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SUMMARY
Although immunotherapy with PD-(L)1 blockade is routine for lung cancer, little is known about acquired
resistance. Among 1,201 patients with non-small cell lung cancer (NSCLC) treated with PD-(L)1 blockade, ac-
quired resistance is common, occurring in >60% of initial responders. Acquired resistance shows differential
expression of inflammation and interferon (IFN) signaling. Relapsed tumors can be separated by upregulated
or stable expression of IFNg response genes. Upregulation of IFNg response genes is associated with puta-
tive routes of resistance characterized by signatures of persistent IFN signaling, immune dysfunction, and
mutations in antigen presentation genes which can be recapitulated in multiple murine models of acquired
resistance to PD-(L)1 blockade after in vitro IFNg treatment. Acquired resistance to PD-(L)1 blockade in
NSCLC is associated with an ongoing, but altered IFN response. The persistently inflamed, rather than
excluded or deserted, tumor microenvironment of acquired resistance may inform therapeutic strategies
to effectively reprogram and reverse acquired resistance.
Cancer Cell 42, 209–224, February 12, 2024 ª 2023 The Authors. Published by Elsevier Inc. 209
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INTRODUCTION
 common site of progression at primary resistance but relatively
PD-(L)1 blockade can generate profound, durable responses in

patients with lung cancer and has been rapidly incorporated

into the treatment paradigm for most patients with advanced

non-small cell lung cancer (NSCLC).1,2 Unfortunately, even

among those patients who initially respond to PD-(L)1 blockade,

over half will eventually develop progression—termed acquired

resistance (AR).3 Alongside primary resistance (refractory to

initial treatment), AR represents a significant and possibly under-

appreciated clinical challenge.3 Remarkably little is known about

the molecular mediators of AR. Perhaps relatedly, effective ther-

apies to circumvent or reverse AR largely remain elusive.

The landscape of immune AR to PD-(L)1 blockade is poorly

understood. By contrast, several molecular mechanisms of AR

to molecularly targeted therapies (e.g., EGFR and ALK-directed

tyrosine kinase inhibitors) have been identified and led to signif-

icant therapeutic advances.1,2 In patients with lung cancer

treated with PD-(L)1 blockade, there have been a few published

cases of AR.4–10 Along with case reports in other diseases, these

studies have identified that loss of key proteins associated with

antigen presentation (AP) or defects of the interferon-g (IFNg)

signaling pathway can contribute to immune resistance.8,11–13

Pre-clinical work has further highlighted how the relative acuity

vs. chronicity of IFNg exposure can contribute to immune

dysfunction and tumor resistance.14–16 Improved understanding

of the nature and biology underlying AR is imperative to develop

more effective next-generation immunotherapies in the future.

To address the clinical and molecular landscape of AR to

PD-(L)1 blockade in patients with NSCLCs, we examined a large

clinical cohort (n = 118 out of 1,201 analyzed in the study) of AR

to PD-(L)1 blockade in lung cancer paired with a systematic

genomic and transcriptomic analysis in a subset of patients

(n = 29) with available tissue samples. We then also examined

several isogenically paired murine models of initially sensitive

vs. late relapse derived resistant tumor lines to PD-(L)1 blockade

to validate relationships identified in human samples.

RESULTS

AR to PD-1 blockade in NSCLC is common
Of 1,201 patients with NSCLC treatedwith PD-1 blockade atMe-

morial Sloan Kettering Cancer Center (MSK) between April 2011

through December 2017, 243 (20%) achieved initial response.

Many patients who responded ultimately developed AR, with

an estimated cumulative AR rate of 61% (95% CI 36%–85%)

at 5 years of follow up using a competing risk model (Figure 1A).

The onset of AR was variable (52%within 1 year, 39% 1–2 years,

11% > 2 years) (Figure 1B). The relative risk of developing AR

decreased with longer duration of initial response (Figure 1C).

Although AR and primary resistance have not been directly

compared previously, we hypothesize that these scenarios are

distinct biologically and clinically. Consistent with this, we found

that several baseline clinical features differed between patients

with AR and primary resistance (Figure 1D). High tumor PD-L1

protein expression in baseline (pre-treatment) tissue, in partic-

ular, was enriched among patients with AR compared to primary

resistance (55% vs. 28%, Fisher’s p = 0.02). The organ-specific

pattern of progression also differed, with liver metastasis being a
210 Cancer Cell 42, 209–224, February 12, 2024
uncommon in AR (31% vs. 7%, Odds Ratio 6.23, Fisher’s

p < 0.0001, Figure 1E). Perhaps most notably, the post-progres-

sion overall survival was significantly longer in patients with AR

compared to primary progression (median 18.9 months vs.

