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Abstract

Survival analysis is a crucial semi-supervised task in machine learning with signifi-1

cant real-world applications, especially in healthcare. The most common approach2

to survival analysis, Cox’s partial likelihood, can be interpreted as a ranking model3

optimized on a lower bound of the concordance index. We follow these connec-4

tions further, with listwise ranking losses that allow for a relaxation of the pairwise5

independence assumption. Given the inherent transitivity of ranking, we explore6

differentiable sorting networks as a means to introduce a stronger transitive in-7

ductive bias during optimization. Despite their potential, current differentiable8

sorting methods cannot account for censoring, a crucial aspect of many real-world9

datasets. We propose a novel method, Diffsurv, to overcome this limitation by10

extending differentiable sorting methods to handle censored tasks. Diffsurv pre-11

dicts matrices of possible permutations that accommodate the label uncertainty12

introduced by censored samples. Our experiments reveal that Diffsurv outperforms13

established baselines in various simulated and real-world risk prediction scenarios.14

Furthermore, we demonstrate the algorithmic advantages of Diffsurv by presenting15

a novel method for top-k risk prediction that surpasses current methods. In conclu-16

sion, Diffsurv not only provides a novel framework for survival analysis through17

differentiable sorting, but also significantly impacts real-world applications by im-18

proving risk stratification and offering a methodological foundation for developing19

predictive models in healthcare and beyond.20

1 Introduction21

Survival analysis plays a pivotal role in many realworld machine learning applications, spanning22

fields such as reliability engineering, marketing, and insurance, with a particularly significant impact23

in healthcare. The goal of survival analysis is to predict the time until the occurrence of an event of24

interest, such as death, based on a set of covariates. In clinical studies, these include demographic25

variables such as sex and age, but may also encompass more complex data modalities such as medical26

images.27

The concept of censoring is a distinguishing characteristic that sets survival analysis apart from28

conventional machine learning approaches. Particularly prevalent in observational datasets, it refers29

to situations where event times remain unobserved because a patient might not have undergone the30

event by the time of data collection. This can be due to a variety of reasons such as the study period31

ending before all events of interest have occurred or subjects leaving the study.32

Overlooking censoring can skew predictions towards the censoring event, rather than the event of33

interest. This bias becomes particularly noticeable when the study’s endpoint can be inferred from the34

observed covariates - age being a notable example. In such cases, the predicted event times are likely35
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to biased towards the censoring event time, thereby neglecting the actual event of interest [Kvamme36

and Borgan, 2019].37

The Cox Proportional Hazards model is widely used for handling censored data in survival analysis38

[Cox, 1972]. The model optimizes a partial likelihood function over ranked data, considering only39

the order of events, not their exact time of occurrence. As such, Cox’s partial likelihood serves as a40

ranking loss, learning from the order of patients based on their hazard of experiencing an event, not41

their exact survival time.42

Raykar et al. [2007] showed that Cox’s partial likelihood (CPL) and ranking losses can be directly43

equated, with both providing lower bounds to the concordance index, the primary evaluation metric44

used in survival analysis. Both losses are foundational to many survival deep learning methodologies45

like DeepSurv Katzman et al. [2018] and DeepHit Lee et al. [2018].46

However, this relation operates under the assumption of pairwise independence. This simplification,47

while practical, can de-emphasize the transitive properties inherent in survival data. As shown by48

Goldstein and Langholz [1992], larger risk set sizes can lead to more efficient estimators, suggesting49

potential benefits in considering listwise ranking losses Cao et al. [2007]. These losses optimize over50

lists of values rather than individual pairs, thereby better capturing the transitive dynamics of the data.51

Despite the similarities, listwise losses have remained largely unexplored within the field of survival52

analysis. This could be partly due to an uncertainty around how to handle censoring.53

We propose a new approach that takes advantage of recent developments in continuous relaxations of54

sorting operations, allowing end-to-end training of neural networks with ordering supervision [Grover55

et al., 2019, Blondel et al., 2020, Petersen et al., 2021]. This method incorporates a sorting algorithm56

into the network architecture, where the order of the samples is known, but their exact values are57

unsupervised. With this, we introduce Diffsurv, an extension of differentiable sorting methods that58

enables end-to-end training of survival ranking models with censored data.59

Briefly, our contributions are summarised:60

• Our primary contribution is the extension of differentiable sorting methods to account for61

censoring by introducing the concept of possible permutation matrices. (Section 3.1)62

• We empirically demonstrate that our new differentiable sorting method matches or improves63

risk ranking performance across multiple semi-simulated and real-worlds censored datasets.64

(Section 4)65

• We investigate the role of transitivity in survival analysis and show, through experiments66

with semi-simulated data, that differentiable sorting networks can benefit from this inherent67

property of the data. (Section 4)68

• We demonstrate that differentiable sorting of censored data enables the development of new69

methods with practical applications, using the example of end-to-end learning for top-k risk70

stratification. (Section 3.2)71

2 Survival Analysis and its Relation to Ranking72

A dataset with censored event times is summarized as D = {ti,xi, δi}Ni=1, where N is the total73

number of patients. For a patient i, the time-to-event ti is the minimum of the true survival time74

t∗i and the censoring time c∗i , with δi indicating whether an event (t∗i ≤ c∗i , δi = 1) or censoring75

(t∗i > c∗i , δi = 0) was observed. Covariates are xi ∈ Rd representing a d-dimensional vector but the76

methods discussed here also generalise to higher dimensional tensors such as image data.77

The widely-used method for addressing censoring in survival analysis is the Cox Partial Likelihood78

(CPL) model, introduced by Cox [1972]. The CPL is designed to maximize the following general79

form:80

L(θ) :=
∏

i:δi=1

fθ(xi)∑
j:tj>ti

fθ(xj)
, (1)
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Figure 1: Differentiable Sorting for Censored Time-to-Event Data. Inputs, in this case SVHN images,
are transformed into scalar values through a neural network. A differentiable permutation matrix,
P , is computed using sorting networks. The model can be optimized for downstream tasks, such as
risk stratification and top-k highest risk prediction, by using the matrix Qp of possible permutations
based on the observed events and censoring.

