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A B S T R A C T   

This study presents the first report on the elemental composition of five Mediterranean plant species (Pinus 
pinaster, Eucalyptus camaldulensis, Nerium oleander, Olea europaea and Pittosporum heterophyllum) to trace indus-
trial emissions in Taranto, Italy, a mixed-use industrial and urban setting. Potential metal sources include 
vehicular traffic, steel and cement plants, and a petrochemical refinery. Samples were collected from 29 sites 
covering the Tamburi-Lido Azzurro neighbourhood and the historical quarter Città Vecchia-Borgo. High con-
centrations of toxic metals were observed in all samples, with marked inter-species variability. Model based 
clustering identified two distinct groups, one dominated by pine needles with higher metal concentrations than 
the other group composed of the other four plant species. The contamination factor (CF) and pollution load index 
(PLI) indices which use background samples to standardise the level of pollution, were used to remove species 
effect allowing for direct site comparison. Spatial analysis of CF and PLI data identified pollution hotspots near 
industrial areas and major roads, with areas of little to no air pollution near green spaces. Statistical analysis of 
the CFs revealed the contribution of different sources to element emissions. Ni and Cr were primarily emitted 
from the steel plant and petrochemical refinery, while Fe and Al were associated with road traffic emissions, and 
geogenic elements Ca, Mg, K, and Na were linked to marine spray and Saharan dust. This study demonstrates that 
combining multiple plant species with pollution indices can be a cost-effective biomonitoring approach for 
assessing air pollution and creating a high-density spatial monitoring network.   

1. Introduction 

Anthropogenic air pollution constitutes an increasing problematic 
and complex issue, with numerous studies having linked air pollution to 
detrimental effects on human health (Manisalidis et al., 2020; Mannucci 
and Franchini, 2017) and environmental impact such as acidification 
and toxification of sensitive ecosystems (Stevens et al., 2020). Air pol-
lutants differ in their chemical composition, reaction properties, emis-
sion sources, ability to be transported, persistence in the environment 
and their impact on human health (Kampa and Castanas, 2008). Inor-
ganic pollutants such as metals, are of interest because of their prolific 
presence in the urban environment (Gerdol et al., 2002; Zhang et al., 
2018), and their properties as they are emitted in both elemental and 
compound forms. Metals have two main sources: natural (geogenic), and 
anthropogenic. A primary natural source is the erosion of the underlying 

and local rocks and the leaching of these metals into soils (Garrett, 
2010). On a global scale, the main source of atmospheric mineral dust is 
the Sahara Desert which accounts for circa half of the annual mineral 
dust (Karanasiou et al., 2012). Sahara’s dust directly affects the atmo-
spheric particulate matter in the Mediterranean region (Flentje et al., 
2015; Morales-Baquero et al., 2013; Theodosi et al., 2010). The main 
anthropogenic sources of metals in urban environments are dust 
dispersion from metal processing, fossil fuel combustion, vehicle 
exhaust, emission from cement factories, mining and other human ac-
tivities (Alexandrino et al., 2020; Charron et al., 2019; Lehndorff and 
Schwark, 2010; Qu et al., 2013). 

Indicators of changes resulting from environmental pollution in 
urban areas are an effective tool that can support decision making 
related to public health policy and environmental protection (Piazzetta 
et al., 2019). Biomonitors, top soils, street and road dust, atmospheric 
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deposition and particulate matter are amongst the most commonly used 
indicators (Abbasi et al., 2018; Fernández-Olmo et al., 2014; Modabberi 
et al., 2018). The first three are relatively inexpensive, applicable to 
large areas and timely alternatives for the analysis of the origin, distri-
bution, and effects of urban pollution. With regards to the two latter, 
they require longer monitoring periods and are more resource intensive 
(Morera-Gómez et al., 2021). Biomonitoring is the use of vegetation as a 
passive sampler for air pollution. This approach has the advantage of 
high spatial resolution due to the availability of plants, low sampling 
costs, and it also provides the integrated effect of numerous environ-
mental factors, including air pollution and weather conditions (Lehn-
dorff and Schwark, 2010). Vascular plants are more representative of 
human experienced pollution (height 1.5/2m) in contrast with low 
vegetation types (height <1m) and conventional air pollution stations 
which are often fixed at heights >2.5m (Mitchell and Maher, 2009). 
Importantly, evergreen plants have been shown to capture more metal 
particles than broad-leaves species (Beckett et al., 2000). Of those 
evergreen plants, coniferous species have been proven to be more reli-
able than evergreen broadleaf trees due to higher deposition velocities 
for fine to ultrafine particulates and higher capture efficiency than their 
broadleaf counterparts (Lehndorff et al., 2006). 

