21.0 in our z∼ 0.15 sample
whether or not we include CiC in the sample.

4. In general, CiC appears to add a substantial increase in
constraining power for all HOD parameters, as seen in
Figure 3 and in detail in Table 3.

The constraints we find on assembly bias are consistent with
the findings from studies based on SDSS data. Despite the

Figure 6. Posterior distribution of the assembly bias parameters of the −20.5
threshold sample from MCMC sampling. Overplotted in blue is the result we
obtain without including any constraints from CiC, yielding very little
information about assembly bias.
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smaller sample size currently available from DESI, our wp(rp)
+ CiC analysis produces much stronger constraints than
characterizing SDSS clustering with wp(rp) alone (e.g., Vakili
& Hahn 2019; Zentner et al. 2019). In fact, we achieve similar
constraining power to Wang et al. (2022), even though we use
the same set of summary statistics. This may imply that the
assembly bias signal is less ambiguous in the slightly different
samples probed by BGS. This could also be thanks to the high
targeting completeness and therefore purity of the DESI One-
Percent Survey, which allows us to avoid assigning redshifts to
untargeted galaxies based upon the nearest neighbors in the
sky. Finally, if the HOD model is not sufficiently flexible (a
good possibility given our imperfect fits), our results will be
prior dominated, which can affect the inference in unpredict-
able ways.

While the HOD model can consistently produce good fits to
wp and n simultaneously (possibly to the point of overfitting),
incorporating CiC measurements results in mismatches
between the model and data in some cases. Although
introducing assembly bias parameters has slightly reduced this
tension, the Mr sample at z∼ 0.15 still exhibits a tension of
nearly 2σ between our models and the data. This tension is
reported in Table 2 and is readily apparent in Figure 7 (though

one must use caution when assessing the mismatch by eye
since the summary statistics can be strongly covariant).
Significant tension in only one of our four samples by no

means rules out the HOD model used, but it should incentivize
us to consider what else the model might be missing. In the
coming years, the size of the DESI sample will grow by a factor
of 100 compared to what was used here, so we can expect that
the constraints will tighten significantly and tensions may
grow. While the reduced targeting fractions of the full DESI
survey would require new methods to recover unbiased CiC,
our constraints will likely improve dramatically by extending
the wp data alone, since our SV3 wp measurements have very
large uncertainties. Our model is not sufficiently flexible to fit
early data samples well; therefore, it is plausible that these
models could be ruled out convincingly with the full data set.
Future studies should explore additional ways to make the
HOD more flexible such that they can produce better fits to the
DESI data; we describe a few plausible extensions here, but by
no means exhaust the possibilities.
As one example, the HOD we have used in this work

assumes that the stellar-to-halo-mass relation has a log-normal
scatter, but the UniverseMachine simulations (Behroozi et al.
2019) exhibit a slight skew to this scatter in several tested

Table 3
Confidence Intervals of the HOD Parameters from the 16th, 50th, and 84th Percentiles of the Marginalized Posteriors

