A NOVEL STOCHASTIC OPTIMIZATION SOFTWARE FOR THE
OPTIMAL DESIGN OF CHEMICAL PROCESSES MODELED IN
COMMERCIAL SIMULATION SOFTWARE

F. Duanmu, D. N. Chia and E. Sorensen!

Department of Chemical Engineering, University College London, Torrington Place, London WCI1E 7JE, UK

Abstract

The design and optimization of a chemical process is often done using commercial software. Current com-
mercial simulation software either only have Non-linear Programming (NLP) optimization functionalities,
or the built-in Mixed Integer Non-linear Programming (MINLP) optimizer cannot efficiently handle com-
plex designs, even though the optimization of a chemical process is typically a highly non-convex MINLP
problem. Therefore, in this work, a novel stochastic optimization software — StOp — is presented. StOp
has a simple user interface and can communicate with commercial simulation software in solving the
optimization using stochastic methods coded within StOP (currently Genetic Algorithm, Particle Swarm
Optimization, Simulated Annealing, and Fast and Elitist Nondominated Sorting Genetic Algorithm), with
the process model expressed in the commercial software. StOp also has key functional features such as
parallel computing, dynamic bounds, a timeout function, and saving good solutions, which are customized
for the optimization of chemical processes. The software is illustrated by considering the optimization of

a three distillation column superstructure.

Keywords
Stochastic optimization, Software, Chemical process

Introduction

Commercial simulation software such as Aspen Plus (Aspen
Technology Inc., 2017) and gPROMS Process (Process Sys-
tems Enterprise, 2021) are widely used for designing chem-
ical processes by using built-in libraries/packages, for in-
stance reactors and distillation column models. The drag-
and-drop functions in these tools are straightforward and
easy to use when designing a process, as it does not require
the user to code any equations, and the “canvas” (the area
where the units are “dropped” onto) gives a direct visualiza-
tion of the process that is being designed. In addition to sim-
ulation, optimization is another important and essential part
of the design process. A proper optimization may provide
an optimal design with less capital expenditure, less energy
consumption, and less space/unit requirements, which leads
to a more financially and environmentally sustainable pro-
cess. For chemical processes, the optimization is usually a
highly non-convex Mixed Integer Non-linear Programming
(MINLP) problem. The objective function typically includes
complex cost equations, which often introduces discontinu-

' Corresponding author. Email: e.sorensen@ucl.ac.uk.

ities into the model. For this reason, an optimization can
easily drop into a local optimum. The built-in optimizer in
Aspen Plus is a Non-linear Programming (NLP) optimizer
based on Sequential Quadratic Programming (SQP), which is
incapable of handling integer variables, and there is currently
no built-in MINLP optimizer. Integer variables are, how-
ever, very common in a chemical process, e.g. the number of
stages in a distillation column. Therefore, when simulating in
Aspen Plus, an “optimization” study is usually performed in-
stead through sensitivity analysis, which by its nature is infe-
rior to rigorous optimization as it cannot solve the optimiza-
tion task simultaneously, and the solution will therefore not
be truly optimal. Although gPROMS has a built-in determin-
istic MINLP optimizer, called Outer Approximation / Equa-
tion Relaxation / Augmented Penalty (OAERAP), it does not
handle complex processes well as it requires quite careful de-
termination of the initial values and bounds of the optimized
variables, as well as considerable experience of how to set up
the optimization step by step, e.g. the optimization variables
may need to be added into the optimization task one by one
to increase the rate and success of convergence (Chia et al.,

2021).