In the present study we focused on the industrial city of Taranto, 
Italy, which has mixed use industrial park located north of the city 
(Fig. 1). The district hosts an industrial and commercial port, food- 
processing factories, a steel plant, a cement plant and a petrochemical 
refinery. The city also harbours the main Italian navy base, military 
arsenal, and warship shipyard. Taranto’s industrial activities (steel 
production in particular) have been under international scrutiny due to 
the large, unregulated emission of pollutants into the surrounding at-
mosphere. Similarly to other European countries, steel production in 
Taranto is carried out using an integrated steel process that includes 
coke ovens, sintering, blast furnaces, basic oxygen steelmaking, and 
finishing processes (Amodio et al., 2013). 

According to the European Commission (2013), in the last 60 years 
Taranto’s steel plant has consistently failed to meet the requirements set 
out by EU directives. Since the early 2000s the Regional Environmental 
Agency (ARPA) has been reporting that PM10, PM2.5, NO2 and O3 in the 

atmosphere do not meet the levels set by the 2008/50/EC EU directive. 
Industrial related emissions in Taranto include Fe, Mn, Zn, Pb and Ni, 
which have been associated with fossil fuels, petrochemical products, 
cement, and steel plants (Amodio et al., 2013; Di Gilio et al., 2017). 
Additionally, Cr is commonly used in Italy to produce ferrochromium 
and corrosion control in the steel industry (WHO, 2000). A study con-
ducted by Viviano et al. (2005) on settled dust in the Tamburi-Lido 
Azzurro neighbourhood reported concentrations of polycyclic aro-
matic hydrocarbons (PAHs), As, Cd, Hg, and Ni higher than the levels set 
by the EU directives DM November 25, 1994 and 2004/107/CE. 

The industrial and urban (traffic) components make this city a 
complex and critical setting to study. Despite the urgency, geochemical, 
environmental, and spatial studies in this area are scarce and no bio-
monitoring approaches have been used to date. In this study we 
deployed a biomonitoring approach, to characterize elemental compo-
sition of leaves of common Mediterranean tree species in the areas 
closest to the industrial park in Taranto; and subsequently trace their 
dispersion into the urban environments of the city. 

2. Material and methods 

2.1. Geography and geology of the study site 

Taranto is a coastal city in the Apulia region, southern Italy (Fig. 1). 
It is the third largest city in Southern Italy, with an urban area expanding 
over 209 km2 with a population of about 200,000. The climate of Tar-
anto is semi-arid, typical of the Mediterranean region characterised by 
mild rainy winters and warm dry summers. The average annual rainfall 
amount is approx. 400 mm, with prevailing wind direction from NW 
(wind rose in Fig. 1). The dominant type of vegetation in the Apulia 
region is the Mediterranean macchia; characterised by evergreen 
shrubbery and garrigue such as Arbutus unedo, Myrtus communis, Olea 
europaea; pinewoods (e.g. Pinus halepensis, Pinus Pinaster) and palmettos 
(Campanile and Cocca, 2005; Costa and La Mantia, 2005). It is also 
common to find exotic plants, such as eucalyptus and oleander, typically 
used for urban landscaping in Mediterranean cities (Khattak and Jabeen, 
2012). 

Fig. 1. Map showing the sampling sites of tree leaves and needles (1–29) within Taranto, along with the location of two major roads (Via Giobatta Magnaghi and 
Ponte Punta Penna Pizzone), industrial park, and naval base. Inset map: location of Taranto within Italy. The wind rose illustrates the daily average wind speed (in 
km/h) and direction for the period 2010–2023. Wind data collected from the Taranto weather station in the neighbourhood of Città Vecchia-Borgo (shown on the 
map) (wind data downloaded from visualcrossing.com). 
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A detailed description of the geology of the Gulf of Taranto and the 
Apulia region can be found in Bentivenga et al. (2004). Briefly, Taranto 
is located at the front of the southern Apennines belt which formed 
following the closure of the Mesozoic Tethys Ocean and subsequent 
deformation of the Adriatic passive margin during Tertiary and Qua-
ternary. The front of the chain is partially overlaid by Pliocene – Pleis-
tocene deposits, while the upper portion of the middle Pleistocene 
stratigraphy consists of marine sands and conglomerates arranged in 
several terraces (Massari and Parea, 1988). 

2.2. Sampling 

We collected 29 samples downwind (south-east) of the industrial 
park (Fig. 1) using a transect approach in a NW to SE direction. This 
covered the neighbourhood Tamburi-Lido Azzurro adjacent to the in-
dustrial park (sites 1 to 6 and 29) and the historical quarter Città 
Vecchia-Borgo (sites 7, to 28). 

We also collected two background samples (B1a and B1b) in a 
wooded area Bosco Sant’Antuono North of Taranto (~20 km, see Sup-
plementary Fig. S1 for location). In accordance with other studies, 
including those by Guéguen et al. (2011) and Kousehlar and Widom 
(2020) we selected background sites close to the study area, with a 
similar geologic setting. These sites are situated off-axis to the pre-
dominant wind direction in Taranto, thereby minimizing the impact of 
urban anthropogenic sources. However, we acknowledge that B1a and 
B1b may still be subject to some local/regional anthropogenic 
emissions. 