where fθ is the hazard function, a score prediction function estimating the probability of an event at a81

particular time, given input features xi. The product only includes uncensored patients, whereas the82

denominator term also includes censored patients with tj > ti.83

Reflecting the structure of survival data, the Cox Partial Likelihood (CPL) model compares individuals84

still "at risk" at each time point, similar to a nested case-control study. This directly shapes the85

likelihood equation in CPL, with the numerator representing the hazard function for the event-86

experiencing individual, and the denominator summing over all individuals still at risk.87

Extensions of the Cox model, like [Katzman et al., 2018] and [Kvamme et al., 2019], have modified88

fθ = exp(θ · xi) to relax the linear covariate interaction and proportional hazards assumptions.89

Introducing neural networks hθ to handle the non-linearity, adjusting fθ to be fθ = exp(hθ(xi)), and90

to manage non-proportional hazards, they set fθ = exp(hθ(xi, ti)).91

2.1 Pairwise Independence92

Both of these previous works note that the risk set R = {j : tj > ti} is intractable for deep learning93

applications as it considers all comparable patients. To mitigate memory constraints, we can sample94

a fixed-size risk set, denoted as R̃, such that |R̃| = n < N . Kvamme et al. [2019] go further, arguing95

it is reasonable to take a constant sample size of 1 and include the individual i in the risk set (such96

that n = 2). This leads to the simplified loss of the form97

L(θ) =
∏

i:δi=1

fθ(xi)

fθ(xi) + fθ(xJ(i))
, where J(i) ∈ R \ {i}. (2)

Further, take the mean log partial likelihood to be98

loss =
1

ne

∑
i:δi=1

log(1 + exp[hθ(xJ(i))− hθ(xi)]), where J(i) ∈ R \ {i}, (3)

where ne is the number of non-censored events. In this simplified form, it can be seen that the partial99

likelihood only considers the pairwise relative ordering or ranking of survival times.100

The concordance index or c-index Harrell et al. [1982] is a commonly used as an evaluation for survival101

analysis methods and is a generalization of the Area Under the Receiver Operating Characteristic102

Curve (AUROC) that handles right-censored data. It is defined as103

c-index :=
1

n

∑
i:δi=1

1(f(xi) < f(xj)), j ∈ R \ {i}. (4)

Raykar et al. [2007] first showed that the Cox’s partial likelihood is approximately equivalent to104

maximizing the concordance index or c-index and that closer bounds can be found by minimizing the105
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general ranking loss, with acceptable pairs A = {(i, j) : δi = 1 ∧ tj > ti} and106

ranking-loss :=
1

|A|
∑

(i,j)∈A

ϕ(fθ(xi)− fθ(xj)), (5)

where ϕ is a function that relaxes the non-differentiable 1 of the c-index. From Equation 3, it can be107

seen that ϕ : x → − log(1+exp(−x)) = log(σ(x)). Here, we have shown that the simplifications to108

the partial likelihood made by Kvamme et al. [2019] are equivalent to using the log-sigmoid ranking109

loss.110

The key difference between ranking and partial likelihood losses comes when considering the111

assumption that it is reasonable to take a constant sample size of 2 (one pair in the risk set) in the112

partial likelihood. This effectively introduces the assumption that each pair (i, j) is independent of113

any other pair. However, this assumption seems puzzling given the inherent transitivity of ranking (if114

i > j and j > k then i > k).115

2.2 Listwise Ranking and Differentiable Sorting Networks116

[Cao et al., 2007] first proposed the notion of a listwise ranking loss, arguing its benefits in situations117

where the entire order of items is of importance. This approach treats the ranking problem as a118

permutation problem, with the aim of learning a model that can provide the optimal permutation of119

an entire list of items, rather than considering independent pairs. Indeed, this idea is closely related120

to the partial likelihood from Cox’s original work. As pointed out by Wang and Yang [2022], the121

Top-1 probability method originally proposed by Cao et al. [2007] and extended to ListMLE by Xia122

et al. [2008] takes the same form as CPL.123

More recent works closely related to listwise ranking have begun to explore combining traditional124

sorting algorithms with differentiable sorting functions [Petersen et al., 2021]. Sorting networks are125

a family of sorting algorithms that consist of two basic components: wires and conditional swaps126

[Batcher, 1968, Knuth, 1998]. Wires carry values to be compared at conditional swaps. If one value127

is bigger than the other then the values carried forward are swapped around. This allows construction128

of sorting networks that can provably sort a list of values. Conditional swaps are exactly the min129

and max operators that ensure that with inputs {a, b} and outputs a∗ ≤ b∗, a∗ = min(a, b) and130

b∗ = max(a, b). Examples of odd even and bitonic networks are shown in Appendix C.131

In order to train models based on ordering information alone, differences between predicted and true132

orderings must be backpropagated through sorting algorithms. However, they often require the use of133

non-differentiable max and min operators. These are analogous to the non-differentiable indicator134

function that was discussed earlier in the c-index equation 4. Differentiable sorting methods, similar135

to ranking losses, rely on approximating these operators with smooth alternatives [Grover et al.,136

2019].137

Petersen et al. [2021] propose combining traditional sorting networks and differentiable sorting138

functions. Consider that when a asymptotically approaches b, the transition point where it surpasses139

b is non-continuous and therefore non-differentiable. Just as previously shown in the ranking loss,140

such operations can be made differentiable using the logistic relaxation141

minσ(a, b) = a · σ(b− a) + b · σ(a− b) and maxσ(a, b) = a · σ(a− b) + b · σ(b− a). (6)