To obtain an optimal design, one obvious option is there-
fore to develop and apply an external optimization tool,
for instance a stochastic method. The user can then opti-
mize the chemical process, which can still be constructed
within a simulation software, with the help of for exam-
ple an Application Programming Interface (API) for As-
pen Plus or a Foreign Process Interface (FPI) for gPROMS,
by doing the optimization externally to the simulation soft-
ware. However, coupling the external stochastic optimizer
libraries/packages with the simulation software requires the
user to have in-depth computational knowledge of the ways
in which the simulation software and the external optimizer
are constructed, how the tools communicate with each other,
and how they handle the input and output data (e.g. gPROMS
requires the input data to be constructed into a 1-D array, and
distillation column stages need to be in the form of an array
of Special Ordered Set of type 1 (SOS1)). Moreover, signif-
icant experience may also be required to apply some of the
more advanced functions in the optimization, for example,
to use parallel computing or to apply a timeout function on
a thread to prevent an “infinitely” long simulation or opti-
mization. Although optimization by combining an external
optimizer with a process model developed in a commercial
software may be highly successful, the limitations mentioned
above may nevertheless discourage a user from attempting an
external optimization.

GPROMS Process

(] ®Choose File
GPROMS Process
(]
GPROMS Process Name:

(J
GPROMS Process Password:

()

Select Optimisation Method: [B

Genetic Algorithm (GA)

(Ps0)

No.vrors (17—

o
Timeout (s): (z0 || Simuleted Annealing (SA)

Fast and Elitist rting Genetic Alg

Figure 1: Screenshot of the “general” tab of the Graphical
User Interface (GUI) of StOp for use with gPROMS Process.

In an effort to remove some of the barriers to using exter-
nal optimization methods with commercial simulation soft-
ware, in this work, an easy-to-use software called StOp (the
screenshot of the “general” tab is shown in Figure 1), based
on coupling a stochastic optimizer with commercial simu-
lation software, is developed and discussed. To illustrate
the performance of the software, a case study of superstruc-
ture optimization of distillation sequences is performed and
compared with the built-in OAERAP MINLP optimizer in
gPROMS.

Methodology

Our stochastic optimization software, StOp, allows process
models developed in commercial simulation software to be

optimized using external stochastic optimization methods.
The tool is developed using C# within the Windows Presen-
tation Foundation (WPF) framework. All the stochastic opti-
mization methods are coded by the authors without the use of
any library/packages. So far, StOp can only be operated on
Windows, but future work may consider making StOp cross-
platform so that it can also work on, for example, Linux. The
current version is compatible only with gPROMS but it is
the intention to make StOp also compatible with Aspen Plus.
The reason to start with gPROMS is that the communication
protocol used by gPROMS, called the foreign process inter-
face (FPI), is fully customizable by the user, making FPI very
easier to be tailored for different external software.

The external optimizer may not be the only software ex-
ternal to the simulation software. A foreign object (FO) al-
lows the user to call an external software to perform other
functions, such as extensive logical expressions or other cal-
culations. For example, gPROMS can be connected to a FO
called Multiflash (KBC Advanced Technologies, 2015) for
physical properties calculations. The users can also define
their own FOs using C, C++, or FORTRAN. In this work,
C++ is used to construct the necessary FOs. It should be
noted that FO is not compulsory in order to use StOp, but
rather is a tool to help with the simulations.

Together with gO:Run (Process Systems Enterprise,
2022a), which is an execution-only engine developed for
gPROMS, StOp can easily call and execute the simulation
within gPROMS in a very efficient way, also if this simula-
tion is linked to one or more FOs. In the following subsec-
tions, the main details of the software will be discussed.

Working with gPROMS

Figure 2 shows the components and communication route of
StOp with gPROMS, and the programming languages used to
develop them. First of all, the chemical process model should
be constructed within a gPROMS product (e.g. gPROMS
Process (Process Systems Enterprise, 2021) or gPROMS
Modelbuilder (Process Systems Enterprise, 2022b). A good
initial design is important as it impacts on the success, speed,
and quality of the optimization convergence.

The foreign process (FP) shown in Figure 2 is used to
communicate between the gPROMS simulations and the op-
timization tool StOp (i.e. data exchange). A Foreign Pro-
cess Interface (FPI) (i.e. a dynamic link library (DLL) file)
is developed and compiled using C++. The FPI required by
StOp is compiled as part of the software, and therefore the
user does not need to worry about developing an FPI of their
own. It should be noted that the user is, however, required to
have licenses for both the relevant gPROMS product and for
gO:Run, and must place the FPI (developed for StOp) in the
required path at “$GPROMSHOME%\ fpi”.