Four evergreen species were selected for their high availability 
within the macchia vegetation and the urban test sites: maritime pine 
(Pinus pinaster), river red gum tree (Eucalyptus camaldulensis), oleander 
(Nerium oleander) and olive tree (Olea europaea). The tree species per site 
were selected according to their availability and are detailed in Table 1. 
Due to the lack of the selected tree species at site 14; the evergreen plant 
mock orange shrub (Pittosporum heterophyllum), was selected as a sub-
stitute. At each site GPS coordinates were recorded with a Garmin GPS 
60 portable device. 

Three to five leaf samples per tree were collected at adult head height 
(approx. 1.5–2m), to maximise any link between heavy metal concen-
trations and human impact. As surface deposits on evergreen leaves and 
needles typically showed a cumulative behaviour, i.e., an increase with 
the needle age (Krivan et al., 1987), during the sample collection older 
leaves and needles were preferentially samples to provide a more 
comprehensive picture of air pollution in Taranto. Sampling ensured 
that leaves and needles exposed to all wind direction were collected. 
Samples were placed in clean polyethylene bags, wrapped in aluminium 
foil, and refrigerated at 5 ◦C, before returning to the laboratory for 
analysis. 

2.3. Laboratory analysis 

Samples were freeze-dried for 18 h at − 50 ◦C and subsequently 
weighted. The dry weight of each leaf/needle sample was used to 
normalize the final metal concentration per sample as indicated by 
Szönyi et al. (2008). The metal concentrations in this paper will be 
expressed in ppm (equivalent to μg/g of dry sediment) to allow for direct 

comparison with the literature. As washing could remove some elements 
from the leaves/needles surface (Boonpeng et al., 2017), unwashed 
samples were used for elemental analysis. The determination of metal 
concentration was conducted in accordance with the procedure outlined 
by Allan et al. (2013) and Krivan et al. (1987). Briefly, we submerged 
each sample in a microwave vessel with 20 ml of chloroform which was 
subsequently evaporated (open-top) in a SUB Aqua Pro (1 h at 88 ◦C). 
For sample digestion, leaves and needles where then removed from the 
container, the waxy layer of leaves was decomposed using an acid 
mixture of 69% v/v nitric acid (6.5 ml), 30% v/v hydrogen peroxide 
(3.5 ml). The vessels were sealed and placed in a CEM MARS Xpress 
microwave oven for 2 h. After digestion, the solutions were filtered with 
540 Hardened Ashless Whatman filter papers and diluted to 25 ml with 
deionised water in volumetric glass flasks. A second dilution was ach-
ieved using 5 ml of the original solution further diluted to 20 ml with 
deionised water in new volumetric glass flasks. The final 20 ml solutions 
were transposed into 15 ml sterilised (new) conical centrifuge tubes and 
analysed with ICP-OES PerkinElmer Optima 2100DV to determine the 
metal concentrations following the parameters and calibration protocol 
described in Allan et al. (2013). Briefly, calibration curves for Al, Ca, Cd, 
Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Zn were constructed from standard 
solution of each element ranging from 0.001 mg/L to 1000 mg/L. We 
calculated the limits of detection (LOD) as three times the standard 
deviation of blank measurements (n 10) divided by the slope of the 
analytical curve. Similarly, the limits of quantification (LOQ) were 
calculated as ten times the standard deviation of 10 blank measurements 
divided by the slope of the analytical curve. The accuracy of the method 
was evaluated by the analysis of certified reference material Apple 
Leaves 1515a (National Institute of Standards and Technology, Gai-
thersburg, MD, USA). Digestion blank (i.e. digestion solution without 
plant material) was analysed following the same procedure used for the 
leaves/needles to check for any potential contamination. The metals 
concentration values at each site (see Supplementary Table S3) are re-
ported as the mean of three samples analysed per site. Each sample was 
analysed in triplicate to ensure Relative Standard Deviation (RSD) 
values of <20%. 

2.4. Statistical analysis 

Model-based clustering was performed on the dataset of metal con-
centration for each tree-species to assess whether tree species showed 
different metal accumulation regimes and therefore grouped in different 
clusters. Model-based clustering assumes that the multivariate dataset 
consists of several clusters and that each cluster can be described by a 
Gaussian (i.e., normal) distribution; thus, the dataset can be expressed as 
a sample from a mixture of multivariate normal distributions (McLa-
chlan et al., 2019). Model-based clustering incorporates a measure of 
uncertainty to the cluster assignments and provides soft assignment such 
that observations have a probability of belonging to each cluster rather 
than simply being assigned to the best fitting cluster (Fraley and Raftery, 
2002). The model parameters are estimated using the 
Expectation-Maximization (EM) algorithm (Dempster et al., 1977). Each 
component k is centred at its means (μk), more certainty of cluster 
membership near the mean and other geometric features (shape, vol-
ume, orientation) of each cluster are determined by the covariance 
matrix (Σk) (Scrucca et al., 2016). For this analysis, we used R version 
4.2.2 (R Core Team, 2022) and employed the package Mclust (v5.4.7; 
Scrucca et al., 2016), which uses maximum likelihood to fit multivariate 
models, with different covariance matrix parameterizations, for a range 
of k clusters. The best model is selected using the Bayesian Information 
Criterion (BIC) (Schwarz, 1978). BIC is a tool for model selection 
amongst a given set of models that considers goodness of fit, and the 
number of parameters used to achieve the fit (Schwarz, 1978). Addi-
tionally, we performed Principal Component Analysis (PCA) Pearson 
correlation test to assess the relationship between elements and to 
identify common pollution sources. PCA was performed using R 

Table 1 
List of tree species collected at each site, including background samples B1a and 
B1b.  