If an inverse temperature parameter β > 0 is introduced such that σ : x → 1
1+e−βx , then as β → ∞142

the functions tend to the exact min and max functions. Other relaxations of the step function can143

also be considered, Petersen et al. [2022a] show that the Cauchy distribution preserves monotonicity144

which is desirable for optimization. Given this, we use the Cauchy distribution as our relaxation for145

all experiments, where σ : x → 1
π arctan(βx) + 1

2 .146

For an input list to be ordered, each layer of the sorting network can be considered an independent147

permutation matrix Pl with elements given by148

Pl,ii = Pl,jj = σ(aj − ai) and Pl,ij = Pl,ji = 1− σ(aj − ai), (7)

where a signifies intermediate values being compared. The first layer is input with zi = hθ(xi),149

each vector of covariates or images being processed independently by the same neural network. The150
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indices being compared at each layer are determined by the sorting network and the final predicted151

probability matrix is the product of each layer of sorting operations,152

P =

(
n∏

l=1

P ⊺
l

)⊺

. (8)

Where P , is the final doubly-stochastic permutation matrix, doubly-stochastic meaning that the rows153

and columns both sum to 1. It is possible to interpret each element Pij of the predicted permutation154

matrix as the predicted probability of permuting from a randomly assigned rank i to a true rank155

j. Finally, we can define a loss by minimizing the cross-entropy between the ground truth orders156

represented by true permutation matrix Q and predicted permutation matrix P as157

L :=

n∑
c=1

(
1

n
CrossEntropy(Pc,Qc)

)
, (9)

where Pc and Qc denote the c-th columns of their respective matrices.158

2.3 Differentiable Sorting Networks Relation to Ranking and Partial Likelihood159

It is possible to directly relate differentiable sorting networks with ranking losses and partial likelihood.160

Expanding out the cross entropy loss, we find161

L =

n∑
c=1

(
1

n

n∑
i=1

qic log(pic)

)
, (10)

where qic = 1 only when i is the true rank otherwise 0. Each pic is always a function of the difference162

in pairs of inputs xi and xj . This is complicated by the products of intermediate values a introduced163

by the sorting network but denoted as164

pic =

n∏
(ai,aj)∈Pl:l=1

σ(ai − aj) (11)

where Pl to denotes the set of comparisons to be made at each layer of the sorting network. With165

n = 2 and β = 1, a sorting network only requires a single relaxed conditional swap and the loss166

returns to the same recognisable log-sigmoid ranking loss in Equation 5, and Cox negative log partial167

likelihood in Equation 3.168

3 Methods169

3.1 Diffsurv: Handling Censoring with Possible Permutation Matrices170

For risk sets of size 2, given proper case-control sampling, it will always be possible to define a single171

ground truth permutation matrix Q. However, when venturing to higher risk set sizes, differentiable172

sorting methods can no longer handle censoring since there is not a single ground truth permutation173

matrix Q. We cannot determine the exact rank of patients who are censored before another who174

experienced an event. It is only possible to know the range of possible ranks to which a patient should175

belong. In Figure 2, we provide an illustration demonstrating the possible ranks for a number of176

censored and uncensored events.177

Though we no longer have access to a single permutation matrix, we may instead consider the178

set of all possible permutation matrices, Q = {Q1,Q1, . . . ,Qκ}. In the best case, all values are179

uncensored and |Q| = 1 and in the worse case, when all patients are censored |Q| = n!. Our primary180

contribution is to extend differentiable sorting methods to censored ranks by discriminating between181

possible and impossible permutations.182

We introduce a more computationally tractable representation of Q by defining the possible permuta-183

tion matrix, Qp, which is the element-wise maximum of every permutation in Q,184

Qpij = max{Q1ij ,Q2ij , . . . ,Qκij}. (12)
For survival analysis, it is possible to determine Qp in linear time given a sorted list of event times ti185

and event indicators δi. We will consider higher ranks to correspond with a smaller time-to-event.186

Let us consider two scenarios:187
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possible permuted ranks
Qp =

c1 e2 c3 c4 e5 c6 c7



1 1 1 1 1 1 1 c1
1 1 0 0 0 0 0 e2
0 1 1 1 1 1 1 c3
0 1 1 1 1 1 1 c4
0 1 1 1 1 0 0 e5
0 0 1 1 1 1 1 c6
0 0 1 1 1 1 1 c7

Figure 2: For an example case (a) with two events ( , e1 and e5) and multiple censored samples ( ,
c1, c3, c4, c6, c7) the uncertainty in the possible permuted rankings (b) due to censoring is taken into
account to derive the possible permutation matrix Qp (c).

1. For a right-censored individual i (i.e., δi = 0), the possible ranks must be lower than the188

ranks of preceding uncensored events. We can express the set of possible ranks Ri as:189

Ri = {r | r < rank(j),∀j : δj = 1, tj < ti} (13)

This set includes all ranks r that are less than the rank of any uncensored patient j with an190

event time tj preceding the censoring time ti of the individual i.191

2. For an uncensored individual i (i.e., δi = 1), the possible rank must be lower than all192

preceding uncensored events and higher than the ranks of all subsequent events. We can193

define the set of possible ranks as:194

Ri = {r | r < rank(j),∀j : δj = 1, tj < ti} ∩ {r | r > rank(j),∀j : tj > ti} (14)

This set includes all ranks r that satisfy both conditions: being less than the rank of any195

preceding uncensored patient j with tj < ti and greater than the rank of any subsequent196

patient j with tj > ti.197

With these observations, it’s straightforward to construct Qp. If it’s feasible for patient i to permute to198

rank j, i. e. j ∈ Ri, then Qpij = 1, otherwise Qpij = 0. See Figure 2 (c) for a visual representation199

of Qp.200

Given the possible permutation matrix Qp and the predicted permutation matrix P , the vector of201

probabilities p of a value being ranked within the set of possible ranks can be computed. Although202

the ground truth probabilities are unknown, the range of possible ranks is known, and the model can203

be optimized to maximize the sum of the predicted probabilities of all possible ranks for each sample.204