In addition to being an easy-to-use stochastic optimiza-
tion software, the key functional features of StOp include
embedded parallel computing, dynamic bounds, a timeout
function, and the capability of saving good interim solutions.
As other existing stochastic optimization libraries/packages
are usually for generic use, these key features are not com-
monly embedded. One aim of developing StOp is to pro-

Gmulation

DLL File

Foreign Process

& | <
el -

Stochastic Optimisation
Software

Figure 2: Communication flow between the developed stochastic optimization software (StOp) with the simulation software
(here gPROMS). The dynamic link library (DLL) files are developed in C++ while StOp is developed in C#.

vide an easy-to-use stochastic optimization software tailored
specifically for chemical processes, hence these features are
therefore embedded into StOp. The rational behind their se-
lection, and the importance of these key features for opti-
mization of chemical processes, will be discussed in the next
subsections.

Optimization Methods

The current version of StOp (V1.0.0) offers three single ob-
jective stochastic optimization methods: genetic algorithm
(GA), particle swarm optimization (PSO), and simulated
annealing (SA), as well as a multi-objective optimization
method called the Fast and Elitist Nondominated Sorting Ge-
netic Algorithm (NSGA-II).

The details of how GA and PSO has been applied are
described in our previous work (Chia et al., 2021; Duanmu
et al., 2022a). For GA, there are two available methods for
parents selection including a well-known binary tournament
selection (Back et al., 2000) and a modified Rank selection
method described in (Chia et al., 2021) where the top ranked
chromosomes are selected without introducing the probabil-
ity of selection of each chromosomes. The modified rank
selection has been found to be effective (Chia et al., 2021),
especially for complex processes (i.e. for which simulations
easily fail to converge) as it can prevent the lost of desired
designs and reduces the number of infeasible simulations
in each generation. The discrete crossover (Umbarkar and
Sheth, 2015) and uniform mutation (Soni and Kumar, 2014)
operators are available in StOp. For PSO, as outlined in En-
gelbrecht (2007), the inertia is dynamically chosen in each
iteration using the random adjustments method, and the cog-
nitive (resp. social) acceleration coefficient is linearly de-
creased (resp. increased). The random forth method (Gan-
domi and Kashani, 2018) is used for the boundary handling.
In both GA and PSO, the constraint handling method pro-
posed by Deb (2000) is utilized to avoid guessing an R value.
Both GA and PSO algorithms applied in StOp have been
found to be effective in the optimization of different chemical
processes (Chia and Sorensen, 2022; Duanmu and Sorensen,
2022).

For SA, different cooling schemes are available including
linear cooling (Engelbrecht, 2007), exponential cooling (En-

gelbrecht, 2007), fast annealing (Ingber, 1989), and Boltz-
mann annealing (Ingber, 1989). The random candidate gen-
eration method is currently applied (Johnson et al., 1989).
For the constrain handling, an user-defined value is added to
the fitness as fitness penalty for non-desired designs.

For multi-objective optimization, NSGA-II as proposed
by Deb et al. (2002) is considered, and the binary tournament
selection (Back et al., 2000), discrete crossover (Umbarkar
and Sheth, 2015), and uniform mutation (Soni and Kumar,
2014) are applied as well. To validate the NSGA-II method,
a constrained CONSTR problem (Deb et al., 2002) is used
and the optimization results are shown in Figure 3. The clear
Pareto front, and well spread search space, shows the excel-
lent performance of the multi-objective optimization method
applied within StOp. Although not shown in this work, the
Pareto front obtained from StOp is the same as the Pareto
front obtained from Deb et al. (2002).