Tree Species Sites 

Eucalyptus cam. 1, 2, 3, 6 
Nerium oleander 7, 15, 16, 18, 21,22, 23, 24, 25, 26, 27, 29, B1b, 
Olea europaea 5, 17 
Pinus Pinaster 4, 8, 9, 10, 11, 12, 13, 19, 20, 28, B1a 
Pittosporum het. 14  
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functions prcomp, and the R package Hmisc (Alzola and Harrell, 2006) 
was used to carry out a Pearson correlation analysis. Prior to statistical 
analysis, metal concentrations and CFs were logged and scaled to their 
means to reduce any bias caused by the different ranges of values. 
Logging the distribution reduces skewness, moving it closer normality, a 
requirement of the Pearson correlation coefficient (Ahlgren et al., 2003). 
Furthermore, adjusting by the mean and standard deviation ensures a 
comparable scale across all variables. As PCA may not be a suitable 
technique for data with skewed distribution or outliers (Maadooliat 
et al., 2015), transforming a variable’s magnitude through scalar 
multiplication is a common method to produce distinct eigenvalues and 
eigenvectors (Huang et al., 2008). 

2.5. Indices of pollution 

To assess the degree of pollution, we used two indices which consider 
the concentration of an element in the context of background concen-
tration: the contamination factor (CF) and pollution load index (PLI). 
The CF is useful to evaluate pollution by comparing the pre- and post- 
industrial levels of metals (Hakanson, 1980). CF is defined using Eq (1). 

CF=
Measured concentration of element

Background concentration of element
(1) 

CF values are unitless and can be divided into four classes: no/low 
contamination (CF < 1), moderate contamination (1 ≤ CF < 3), 
considerable contamination (3 ≤ CF < 6), and very high contamination 
(CF ≥ 6). PLI (Tomlinson et al., 1980), is useful to evaluate the general 
pollution effect of various elements at each site (Boonpeng et al., 2017). 
This index is defined by the following equation:  

PLI = (CF1 x CF2 x … CFn) (1/n)                                                       (2) 

Where CF is the contamination factor for element i=1, …n. PLI values 
are unitless and fall into three categories: within the natural background 
level (PLI ≤0.7), warning line of pollution (0.7 < PLI ≤1), and deteri-
oration quality (PLI >1) (Salazar-Rojas et al., 2023; Tomlinson et al., 
1980). 

2.6. Spatial analysis 

Distribution patterns of elements as CF and PLI were mapped using 
Inverse Distance Weighting (IDW) interpolation method within ArcGIS 
Pro version 3.1, covering an area of 13.66 km2. Interpolation uses points 
of known value to estimate the values for unsampled locations (Bur-
rough et al., 2015). The IDW method gives greater weight to the value of 
points closest to the unsampled prediction location, and the weight re-
duces as a function of distance (Burrough et al., 2015; Longley et al., 
2011). The following parameters were used for the interpolations: 
power of 2, all 29 sample points, and an output cell size of 1m. The IDW 

interpolation is mainly controlled by the power value (Burrough et al., 
2015), which defines the smoothness of the interpolation. We used a 
power value of 2, which provides more localised values predictions, 
which has been shown to produce the most accurate estimates given the 
statistical properties of the sample values (Bargawa and Purnomo, 
2016). Spatial analysis was used alongside PCA to identify pollution 
sources and to assess the areas with the highest vulnerability to air 
pollution. 

3. Results and discussion 

3.1. Elemental composition of tree leaves 

Summary statistics for major and trace elements are listed in Table 2. 
The average concentration of major elements follows the sequence Ca >
Na > Mg > K > Zn > Al > Fe (Table 2). The abundance of major ele-
ments in tree leaves is expected, as these elements are macronutrients of 
plants (White and Brown, 2010). A variety of other studies have also 
reported baseline high (>1000 ppm) concentrations of Ca, Mg and Na in 
different plant species including moss (Lazo et al., 2019), pine needles 
(Brown et al., 2017), lichens (Bergamaschi et al., 2007), fir and rhodo-
dendron (Sun et al., 2011). 

