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Abstract

Wearable digital technologies capable ofmeasuring everyday behaviors could improve

the early detection of dementia-causing diseases. We conducted two systematic

reviews following Preferred Reporting Items for Systematic reviews and Meta-

Analyses (PRISMA) guidelines to establish the evidence base for measuring navigation

and gait, two everyday behaviors affected early in AD and non-AD disorders and

not adequately measured in current practice. PubMed and Web of Science databases

were searched for studies on asymptomatic and early-stage symptomatic individuals

at risk of dementia, with theNewcastle–Ottawa Scale used to assess bias and evaluate

methodological quality. Of 316 navigation and 2086 gait records identified, 27 and 83,

respectively, were included in the final sample.Wehighlight severalmeasures thatmay

identify at-risk individuals, whose quantifiability with different devices mitigates the

risk of future technological obsolescence. Beyond navigation and gait, this review also

provides the framework for evaluating the evidence base for future digitalmeasures of

behaviors considered for early disease detection.
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1 INTRODUCTION

The widespread use of wearable digital devices in the general

population—most notably smartphones, smartwatches, and activity

trackers—provides a hitherto unavailable opportunity to collect data

oneveryday functions andbehaviors thatmayaid theearly detectionof

dementia-causingdiseases.1 In principle, such anapproachwouldover-

come several major limitations of current diagnostic approaches. In

contrast to the pen-and-paper cognitive tests used currently in clinical

diagnostic practice, digital testing of this kind would have high eco-

logical validity, given the tracking of real-life activities, and would be
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less affected by the educational and cultural confounds that at present

restrict the utility of cognitive tests when applied to diverse popula-

tions. Separately, wearable devices would permit disease detection at

a scale beyond that possible with current positron emission tomogra-

phy (PET)– and cerebrospinal fluid (CSF)–based biomarker tests, which

are expensive, invasive, and very restricted in their global availability.

Although the imminent blood biomarker tests will do away with many

of the drawbacks of current biomarker tests, their arrival does not

alter the requirement to identify impairedbrain functionality alongside

biomarker evidence of molecular pathology in order to determine the

presence of a disease state.

However, the future success of any digital approach of this kind

is critically dependent on the selection of those functions, out of all
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2 ČEPUKAITYTĖ ET AL.

possible functions potentially measurable with current and next gen-

eration devices, that are most relevant for early disease detection.

Although the overarching requirement is that selected functions

to be measured are sensitive to early disease, the need to dis-

tinguish between different diseases causing dementia—the clinical

importance of which is magnified by the advent of pathology-specific

immunotherapies—also requires that those functions to be measured

have specificity for individual diseases. Beyond these core determi-

nants of sensitivity and specificity there are operational requirements

for the tools chosen tomeasure the functions of interest. Given the size

of the population worldwide at risk of dementia, selected tools need to

be low in cost but high in ease of use for both clinicians and affected

individuals, and be applicable across diverse communities and cultures

independent of language and demographic differences.

Spatial navigation and gait represent two behavioral domains that

together illustrate this new approach to disease detection. Spatial nav-

igation comprises behaviors that utilize the brain’s representation of

space to encode and recall the spatial layout of environments in order

to guide wayfinding between places.2 Different navigational strate-

gies exist; allocentric navigation uses the spatial relationships between

environmental features, whereas egocentric navigation represents a

person-centered strategy based on the spatial relationship between

the person and the environment features.3 Finally, path integration

is a form of navigation in which integration of linear and angular

self-motion cues is used to update one’s spatial location within an

environment.4

Themedial temporal lobe regions, notably the entorhinal cortex and

hippocampus, are considered central to allocentric spatial navigation

and path integration, whereas themedial parietal regions, in particular

the retrosplenial cortex, are more involved with egocentric navigation

and egocentric-to-allocentric transformations in spatial processing.5

These behaviors are underpinned by neuronswith spatially-modulated

firing activity, such as grid cells, place cells, and head direction cells.6

Given that these regions are implicated in the earliest stages of

Alzheimer’s disease (AD), with deposition of amyloid and tau pathol-

ogy identified in the initial Braak pathological staging, recent work has

focused on spatial navigation as a potential initial behavioral marker

of AD.7 Various studies indicate that alterations in navigation precede

impairments in other cognitive domains, including episodic memory, in

people at risk of AD.8–10

In contrast to navigation and its specific association with early AD,

the distributed nature of gait and balance control in the brain means

that disorders of gait (here “gait” is used as an umbrella term to encom-

passbothgait andbalancedisorders)maybeobservedacross a rangeof

diseases causing dementia. It is unsurprising that impaired gait is a cen-

tral early feature of diseases with prominent locomotor impairments,

such as dementia with Lewy bodies (DLB), vascular dementia (VaD),

and Parkinson’s disease dementia (PDD).11–13 However, the complex-

ity involved in the maintenance of normal gait also makes it vulnerable

to other dementia-causing diseases, including AD and frontotemporal

dementia (FTD).14,15

Knowledge of the mechanics of gait is required to understand its

involvement in diseases causing dementia. During a gait cycle, the

RESEARCH INCONTEXT

1. Systematic review: Following the Preferred Report-

ing Items for Systematic reviews and Meta–Analyses

(PRISMA) guidelines, two structured reviews of literature

fromPubMedandWebof Science aimed todetermine the

evidence base for inclusion of digital measures related to

navigation and gait domains in digital toolkits targeting

early detection of dementia-causing diseases.

2. Interpretation: Navigation and gait measures may help

detect asymptomatic and early-stage symptomatic indi-

viduals at high risk of dementia diseases. A mixture of

digital devices and real-world tools were used that var-

ied in scalability and user burden; however, we highlight

measures that appear agnostic to the tool used.

3. Future directions: As one of the first reviews to sys-

tematically assess the potential of measures and digital

tools targeting everyday behaviors to remotely detect

dementia-causing diseases, this study provides a frame-

work by which future digital measures may be evaluated

against principles of clinical evidence, scalability, and

inclusion before implementation in disease- detection

toolkits.

legs alternate between swing and stance phases.16 Double support,

when both feet are touching the walking surface, takes up only 20%

of a regular gait cycle.16 This creates a need for constant online fine-

tuning of posture and bodilymovements to compensate for the shifting

center of gravity during locomotion and the unpredictable dynamic

environment, replete with stationary and moving obstacles, uneven

walking surfaces, and changing elevation. In addition, gait needs to

match internal goals. These adjustments are carried out through

multiple feedback and feedforward loops encompassing many brain

areas—including the primary motor, posterior parietal, and prefrontal

cortex, and the thalamus, basal ganglia, cerebellum, and brainstem

(Figure 1)17–19—that are vulnerable to a range of neurodegenerative

and vascular pathologies.20–22 The distributed nature of brain regions

involved in gait control and their complex interactions make it diffi-

cult to clearly map changes in certain gait subdomains, such as pace

or variability23–28 to the decline in specific brain regions across dif-

ferent diseases. However, the type and early staging of pathology in

DLB29 reveals that impaiments in gait asymmetry, postural control,

and balance observed across multiple studies30–32 may indeed be spe-

cific to the early stages of this disorder, making gait an attractive

domain for both early detection and differentiation of diseases causing

dementia.