Noted here as the column-sum of the element-wise product ◦, between Qp and P .205

p =

n∑
j=1

(Qp ◦P)i,j . (15)

The binary cross-entropy loss can then be easily applied206

L =

n∑
i=1

−yi log(pi)− (1− yi) log(1− pi) (16)

where yi indicates whether set of predicted ranks is possible or impossible.207

Equation 15 accounts for the potential challenges of incorporating right-censored samples. The binary208

cross-entropy remains identical whether the model predicts uniform probability for all possible ranks209

or concentrates the probability mass on a single rank possible rank.210

The introduction of the possible permutation matrix can be used in conjunction with any differentiable211

sorting method that outputs a doubly-stochastic permutation matrix. This includes methods such212
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as SinkhornSort from Cuturi et al. [2019]. Though, in this paper, we will restrict our focus to the213

discussed differentiable sorting networks. We refer to the use of differentiable sorting networks and214

the possible permutation matrix as Diffsurv.215

3.2 Top-K risk prediction216

Finally, we demonstrate how the algorithmic supervision of sorting algorithms enables the develop-217

ment of novel methods in survival analysis, using the example of top-k risk prediction. In practical218

settings, it is often not necessary to rank all samples correctly. Rather, it is essential to identify the219

samples with the highest risk, such as by a healthcare provider, to prioritize care and interventions.220

With Diffsurv, top-k risk prediction is straightforward to implement by modifying the loss such that221

the negative log-likelihood of predicted top-k ranks in P is maximised for individuals with a possible222

permutation to any top-k rank according to Qp.223

First, let’s denote Tk as the set of values with a possible permutation to a top-k rank, derived from the224

ground truth possible permutation matrix Qp:225

Tk = {i|
k∑

j=1

Qpij > 0} (17)

Importantly, due to the uncertainty introduced by censoring, the set of individuals with a possible226

permutation to a top k rank Tk can be arbitrarily large. For example, in case all individuals are227

censored, Tk is the set of all individuals. Then, the top-k loss is described as:228

Ltop-k = −
∑
i∈Tk

log

 k∑
j=1

Pij

 . (18)

This loss is minimized when the model correctly predicts a top-k rank for the indices in Tk. This229

represents the individuals with possible permutations to the top-k highest risk ranks. Importantly,230

this loss function is optimized for the identification of potential top-k high-risk individuals, without231

considering the specific order within these top-k ranks. To establish a baseline for comparison with232

Diffsurv’s top-k risk prediction, we also introduce two variants of the Cox Partial Likelihood method.233

In the first variant, we adjust the likelihood term so that the product considers only the set of patients234

who have a potential permutation to a top-k rank, according to the matrix of possible permutations235

Qp:236

LCPL_I =
∏

i:i∈Tk

fθ(xi)∑
j:tj>ti

fθ(xj)
(19)

In the second variant, we further limit the set of patients to those who have both experienced an event237

and have a possible permutation to a top-k rank:238

LCPL_II =
∏

i:δi=1∧i∈Tk

fθ(xi)∑
j:Tj>Ti

fθ(xj)
. (20)

Note that the denominator term is unchanged in both variants and considers only comparable pairs239

and includes censored patients Tj > Ti. Evaluation of top-k risk prediction is also complicated by240

the uncertainty due to censoring. For Diffsurv and both variants of the Cox Partial Likelihood, we241

can first define the set of individuals predicted to be within the top-k highest risk:242

Pk = {i|rank(fθ(xi)) ≥ k} (21)

We can then define the fraction of how many of these individuals are in the set of possible top-k243

highest ranks Tk to evaluate the top-k risk prediction performance:244

top-k-score =
|Pk ∩ Tk|

|Pk|
(22)

4 Experiments245

In our experiments, we aim to assess the performance of Diffsurv and compare it against the con-246

ventional Cox Partial Likelihood (CPL) methods. Initially, we focus on confirming the importance247
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Figure 3: Visual abstract of the survSVHN dataset.

of taking a listwise approach and evaluating the ability of differentiable sorting networks to better248

capture the inherent transitivity in semi-simulated data. Subsequently, we extend our analysis to249

compare Diffsurv and its top-k extension across multiple publicly available real-world datasets.250

Baselines: We compare Diffsurv primarily against Cox’s Partial Likelihood, using the Ranked List251

implementation from pycox [Kvamme et al., 2019]. We include Efron and Breslow estimates of CPL252

from Yang et al. [2022] for survSVHN. For smaller datasets, we add non-deep learning baselines:253

Lifelines’ Cox Regression [Davidson-Pilon, 2019] and sksurv’s Random Survival Forests [Pölsterl,254

2020]. We do not compare with DeepHit [Lee et al., 2018] since we do not model non-proportional255

hazards. For an extended discussion, see Appendix A.256

Network Architectures: For both CPL and Diffsurv, we use a fixed neural network architecture257

depending on the dataset. Small datasets utilize a single-layer neural network, survSVHN uses a258

ConvNet architecture as in Petersen et al. [2021], and MIMIC IV CXR uses EfficientNet-B0 [Tan259

and Le, 2020].260

Training and Evaluation: We employ AdamW for optimization. Validation approach varies:261

for smaller datasets, we apply nested 5-fold cross-validation, while for imaging datasets we use262

train:val:test splits. We performed hyperparameter tuning for learning rate, weight decay, batch263

size, and risk set size. In the case of imaging datasets, we maintained fixed values for learning rate264

and weight decay. As in Petersen et al. [2021], we determine steepness as a function of the risk265

set size n, β = 2n for odd-even and β = (log2 n)(1 + log2 n) for bitonic. The type of sorting266

network can either be bitonic or odd-even and is determined during hyperparameter tuning. Further267

details on the experimental setup, including compute time, are provided in Appendix B and at268

https://github.com/andre-vauvelle/diffsurv.269

Semi-synthetic survSVHN: Based on the Street View House Numbers (SVHN) dataset [Netzer et al.,270