The abundance of trace elements follows the sequence Cu > Cr > Ni 
> Mn > Pb > Co > Cd (Table 2). The average values determined for all 
trace elements in addition to Zn, Al and Fe fit levels characteristic of 
polluted urban regions affected by industrial and traffic related emis-
sions including Cologne, Germany (Lehndorff and Schwark, 2010), 
Cienfuegos and Santa Clara, Cuba (Morera-Gómez et al., 2021), 
Cordoba, Argentina (Carreras and Pignata, 2002) and Middletown, Ohio 
(Kousehlar and Widom, 2020). The background samples contain the 
lowest abundances of Cd (B1) and Pb (B2) as they were below the limits 
of quantification, the other elements follow between the mean ± stan-
dard deviation of the sampling sites. Of the two background samples, B1 
(pine needles) has higher concentration of all metals, except for Cd, 
relative to B1b (oleander). 

3.2. Tree species effect 

Fig. 2 shows the results of the model-based clustering performed on 
the tree-species per site plotted in a biplot. The best model of the cluster 
analysis base on BIC values (see Supplementary Fig. S2), identified two 
distinct clusters. Cluster 1 encompassing all the Eucalyptus, Oleander 
and Pittosporum samples and one sample of Olive tree. Cluster 2 in-
cludes all the Pinus Pinaster samples and one of Olive tree (site 17). The 
cluster analysis showed that there is a tree-species effect on leaf element 
concentration. This effect is likely due to the properties of pine needles, a 
phenomenon described in a variety of studies, where efficacious bio-
monitors due to their long and narrow structure increase the capture 

Table 2 
Summary statistics of the elemental composition (in ppm) of tree leaves samples from Taranto and background samples B1 and B1b. Also reported LOD and LOQ per 
element (ppm).  

Element Mean Min Max St Dev B1a B1b LOD LOQ 

Al 77.64 10.84 335.22 89.07 107.67 55.6 1.20 3.96 
Ca 4892.42 651.93 20640.21 4897.34 11928.22 1697.95 2.56 8.45 
Cd 0.17 0.07 0.51 0.15 – 0.42 0.02 0.06 
Co 0.35 0.06 0.94 0.31 0.77 0.46 0.02 0.06 
Cr 8.33 0.50 43.52 10.52 13.47 1.85 0.21 0.69 
Cu 9.79 1.28 38.63 9.32 27.87 4.96 0.43 1.42 
Fe 74.74 14.91 238.63 65.54 88.91 77.66 1.89 6.29 
K 380.11 65.99 1583.74 345.93 734.77 108.88 1.15 3.79 
Mg 1444.97 200.60 6120.14 1455.45 3578.26 438.3 1.04 3.43 
Mn 2.67 0.65 8.13 2.06 4.01 1.49 0.18 0.59 
Na 4655.70 620.70 19905.29 4735.54 11775.22 1393.58 0.97 3.20 
Ni 3.85 0.21 41.53 8.29 3.75 0.83 0.05 0.16 
Pb 0.56 0.19 1.07 0.33 1.81 – 0.05 0.16 
Zn 83.17 9.74 300.28 73.44 218.25 34.28 1.07 3.53  
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efficiency and the deposition velocity of airborne particulates (Lehn-
dorff et al., 2006; Lehndorff and Schwark, 2010). 

The results of the present investigation agree with these previous 
studies, where Pinus Pinaster samples have the highest average concen-
tration per element (see Supplementary Table S3). Site 17 falls within 
cluster 2, although its Euclidean distance to the centre of cluster 2 is only 
slightly shorter than cluster 1, suggesting that site 17 has characteristics 
of both clusters. This classification in cluster 2, represents the average 
high concentration of elements in site 17 likely due to its location, close 
to highly trafficked areas (Ponte Punta Penna Pizzone and Via Giobatta 
Magnaghi) which during sampling, were noted to be the points of 
maximum slow-moving or stationary traffic. In order to mitigate for the 
vegetation effect, CFs (for values see Supplementary Table S4) were used 
for subsequent spatial and statistical analysis instead of absolute 
element concentration. CFs were calculated using two different back-
ground samples: B1b (Nerium oleander) for cluster 1 and B1a (Pinus 
Pinaster) for cluster 2. 

3.3. Sources of pollution 

Fig. 3 shows the results of the PCA of CF, including the contribution 

of each element to dimensions (components) 1 and 2. PCA loadings also 
listed in Table 3. According to PCA statistical results, 65.6% of variance 
of elements’ CF is explained by the first two components. The first 
component, explaining 42% of the variance, is dominated by Ni and Cr 
CF, which are also highly correlated to each other (Pearson’s correlation 
= 0.83 p < 0.01, Table 4). The loading of Ni and Cr CF to the PCA, in-
dicates a significant contribution of the industrial park (particularly the 
steel plant and the petrochemical refinery), to the pollution of Taranto. 
Ni is the most abundant metal in crude oil and has widely reported in the 
literature as indicative of the use of fossil fuels in power plants and 
metallurgical industries (Moreno et al., 2010; Morera-Gómez et al., 
2021). Additionally, ferrochromium production used for stainless steel 
manufacturing and cement production are two main sources of Euro-
pean Cr emissions (Fahim et al., 2019; Tumolo et al., 2020). 