In summary, navigation and gait represent behaviors that are not

captured by traditional cognitive diagnostic assessments but whose

measurement may deliver added value for early detection of both

AD and non-AD disorders. Given that both navigation and gait
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ČEPUKAITYTĖ ET AL. 3

F IGURE 1 Brainmechanisms of gait control. Figure fromRef. 19

represent natural human activities, their inclusion in future diagnos-

tic practice would provide an ecological validity and real-life relevance

that is absent from current pen-and-paper tests. Finally, and of crucial

importance given the global impact of dementia, both are language-

and culture-invariant behaviors, meaning that tools used for their

measurement may be applied across diverse populations without the

educational, linguistic, and cultural confounds that limit the use of

legacy cognitive tests.

However, to justify any future implementation of any measures in

medical practice, it is crucial to establish the evidence base for use from

a clinical perspective, and also to identify tools not only capable ofmea-

suring these behaviors in routine clinical practice but also of meeting

operational requirements for future large-scale deployment, such as

low cost and high ease of use for both clinicians and patients.

The aim of this systematic review, therefore, was to establish a

structured approach to identifying: (1) measures reported in the lit-

erature to date in relation to preclinical and prodromal detection of

diseases causing dementia, and (2) the technologies used to capture

these measures, with navigation and gait as exemplar behaviors for

the reasons provided. Although the criteria for preclinical and pro-

dromal stages of AD is well established,33,34 pre-dementia stages of

other dementias are much harder to define due to a lack of reliable

biomarkers.35–39 Therefore, in this systematic review, we aimed to use

a broader multi-disease definition of preclinical and prodromal stages

based on established dementia risk factors and the presence of clini-

cal cognitive symptoms. For example, we used “asymptomatic at-risk”

to collectively describe either cognitively healthy biomarker-positive

individuals or apolipoprotein E (APOE) ε4 carriers for AD, patients with
polysomnography-confirmed idiopathic rapid eye movement (REM)

sleep behavior disorder (iRBD) for DLB, and cerebral autosomal dom-

inant arteriopathy with subcortical infarcts and leukoencephalopathy

(CADASIL) for VaD (the full list of conditions and their groupings

are shown in Table 1).35–39 Similarly, individuals with mild cognitive

impairment (MCI) that were positive for AD biomarkers or carried

APOE ε4 were considered to belong to the symptomatic at-risk group

for AD. These groupings allowed us to holistically consider mea-

sures according to a key disease inflection point across dementia

diseases (namely, the asymptomatic to symptomatic transition) in

line with the need for a scalable but specific approach to dementia

detection.
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4 ČEPUKAITYTĖ ET AL.

TABLE 1 Grouping of early disease stages based on the stage of progression and risk factors used in the review.

Category Disease risk factor Disease Established term

Asymptomatic APOE ε4 AD n/a

Biomarker positive (CSF, plasma, PET) AD Preclinical AD

iRBD DLB n/a

PD+ iRBD PDD n/a

CADASIL VaD n/a

Progession to dementia Any n/a

Symptomatic APOE ε4 AD n/a

Biomarker positive (CSF, plasma, PET) AD Prodromal AD

iRBD DLB n/a

PD+ iRBD PDD n/a

Progression to dementia Any n/a

Abbreviations: AD, Alzheimer’s disease; APOE, apolipoprotein E; CADASIL, cerebral autosomal dominant arteriopathywith subcortical infarcts and leukoen-

cephalopathy; CSF, cerebrospinal fluid; DLB, dementia with Lewy Bodies; iRBD, idiopathic rapid eye movement sleep behavior disorder; PD(D), Parkinson’s

disease (dementia); PET, positron emission tomography; VaD, vascular dementia.

2 METHODS

The systematic review was carried out following Preferred Reporting

Items for Systematic reviews andMeta-Analyses (PRISMA) guidelines.

2.1 Eligibility criteria

Published studies were included on adults 18 years of age and older

which reported navigation or gait measures that were either i) pre-

dictive of the occurrence of dementia or ii) in cross-sectional studies

were able to discriminate asymptomatic and early symptomatic indi-

viduals at risk of dementia disorders from their respective controls.

This encompassed the following groups:

∙ AD: Preclinical AD (asymptomatic biomarker-positive or presymp-

tomatic familial AD) or prodromal AD (biomarker-positive patients

withMCI)

∙ VaD: (CADASIL patients prior to dementia onset)

∙ PDD (PD patients found to develop PDDwithin longitudinal follow-

up, carry APOE ε4, be positive for AD biomarkers, or have comorbid

RBD)

∙ DLB (polysomnography-confirmed iRBD patients)

∙ FTD (individuals found to develop FTDwithin longitudinal follow-up

or have pre-symptomatic familial FTD)

∙ Individuals with increased genetic risk of sporadic forms of demen-

tia (APOE ε4 carriers for AD, and individuals with high dementia risk

scores as determined by genome-wide association studies)

∙ Individuals found to develop dementia within longitudinal studies of

aging (includingmixed dementia)

For navigation, studies using measures related to egocentric or

allocentric spatial processing were included, that is, egocentric and

allocentric spatial orientation, navigation or spatial memory, reference

frame translation, wayfinding, route learning. Studies with measures

focused on visuospatial or object-memory–based processing were

excluded if the tests did not involve any significant egocentric or

allocentric spatial processing. Studies reporting navigation changes in

youngAPOE ε4 carriers (ages<30 years) were excluded aswrong study
population, given the potential confounding effect of developmental

factors in these younger individuals.9 For gait, studies using measures

related to walking, gait, posture, and balance were included.

Intervention, case, and uncontrolled studies were excluded due to

their limited generalizability. Studies on established dementia were

included only if they reported findings from individuals in the pre-

clinical or prodromal stages of diseases meeting the criteria outlined

earlier. Finally, only studies written in English were included.

2.2 Information sources and search strategy

Searches were conducted on PubMed and Web of Science databases

and limited to studies published before October 6, 2022, for naviga-

tion and before August 18, 2022 for gait. Any systematic reviews that

were identified were also screened for relevant references. PubMed

searches were restricted to human studies only. Because this filter is

not availableon theWebofScience, no filterswereapplied for searches

on this database.

Search terms were constructed using a combination of keywords

and spelling variants, as well as Medical Subject Headings (MeSH) for

PubMed, connectedusingBooleanoperators. Literature searcheswere

divided into the following categories:

1. Preclinical and prodromal dementias: defined using search

terms for dementias (“Alzheimer Disease”[MeSh], “Alzheimer’s

disease”, “Frontotemporal Dementia”[MeSh], “Frontotempo-

ral dementia”, “Lewy Body Disease”[MeSh], “Dementia with

Lewy bodies”, “Dementia, Vascular”[MeSh], “vascular dementia”,
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ČEPUKAITYTĖ ET AL. 5

“mixed dementia”, “Parkinson’s disease dementia”), followed by

keywords for pre-clinical and prodromal detection: (preclinical,

“pre-clinical”, prodromal, presymptomatic, “pre-symptomatic”,

“early detection”, “pre-dementia”, predementia).