2011], we simulate survival times akin to survMNIST Pölsterl [2019]. The increased complexity271

of SVHN over MNIST offers a testbed which is better able to discern the performance differences272

between methods. Each house number parameterizes a beta-exponential time function for survival273

times. Risk parameters or hazards λi are calculated as the logarithm of house numbers, standardized274

and scaled for a mean survival time of 30. We introduce censoring by randomly selecting 30% of275

house numbers and replacing true times with values sampled uniformly between (0, ti] (See Figure 3).276

We can examine the implications of inherent transitivity within the data. Instead of parameterizing277

a time function based on unique hazards derived from house numbers, we group λi into distinct278

hazard quantiles. Each quantile encompasses a set of house numbers associated with a similar hazard279

level. We then calculate the transitivity ratio, defined as # of transitive triplets
# of triplets , where a sampled triplet is280

considered transitive if (λi > λj > λk).281

This methodology provides us with a means to control the degree of transitivity in our data. At one282

extreme, we might categorize data into only two groups, representing the lower and upper halves of283

house numbers, which results in a transitivity ratio of 0. At the other extreme, each house number284

could constitute its own unique category (indicated by ∞), leading to high transitivity.285

Our results, summarized in Table 1, align with the expectations laid out in Section 2.3: both Diffsurv286

and CPL methods perform similarly when the risk set size is at its minimum (n = 2). However,287

with the expansion of the risk set size, the performance of the two methods diverges, with Diffsurv288

consistently outperforming CPL. Table 2 sheds light on a potential reason for this divergence. As289
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Table 1: Results for training on survSVHN with increasing risk set size. Mean (standard deviation)
c-index over 5 trails with different seeds. † When n = 2 both methods are equivalent to the ranking
loss to up continuous relaxation of swap operation.

Risk set size 2† 4 8 16 32

Diffsurv .918 (.003) .934 (.002) .940 (.001) .943 (.002) .941 (.002)
Cox Partial Likelihood .913 (.002) .925 (.002) .931 (.002) .933 (.002) .930 (.003)

Table 2: Results for training on survSVHN while increasing transitivity. Metric is c-index. Mean
performance over 3 trails with different seeds. Bold indicates significant improvement (t-test,
p ≤ 0.01). Restricted to a fixed batch size and risk set size of 32.

Number of Quantiles 2 4 8 16 32 64 128 ∞
Transitivity Ratio .0 .374 .657 .819 .908 .954 .975 .991

Diffsurv: Bitonic .643 .803 .882 .922 .933 .939 .939 .939
Diffsurv: Odd Even .646 .802 .883 .923 .935 .939 .940 .941
CPL: Ranked List .651 .803 .880 .909 .916 .920 .921 .920
CPL: Efron .647 .801 .871 .898 .904 .905 .909 .908
CPL: Breslow .648 .801 .871 .898 .904 .909 .907 .910

the number of quantiles is increased, thereby enhancing the degree of transitivity within the data,290

Diffsurv-based methods start to surpass CPL methods. This finding underscores the role of transitivity291

in survival data and validates Diffsurv’s effectiveness in encapsulating this inherent property. Despite292

the strong performance of Diffsurv, the C-index for the ground truth risks is 0.980, which is still far293

above 0.943 for Diffsurv, highlighting the challenging nature of the survSVHN dataset.294

Real-world datasets: We assess our methods on several public datasets: Four small, popular real-295

world survival datasets (FLCHAIN, NWTCO, SUPPORT, METABRIC) [Kvamme et al., 2019] and296

the MIMIC IV Chest X-Ray dataset (CXR) with death as the event [Johnson et al., 2019]. Further297

details in Appendix B.1.298

The results presented in Table 3 demonstrate that Diffsurv achieves equal to or better performance299

on all datasets analyzed. Additionally, when Diffsurv is optimized for predicting the top 10% of300

highest-risk individuals, it matches or outperforms Cox’s partial likelihood on the real-world datasets.301

5 Conclusion302

Diffsurv introduces a new perspective in survival analysis with censored data, highlighting the303

relations between survival analysis and the listwise ranking. Our experiments show the effectiveness304

of differentiable sorting methods for improving survival analysis predictions. Notably, Diffsurv305

matches or surpasses the performance of the established CPL methods across all examined datasets.306

Crucially, Diffsurv sheds light on the importance of transitivity in ranking and survival data, revealing307

that methods sensitive to this inherent property, such as Diffsurv, show improved performance over308

those that are not. This insight underscores the value of a listwise approach in dealing with survival309

data and encourages further exploration for methods that promote a transitive inductive bias.310

Moreover, Diffsurv provides a foundation for the development of innovative methods, including the311

top-k risk stratification method introduced in this work. Beyond survival analysis, the introduction of312

the possible permutations carries potential for other tasks that involve ranking based on limited order313

information. The utilization of specialized sorting networks, such as splitter selection networks as in314

Petersen et al. [2022b], could further leverage partial order information.315

Though promising, this work is not without limitations. Future research could focus on extending316

its applicability to non-proportional hazards and understanding the impact of ties. Moreover, in-317

vestigating how well it can recover survival functions using approaches like Breslow’s estimator318

and evaluating with Brier scores would provide valuable insights into its potential and limitations.319
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Table 3: Results for real-world and semi-synthetic datasets. Mean (standard deviation). Survival
metric is c-index, Top 10% metric is top-k-score. Bold indicates significant improvement (t-test,
p ≤ 0.01).