Fe and Al CF contributed the most to the 2nd component which 
explained 23.6% of the total variance. Fe and Al emissions have been 
linked to metallurgy industry, however, in urban environments they are 
primarily related to resuspension of road dust (Chambers et al., 2016) 
and the wear of automotive parts (Fujiwara et al., 2011). Although 
disentangling the two sources is difficult, road traffic should be also 
considered as a potential source of metal emissions in Taranto. Of the 
geogenic elements, Na and Mg have the most loading on both di-
mensions. These two elements also have a strong and significant Pearson 
correlation coefficient of 1 (p < 0.01, Table 4), suggesting a common 
source of emission. According to Beckett et al. (2000) marine spray in 
coastal locations is accountable for the high concentrations of Na and 
Mg. Additionally, another significant natural source which affects the 
whole Mediterranean region and therefore Taranto, is Saharan dust. 
This dust is characterised by high Ca, Mg, K and Na concentrations 
(Flentje et al., 2015; Morales-Baquero et al., 2013). Marine aerosol and 
Saharan dust contribute up to 39% to atmospheric particles (PM10) in 
the Mediterranean region (Scerri et al., 2016). These geogenic metals 
were observed to have relatively high concentrations in both urban and 
background samples, which suggests a widespread ‘blanket’ effect of 
marine spray and Saharan dust in both Taranto and the wider region. 

3.4. Spatial assessment of pollution 

To assess the spatial distribution of metal emissions, CFs for each 
element were plotted using IDW and are shown in Figs. 4 and 5. All 29 
sites show contamination relative to the background levels, however, 
individual element’s CF per site is location dependant. On average, Ni 
and Cr exhibited the highest CF values, followed by K, Mg, Na, Ca, and 
Mn. Ni and Cr show very high contamination near the industrial area 
(49.94 and 17.28, respectively). These values are much higher than the 
CF of Ni and Cr reported in other sites close to industrial complexes such 
as those of Boonpeng et al. (2017) (CF of Ni 2, CF of Cr 1.6). Our ob-
servations agree with the findings of Di Gilio et al. (2017) and Viviano 
et al. (2005) who reported high levels of Ni in settled dust and PM in the 

Fig. 2. Biplot of model-based clustering showing two distinct clusters. Cluster 
1: Eucalyptus, Oleander and Pittosporum samples. Cluster 2: Pine and Olive 
tree samples. 

Fig. 3. PCA biplot of individual metals’ CF. The legend shows the contribution 
of each CF to dimension 1 and 2. 

Table 3 
PCA loadings for components 1 and 2.   

Comp. 1 Comp. 2 

CF Al 0.058 0.503 
CF Ca 0.075 − 0.066 
CF Cd 0.046 0.190 
CF Co 0.218 0.130 
CF Cr 0.466 0.037 
CF Cu 0.223 − 0.052 
CF Fe 0.106 0.676 
CF K 0.180 − 0.202 
CF Mg 0.246 − 0.203 
CF Mn 0.258 0.209 
CF Na 0.247 − 0.210 
CF Ni 0.624 0.001 
CF Pb 0.035 − 0.084 
CF Zn 0.226 − 0.229  
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Tamburi-Lido Azzurro neighbourhood adjacent to the steel plant. This 
spatial pattern of high considerable to very high contamination in 
proximity of the industrial park is also observed for Cd, Co, Fe, Mn. As 
identified earlier, high pollution levels of Ni, Cr, Cd and Fe have been 
widely reported in the literature as indicative of the use of fossil fuels, 
presence of power plants and metallurgical industries (Carreras and 
Pignata, 2002). Here, the results show a clear influence of the industrial 
park emissions on the Taranto’s area closest to the steel plant, cement 
plant and petrochemical refinery. Heavy metal particulates, especially 
Ni, of anthropogenic origin tend to be finer than those from natural 
sources and have a longer residence time in the atmosphere (Begum 
et al., 2022). This likely prolongs the exposure time of plants to pol-
lutants, resulting in an increased accumulation of heavy metals in sites 1 
to 6, close to the industrial park. 

Spatial analysis shows that moderate to considerable contamination 
for Al, Fe, Mn, Zn and Cr, is also identified for sites 9 to 20, which are 
close to the Military arsenal and two major roads: Via Giobatta Magnaghi 
for sites 13 to 18, and the freeway Ponte Punta Penna Pizzone for sites 19 
and 20 (see Fig. 1 for locations). The influence of the Military base on the 
on the urban air emissions is possible but unlikely as military ship-
building activities have been moved to a new location south of Taranto 
in 2004. Traffic related emissions are more likely to be the cause of the 
contamination at these sites, as Mn, Fe, Al, Zn and Cr are linked to highly 
trafficked areas (Demková et al., 2019; Han et al., 2021), corroborating 
the results of the PCA and correlation analysis. The CF values for Zn, Cr, 
and Pb observed in proximity to busy roads agree with the CFs reported 
by Salazar-Rojas et al. (2023), ranging between <1 and < 4 for Cr, 0 and 
< 5 for Zn, and 0 and < 4 for Pb. 