2. Genetic risk and disorders that increase the risk of developing

dementia with two separate searches for APOE and CADASIL, and

RBD:

a. (“apolipoprotein E”, APOE, CADASIL, “Cerebral Autosomal

Dominant Arteriopathy with Subcortical Infarcts and Leukoen-

cephalopathy”)

b. (“REM Sleep Behavior Disorder”[MeSh], “rapid eye movement

sleep behaviour disorder”, “REM sleep behaviour disorder”,

“rapid eye movement sleep behavior disorder”, “REM sleep

behavior disorder”)

3. Prodromal AD: Amnesic mild cognitive impairment: (“Cognitive

Dysfunction”[MeSh], “mild cognitive impairment”) with biomarkers

(biomarker OR amyloid OR tau)

Search terms in all categories were followed by AND terms defining

either navigation or gait measures of interest:

1. Navigation terms used included: (navigat* OR allocentric OR ego-

centricORwayfindingOR “path integration”) with additionalMeSH

terms in PubMed searches ((“Spatial Navigation”[MeSh] OR nav-

igat*) OR allocentric OR egocentric OR wayfinding OR ‘path

integration’)

2. Gait terms used included: (gait, balance, postur*, walking)

2.3 Selection process

Records were first screened for duplicates using EndNote, which was

followed by manual removal. Another screening was then carried out

using Rayyan software, with the remaining duplicates removed either

automatically by the software or manually by the reviewers. Two

reviewers (G.C. and C.N.) independently screened titles and abstracts

within Rayyan environment. Full-text screening was then performed

on all potentially relevant records that could be retrieved by the same

two reviewers, also independently. Any disagreements were resolved

by discussion.

2.4 Data collection process and data items

Data extraction was completed using a custom-made form by the

two reviewers independently and then cross-reviewed with any infor-

mation that was missing added. We sought to extract size, cognitive

status, and demographic characteristics of the study sample (age, sex,

and racial and ethnic background), medication status in the case of

studies on PD, country(-ies) the sample was derived from, study type

(longitudinal, i.e., case–control or cohort, or cross-sectional), all mea-

sures related to the domains of interest assessed in the study, digital

devices (if applicable) used to record these measures, experimental

procedures, study setting (in-person or remote), results derived from

the relevant groups of participants, measures that showed promise

in predicting dementia onset or differentiating between pre-dementia

and control groups, and information on the quality of model predic-

tions (area under the curve [AUC], sensitivity, and specificity), where

available. Missing or unclear information was listed as “n/a.”

2.5 Study risk of bias assessment

The quality and risk of bias were evaluated for each study by two

independent reviewers (C.N. and G.C.) using the Newcastle–Ottawa

Scale (NOS) and its adapted version for cross-sectional studies.40,41

This tool was selected based on its availability for case–control, cohort,

and cross-sectional studies, enabling direct comparisons despite dif-

ferences in design. The scales enable evaluation of studies based on

the selection of study groups, comparability of study groups, and

ascertainment of exposure or outcomes. Any disagreements between

reviewers were solved by discussion. We excluded the question on

non-respondents from the modified version of the scale, as it was not

applicable to most gait and navigation studies. This led to a maxi-

mum of nine points awarded to studies meeting all criteria, regardless

of the study design. We also awarded full points for the ascertain-

ment of exposure or outcome question if the study used an objective

quantitative assessment of gait, balance, posture, and navigation,

independently of whether the assessment was carried out blindly.

2.6 Effect measures

All relevant effect measures reported in the studies were gathered.

Due to the heterogeneity among studies, only qualitative synthesis of

results was performed.

3 RESULTS

3.1 Navigation

3.1.1 Study selection

From 316 records identified through the systematic searches, 114

were duplicates and 143were removed after title and abstract screen-

ing. Of the remaining 59 articles, 57 were screened at full-text stage,

with 23 meeting the inclusion criteria. A further 5 articles were identi-

fied fromreferenceswithone ineligible, resulting in a total of 27 studies

included in the systematic review (see Figure 2 for the flow diagram).

3.1.2 Study characteristics

Individual study characteristics are presented in Table S1, covering

either prospective cohort (n = 6) or cross-sectional (n = 21) study
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6 ČEPUKAITYTĖ ET AL.

F IGURE 2 PRISMA flow diagram for navigation studies.

designs. No studies meeting the inclusion criteria investigated demen-

tia disorders other than AD, and for AD, the majority of these were in

the asymptomatic space (n = 15) covering mean ages of 37–82 years.

Individuals within these studies were stratified mostly by genetic risk

(APOE 4, n = 8),9,42–47 biomarker status (cerebrospinal fluid [CSF] or

positronemission tomography [PET],n=5),10,48–51 longitudinal clinical

progression on theClinical Dementia Rating (CDR) scalewith biomark-

ers (n = 1),10 by a clinician-confirmed dementia diagnosis (n = 1),52 or

by the Cardiovascular Risk Factors, Aging, and Incidence of Dementia

(CAIDE) risk score (n= 1).53 Studies in the symptomatic space (n= 13;

of which one investigated a asymptomatic population in parallel), cov-

ering ages 68–75 years, were more frequently stratified by biomarker

status (CSF or PET, n = 8),54–61 followed by genetic risk (APOE ε4,
n = 4)62–65 or longitudinal progression to a clinician confirmed AD

diagnosis (n= 3).55,60,66

All studies were conducted in Europe (n = 18) or the United States

(n = 9), with only five studies reporting racial or ethnic distributions.

The mean proportion of female participants across individual risk and

control sub-groups was 49%, with a median sample size of 17 for risk

groups and 28 for control groups. Studies were published from 2007,

with themajority from 2015 onward (Figure 3A).

3.1.3 Measures

In total, 143 unique measures of navigation were reported (n = 189

with duplicates; Table S2), of which 51 showed early diagnostic

potential (36%). Of these, 23 related to passive recording of global

positioning system (GPS) location data of individuals remotely dur-

ing everyday car-driving behaviors, whereas the remaining 28 related

to active cognitive tasks probing navigation behaviors that were per-

formed by participants during in-person study visits at a research

site. Within these active cognitive tasks, the predominantly exam-

ined behaviors were wayfinding, spatial memory, or path integration,

with either allocentric or egocentric environmental spatial cues. Given

the heterogeneity in reporting and assessment of these behaviors, a

qualitative synthesis was performed and detailed below (Figure 3B).

For differentiating asymptomatic at-risk populations, the median

AUC value reported in included studies was 0.81. A maximum of

0.96 (95% confidence interval [CI] 0.90–0.98) was achieved for cross-

sectionally differentiating cognitively normal individuals with and

without CSF AD biomarkers using navigational metrics derived from

passive GPS tracking of driving behaviors in combination with age and

APOE ε4 status.50

For symptomatic populations, the median AUC value reported was

0.90, with a maximum of 0.98 (95%CI not reported) for differentiating

MCI patients with andwithout CSFADbiomarkers using an allocentric

spatial memorymetric.56

The classification ability of navigation testing was compared with

that of other cognitive tests in 23 of the 27 studies (Table S1). In 17

of these, comparator metrics did not show statistically significant AUC

classification. In the remaining six that did, for two studies the com-

parator metrics had lower AUC values than either navigation metrics

alone or in combination. Where comparator metrics showed similar or
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ČEPUKAITYTĖ ET AL. 7

(A)
(B)

(C)

F IGURE 3 Descriptive information for navigation studies. (A) The number of navigation studies published between 2007 and 2022 included in
the systematic review. (B) Navigationmetrics with a potential for early detection in asymptomatic and symptomatic at-risk individuals. (C) Tools
used to assess navigation across studies.

better AUC values, all studies were in prodromal stage AD, by which

point more widespread neurodegenerative changes may be apparent

and related to thesemultidomain impairments.