FLCHAIN NWTCO SUPPORT METABRIC MIMIC IV CXR survSVHN

Size 6,524 4,028 8,873 1,904 377,110 248,823
Censored Proportion 69.9% 85.8% 32.0% 42.1% 60.9% 30.0%

Survival
Cox Regression .750 (.083) .692 (.021) .598 (.010) .628 (.013) - -
Random Survival Forest .789 (.011) .691 (.024) .614 (.009) .641 (.012) - -
Cox Partial Likelihood .794 (.013) .709 (.015) .642 (.006) .698 (.011) .760 (.002) .933 (.002)
Diffsurv .793 (.009) .703 (.026) .645 (.002) .684 (.011) .763 (.001) .943 (.002)

Top 10% prediction
Cox Partial Likelihood .460 (.013) .390 (.068) .280 (.023) .249 (.065) .390 (.010) -
CPL-TopK (Variant I) .469 (.007) .413 (.061) .479 (.016) .527 (.083) .408 (.008) -
CPL-TopK (Variant II) .460 (.009) .413 (.054) .479 (.035) .487 (.058) .406 (.006) -
Diffsurv .452 (.011) .395 (.082) .296 (.015) .331 (.102) .412 (.002) -
Diffsurv-TopK .482 (.019) .421 (.065) .508 (.027) .533 (.092) .412 (.009) -

Furthermore, it is important to note that Diffsurv is a survival ranking method and thus can not be320

used to directly estimate the expected duration until an event occurs.321

Overall, Diffsurv constitutes a meaningful advancement in survival analysis, showcasing its significant322

potential for enhancing risk prediction in real-world use cases. It not only demonstrates promising323

performance improvements, but also introduces new directions for future research, thereby making a324

valuable contribution to the field.325
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A Non-proportional Hazards426

Our current implementation of Diffsurv operates under the proportional hazards assumption. While427

this may not fully capture the intricacies of some survival analysis problems—particularly those428

involving non-proportional hazards—it does not necessarily limit the model’s effectiveness in sce-429

narios where the goal is to assess cumulative risk from a fixed index date or from the date of an430

imaging study. This aligns with the necessity of time-dependent modifications to the C-index for431

non-proportional models as indicated by Antolini et al. [2005].432

If we are primarily interested in understanding the cumulative hazard of an event occurring rather433

than tracking changes in the hazard over time, the assumption of proportional hazards becomes less434

pivotal. As such, Diffsurv and CPL remain valuable tools for these cases.435

Despite the current limitation of Diffsurv to proportional hazards, it is conceivable that an extension436

to accommodate non-proportional hazards could be developed, similar to adaptations made for the437

CPL method.438

For instance, as we briefly mentioned earlier, continuous-time extensions of partial likelihood can be439

used to enable non-proportional hazards Kvamme et al. [2019]. Implemented by directly modeling440

temporal covariates as fθ = exp(hθ(xi, Ti)).441

Another class of methods focuses on discretizing the time-to-event variable and modeling the442

probability mass function (PMF) of event times. For instance, the DeepHit model Lee et al. [2018]443

employs a neural network architecture to learn the relationships between input features and discretized444

time-to-event outcomes. Time discretization facilitates modeling of non-proportional hazards but445

introduces two significant challenges: 1) sensitivity to the choice of time intervals, which can affect446

the model’s accuracy and interpretability, and 2) increased computational complexity, as predictions447

must be made for each time interval. These models can be computationally expensive, especially448

for deep learning-based models like DeepHit, making them less suitable for high-dimensional and449

large-scale datasets, such as the imaging dataset used in this study.450

Several future work proposals arise from these observations. First, differentiable sorting could explore451

the approach of directly modeling temporal covariates, resulting in a time-parameterized predicted452

permutation matrix. Second, extending Diffsurv to discrete time could be achieved by parameterizing453

a predicted permutation matrix for each time discretization.454

B Training and evaluation455

B.1 Datasets and Preprocessing456

As in Goldstein and Langholz [1992] and Kvamme et al. [2019], we ensure that each risk set contains457

a valid risk set by sampling controls for a given case. Each batch consists of a number of risk sets458

such that the input data has shape (batch size, risk set size, covariate shape).459

We provide an additional description of each small realworld dataset:460

• FLCHAIN dataset: A dataset containing information on patients with monoclonal gam-461

mopathy of undetermined significance (MGUS), focusing on serum free light chain (FLC)462

levels to study their prognostic significance in predicting disease progression. Number of463

covariates: 8.464

• NWTCO dataset: A dataset from a series of clinical trials on the treatment and outcomes465

of children with Wilms’ tumor, a type of kidney cancer, aiming to improve understanding of466

tumor biology and optimize treatment strategies. Number of covariates: 9.467

• SUPPORT dataset: A dataset from a multi-center study investigating the prognosis and468

treatment preferences of seriously ill hospitalized adults, with the goal of improving end-of-469

life care and informing decision-making processes. Number of covariates: 22.470

• METABRIC dataset: A dataset comprising genomic and clinical data on breast cancer471

patients, focused on uncovering novel molecular subtypes for more precise prognostication472

and personalized treatment strategies. Number of covariates: 9.473
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Covariate preprocessing follows [Kvamme et al., 2019], and includes standardising continuous474

variables and one-hot encoding categorical variables.475

MIMIC IV CXR: For the survival task, we extract death events from the MIMIC IV dataset. This is476

done by merging the data on "subject_id", "study_id", and "dicom_id" with the patient table from477

MIMIC IV, and on "subject_id" with the admission table. For patients without a recorded date of478

death, censoring dates are be determined as 1 year after the last recorded discharge date for each479

patient. We exclude 29,345 images without any matches in the MIMIC IV patient table, 19,337480

images taken after the latest found discharge date and 55 images taken after a recorded date of death.481

Time to event is calculated as the number of days from the image study date to either date of death or482

the censoring date. For MIMIC IV CXR, images undergo several standard transformations: a random483

horizontal flip and a 15-degree rotation, resizing to 230 x 230 pixels, a 224 x 224 pixel center crop,484

and conversion to grayscale with three output channels. The data is then transformed into tensors and485

normalized using ImageNet’s mean and standard deviation values. Finally, the train:val:test split of486