The traditionally geogenic element Ca show CF values similar to the 
background, moderate contamination is observed only for sites 1, 3, 5, 
close to the industrial park and 14 and 17, close to Via Giobatta Mag-
naghi. Ca enrichment in urban regions has been reported by an 
increasing number of studies which have shown high Ca concentrations 
even when the regions have no carbonate bedrock (Chambers et al., 
2016; Kaushal et al., 2017; Washbourne et al., 2012). The accumulation 
of Ca in urban vegetation is mainly attributed to the widespread use of 
artificial Ca-rich materials, their weathering and resuspension, 
including concrete structures, construction and demolition wastes, and 
impervious surfaces (Chambers et al., 2016; Kaushal et al., 2017; Mor-
era-Gómez et al., 2021). While Ca is not typically classified as a haz-
ardous metal (Wu et al., 2018), its enrichment in urban areas has been 
shown to have adverse effects on the environment (Moore et al., 2013). 
These effects include the alteration of the cation exchange of shallow 
groundwater which affects plant communities (Moore et al., 2013), as 
well as the alteration of the pH of freshwater streams (Kaushal et al., 
2017). 

IDW was adopted to spatially assess PLI and identify the urban areas 

with the highest vulnerability to pollution (Fig. 6). PLI was calculated 
using the following metals: Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn. We 
omitted the elements Ca, Mg, K and Na due to their likely natural source, 
as previously discussed, which include marine spray (Beckett et al., 
2000) and Saharan dust (Flentje et al., 2015; Morales-Baquero et al., 
2013). The spatial analysis shows that the transects investigated in 
Taranto are, on average, within warning PLI values. Industrial and 
traffic emission effects are noticeable in three hotspots which are highly 
affected by heavy metal emissions and classified as in deterioration. The 
two hotspots (PLI >1) in the historical quarter, Città Vecchia-Borgo, are 
located close to two heavily trafficked streets (Via Giobatta Magnaghi 
and Ponte Punta Penna Pizzone), these areas are also characterised by 
closely packed tall residential buildings which hinder the natural cir-
culation of air. This urban configuration is commonly referred to as 
‘street canyon’ (Li et al., 2006) and is characterised by a distinct climate 
dominated by micro-scale meteorological processes (Oke, 1988), with 
air ventilation and pollutant removal occurring only at the roof level (Li 
et al., 2006). The street canyon effect can cause traffic emissions to 
become trapped at street-level, increasing the concentrations of pollu-
tion above background levels (Marini et al., 2015; Zhu et al., 2021). Our 
results indicate that in Taranto, a mixed urban-industrial environment, 
traffic is often the primarily source of pollution for sites adjacent to 
major roads. Our findings agree with those of Salo et al. (2012), who 
observed the highest PLI values (>1) in moss samples collected near 
major roads in an urban site affected by mixed pollution sources, 
including traffic and industrial activities (oil refineries, steel works and 
shipyards). A second degrading hotspot with PLI of 2.75 is observed in 
the Tamburi-Lido Azzurro neighbourhood, located less than 2 km from 
the industrial park. This area is characterised by very high pollution 
levels of Cr and Ni. Similar results have been presented by Boonpeng 
et al. (2017), who reported a PLI value of 2.1 in two sites located less 
than 4 km from a petrochemical industrial complex. 

Sample 29, collected inside the industrial area, shows a PLI of 0.75, 
suggesting warning levels of pollution but not indicating deterioration. 
As site 29 is the only one collected from inside the industrial area, it may 
not be fully representative of the entire park. However, the relatively 
low PLI may be attributed to the building and space configuration of the 
industrial park, characterised by open spaces and low infrastructure. It is 
likely that the prevailing NW winds carry the pollution southwards to-
ward the residential Tamburi-Lido Azzurro neighbourhood, where it 
accumulates. The interaction between urban configuration and wind 
patterns is a key factor affecting the dispersion trajectories of atmo-
spheric particulate matter (Kumar et al., 2009; Mei et al., 2018). Layout 
differences, such as high-rise buildings near low-rise buildings, can 
significantly impact local air flow, accelerating the dispersion of pol-
lutants (Hang et al., 2011). This effect is exacerbated by wind speed, 
which enhances particle transport and reduces local particle 

Table 4 
Pearson correlation between CF of elements measured in Taranto.   