3.1.4 Tools

Twenty-nine different tools were reported, of which there were seven

different types (see Figure 3C). All studies investigating passive naviga-

tion behaviors during driving (n = 3) used data-logger devices fitted in

participants’ own vehicles to remotely collect GPS data during every-

day life. Devices for active tasks included desktop computers with

either keyboard- or joystick-controlled movement (n = 11), touch-

screen tablets or smartphones (n = 3), or immersive virtual reality

(n = 1). Ten studies used artificial constructs including a tape-marked

floor maze (n = 1), pen-and-paper–based materials such as printed

images or two-dimensional (2D) route drawing (n = 4), a set of indoor

rooms and corridors within a building that were physically navigated

(n= 2), and a life-size cylindrically enclosed purpose-built test arena in

the style of aMorris water maze paradigm (n= 4).

3.1.5 Results of qualitative syntheses

Across the 51measures found to have early disease-detection capabil-

ity, a qualitative synthesis was performed to better compare different

types of measures and summarize the range of behaviors explored

(Table S3). This generated17 summarymetrics across four keydomains

of navigation task type: seven allocentric, three egocentric, three

path integration, and four passive GPS tracking metrics. However, fre-

quency of reporting may relate either to frequency of investigation or

frequency of significant effects across the included studies, which can-

not be determined here without conducting a meta-analysis of both

differentiative and non-differentiative metrics.

The most reported summary metric was related to linear dis-

tance error from a target goal location, especially in allocentric

tasks. Increased allocentric distance error was observed in both

asymptomatic42,65 and symptomatic62–64 APOE ε4 carriers, as well

as biomarker-positive, prodromal AD patients.58 Increased distance

error from a target goal was also reported in egocentric tasks for

symptomatic APOE ε4 carriers,62–64 and in path-integration tasks for

asymptomatic APOE ε4 carriers9 and biomarker-positive, prodromal

AD patients.61

The next most-reported spatial outcomes were allocentric mea-

sures of spatial memory for topographic scenes, reported mostly

in symptomatic AD at-risk stages,54–56 and time taken to find tar-

get goals, reported in asymptomatic APOE ε4 carriers,42 biomarker-

positive, preclinical individuals,48 and individuals that progressed

clinically over time to AD dementia.10

For passive GPS tracking devices in cars, the most frequently

reported metrics showing differentiation of both asymptomatic and

symptomatic risk groups were related to length of car journeys made

(e.g., total number of miles traveled/month), frequency of journeys

made (e.g., number of trips/month), and the complexity of journey tra-

jectories (e.g., total area covered, number of trips<5miles vs trips>15

miles).50–52

Whenwe summarized according to pre-dementia stage (Figure 3B),

allocentric metrics were roughly evenly reported between asymp-

tomatic and symptomatic at-risk stages, whereas egocentric met-

rics were reported exclusively for symptomatic stages. Both path
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8 ČEPUKAITYTĖ ET AL.

integration and passive GPS tracking were reported more frequently

for asymptomatic stages.

3.1.6 Risk of bias in studies

The mean (SD) NOS rating of included cross-sectional studies was

6.7 (1.4) and of included cohort studies was 7.5 (1.6) of a nine-point

maximum, indicating good overall methodological quality (Tables S4

and S5). However, specifically regarding the selection and compara-

bility criteria, there was evidence of bias in some studies. Only 2 of

the 21 cross-sectional studies justified the choice of sample sizes. The

representativeness of included samples was questionable in five cross-

sectional studies due to insufficient methodological detail or selection

of pre-identified participants.

For between-group comparisons, proper adjustment for multiple

confounding variables (including themajor factor of age)waspresent in

17 studies, with a further 2 studies includingmoderate adjustment and

the remaining 8 studies no adjustment, suggesting a need for cautious

interpretation of AD effects. Finally, from the studies evaluated, two

prospective cohort studies with dementia and/or MCI as an outcome

included only one follow-up time point, which may not be considered

as evidence of stable decline.

Within the 27 included studies, 3 reported null findings for naviga-

tion, suggesting a slight bias toward positive reporting.

3.1.7 Discussion

Across the 27 studies meeting criteria for inclusion, several measures

of navigation were identified that cross-sectionally differentiated

asymptomatic and symptomatic at-risk AD groups from controls, or

were predictive of clinical progression, with high AUC, sensitivity, and

specificity. The median AUC of the six relevant asymptomatic at-risk

studies was 0.81, whereas for the seven relevant symptomatic studies

it was 0.90. In those studies where comparisons were made with other

cognitive measures, the other cognitive measures were not observed

to have similar classification accuracy. This has particular relevance

for future clinical practice, since these comparator cognitive domains

invariably included episodic memory, testing of which is central to AD

diagnostic assessments worldwide. These findings illustrate that test-

ing of spatial navigation may deliver added value, on top of current

cognitive assessments, for the diagnosis of preclinical and prodromal

stages of AD.7,67

In keeping with previous reports, and critical for informed digital

tool selection, different navigation measures appeared differentially

sensitive to stages of AD.7 Egocentric metrics differentiated early

symptomatic at-risk AD groups exclusively, whereas allocentric, path

integration, andpassiveGPSmetrics differentiatedboth asymptomatic

and symptomatic populations. This may relate to a compensatory

switch in preferred strategy from allocentric to egocentric cues with

increasing disease progression,58 which has also been explored in

rodent models of AD.68 This also reflects the neurobiology of nav-

igation; more allocentric changes are associated with hippocampal-

focused pathologies, whereas egocentric changes are more associated

with parietal pathologies.7

In activenavigation tasks,whichwere all conducted in-person in lab-

oratory or clinic-based settings, the most widely examined metric was

the continuous measure of distance error from a target goal in virtual

reality environments. These tasks targeted either allocentric, egocen-

tric, or path integration behaviors, with movement in desktop tests

controlled either via a joystick, keyboard arrow keys, or screen tap-

ping. In immersive virtual reality or real-world tasks, distance errorwas

calculated from actual participant locomotion. Although digital virtual

environment paradigms are advantageous in creating objective perfor-

mance measures in highly controlled settings,69,70 they increase the

risk of digital exclusion, such as usability in older demographics, and in-

person testing lacks clinical scalability for thepurposes of earlier digital

detection. One exception to the in-person tools was Sea Hero Quest,

a citizen science smartphone navigation game app with over 4 million

global downloads that was remotely played by participants.71 Initia-

tives such as this exemplify the potential power of remote collection

of different navigation-based metrics, which are independent of other

cognitive abilities,72 usable across multiple countries and cultures,73

show sensitivity to preclinical genetic AD risk,43 and can predict the

real-world navigation ability of both young74 and older users.75

In contrast to the active metrics, all passive GPS driving metrics

were collected remotely using loggers fitted in participant personal

cars. Passive collection of GPS data provides a low-burden, scal-

able approach to collecting navigation-related metrics. Although it

remains to be seen how well passive-navigation metrics such as trav-

eling frequency or trajectory complexity relate to active-navigation

task performance or real-world navigation performance, these studies

are currently underway. Recent studies have explored personal GPS

devices76 or smartphone app77 tracking of location in dementia pop-

ulations, which would enable wider participation and less reliance on

personal vehicles.