8:1:1 is done at the patient level ensuring no images from a patient in the test set was found in the487

training data.488

survSVHN: In this semi-synthetic dataset, we sample survival times using the beta-exponential489

distribution. The beta distribution used to sample from the exponential uses a fixed value of 500490

for both shape parameters. We follow Petersen et al. [2021] by cropping the centered multi-digit491

numbers with a boundary of 30%, resizing it to a resolution of 64×64, and then selecting 54 × 54492

pixels at a random location. For survSVHN the train:val:test split is provided by Netzer et al. [2011]493

as is 230,755:5,000:13,068.494

B.2 Model Architecture and Hyperparameters495

For the smaller real-world datasets, the hazard function fθ is a small fixed Multi-layer Perceptron496

network with 1 hidden layer and 64 hidden nodes. We also apply a fixed dropout rate of 0.1. Learning497

rate, weight decay, batch set size and risk set size were found using a grid search across the possible498

values in Table 4.499

Table 4: Hyperparameter values for small real-world datasets.
Hyperparameter Values

Learning rate [0.1, 0.01, 0.001, 1e-4]
Weight decay [0.1, 0.01, 0.001, 1e-4, 1e-5, 0]
(Batch size, risk set size) [(32, 8), (16, 16), (8, 32), (4, 64), (1, 256)]

For imaging datasets, we fix learning rate and weight decay for both CPL and Diffsurv. For both500

survSVHN and MIMIC IV CXR, we use a fixed learning rate of 10−4 and weight decay of 10−5. We501

also used early stopping with a patience of 20 epochs and a maximum of 100,000 training steps.502

survSVHN: As per Petersen et al. [2021], the model consists of four convolutional layers (with a 5x5503

kernel size and 32, 64, 128, 256 filters), each followed by ReLU and max-pooling (2x2 stride). The504

architecture concludes with a fully connected layer of 64 units, another ReLU, and a one-unit output505

layer.506

MIMIC IV CXR: Here, we use EfficientNet-B0 with an added linear layer for single output. We507

first train the linear prediction layer alone for the initial 2,000 steps. After this, we continue training,508

this time including both the EfficientNet-B0 and the linear prediction layer.509

For the results in Table 1, we keep a fixed batch size of 100. We also provide a comparison where the510

number of values is fixed in each batch in Table 9.511

Note that during evaluation, the sorting network is not used since we only need to evaluate the ranks512

of the trained risk scores. Similarly, case-control sampling is not used. We measure the ranking513

performance of the models using the concordance index.514

Further implementation details and the best hyperparameters for each dataset are provided at anon@515

git.com.516
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B.3 Compute Requirements517

Experiments on smaller real-world datasets are compact enough to facilitate effective training on a518

CPU, with each variant, including the CPH baselines, completing per experiment in less than 20 min-519

utes. However, the larger imaging datasets require more significant computational power. In the most520

demanding case, the MIMIC IV CXR experiments, run on an 11GB NVIDIA GeForce GTX 1080 Ti,521

took roughly 18.5 hours per experiment. Both Diffsurv and CPH methods exhibited comparable run522

times; however, the Bitonic variant was the fastest, with a lead of approximately 6 minutes. All neural523

network baselines were implemented using PyTorch and PyTorch Lightning. Although measures524

were taken to reduce compute time and complexity, such as using half-precision and distributed data525

parallel (DDP) training strategies, the overall training times are far from optimized.526

To understand the runtime differences of Diffsurv and Cox Partial Likelihood variants in isolation,527

we also run an additional experiment. For each method, we compute and time over 100 trials for a528

forward and backward pass on a NVIDIA GeForce GTX 1080 Ti using randomly generated logits.529

For diffsurv, this includes computing the predicted permutation matrix with differentiable sorting530

networks and applying the masking (Equation 15) and binary cross entropy (Equation 16). The531

possible permutation matrix generation is possible to precompute off GPU on the dataloader, so532

is not included in the timing. In Table 5, the Diffsurv methods, particularly Bitonic, consistently533

outperform CPL methods in compute time almost across all batch sizes and risk set sizes. As risk set534

size increases, CPL methods exhibit a decreasing trend in compute time, while Diffsurv’s Odd-Even535

method experiences a notable rise, especially from risk set sizes of 32 to 128.536

It is worth noting that CPL methods are currently computed over batches using a simple for loop, as537

the present implementations do not support batch parallel computation. However, there’s potential538

for further optimization. For similar batch sizes and risk set sizes, we noted very similar overall539

convergence times with Diffsurv Bitonic variant being marginally faster than other methods. In the540

context of full model runs, the difference between Diffsurv and CPL in terms of training times is541

minimal; it is the model architecture that have a dominant effect on compute time.542

Table 5: Isolated compute time for different methods, with various batch sizes and risk set sizes over
100 trials. Mean time and 95% confidence intervals are provided in milliseconds.

Method Batch Size, Risk Set Size
512, 2 128, 8 32, 32 8, 128

Diffsurv: Odd-Even 12.37 ± 0.15 25.63 ± 0.09 107.71 ± 0.38 305.91 ± 3.66
Diffsurv: Bitonic 3.85 ± 0.03 17.29 ± 0.08 55.49 ± 0.47 92.32 ± 0.80

CPL: Breslow 853.32 ± 11.39 281.22 ± 1.20 94.08 ± 0.15 25.45 ± 0.46
CPL: Efron 1729.87 ± 5.54 494.83 ± 4.27 164.73 ± 1.40 51.69 ± 0.76
CPL: Ranked List 719.42 ± 4.99 225.69 ± 0.94 74.36 ± 0.18 18.19 ± 0.31

C Sorting Networks543

There are multiple different types of sorting networks each with varying complexity. The ability to544

implement networks with the divide-and-conquer paradigm allows for sorting networks that scale545

more efficiently. Examples for Odd-Even and Bitonic sorting networks with n = 8 are shown in546

Figure 4. The latter allows construction of networks with size complexity O(nlog2n) verses the547

O(n2) in Odd-Even networks.548

It is worth emphasising these are not neural networks. They are called "networks" because they are549

typically represented as diagrams that show how the items are compared and swapped as they are550

being sorted. Differentiable sorting networks do not introduce any additional parameters that need to551

be updated during optimization.552

D Calibration of Predicted Permutations553

Model calibration in survival analysis models is essential for ensuring that the predicted probabilities554

of outcomes align closely with the true probabilities. An improperly calibrated model may lead555
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(a) (b)

Figure 4: Example sorting networks of size 8; (a) Odd-Even, (b) Bitonic.