Threshold Mlog min σlogM α logM1 logM0 Acen Asat

−20.0 12.026 0.069
0.087

-
+ 0.587 0.136

0.159
-
+ 0.748 0.065

0.059
-
+ 12.833 0.094

0.073
-
+ 12.315 0.145

0.163
-
+ 0.848 0.210

0.115
-
+ 0.028 0.226

0.211- -
+

(no CiC) 12.151 0.274
1.047

-
+ 0.845 0.635

1.701
-
+ 0.784 0.149

0.125
-
+ 12.833 0.287

0.177
-
+ 12.566 0.329

0.156
-
+ 0.613 0.556

0.288
-
+ 0.260 0.423

0.502- -
+

(no Abias) 11.951 0.063
0.080

-
+ 0.454 0.164

0.155
-
+ 0.744 0.057

0.063
-
+ 12.759 0.084

0.088
-
+ 12.427 0.185

0.127
-
+

−20.5 12.252 0.056
0.074

-
+ 0.471 0.122

0.126
-
+ 0.707 0.065

0.065
-
+ 13.102 0.104

0.088
-
+ 12.728 0.142

0.121
-
+ 0.862 0.205

0.102
-
+ 0.113 0.222

0.217- -
+

(no CiC) 12.518 0.367
1.300

-
+ 0.916 0.715

1.572
-
+ 0.681 0.257

0.182
-
+ 13.094 0.500

0.224
-
+ 12.886 0.275

0.152
-
+ 0.462 0.771

0.412
-
+ 0.072 0.576

0.607- -
+

(no Abias) 12.213 0.052
0.074

-
+ 0.389 0.172

0.150
-
+ 0.691 0.043

0.055
-
+ 13.017 0.065

0.080
-
+ 12.837 0.113

0.067
-
+

−21.0 (low z) 12.450 0.012
0.015

-
+ 0.083 0.057

0.108
-
+ 0.423 0.071

0.108
-
+ 13.292 0.100

0.140
-
+ 13.091 0.098

0.046
-
+ 0.229 0.758

0.533
-
+ 0.047 0.228

0.154
-
+

(no CiC) 12.464 0.038
0.125

-
+ 0.272 0.191

0.293
-
+ 0.719 0.232

0.165
-
+ 13.569 0.206

0.112
-
+ 12.871 0.253

0.236
-
+ 0.333 0.779

0.501
-
+ 0.012 0.522

0.562- -
+

(no Abias) 12.455 0.011
0.022

-
+ 0.098 0.077

0.160
-
+ 0.414 0.097

0.091
-
+ 13.291 0.090

0.119
-
+ 13.080 0.088

0.048
-
+

−21.0 (high z) 12.365 0.027
0.036

-
+ 0.222 0.144

0.126
-
+ 0.895 0.090

0.089
-
+ 13.494 0.099

0.095
-
+ 12.944 0.173

0.133
-
+ 0.759 0.380

0.185
-
+ 0.200 0.214

0.200- -
+

(no CiC) 12.356 0.024
0.048

-
+ 0.178 0.120

0.175
-
+ 0.959 0.118

0.078
-
+ 13.563 0.097

0.052
-
+ 12.597 0.154

0.217
-
+ 0.640 0.683

0.276
-
+ 0.218 0.270

0.252- -
+

(no Abias) 12.366 0.025
0.035

-
+ 0.244 0.149

0.118
-
+ 0.929 0.064

0.067
-
+ 13.479 0.073

0.078
-
+ 12.964 0.143

0.113
-
+

Note. The confidence intervals without CiC constraints, and without assembly bias, are included for comparison.

Table 2
Maximum-likelihood HOD Parameters for Each Sample

Threshold Mlog min Mlogs α logM1 logM0 Acen Asat AIC χ2 DoF p-Value Tension

–20.0 12.227 0.990 0.681 12.739 12.339 0.966 −0.156 −292.68 12.15 19 0.879 0.15σ
(no CiC) 12.114 0.884 0.858 12.946 12.430 0.540 −0.795 49.66 10.20 13 0.678 0.42σ
(no Abias) 11.968 0.481 0.778 12.763 12.459 −284.95 23.88 19 0.201 1.28σ
–20.5 12.285 0.527 0.765 13.140 12.657 0.911 −0.223 −214.70 20.51 19 0.364 0.91σ
(no CiC) 12.923 1.387 0.566 12.935 12.930 0.164 −0.317 52.74 7.70 13 0.863 0.17σ
(no Abias) 12.244 0.381 0.661 13.020 12.912 −208.36 30.85 19 0.042 2.03σ
–21.0 (low z) 12.467 0.211 0.475 13.323 13.068 0.853 0.050 −233.42 54.76 42 0.090 1.70σ
(no CiC) 12.411 0.063 0.819 13.618 12.643 0.885 −0.249 58.89 3.88 13 0.992 0.01σ
(no Abias) 12.453 0.045 0.409 13.226 13.116 −234.72 57.46 42 0.056 1.91σ
–21.0 (high z) 12.388 0.271 1.005 13.565 12.813 0.817 −0.072 −141.88 25.89 19 0.133 1.50σ
(no CiC) 12.415 0.398 0.758 13.475 12.836 0.890 −0.549 57.89 17.13 13 0.193 1.30σ
(no Abias) 12.360 0.059 0.852 13.431 13.099 −136.33 35.43 19 0.012 2.50σ

Note. For each set of best-fit parameters, the goodness of fit is given by the Akaike Information Criterion (AIC), the chi-squared (χ2), the degrees of freedom (DoF),
the p-value corresponding to the probability of measuring �χ2 by chance, and the corresponding z-score measure of tension. The fits without CiC, and without
assembly bias are included for comparison.
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Figure 7. DESI measurements and our maximum-likelihood predictions of number density (left panels), the projected correlation function (center panels), and the CiC
distribution (right panels). The 1σ confidence intervals from the measurements of a given quantity are represented by shaded regions of the color corresponding to the
sample, while the solid lines, following the same color scheme, represent our model’s maximum-likelihood predictions. The parameters corresponding to these best-fit
predictions are reported in Table 2.
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samples. In principle, it is simple to test the addition of one
more parameter to allow a skew-log-normal scatter. This would
give HOD models the ability to capture some of the flexibility
built into more sophisticated models.