Finally, no navigation studies examined non-AD diseases in their

early stages, which likely reflects the focus on AD, given the knowl-

edge of early AD neuropathological involvement of medial temporal

and parietal lobe regions subserving navigation and the absence of

similar knowledge in non-AD disorders. Although a small number of

studies have assessed navigation in vascular cognitive disorder78 and

FTD,79 these involved patients with established dementia and as such

fell outside the inclusion criteria of this review.

3.2 Gait

3.2.1 Study selection

From 2086 records identified through the systematic searches, 679

were found to be duplicates, and 1252 were removed after title and

abstract screening. Of the remaining 154 articles, 153 were screened

at the full-text stage, with 72 meeting the inclusion criteria. A fur-

ther 29 articles were identified from references, of which 11 were
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ČEPUKAITYTĖ ET AL. 9

F IGURE 4 PRISMA flow diagram for gait studies.

suitable for inclusion, with a total of 83 studies included in the

systematic review (see Figure 4).

3.2.2 Study characteristics

Individual study characteristics are presented in (Table S6). The stud-

ies included in the systematic review were published between 2000

and2022 (Figure5A).Most studies investigated gait in associationwith

risk of AD (n= 35),26,27,80–112 DLB (n= 16),11,28,30–32,113–123 and PDD

(n = 9).13,24,124–130 Very few studies were conducted in relation to

FTD (n = 1) or VaD (n = 2) risk, with one combining asymptomatic and

symptomatic individuals who progressed to FTD with those who later

developed AD (AD/FTD group), and asymptomatic and symptomatic

cases of future VaDwith individuals who later progressed toDLB diag-

nosis (VaD/DLB group), as the two groups in each pair were similar

in their gait characteristics.23,131 Finally, 22 studies utilized the term

“dementia,” combining different dementia etiologies.14,25,80,132–150

Most studies reported findings from longitudinal assessments

(n = 49, with n = 46 cohort studies and n = 3 case-control studies),

whereas 34 studies were cross-sectional. The sample size across stud-

ies ranged from 10 to 69,150 (median = 102, IQR = 272), with sex

balance varying from 100% female to 100% male (median = 50.8%

female, IQR = 25). Participants were middle-aged or older (average

age per comparison group for every study is provided in Table S6).

The majority of studies were conducted on North American and Euro-

pean samples (n= 71), with only eight studies from Asia and four from

Oceania (allwereAustralian). The reportingof participants’ racial back-

ground was limited, with only 25 of 83 studies explicitly stating the

racial distributionof their samples. Themajority of participants in these

studies wereWhite.

The vast majority of studies included in the review were carried

out within in-person settings (either in a laboratory, clinic, or at home

with researchers present), with only one study collecting data both

in-person and remotely and two studies remote-only.28,85,113 Of the

three studies, only one focused on gait alone and reported a number
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10 ČEPUKAITYTĖ ET AL.

(A)

(C)

(B)

F IGURE 5 Descriptive information for gait studies. (A) Gait studies published between 2000 and 2022. (B) Gait metrics with a potential for
early detection in asymptomatic and symptomatic at-risk individuals. (C) Tools used to assess gait across studies.

of quantitative gait measures,28 with the other two studies providing

composite scores that assesed other functions (e.g., resting tremor or

memory) in addition to gait. This study was also the only study iden-

tified through systematic searches that collected data passively while

participants were performing their normal daily activities.28 In the

remaining 82 studies, gait was assessed using a variety of active tasks

(e.g., a 10-mwalk at fast pace).

3.2.3 Measures

In total, 363 gait measures were reported across studies (Table S6).

Of these, 165 (45.4%) reported across 65 studies were shown to have

early diagnostic potential in asymptomatic (n = 112) and symptomatic

(n = 53) at-risk groups (Figure 5B). Most of these measures (n = 121)

characterized gait alone,while the remaining assessedbalance (n=17),

multiple domains (n= 7), or symptoms and qualitative gait characteris-

tics using standard clinical motor assessment tools, such as the Unified

Parkinson’s Disease Rating Scale (UPDRS) (n = 20). The most com-

monly occurring measures across these categories are summarized

below (see Figure 6 and Table 2 for definitions). All remaining mea-

sures and tasks used to record them are presented in Table S7, with the

direction of quantitative gait change shown in Table S8. With only 11

of the quantitative measures with early diagnostic potential recorded

passively in the real world, the majority were captured using active

tasks (n = 134) under single-task (n = 96; e.g., walk 10 m) or the more

challenging dual-task conditions (n = 36; e.g., walk 10 m while count-

ing backwards from 100 by three). Often, data acquired under single-

and dual-task conditions were combined into a single measure of dual-

task cost, which represented the difference in performance between

conditions. Finally, two measures were collected using virtual reality

tasks.

Gait measures with early diagnostic potential could be further

subdivided into those characterizing its macrostructure (n = 2) and

microstructure (n = 120). Two macrostructural gait measures—both

reflecting the pattern of walking and recorded as part of a single study

measuring gait passively in the real world—differed between asymp-

tomatic individuals at risk of DLB and healthy controls (Figure 5B).28

Most microstructural gait metrics with disease-detection capabilities

fell under the pace (n = 65), rhythm (n = 21), and variability (n = 20)

sub-domains, with one metric describing gait asymmetry, six postural

control, two truncal mobility, three turn properties, and three multiple

sub-domains at the same time (Figure 5B).

The most frequently encountered measure in the pace subdomain

was gait speed (n = 39), found to discriminate between individuals

at risk of developing dementias across the spectrum (asymptomatic

and symptomatic at risk of AD, symptomatic at risk of AD/FTD,

asymptomatic and symptomatic at risk of dementia, asymptomatic

at risk of DLB, symptomatic at risk of PDD and symptomatic at

risk of VaD/DLB) and their respective control groups.14,23–26,80,87,

88,91,96,98,101,105,106,108–110,117,133,135–142,144,145,147,150 In the only

study that compared individuals across the preclinical and prodromal
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ČEPUKAITYTĖ ET AL. 11

F IGURE 6 A diagram showing the sources of main quantitative gait metrics. A normal gait cycle of each leg consists of swing and stance
phases. A, anterior; L, left; LL, lateral; ML, medial; P, posterior; R, right;.

TABLE 2 A glossary of metrics used in text.