10
8 B
6_
(]
[)]
w0
(0]
c
k=
[
4_
2_
Within constraints
Outside constraints
e Pareto front
O T T T T T T T T 1
0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1.0
Fitness1

Figure 3: Results obtained from the multi-objective Fast and
Elitist Nondominated Sorting Genetic Algorithm (NSGA-II)
for the constrained problem, CONSTR, in Deb et al. (2002).

Key Features of StOp

One of the most important features of StOp is the built-
in parallel computing function (see Figure 1). It is widely
agreed that the main limitation of stochastic optimization
is the long optimization time. However, this can be im-
proved by applying parallel computing for the simulations in
each generation/iteration. (It should be noted that the par-
allel computing function is not currently available as part
of the standard SA implementation in StOp, but a modified
SA with parallel computing will be developed in the future.)
gPROMS Process operates on logical processors, and StOp
requires a few threads for communication between the GUI
and the external software as well as for the handling of par-
allel computing. In practice, with StOp, parallel computing
can use a maximum of about 80% of the total number of log-
ical processors in a desktop for optimization (e.g. for AMD
Ryzen 9 3900x 12-Core 24-Processor CPU, 18 processors
can be allocated for parallel computing). The tasks are dy-
namically allocated to available processors to make the best
use of parallel computing as different tasks may require dif-
ferent simulation times.

Another key feature introduced in StOp is the use of dy-
namic bounds. Unlike classic mathematical optimization
problems, the optimization variables of a chemical process
are often related to each other. For example, for a distilla-
tion column, a feed location can never be larger than the to-
tal number of stages. However, unless the lower and upper
bounds of the feed location and the total number of stages
are mutually exclusive, during the course of the optimization
(e.g. mutation in GA), there is a possibility that the feed lo-
cation may be set as larger than the total number of stages
during optimization. In StOp, a dynamic bound for the feed
location can be applied to set the upper bound of the feed lo-
cation to be equal to the value of the total number of stages in
each task, thereby preventing many unrealistic and infeasible
simulation steps. For such cases, the dynamic bound feature
is found to be extremely useful.

The timeout function is essential to stop any “infinitely”
long simulations (or any simulation that runs for a signifi-
cantly longer time than other simulations). For example, in
gPROMS, for a complex model, some poor input values (e.g.
a small number of stages combined with a small reflux ratio
for a difficult separation in a distillation column) may lead to
a very long simulation time and may eventually end up with a
failed simulation as the purity specification(s) cannot be met.
Through experience, a user may be able to identify that after
a certain amount of time, the simulation will almost certainly
fail. In this case, waiting for the simulation to run for a very
long time, knowing that the simulation will fail, is clearly not
time efficient. Therefore, a timeout function is introduced in
StOp so that a simulation can be stopped after a defined time
set by the user. This feature is also applicable when parallel
computing is utilized.

Another useful feature is to save good solutions, where
all the feasible simulations from the previous iteration are
saved when this function is activated in StOp. Then, in the
current iteration, if the same design is found as in previous
iterations, the fitness and constraint values can be assigned

without performing the simulation, which saves computation
time. This is particularly helpful for GA as a percentage of
the best chromosomes (i.e. the elite parents) are selected and
kept, and these chromosomes are repeated in the next iter-
ation(s) until a better chromosome overwrites it. It should
be noted that the time needed to “compare and search” the
chromosomes in the current iteration with the “saved chro-
mosomes” pool from the previous iteration increases signif-
icantly as the “saved chromosomes” pool increases with in-
creased iterations. Therefore, in StOp, after trading off the
time saved from repeated simulation and the time needed for
“compare and search”, the chromosomes yielding feasible
simulation are saved only for one iteration, i.e. the “saved
chromosomes” pool is “emptied” every iteration after “com-
pare and search” is carried out.

Direct Sequence:

Select 1a & 2b (C1 +C3)
Indirect Sequence:

Select 1b & 2a (C1 + C2)
Prefractionator Arrangement:

Select 1b & 2b (C1+C2+C3) 1la

e
<

e
.