Another modification that may be justified is to relax the
assumed isotropic NFW distribution of satellite galaxies. This is a
common assumption, yet it has long been known that the
distribution of subhalos is anisotropic, due to the preferential
accretion of mergers along filaments (Zentner et al. 2005).
Additionally, recent studies have found a significant difference in
the radial profile of the halo mass associated with subhalos from
NFW (Fielder et al. 2020; Mezini et al. 2023). Such modifications
would be more complex but will be particularly important as
small-scale clustering measurements improve since they are

sensitive to the spatial distribution of satellites. However, it is
possible that the satellite profile is degenerate with assembly bias
for CiC. Therefore, any modifications to the satellite profile
should be validated against high-resolution subhalo profiles.
Additionally, we have only tested for assembly bias tied to halo

concentration and have ignored other occupation correlations that
may be based upon halo spin, age, or environment (Sato-Polito
et al. 2019; Contreras et al. 2021; Yuan et al. 2021). Another
possibility is that the occupation of satellites is correlated with the
occupation of the central in the same halo due to galactic
conformity (Kauffmann et al. 2013; Berti et al. 2017). All of these
scenarios would likely produce similar statistical imprints.
However, a primary question to investigate is whether these
alternate assumptions lead to a biased inference of HOD
parameters such as characteristic halo masses and assembly bias.
If so, all of our results could be overly confident.35

While CiC plays a crucial role in the HOD constraints obtained
via our analysis, it is also our computational bottleneck. However,
we have significantly sped up this process with galtab,
particularly by removing the stochasticity of likelihood evalua-
tions, which greatly improves the MCMC convergence rate.
Using a stochastic estimator, convergence is especially proble-
matic for the lowest-number-density, brightest-threshold samples,
which exhibit order-of-magnitude increases in the acceptance rates
of their MCMC chains.
Depending on the computing resources available and the

dimensionality of the analysis, galtab may provide even
more drastic speedups. Due to the implementation in JAX, the
expensive steps are automatically executed on a GPU when
available. Additionally, our framework allows the predictions
to be differentiable with respect to HOD parameters (assuming
the occupation model is compatible with JAX arrays, for which
those available in halotools require slight modifications). In
principle, this allows for the use of alternative MCMC methods
with improved scalability to high-dimensional or strongly
covariant posterior estimation, such as Hamiltonian Monte
Carlo (Neal 2011).
Our development of the galtab package provides a useful

tool for further analyses of the galaxy-halo connection that may
require differentiable predictions. By combining these new
tools with upcoming enlarged samples from DESI, we
anticipate that coming studies will soon shift focus from mere
detections of assembly bias to studying its implications for
galaxy formation in much finer detail.
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Appendix A
SHAP Feature Importance Calculations

As briefly discussed in Section 2.3 and plotted in Figure 3,
we have roughly quantified the importance of each summary

statistic in inferring the parameters of the HOD model by
testing how influential each quantity is for predictions based on
machine learning. We performed this test using an artificial
data set based upon uniformly sampling 1000 sets of all seven
HOD parameters (see Section 2.2.2) by Latin Hypercube
Sampling over the projected one-dimensional 1σ confidence
interval of the fiducial fits for the Mr < − 20.5 threshold
sample of Wang et al. (2022).
For each of the 1000 sets of HOD parameters, we predicted

the values of all the summary statistics listed in Section 2.3
using the methods described in Section 3.6. For each
evaluation, we incorporated artificial observational uncertainty
from a draw of our Mr<− 20.5 covariance matrix. We then
trained a scikit-learn (Pedregosa et al. 2011) random forest
regression model to perform the inverse mapping (i.e., predict
HOD parameters from the values of the summary statistics).
We then calculate SHAP feature importance values for each

feature in the random forest. SHAP values are explained in
detail in Lundberg & Lee (2017). In brief, they attempt to map
feature values to their linear “impact” on model predictions.
For example, a large positive SHAP value is assigned to a
feature value that produced a large increase in the model
prediction, while a large negative SHAP value is assigned to a
feature value that produced a large decrease in the model
prediction. This allows us to analyze and distinguish the effects
of positive or negative changes in each feature on the model
predictions that result.
We show the complete beeswarm distribution of SHAP

values corresponding to the variation of each HOD parameter
in Figure 9. We calculate the importance values shown in
Figure 3 by taking the mean absolute values of these
distributions. Features with large importance values correspond
to quantities most useful for predicting a given HOD
parameter. We roughly estimate importance uncertainties from