Subdomain Measure Definition

Asymmetry Step time asymmetry Difference in step time between L and R steps

Balance Jerk (A-P,ML-LL, overall) Jerkiness of sway in A-P andML-LL directions and overall

RMS acceleration (A-P, overall) Root mean square acceleration in A-P direction and overall

Pace Gait speed Ratio between distance traveled and time taken to travel that distance

Step length Distance between two consecutive initial contacts

Posture Dual-task cost in step width Difference in step width between double- and single task conditions

Step-length asymmetry Difference in step length between L and R steps

Step width Lateral distance between themidlines of R and L heels

Rhythm Cadence Steps per minute

Double support time Time spent in double support phase, which is the time between the initial

contact of one foot and toe off of the opposite foot

Stance time Time spent in stance phase, which is the time from the initial contact to toe off of

the same foot

Step time Average time taken tomake a single step

Swing time Time spent in swing phase, during which foot moves forward in the air

Trunk Range of motion of trunk (A-P) Angular range of the thoracic spine in the AP plane (i.e., moving back and forth)

Turn Peak angular velocity of trunk

(A-P)

The peak angular speed of thoracic spinemotion in the A-P plane (i.e., moving

back and forth)

Turn yaw score Composed of rotation duration and amplitudemeasures along the vertical axis

Variability Cycle-time variability Variance in the time interval between two successive occurrences of initial

contact of the same foot (gait cycle)

Stride-length variability Variance in the length between two consecutive heel strikes of the same foot

(stride length)

Abbreviations: A, anterior; L, left; ML, medial; LL, lateral; P, posterior; R, right.
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12 ČEPUKAITYTĖ ET AL.

stages of different diseases, two pacemeasures, namely, gait speed and

step length, were shown to differentiate symptomatic individuals who

progressed to VaD/DLB from those who progressed to AD/FTD.23

In the rhythm subdomain, the most common measures were

cadence (n = 4), double support time (n = 4), swing time (n = 4),

stance time (n = 3), and step time (n = 3). Both cadence and dou-

ble support time could discriminate between asymptomatic individuals

at risk of AD and healthy controls.83,109,110 In addition, alterations

in these two measures were found in asymptomatic individuals who

progressed to dementia during follow-up as well as asymptomatic

participants at risk of PDD (both cadence) or VaD (double support

time) as compared to their respective control groups.24,131,145 Finally,

measures of swing, stance, and step time could discriminate between

controls and asymptomatic individuals who progressed to dementia

(stance and swing time) or were at risk of DLB (all three) or VaD

(swing time).28,116,145

In the variability subdomain, cycle-time variability and stride-length

variability were the most commonly reported metrics (n = 3 each).

Although cycle-time variability could distinguish asymptomatic indi-

viduals at risk of AD, AD/FTD, or VaD/DLB from controls,23,27 stride-

length variabilitywas altered in symptomatic participants at risk of AD,

and both asymptomatic and symptomatic individuals who developed

dementia during follow-up as compared to controls.102,135,145

Few measures of postural control, gait asymmetry, truncal mobil-

ity, and turn propertieswere reported. Postural controlmeasures, such

as step-width (n = 1) and step-length asymmetry (n = 1), showed

potential for discriminating between controls and asymptomatic or

symptomatic individuals at risk of DLB and asymptomatic individuals

at risk of VaD/DLB.23,31,32 However, there was also some evidence

that dual-task cost in step width, another postural measure, could

distinguish between symtomatic individuals at risk ofAD/FTDand con-

trols at both middle and older age.23 Step-time asymmetry, the only

measure of asymmetry identified by the review, showed an ability to

distinguish asymptomatic participants at risk of DLB from controls.31

Truncal mobility, measured in terms of the range ofmotion of the trunk

in the anterior-posterior plane, was found to discriminate between

asymptomatic individuals at risk of developing DLB and controls under

both single- and dual-task conditions.118 Finally, the two measures

describing turn properties—namely, the peak angular velocity of the

trunk in the anterior-posterior planewhile turning, and turn yaw score,

composed of yaw duration and amplitude measures—were able to dis-

tinguish controls from asymptomatic individuals at risk of DLB and

symptomatic cases at risk of AD, respectively.84,118

Quantitative balance measures of sway jerk (anterior-posterior,

medial-lateral, and overall) as well as root mean square acceleration

(RMS, anterior-posterior and overall) were recorded under different

task conditions of the same study and found to distinguish asymp-

tomatic participants at risk of DLB from healthy controls.30 Such

measures, apart from two performance-based examples, such as a

score on a standing balance test, that were found to distinguish partic-

ipants who later progressed to dementia from those who did not, were

generally lacking of dementia risk groups outside of DLB (Figure 5B).

Many metrics reported in relation to impending synucleinopathies,

such as DLB and PDD, were qualitative and collected as part of a clini-

cal assessment (Figure 5B).Of these, incidence of freezing of gait (FOG,

n = 2) and fall frequency (n = 2), as well as presence of rigidity (n = 2)

were associated with PDD and DLB risk in both asymptomatic and

symptomatic individuals.11,115,124,127,128

Twelve of the 83 studies reported AUC values that

described the ability of different gait metrics to predict future

dementia risk or classify at-risk versus control groups (Table

S6).11,28,85,93,99,113,114,119,120,130,135,137,151 The models varied from

univariate to multivariate, and sometimes included measures from

other domains, such as memory, voice, and tremor. The lowest identi-

fied AUC value was that for a univariate model that used gait speed

measured during a 4-mwalk to predict dementia risk (AUC= 0.59).137

Other studies reported higher AUC values, in particular for quan-

titative gait measures (e.g., a combination of micro gait measures

could discriminate iRBD patients from healthy controls with an AUC

of 0.7028), and especially when assessed in combination with other,

non-gait measures (e.g., neuromotor index could predict conversion

fromMCI to AD with an AUC of 0.94).85 Similar values were reported

for sensitivity and specificity of thesemodels.

3.2.4 Tools

Most studies (n = 50) did not use any digital technologies to cap-

ture gait measures (Figure 5C). In these studies, performance

was quantified either by measuring time to complete the test

with a stopwatch or by rating quality of performance using a

standardized motor scale. In the remaining studies, electronic

walkways that allow capture of bilateral foot placement as par-

ticipants walk were the most common tool (n = 19 studies,

Figure 5C).23,24,31,83,94,102,103,108–111,122,129,131,135,141,145,146,152 Three

studies utilized force plates tomeasure alterations in posture,32,119,125

whereas one study used a motion capture system,27 which is used as

the gold standard in gait research and allows for movement capture

of the whole body as participants walk (Figure 5C). None of these

technologies are scalable for widespread clinical use due to their

cost, size, and operational complexity. Another study utilized passive

motion sensors,136 which could be implemented at home to measure

gait speed, but only in single-person households, as it is impossible

to distinguish who activates the sensors with additional wearable

technologies. Wearable sensors that enable measurement of linear

acceleration and angular velocitywhile participantsmovewere utilized

in six studies (Figure 5C).28,30,84,97,114,118 They included one- (n = 3),

four- (n = 1), and six- (n = 2) sensor systems. Although multi-sensor

systems are potentially hard to implement in real-world settings

because they increase the set-up time and reduce comfort, one-sensor

alternatives, with the sensor fixed on the lower back, may provide a

good balance between user acceptability and signal quality.28,30,84

Only two studies utilized custom smartphone-based applications

that employed internal phone sensors to measure gait and balance
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ČEPUKAITYTĖ ET AL. 13

(Figure 5C).85,113 Whether these apps have been validated against

gold standard tools was not described.

3.2.5 Quality and risk of bias in studies

The mean (SD) NOS rating for cross-sectional studies on gait was 7.0

(1.4) of 9, whereas longitudinal cohort studies were rated 8.1 (0.9) of

9 (Tables S9 and S10). Only three case–control studies met the criteria

for inclusion and received an average of 7.3 (1.2) stars of 9 (Table S11).

This indicated that the general quality of studies that met the inclusion

criteria was relatively high.