Al Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Zn 

Al 1 0.07 0.38 0.11 0.1 0.25 0.78** − 0.13 − 0.03 0.39* − 0.04 − 0.05 − 0.17 − 0.03 
Ca  1 0.26 0.27 0.31 0.62** − 0.19 0.56** 0.57** 0.17 0.57** 0.09 − 0.02 0.58** 
Cd   1 0.39* 0.12 0.16 0.32 0.02 0.02 0.29 0.02 − 0.09 − 0.13 0.15 
Co    1 0.36 0.33 0.16 0.15 0.23 0.38* 0.24 0.26 − 0.17 0.15 
Cr     1 0.66** 0.25 0.47** 0.57** 0.71** 0.58* 0.83** 0.27 0.49** 
Cu      1 0.06 0.68** 0.93** 0.55** 0.93** 0.43* 0.1 0.76** 
Fe       1 − 0.32 − 0.24 0.62** − 0.26 0.17 − 0.26 − 0.32 
K        1 0.8** 0.27 0.79** 0.33 0.32 0.72** 
Mg         1 0.4* 1** 0.4* 0.24 0.83** 
Mn          1 0.38* 0.63** 0.04 0.19 
Na           1 0.39* 0.25 0.84** 
Ni            1 0.13 0.37* 
Pb             1 0.32 
Zn              1 

**p < 0.01. 
*p < 0.05. 
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Fig. 4. Maps showing the spatial distribution of CF for (from top left) Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn within the study area based on the inverse distance 
weighing (IDW) analysis of the 29 sites in Taranto. Scale shown in the Al map. 
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concentrations (Mei et al., 2018). The effect of wind on the level of 
pollution in the Tamburi-Lido Azzurro neighbourhood has also been 
observed by Di Gilio et al. (2017), who reported high concentrations of 
metals and PAHs in particulate matter in sites located downwind 

(south-east) of the steel plant, particularly for industrially emitted 
metals such as Fe, Mn, Zn, and Pb. 

Low PLI values indicating no or low pollution in Taranto are found in 
or near urban green spaces, including parks and cemeteries. This effect is 

Fig. 5. Maps showing the spatial distribution of CF for Ca, K, Mg and Na within the study area based on the inverse distance weighing (IDW) analysis of the 29 sites 
in Taranto. Scale shown in the Ca map. 

Fig. 6. Map showing the spatial distribution of PLI for the 29 sites within the study area based on the inverse distance weighing (IDW) analysis.  
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evident in sites 1 and 2 (Fig. 4, blue inset), 17 and 19 (Fig. 4, yellow 
inset), as well as sites 22 to 28, 7 and 8, which are all close to community 
gardens and a cemetery. The importance of green spaces in urban set-
tings has been documented in numerous studies, demonstrating that 
they may act as buffers and improve air quality compared to sur-
rounding areas (Junior et al., 2022; Kruizse et al., 2019). Additionally, 
sites 22 to 28, 7 and 8 are likely influenced by their proximity to the sea, 
as a strong westerly sea breeze originates from the Ionian Sea (De Serio 
and Mossa, 2016). This breeze is likely to transport the pollutant east, 
away from these sites towards sites 9 to 13, where metal particulates 
accumulate. 

4. Conclusion 

This is the first known study deploying a multi-species biomonitoring 
approach to spatially assess the level of air pollution and identify the 
contribution of different sources to the air pollution in Taranto, Italy. We 
observed high concentrations of potentially toxic metals in all samples, 
but inter-species variability in elemental concentrations was evident. 
Model-based clustering identified two distinct groups, one dominated by 
pine needles with average higher metal concentrations than the other 
group composed of eucalyptus, oleander, olive tree and pittosporum. CF 
and PLI indices were employed to remove species effect in the subse-
quent statistical and spatial analysis. PCA and Pearson analysis sug-
gested a significant contribution of the industrial park, particularly the 
steel plant and the petrochemical refinery, to the CF of Ni and Cr. CF 
values of Fe and Al were observed to be related to road traffic emissions, 
while geogenic elements Ca, Mg, K and Na CFs were associated with 
marine spray and Saharan dust. The spatial analysis performed on CFs 
was particularly useful in corroborating urban pollution sources, with 
the highest CF values observed for sites close to the industrial park (Ni, 
Cr, Cd, Co, Fe, Mn) and two major roads Via Giobatta Magnaghi and Ponte 
Punta Penna Pizzone for Al, Fe, Mn, Zn. PLI spatial analysis identified 
three hotspots of deteriorating conditions related to both traffic and 
industrial emission, as well as two areas of non-pollution. We suggest 
that urban settings, such as buildings and block configurations, exac-
erbate the concentration of air pollution, while green spaces and sites 
exposed to sea breeze are likely to experience reduced air pollution. The 
evidence presented here improves understanding of the spatial vari-
ability in pollution levels and sources in a mixed-use urban setting, 
achieved using a simple, cost-effective multi-species biomonitoring 
approach. The findings of this study provide further support for the 
growing use of evergreen plants as bioindicators, offering time-efficient, 
valuable tool for air quality monitoring in Mediterranean regions. Bio-
indicators, such as those deployed in this study, can help inform decision 
makers in the effective design of urban pollution mitigation strategies, 
such as increasing green space coverage and encouraging the effective 
air movement and circulation in dense urban settings. 
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