Figure 9. The impact of each of our summary statistics on HOD inference, based on SHAP feature importances. The upper panel of each sub-figure shows beeswarms
of the SHAP values for each feature’s impact on predicting the given HOD parameter. Each panel shows the six most important quantities in order of importance, and
the panels are organized in the same way as those in Figure 3. See Figure 3 for a more condensed version of this information that focuses on the mean absolute SHAP
value as an importance metric.
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the standard error of the mean of each set of 1000 absolute
SHAP values. However, note that this estimate does not
account for sample variance in the simulation volume nor for
systematics that might arise from the SHAP formulation.

This experiment demonstrates how informative CiC is to our
results. In particular, the vast majority of information content
comes from the first three moments alone. The only exception
to this statement appears to be the 10th CiC moment in
predicting Asat, but further testing has shown that this is not a
real artifact. In fact, we find an artificial boost in Asat

importance on the highest CiC moment, no matter how high
we go. CiC appears to be especially crucial for informing the
satellite HOD parameters, likely due to the small scale of our
cylinders, and the first few moments have significant
importance across every single parameter.

Appendix B
Computational Performance

In Section 3.4 and Figure 10, we have described our
hyperparameter tuning of Wmax and Qmin to balance run time
and accuracy. These parameters control the number of
placeholders, N, as well as the average number of placeholders
per cylinder, C. To store all pretabulated indices, the memory
usage of galtab scales with  NC( ).

There are also additional run-time considerations specific to
each prediction mode. For the Monte Carlo mode, the run time
scales with the number of effective Monte Carlo realizations,
nMC, so the time complexity is  n NCMC( ). For the analytic
mode, the run time scales with the highest calculated moment,
kmax, so the time complexity is  k NCmax( ).

By far, the most computationally expensive step of our
procedure is the summation of occupations (or cumulants, for the
analytic mode; see Equation (27)) of placeholders per cylinder. To
fully optimize this calculation, we employ just-in-time (JIT)
compilation via the JAX library (Bradbury et al. 2018). This also
automatically ports the computation to the GPU, if available,
which can speed up the predictions by at least an order of
magnitude faster than the times reported in Figure 10.

The primary advantage of galtab over the Monte Carlo
prediction methods available in halotools is that its
predictions are deterministic. After performing the tabulation,
the same inputs will always yield the same outputs (and there is
not much scatter between different tabulation realizations, as
seen in Figure 10). Deterministic likelihood function calls yield
much more efficient MCMC convergence, thanks to higher
acceptance rates, and lower autocorrelation lengths. We have
tested the difference in posterior inference between galtab
and halotools in Figure 11. Each of these trials performed
the same number of MCMC iterations (60,000 trial points), and
took essentially the same amount of time, but galtab
produces much smoother contour lines, which are indicative
of a more well-converged posterior.

This sub-percent level of bias in CiC leads to a negligible bias
in our HOD inference. To test this explicitly, we calculated finite-
difference derivatives to perform a Fisher analysis (Bond et al.
1998; Dodelson 2003), propagating the covariance matrix of our
tabulation-induced systematics of the CiC measured in our

Mr < − 20.5 sample to that of the HOD parameters. We have
found the bias on each parameter to be { Mlog min: 9.4× 10−5,

Mlogs : 7.6× 10−4, Acen: 5.2× 10−3, logM0: 3.5× 10−4, logM1:
1.1× 10−4, α: 3.9× 10−4, Asat: 1.0× 10−2}.

Figure 10. Hyperparameter tuning of galtab to achieve sufficient accuracy
of CiC moments. The left panels show the tuning of the Wmax parameter, which
is translated to a CPU run time in the panels on the right side of the figure, with
lower values of Wmax requiring longer times, but achieving higher accuracy.
Line colors correspond to the denoted value of Qmin, the dark gray bands
correspond to a standard deviation due to tabulation stochasticity, horizontal
dashed lines correspond to truth values from halotools, and the light gray
band corresponds to a halotools standard deviation. The vertical dashed
line in the left panels corresponds to our chosen value of W 0.05max = , which
intentionally yields a similar run time to halotools: approximately 1 CPU-
second, as specified by the vertical dashed line in the right panels.
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