In relation to recruitment bias, only 19 (56%) of 34 cross-sectional

studies reported information thatwarranted representativeness of the

sample as compared to the average in the target population. In con-

trast, the selection of samples for longitudinal studies appeared to be

less biased, with 42 (91%) of 46 studies being rated as having a repre-

sentative target cohort, and 44 (96%) of 46 studies having selected an

adequate control cohort. Similarly, two out three case–control studies

were rated as having adequate case definition and good representa-

tiveness of the cases, as well as adequate selection and definition of

controls.

Comparability of participantswasgenerally highwithin studies,with

26 of 34 (76%) cross-sectional, 41 of 46 (89%) cohort, and all 3 case–

control studies fully adjusting for age and sex, two important factors

that have been found to affect gait, in their design or analysis.

Ascertainment of exposure and outcome was generally carried out

objectively across studies, with all 34 cross-sectional studies, 43 of 46

(93%), and all 3 case–control studies reporting unbiased exposure and

outcome assessments.

In terms of attrition bias in cohort studies, 15 of 46 (33%) studies

either reported large attrition rates of more than 20% or failed to ade-

quately explain the reasonsbehind attritionor exclusion. This indicated

a risk of bias in these studies.

3.2.6 Discussion

The 83 studies included in this systematic review provide evidence

for the value of gait in early detection of dementias. In line with pre-

dictions based on the overlap between brain networks controlling

gait and early pathophysiology underlying different dementia-causing

diseases, these measures were able to discriminate between asymp-

tomatic and symptomatic individuals at risk of developing dementias

and healthy controls. In addition, models including these measures

were able to predict the onset of clinical symptoms with moder-

ate to high AUC, sensitivity, and specificity, although, notably, only

12 studies used such models. Most measures focused specifically

on gait, with pace, rhythm, and variability subdomains affected in

asymptomatic and symptomatic individuals at risk of all dementias

investigated.23,24,80,87,88,91,117,133,135–138 By comparison, gait asymme-

try, truncal mobility, and balance measures may help to distinguish

individuals at risk of DLB from health controls regardless of the stage

of disease progression.23,31,32,84 More evidence is required to estab-

lish the ability of these measures to detect preclinical or prodromal

AD, FTD, and VaD. Similarly, only one study attempted to compare

gait in at-risk individuals across the dementia spectrum and found

more severe impairments in the pace subdomain in participants who

later progressed to VaD/DLB as compared to AD/FTD.23 This finding

is consistent with those from a study that recruited participants at

more advanced disease stages and found disproportionate changes in

gait speed and balance in DLB as compared to AD.153 However, addi-

tional studies using objective quantitative gait and balance measures

captured using analogous protocols to compare at-risk individuals

at asymptomatic and symptomatic stages of different disorders are

required to verify which gait measures can not only predict devel-

opment of dementias but also distinguish among dementia-causing

diseases in their earlier stages.

The review also evaluated the tools used in the measurement

of gait and balance to date and their suitability for remote deploy-

ment at-scale. Most studies included in the systematic review utilized

research-grade technologies, which were ill-suited to routine clinical

use due to high cost and/or operational complexity.24,83,135 Several

studies utilized wearable accelerometer sensors, including three that

used a single, multi-axial sensor. Although multi-sensor systems are

potentially difficult to implement in real-world settings due to the

increased user burden, one-sensor systems, if validated against gold

standard tools, may provide a good balance between user acceptability

and signal quality.154 In contrast, the use of smartphone applications

for harnessing accelerometer, gyroscope, and (in many cases) magne-

tometer sensors tomeasure gaitwas also limited,with only two studies

utilizing such applications as part of active tasks. The authors of nei-

ther study mentioned validation of their apps against gold standard

tools.85,113 Given the widespread use of smartphones, this may be the

most scalable and acceptable option tomeasure gait, although the vari-

able positioning of smartphones (e.g., in the hand, pocket, or a bag)

may pose challenges to signal extraction and data quality.155,156 Only

three studies recorded gait remotely and only one also collected gait

data passively while participants carried out their normal daily activ-

ities. 28 Active intermittent assessment of gait may be less valuable

than continuous passive monitoring, since it may result in participants

exerting maximum effort for only a short period and, therefore, may

mask any real difficulty with walking experienced in the dynamic real-

world settings.157 Therefore, both passive recording of everyday gait

and the utilization of smartphones for this purpose should be explored

in future studies, as they provide an unparalleled opportunity to reveal

sensitive, specific, inexpensive, and ecologically valid early disease sig-

natures without the need for complex task instructions and expensive

research-grade tools.158

Few studies were identified on preclinical and prodromal VaD

and FTD. This limitation was likely caused by the low prevalence

of CADASIL and FTD in the general population as compared to

other dementia-causing diseases. As a result, measures with the

highest sensitivity and specificity to detect VaD- and FTD-causing dis-

eases identified in future studies may differ from those presented

here.
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14 ČEPUKAITYTĖ ET AL.

4 GENERAL DISCUSSION

Digital measures capturing real-life activities are central to next-

generation approaches to earlier dementia detection, given their

potential to overcome several inherent limitations of current pen-and-

paper cognitive tests such as ecological validity and applicability across

diverse populations irrespective of demographic differences. However,

to deliver added diagnostic value, it is crucial that these approaches

select those activities with robust evidence of involvement in early dis-

ease and that are measurable using methods with the potential for

future widespread use in clinical practice.

Navigation and gait represent activities that meet these selection

requirements. Their testinghas complementary value for dementia dis-

orders in general, given that navigation is subserved by brain regions

selectively vulnerable to early AD, whereas gait is controlled by a dis-

tributed network of brain regions that are variously affected in AD as

well as non-AD disorders, such as FTD, PDD, VaD, and DLB. Both can

bemeasured remotely andappliedacrossdiversepopulations irrespec-

tive of differences in education, language, and culture. By conducting

this systematic review, we established the utility of digital navigation

and gait measures for detecting dementia risk and provided exam-

ples of technologies used to capture these measures in unsupervised

settings. Furthermore, we created a framework for evaluating the evi-

dence base for the inclusion of measures in digital toolkits aimed at

early detection of dementia in the future.

Eligibility criteria for studies were deliberately stringent to ensure

a high quality of results with greater certainty of evidence, including

only cross-sectional studies where participants had either biomarker-

confirmed preclinical or prodromal dementia or a higher risk for future

disease based on established genetic (APOE ε4 for AD) and other risk

factors (iRBD for DLB and PDD and CADASIL for VaD), or cohort stud-

ies with evidence of dementia outcomes. The terms “asymptomatic

at-risk” and “symptomatic at-risk” were used to refer collectively to

preclinical and prodromal stages of different dementias beyond AD for

which there is no accepted definition.

4.1 Measures

The results identified a number of measures in both modalities that

differed between symptomatic and asymptomatic at-risk individuals

and controls, some of which also showed high classification accuracy.

Measureswere collectedeither actively through tasksorpassivelydur-

ing routine behaviors, and either in-person during research visits or

remotely during everyday life. It is important to note that several con-

sistent findings across differentmethods of acquisition and task design

highlighted the potential of identified measures to provide accurate

read-outs of incipient disease effects. For navigation, these related to

measures of distance error in goal-finding paradigms, using allocentric

or path-integration focused prompts for earlier asymptomatic at-risk

AD stages and egocentric prompts for symptomatic stages. For gait,

measures of pace, rhythm, and variability, which were affected in indi-

viduals at risk of all dementias investigated, and asymmetry, truncal

mobility, and balance, which were altered in asymptomatic and symp-

tomatic individuals at risk of DLB, showed promise for use in early

disease detection.