4.4months, log rank p < 0.0001 Figure 1F), potentially suggestive

of persistent, partially effective anti-tumor immune responses

that permits prolonged survival even after the initial onset of

AR. Overall, AR was largely characterized by distinct clinical fea-

tures, suggesting AR may have underlying immunobiologic fea-

tures that are distinct from primary resistance and in need of

dedicated analysis.

Patient cohort for molecular profiling of AR to PD-1
blockade
To investigate the molecular mechanisms of AR to PD-1

blockade in patients with NSCLC, we generated microarray-

based whole transcriptome expression data, and whole exome

sequencing (WES) data from pre- and/or post-treatment tumors

in a subset of patients. Patients with analyzed samples had

similar baseline characteristics to those in the larger clinical

cohort (Table S1). After quality control and sample prioritization,

the primary analysis of the molecular data focused on 42 tumor

samples (13 pre-treatment, 29 post-treatment) from 29 patients

for expression data and 34 tumor samples (15 pre-treatment, 19

post-treatment) from 22 patients for exome data (Figure 2A and

Table S2). Thirteen patients had expression data available from

both pre- and post-treatment tissue; 12 patients had exome

data available from both pre- and post-treatment tissue. All

post-treatment samples were obtained following radiographic

progression to PD-1 blockade (median time from progression

to sample collection 3.7 weeks, interquartile range [IQR] 1.8–

10.4) and prior to initiation of new systemic therapy (patients

did not receive combination PD-1 blockade with chemotherapy;

Figure 2B).

Our work and others17 have shown that AR frequently occurs

in an oligoprogressive pattern, highlighting the importance

of assessing the lesion-level response in the analysis of AR.

Therefore, we examined the lesion-level response (and resis-

tance) from which each sample was collected to optimize that

pre-treatment and post-treatment samples reliably represented

the biology of responsive and AR tumors, respectively. Specif-

ically, all post-treatment samples were derived from sites with

lesion-specific radiologic rebound growth or de novo growth

(Figures 2C, S1A, S1B, and S2).

AR to PD-1 blockade is associated with a distinct
transcriptional landscape
Principal components analysis (PCA) of protein-coding gene

expression profiles from whole transcriptome data of all 42 sam-

ples showed no major technical or clinical factors influenced

clustering, including batch and site of sample collection (i.e.,

lung, lymph node, adrenal, etc) (Figures S3A and S3B). There

was also no separation among lesions that were present pre-

treatment and later grew compared to those that emerged

de novo during treatment (Figure S3C). We summarized gene

expression values to pathway-level scores using single sample

gene set enrichment analysis (ssGSEA)18 on hallmark19 gene

sets categorized into oncogenic, cellular stress, immune,

https://www.zotero.org/google-docs/?broken=H8MC02
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Figure 1. Clinical features of acquired resistance to immunotherapy in lung cancer

(A) Cumulative incidence of developing acquired resistance among patients with NSCLC with initial response to PD-1 blockade therapy.

(B) Time to onset of acquired resistance among responders (n = 243).

(C) Estimated rate of developing acquired resistance defined by duration of initial response.

(D) Rates of baseline clinical features among patients with primary (n = 346) and acquired resistance (n = 118). Asterisk represents significant comparisons of

Fisher’s p < 0.05.

(E) Common organ sites of progression at time of primary or acquired resistance. * represents significant comparisons of Fisher’s p < 0.05.

(F) Post-progression overall survival in patients with primary or acquired resistance (log rank p < 0.0001). See also Table S1.
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stromal and other processes as previously applied.20 PCA clus-

tering of 26 paired samples using enrichment scores (ES)

showed a separation of samples based on paired pre- and

post-treatment timepoints, with the separation primarily driven

by immune-related hallmark gene sets (Figures 3A and 3B). Dif-

ferential expression analysis of paired samples for hallmark gene

sets showed a significant upregulation of IFN alpha/gamma
response, oxidative phosphorylation, and DNA repair pathways

after treatment (false discovery rate [FDR] < 0.1, Figure 3C and

Table S3). Clustering of paired samples based on computational

deconvolution of immune cell estimates from bulk expression

derived using CIBERSORT21 showed a separation of pre- and

post-treatment samples particularly driven by infiltration of

CD8+ T cells (Figures 3D and 3E). Significant increase in immune
Cancer Cell 42, 209–224, February 12, 2024 211
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Figure 2. Overview of the patient cohort used for the exome and expression analyses

(A) Flow diagram depicting molecular profiling of samples from patients with NSCLC treated with PD-1 blockade who developed acquired resistance. Paired

samples are those collected prior to treatment initiation with PD-1 inhibitor and at time of resistance from the same patient. Unpaired samples include single

timepoints of collection; prior to treatment initiation or at time of resistance.