Figure 4: Schematic of the three columns superstructure con-
sisting of the direct sequence, indirect sequence, and prefrac-
tionator arrangement.

Case Study

To illustrate the performance of StOp, a case study is per-
formed using the genetic algorithm (GA) and particle swarm
optimization (PSO) methods combined with gPROMS Pro-
cess and Multiflash. The case study is the optimization
of a three column superstructure (which includes a direct
sequence, indirect sequence, and a prefractionator arrange-
ment) for the separation of a ternary non-azeotropic mixture.
This example will demonstrate the ability of StOp to per-
form superstructure optimization and to illustrate the use of
dynamic bounds. Parallel computing (with 40 processors for
optimization) is utilized to speed up the optimization using
a dual Intel Xeon Gold 6226R CPU with 16 Cores 2.90GHz
(in total 64 logical processors) and 192 GB Memory with a
speed of 3200 MHz. It should be noted that several optimiza-
tions have been carried out but only a single set of results is
reported here.

The flowsheet of the three column superstructure
is shown in Figure 4 which includes the direct se-
quence, indirect sequence, and a prefractiontaor arrange-
ment. The separation task considered is the separation of
a benzene/toluene/o-xylene (BTX) mixture to obtain at least

Table 1: Comparison of the optimization results for a three column superstructure (direct sequence, indirect sequence, pre-
fractionator arrangement) obtained from the deterministic optimizer built-in within gPROMS (OAERAP) and from StOp
using genetic algorithm (GA) and particle swarm optimization (PSO).

Item OAERAP GA PSO Unit
Final design Direct * Indirect * Prefrac. * Direct Direct -

Column 1

Total stages 30 29 29 35 37 -

Feed stage 15 17 15 17 17 -
Distillate 333.83 334.73 445.97 332.88 335.02 kmolh™!
Reflux ratio 1.75 0.71 0.50 1.71 1.67 molmol ™"
Column 2 (top)

Total stages - 31 28 - - -

Feed stage - 16 15 - - -
Distillate - 334.65 334.35 - - kmol h™!
Reflux ratio - 1.45 0.87 - - molmol ™"
Column 3 (bottom)

Total stages 34 - 31 32 34 -

Feed stage 19 - 16 18 18 -

Bottom 33556 - 335.04 33528 33440 kmolh™!
Reflux ratio 1.43 - 1.90 1.45 1.41 molmol ™!
Fitness and Time

TAC 8.07 9.09 9.08 8.06 8.01 M$y!
CPU time (par.) ¥ - = = 743 826 s

CPU time (unpar.) 75 88 153 10613 9994 s

* Structure fixed
1 40 processors used for parallel computing

99mol% of the three components in the product streams. The
feed is an equimolar, saturated liquid of BTX at 1 atm sup-
plied at a flow rate of 100kmol h~'. UNIQUAC is used for
liquid activity coefficient calculations via Multiflash while
the ideal gas law is assumed for vapor. An optimization based
shortcut method (Duanmu et al., 2022b) is applied to ensure
a good initial guess for the design.

AddRow Delete Row

Move Up

Move Down

Figure 5: Screenshot of the “dynamic bounds” tab of the
Graphical User Interface (GUI) of StOp.

It should be noted that, in addition to parallel comput-
ing, the dynamic bound function is also applied (shown in
Figure 5) to ensure that the feed location is always equal or
smaller than the corresponding total number of stages, and
equal or bigger than its own lower bound (e.g. if var2 (feed

location of column 1 — Nf1) is larger than var1 (total stage of
column 1 — Ntl), then a random integer between the lower
bound of var2 and varl will be chosen to replace the ini-
tial var2). Moreover, the timeout function, set at 20 seconds
(most simulations take about 2 seconds), is also applied to en-
sure the optimization is not “stuck” on infeasible designs. Al-
though the improvements made by these two functions can-
not be quantified as the improvement is strongly dependent
on the specific chemical process design, from the authors’
experience, these functions greatly reduced the number of in-
feasible designs and help the optimization to converge faster.