The sensitivity and reliability of thesemeasures likely relate to their

grounding in cognitive andmovement neuroscience (see Section 3.2.6),

and subsequently the ability to tailor the task designs in such a way

that enables very subtle changes in cognitive ability associated with

early pathologymanifestation to be detected. For example, the naviga-

tion measure of distance error under path integration conditions was

only differentiative of asymptomatic at-risk groups in the most diffi-

cult task condition; namely, when supportive spatial cues that provided

directional cues to participants were removed from the environment,

whereas baseline performance was unchanged.9 Similarly for gait,

manymeasures sensitive to asymptomatic at-risk stageswere acquired

under dual-task conditions, with walking and balancing exercises per-

formed while participants were carrying out a second cognitive task

to disproportionately impair performance in the former.28 Improved

understanding of brain mechanisms underlying the sensitivity of these

measures can help refine tasks for clinical implementation and harness

their full potential for early disease detection.132

4.2 Devices

Across navigation and gait, a mixture of digital devices and real-world

tools were used which varied in scalability and user burden. Most

assessment approaches employed (including the assessment of navi-

gation using a desktop computer with a virtual reality environment or

gait using an electronic walkway) were not scalable or implementable

remotely forwidespread clinical use, despite their diagnostic potential.

Some studies, however, used tools that could address this issue,

while at the same time capturing similarmeasures of interest. For navi-

gation, the smartphone navigation game app Sea HeroQuest collected

measures of allocentric distance error, angular path integration, and

object-location memory while participants played at home. In addi-

tion, metrics captured passively through GPS loggers in personal cars

could differentiate asymptomatic at-risk groups, with more scalable

wearable sensors being explored (see Section 3.1).

For gait, a single multiaxial wearable Axivity accelerometer placed

on the lower back was employed to collect data on pace, rhythm, vari-

ability, asymmetry, and postural control subdomains over a week-long

period while participants performed their normal everyday activities.

Measures derived could distinguish participants at risk of DLB from

controls, suggesting that real-world settings are sufficiently challeng-

ing to reveal subtle deficits or adaptations resulting fromearly changes

in the brain.28

These examples highlight the future potential of rapidly develop-

ing technologies that enable measures derived from neuroscientific

understanding to be captured in a device-agnosticmanner. Newer iter-

ations of increasingly ergonomic virtual, augmented, andmixed-reality

devices, allow real-world simulating test paradigms to be delivered in

ever more-scalable and user-friendly ways while behavioral assess-

ments previously confined to desktop computers or pen-and-paper
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formats are being redesigned as tablet or phone apps.134 Although

device transferability in gait is more complex owing to the difficulties

caused by the variable smartphone positioning, small wearable sen-

sors that can be temporarily fixed to the body and developments in

signal extraction algorithms for smartphonedatamay in the future pro-

vide the means for remote measurement of motoric behaviors of this

kind.155,156

Passive sensing of behaviors has many advantages over active test-

ing, including lower user burden and high ecological validity28,159–162;

however, this approach also has several drawbacks, such as lower sig-

nal quality and issues with compliance and participant engagement.

Passively captured signal varies depending on environmental factors,

such as terrain, weather conditions, and rural as opposed to urban

settings. Unless such information can be gathered from other passive

sensors (e.g., location data may enable tracking of environmental fac-

tors for the purposes of gait analysis, while abrupt and severe changes

in gait may indicate that alterations in navigation may be due to fac-

tors other than AD) or diaries, which increase user burden, it may be

difficult to compare passive measures across individuals and estab-

lishpopulationnorms.Nevertheless, trackingdeclinewithin individuals

over timemay still be possible with good quality signal extraction algo-

rithms. Finally, one of the most important drawback of passive sensing

is its privacy risks, given the close association of measures to par-

ticipant personal information.163 GPS data, especially, pose a privacy

risk, with data breaches potentially resulting in identification of pri-

vate addresses and even an individual’s location in real time. For future

clinical application, robust privacy-preservingmethods, such as the use

of on-device analytics that minimize or eliminate transfer of poten-

tially privacy-sensitive data from users’ own devices, will need to be

deployed.

4.3 Limitations and strengths of the study

Although stringent inclusion criteria were employed, and the overall

NOS ratings indicated good methodological quality of studies, there

was evidence of bias in some studies, where sample representative-

ness and the extent of comparability was questionable or insufficiently

reported. Specifically, the majority of gait and all of navigation studies

included in this review were conducted with participants of European

or North American descent, and in only 30% of gait studies and 18% of

navigation studies were the racial or ethnic demographic breakdowns

provided. For navigation, in the threepassiveGPS tracking studies, pur-

posive sampling was used to include only individuals with access to a

personal car. These factors may limit the geographical and socioeco-

nomic generalizability to other populations, cultures, or nations. The

most valuable evidence is often derived from large-scale longitudinal

cohort studies, which are expensive to conduct and may dispropor-

tionately exclude countries with limited research funding. Although

navigation and gait are activities common to all human communities,

these limitations mean that, at present, the study results summarized

cannot be considered generalizable across populations.

Regarding comparability, in navigation studies, median group sizes

were 15 and 29 for risk and control groups, respectively, whereas for

gait studies they varied from 7 to 69,150 (median = 102). Although

relatively small sample sizes may introduce the risk of false-positive

results,164 the absence of effect sizes may hinder the interpretation

of findings in very large studies. Similarly, age was not adjusted for in

32% of navigation and ≈10% of gait and balance studies, which is the

largest confounding variable. Ultimately, more research with larger-

scale samples is needed before these measures can be validated for

clinical use.

4.4 Conclusions and future directions

The measurement of navigation and gait may improve early detec-

tion of diseases causing dementia and overcome several limitations

of legacy tests including real-world relevance and freedom from lin-

gusitic and cultural confounds. This systematic review summarizes the

evidence of the ability of navigation and gait measures to identify

asymptomatic and symptomatic individuals at risk of dementia andalso

evaluates digital and non-digital measurement devices with the poten-

tial for future clinical use at scale. Although the review has provided

a clinical evidence base for measuring navigation and gait, it has also

identified areas of bias in work undertaken to date, which will need to

be addressed if such tools are tomeet inclusivity and diversity require-

ments in any future clinical application. Finally, although focusing on

navigation and gait as exemplar behaviors of high disease-detection

value, themethodology used in this systematic review can be used as a

framework for future evaluation of other measures and measurement

devices that may also have utility in the early detection of dementia

disorders.
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Giedrė Čepukaitytė https://orcid.org/0000-0001-6702-8057

CocoNewton https://orcid.org/0000-0002-0937-9673

REFERENCES

1. Frey AL, Karran M, Jimenez RC, et al. Harnessing the potential of

digital technologies for the early detection of neurodegenerative

diseases (EDoN).OSF Preprints. 2021. doi:10.31219/osf.io/u49z5

 15525279, 0, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.13716 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [18/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0001-6702-8057
https://orcid.org/0000-0001-6702-8057
https://orcid.org/0000-0002-0937-9673
https://orcid.org/0000-0002-0937-9673
https://doi.org/10.31219/osf.io/u49z5
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