Table 6: Calibration of rank probabilities from predicted permutation matrices on survSVHN, keeping
the number of events per batch equal. Mean (and standard deviation) Brier scores over 5 trails with
different seeds. Corresponds with C-index results in Table 9.

Method Batch Size, Risk Set Size
512, 2 128, 8 32, 32 8, 128

CPL: Breslow 0.081 (0.002) 0.181 (0.001) 0.056 (0.000) 0.014 (0.000)
CPL: Efron 0.081 (0.002) 0.180 (0.001) 0.055 (0.000) 0.014 (0.000)
CPL: Ranked_List 0.066 (0.001) 0.185 (0.001) 0.053 (0.000) 0.012 (0.000)

Diffsurv: Bitonic 0.059 (0.001) 0.165 (0.001) 0.043 (0.000) 0.010 (0.000)
Diffsurv: Odd-Even 0.056 (0.001) 0.158 (0.001) 0.039 (0.000) 0.009 (0.000)

to incorrect risk assessments and treatment decisions, potentially resulting in suboptimal patient556

care and even adverse clinical consequences. We focus on the calibration of predicted individual557

rankings, as demonstrated in Figure 5 and Table 6. Specifically, we qualitatively illustrate in Figure 5558

that for a model with a risk set size of 8, both discrete predicted ranks and ranking probabilities are559

accurately calibrated for the Diffsurv approach. To perform a quantitative comparison with baseline560

methods, we need to derive ranking probabilities for the CPL model. Based on the assumptions561

in Raykar et al. [2007], we assume that the probability of correct pairwise ordering for the CPL562

adheres to the logistic function. We thus compute permutation matrices using differential sorting563

networks, employing predicted partial log hazards as inputs and the logistic sigmoid function as the564

differentiable sorting operator. By subsequently calculating Brier scores for the rank probabilities in565

the predicted permutation matrices survSVHN, we analyze various combinations of batch size and566

risk set size. Our findings show that the Diffsurv models consistently exhibit the lowest Brier scores567

across all settings (refer to Table 6).568
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Figure 5: Calibration visualization of the Diffsurv (Bitonic) predicted ranking for a group of 8
subjects on the survSVHN dataset.
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E Effect of top-k loss variants on predictive performance569

The Top-K risk prediction variants for Diffsurv and the Cox Partial Likelihood, as introduced in570

Section 3.2, inherently bias the model to recognize only the top-k individuals with the highest571

risk. In this section, we explore the extent to which these specific variants influence the predictive572

performance of the models across the entire set of individuals. These results are shown in Table 7.573

Table 7: C-index for real-world and semi-synthetic datasets for Top-k loss variants
FLCHAIN NWTCO SUPPORT METABRIC MIMIC IV CXR

Top 10% prediction
Cox Partial Likelihood .796 (.010) .725 (.014) .650 (.008) .691 (.013) .760 (.002)
CPL-TopK (Variant I) .794 (.011) .715 (.011) .602 (.003) .644 (.016) .751 (.002)
CPL-TopK (Variant II) .798 (.011) .722 (.016) .600 (.010) .658 (.008) .753 (.002)

Diffsurv .794 (.011) .696 (.025) .634 (.008) .649 (.016) .761 (.002)
Diffsurv-TopK .783 (.011) .689 (.022) .596 (.005) .639 (.023) .754 (.001)

F Additional Results574

In Table 8 and Table 9, additional results for the MIMIC IV CXR and survSVHN imaging datasets575

are provided. Here, we maintain a constant total number of samples in each batch, which means that576

an increase in risk set size is compensated by a decrease in batch size. These results offer further577

understanding of the balance required between these two variables. We observed, while larger risk578

set sizes generally improve performance for both Diffsurv and CPH, the benefits tend to taper off as579

training can become more unstable and noisy with smaller batch sizes.580

Table 8: Additional Results for MIMIC IV CXR. Mean and standard deviation of the C-index for
different methods and batch risk set sizes. Bold indicates a significantly higher result with t-test and
p ≤ 0.01.† Most significant across all Batch Size, Risk Set Sizes.

Method Batch Size, Risk Set Size
64, 2 4, 32 16, 8 1, 128

Diffsurv: Bitonic 0.761 (0.001) 0.761 (0.000) 0.763† (0.001) 0.761 (0.002)
Diffsurv: Odd-Even 0.761 (0.002) 0.756 (0.002) 0.761 (0.001) 0.749 (0.001)
CPL: Ranked List 0.760 (0.002) 0.755 (0.002) 0.758 (0.003) 0.755 (0.002)

Table 9: Additional results for survSVNH keeping the number of events per batch equal. Mean (and
standard deviation) over 5 trials with different seeds. Metric is C-index. Bold indicates a significantly
higher result with t-test and p ≤ 0.01.

Method Batch Size, Risk Set Size
512, 2 128, 8 32, 32 8, 128

Diffsurv: Odd-Even 0.934 (0.001) 0.940 (0.001) 0.941 (0.001) 0.933 (0.002)
Diffsurv: Bitonic 0.931 (0.001) 0.942 (0.001) 0.940 (0.00166) 0.928 (0.001)

CPL: Breslow 0.905 (0.001) 0.897 (0.001) 0.910 (0.002) 0.919 (0.001)
CPL Efron 0.904 (0.002) 0.898 (0.002) 0.909 (0.003) 0.918 (0.003)
CPL: Ranked List 0.921 (0.001) 0.922 (0.003) 0.921 (0.001) 0.917 (0.003)
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