The three column superstructure in Figure 4 is optimized
in StOp with both GA and PSO, and then the optimal re-
sults of the superstructure are compared to the individual op-
timizations (for direct sequence, indirect sequence, and pre-
fractionator arrangement, respectively) carried out entirely in
gPROMS using OAERAP. The objective function is to mini-
mize the total annualized cost (TAC). The sizing and costs of
the equipment can be found in Seider et al. (2016) and Sin-
nott and Towler (2020), respectively, while the utility costs
are taken from Turton et al. (2012). It should be noted that
superstructure optimization using OAERAP is not included
in the table because OAERAP so often fails to give feasible
results. In addition, for OAERAP to work on the superstruc-
ture, an initial value that is very close to the optimal design
(e.g. results from GA) is needed, and this will make the com-
parison unfair as OAERAP will then inevitably result in a
design close to the initial design in a very short time.

Table 1 shows the values for all optimization variables ex-

cept selectors. The individual optimization using OAERAP
and the superstructure optimization using GA and PSO all
show that the direct sequence is the best design with very
close TAC and similar column designs. Taking a closer look
at the CPU time (note that parallel computing cannot be ap-
plied for OAERAP), the total CPU time used by OAERAP
is 316s. Although this CPU time is much shorter than those
reported for GA or PSO, OAERAP requires many manual
interventions as explained by Chia et al. (2021) and the time
for these are not included. Also, with the increasing com-
plexity of the superstructure (i.e. more selectors involved)
it becomes very difficult to manually massage the optimiza-
tion of every possible design, rendering optimization using
OAERAP practically impossible.

The parallel computing for GA and PSO are 13 and 11
times faster, respectively, with 40 processors for 70 tasks in
each iteration. The low parallel efficiency is due to the fea-
ture of the applied FPI in gPROMS and gO:Run. For a spe-
cific processor in parallel computing, if the previous simula-
tion succeeds, gO:Run will wait for the next input. However,
if an infeasible simulation occurs, gO:Run will be discon-
nected from the server and must be restarted by StOp for that
specific processor. This process takes some time. For simple
steady state optimizations, the time taken for a single sim-
ulation is short, thus the time penalty for restarting gO:Run
caused by an infeasible simulation is relatively large, which
leads to a reduced parallel efficiency if a few infeasible simu-
lations happen for each iteration in the optimization. To seek
a better parallel efficiency, a moderate number of processors
is suggested for simple steady state optimizations. On the
other hand, to achieve maximum optimization speed, a large
number of processors is recommended.

Conclusion

In this work, a stochastic optimization software named StOp
is presented, which can serve as an external optimization
tool for chemical processes developed in commercial sim-
ulating software. The current version supports genetic algo-
rithm, particle swarm optimization, simulated annealing, and
a multi-objective optimization genetic algorithm (NSGA-II).
The tool has several important built-in functions such as par-
allel computing, use of dynamic bounds, a timeout func-
tion, and can save good solutions which can be reused as
part of the optimization. StOp is illustrated for superstruc-
ture optimization of distillation column sequences, in which
the optimization is a Mixed Integer Non-linear Programming
(MINLP) problem. The results show that StOp has excellent
performance in finding a good optimal design within a short
time using parallel computing. In future work, StOp will sup-
port more stochastic optimization methods, more options in
each stochastic optimization (e.g. different mutation meth-
ods), combining the stochastic optimization with determin-
istic optimization to form a combined optimization method,
and supporting other commercial simulation software (e.g.
Aspen Plus). The tool is intended to be available as open
access.

Acknowledgments

The authors wish to thank Dian Rui Chia for their invaluable
help with the development of this software, especially for the
development of the GUI and the parallel computing function.

References

Aspen Technology Inc. (2017). Aspen Plus V10.