(B) Swimmer’s plot of when each patient was molecularly profiled. Course of treatment, progression-free survival, and time to tissue acquisition are depicted.

Lines within circles identify the type of sequencing completed.

(C) Waterfall plot of Response Evaluation Criteria in Solid Tumors (RECIST) best overall response in patient (dark blue) and lesion (light blue). Dashed line rep-

resents 30% shrinkage. Asterisk represents new metastatic lesions that appeared during treatment and continued to grow consistent with a site of acquired

resistance (de novo growth). See also Figures S1 and S2; Tables S1 and S2.
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infiltration (Wilcoxon signed-rank test p < 0.05; Figure S3D) and

specifically CD8+ T cells was also observed post-therapy from

differential analysis of paired pre-treatment and post-treatment

samples (FDR < 0.1, Figure 3F and Table S3).

Several clinical and pre-clinical studies have generated bulk or

single-cell RNA-seq datasets to identify gene sets associated

with immune checkpoint blockade (ICB) resistance and T cell

dysfunction. We curated a non-redundant resource of these

gene sets plus the hallmark gene sets (hereafter termedHallmark

and ICB resistance gene set, see STAR Methods for details) and

compared differential changes among the paired samples

(Tables S3 and S4). Among these, comparing post-treatment

to pre-treatment samples, we found an increase in expression

of AP pathway, IFNg,22 CD8 T effectors,23 and proliferating

exhausted CD8+ T cells,24 while genes belonging to WNT25

pathway showed modest reduction in expression (Figure 3G).

Consistent with these gene sets associated with ongoing

immune response to PD-1 blockade, expression of individual

genes enriched in post-treatment tumors included GZMA,

B2M, and CXCL9 (Figure 3H and Table S5).

Chronic and therapy-dependent increase in IFNg
response pathway as a potential route to AR to ICB
Given the variability in the time to progression in the patient

cohort (Figure 2B), we next applied pseudotime analysis using

Phenopath26 to model disease progression in a continuous

‘‘latent’’ space based on gene expression variability within the

cohort (Figure 4A). Using the 500 genes with the largest gene

expression variability in pre- and post-treatment samples and

subject ID and treatment as covariates, pseudotime scores

generally increased from pre- and post-treatment samples, in

particular, for a group of patients with low pre-treatment pseudo-

time estimates (Figure 4B). To identify pathways that potentially
212 Cancer Cell 42, 209–224, February 12, 2024
are associated with AR, we performed correlation analysis be-

tween change in pseudotime and change in pathway ssGSEA

ES and signatures using the Hallmark and ICB resistance gene

set compendium (Figure 4C). Among the top 10 positively corre-

lated pathways with pseudotime, several IFN type I and II (IFNg)

signatures were correlated significantly, including IFN-stimu-

lated genes (ISGs) that comprise the IFNg hallmark gene set

(Figure 4D, FDR < 0.01). Notably, samples could be separated

into two subsets, with about half of samples showing little to

no increase pre- to post-treatment and the other half character-

ized by elevated expression in ISGs related to an IFNg response.

This led us to categorize the patients into an IFNg response

‘‘stable’’ and an IFNg response ‘‘increase’’ group (Figures 4D

and 4E).

As sustained cancer-intrinsic IFN signaling has been linked to

ICB resistance in pre-clinical mouse models of melanoma and

other cancers, we tested whether the change in ISG signatures

(IFNa and IFNg hallmark gene sets) observed in our clinical

cohort related to a resistance signature derived from an ICB-

resistant mouse model of melanoma.15,27 We found a significant

association between the mouse-derived ICB resistance

signature and the treatment-induced change in IFNg response

(Spearman’s rank correlation r = 0.90; p = 2.2e-16; Figure 4F),

which persisted after removing overlapping genes (r = 0.86;

p = 0.0003). Separately, PCA of change in enrichment score of

hallmark gene sets between paired lesions showed a separation

of patients on the 1st principal components based on the extent

of change of ISG signatures (Figures S4A–S4C). The correlation

was significantly stronger for change in the IFNg-related ISGs

(r = 0.9; p < 2.2e-16) when compared to change in IFNa-related

ISGs (r = 0.48; p = 0.09; Figures S4D and S4E).