Back, T., D. B. Fogel, and Z. Michalewicz (2000). Evolutionary
Computation 1: Basic Algorithms and Operators (1 ed.).
Taylor & Francis.

Chia, D. N., F. Duanmu, and E. Sorensen (2021). Optimal Design
of Distillation Columns Using a Combined Optimisation
Approach. In M. Turkay and R. Gani (Eds.), 31st Euro-
pean Symposium on Computer Aided Process Engineer-
ing, pp. 153-158. Elsevier B.V.

Chia, D. N. and E. Sorensen (2022). Optimal Design of Hybrid
Distillation/Pervaporation Processes. In Y. Yamashita
and M. Kano (Eds.), Proceedings of the I14th Inter-
national Symposium on Process Systems Engineering -
PSE2021+, pp. 313-318. Elsevier B.V.

Deb, K. (2000). An efficient constraint handling method for genetic
algorithms. Computer Methods in Applied Mechanics and
Engineering 186(2-4), 311-338.

Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan (2002). A fast
and elitist multiobjective genetic algorithm: NSGA-IIL.
IEEE Transactions on Evolutionary Computation 6(2),
182-197.

Duanmu, F., D. N. Chia, and E. Sorensen (2022a). A Combined
Particle Swarm Optimization and Outer Approximation
Optimization Strategy for the Optimal Design of Distilla-
tion Systems. In Y. Yamashita and M. Kano (Eds.), Pro-
ceedings of the 14th International Symposium on Process
Systems Engineering - PSE2021+, pp. 1315-1320. Else-
vier B.V.

Duanmu, F., D. N. Chia, and E. Sorensen (2022b). A shortcut de-
sign method for complex distillation structures. Chemical
Engineering Research and Design 180, 346-368.

Duanmu, F. and E. Sorensen (2022). Optimal Design of Heat Inte-
grated Reduced Vapor Transfer Dividing Wall COlumns.
In Y. Yamashita and M. Kano (Eds.), Proceedings of the
14th International Symposium on Process Systems Engi-
neering - PSE2021+, pp. 175-180. Elsevier B.V.

Engelbrecht, A. (2007). Computational intelligence: An introduc-
tion (2 ed.). John Wiley & Sons, Ltd.

Gandomi, A. H. and A. R. Kashani (2018). Probabilistic evolu-
tionary bound constraint handling for particle swarm op-
timization. Operational Research 18(3), 801-823.

Ingber, L. (1989). Very fast simulated re-annealing. Mathematical
and Computer Modelling 12(8), 967-973.

Johnson, D. S., R. Aragon, and L. A. Mcgeoch (1989). Optimization
Annealing : an Experimental Part 1 , Graph Partitioning
Evaluation. Operations Research 37(6), 865-892.

KBC Advanced Technologies (2015). Multiflash version 6.1.

Process Systems Enterprise (2021). gPROMS Process version 2.2.

Process Systems Enterprise (2022a). gO:Run.

Process Systems Enterprise (2022b). gPROMS ModelBuilder ver-
sion 7.1.

Seider, W. D., D. R. Lewin, J. D. Seader, S. Widagdo, R. Gani, and
K. M. Ng (2016). Product and Process Design Princi-
ples: Synthesis, Analysis and Evaluation (4 ed.). Wiley.

Sinnott, R. and G. Towler (2020). Chemical Engineering Design (6
ed.). Elsevier.

Soni, N. and T. Kumar (2014). Study of Various Mutation Op-
erators in Genetic Algorithms. International Journal of
Computer Science and Information Technologies (1JC-
SIT) 5(3), 4519-4521.

Turton, R., R. Bailie, W. Whiting, J. Shaeiwitz, and D. Bhat-
tacharyya (2012). Analysis, synthesis, and design of
chemical processes (4 ed.). Pearson.

Umbarkar, A. and P. Sheth (2015). CROSSOVER OPERATORS IN

GENETIC ALGORITHMS: A REVIEW. ICTACT Jour-
nal on Soft Computing 06(01), 1083—-1092.