Consistent with a differential change of IFNg response genes

in these patients, tumors with an increase in IFNg-related ISGs
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Figure 3. Resistant lesions show up-regulation of IFNg response pathway and infiltration of CD8+ T cells

(A) Principal components analysis of paired samples using enrichment scores of hallmark gene sets derived from ssGSEA. Paired pre- and post-treatment lesions

from the same patient are connected using a dashed line (n = 26). The light gray arrow indicates the average directionality of change for each pair.

(B) Principal components feature loadings of hallmark gene sets with both magnitude and direction. Biological processes in hallmark gene sets were categorized

into sub-groups as previously described20 and colour-coded accordingly.

(C) Differential comparison of hallmark enrichment scores between pre- and post-treatment samples. Each point represents a hallmark gene set and point size

indicates the number of genes in a gene set. The x axis indicates the change in hallmark enrichment scores for paired samples from each patient (Post vs. Pre) and

the y axis is false discovery rate (FDR)-adjusted p value derived from the comparison of enrichment scores of hallmark gene sets using paired t-test. The black

dashed line represents FDR cutoff to identify significant gene sets (FDR < 0.1).

(D) Principal components analysis of immune cell estimates derived using CIBERSORT immune cell deconvolution approach.

(legend continued on next page)
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generally had an increase in inferred activity of individual tran-

scription factors associated with activation of ISGs, STAT1 and

IRF1, as well as immune signatures (estimated by hallmark and

literature gene sets) associated with CD8+ T cell exhaustion

across several studies24,28 (Figures 4G–4J and Table S6).

In addition to signatures of T cell exhaustion, an increase in

regulatory T cells28 was also noted. FOXP3 was specifically

upregulated in samples from the subgroup with an ‘‘increase’’

in IFNg-related genes (paired t test p = 0.005; Figure S4F). In

contrast, patients with ‘‘stable’’ expression of IFNg-related

genes were characterized by a lack of change in these im-

mune-related pathways and genes (Table S6). Together these

data suggest a recurrent pattern of AR to PD-1 blockade in

NSCLC is associated with activation of an IFNg transcriptional

program in tumors, presumptive alteration in tumor-specific

IFNg signaling (given persistent tumor growth clinically), and a

concomitant increase in exhaustion of CD8+ T cells in the

microenvironment.

Positive selection pressure for antigen presentation
gene mutations in AR
To examine somatic alterations and potential mechanisms of

AR, we next evaluated the exome sequencing data pre- vs.

post-treatment for 12 patients (24 samples with germline single

nucleotide polymorphisms [SNPs] confirming paired samples

belonged to the same patient; Figure S5A). NSCLC is character-

ized by a highmutation burden, a strong predictor of response to

immunotherapy.29–31 Overall, there was no significant difference

in tumor mutation burden (Wilcoxon signed-rank test p = 0.6;

Table S7), known driver genes,32 neoantigen burden, fitness

(Wilcoxon signed-rank test p = 0.74), or tumor heterogeneity

(Wilcoxon signed-rank test p = 0.37) before versus after immuno-

therapy treatment at a summary level (Figures 5A, S5B, and

S5C). However, there was evidence of remodeling of clonal or

sub-clonal structure in seven patient samples. For five of these

patient samples, clonal mutations were retained while a subset

of sub-clonal mutations were lost and/or new sub-clonal muta-

tions were also acquired (Figures 5B and S5D). For two patients

(AR_20 and AR_27), post-treatment lesions did not share any so-

matic mutations with their respective pre-treatment lesions

indicative of emergence of a potentially new tumor or outgrowth

of a rare (i.e., below the limit of detection by WES) pre-existing

tumor clone (Figure S5E). Among the clonal mutations detected

in the post-treatment lesion of AR_20 included a nonsense mu-

tation in the STK11 gene consistent with previous observations

of an association between mutations in STK11 and resistance

to ICB in lung adenocarcinoma.33 Several mutational processes,

including extrinsic factors, particularly smoking, can influence

somatic molecular profile in NSCLC and can be detected as

mutational signatures.34 The smoking signature was the domi-
(E) Principal components feature loadings of immune cell estimates.

(F) Differential comparison of immune cell estimates (CIBERSORT) between pre-

associated color reference indicated in panel e. The x axis indicates the change in

axis is FDR adjusted p value derived from paired comparison of immune cell est

(G) Summary of key changes in hallmark gene sets, immune checkpoint block

differential analysis of expression data. All gene sets with p value <0.05 are show

(H) Differentially expressed genes between pre- and post-treatment samples.

(FDR < 0.15). Benjamini-Hochberg (BH) method was used for FDR correction. S
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nant signature in pre-treatment lesions and these mutations per-

sisted in post-treatment lesions. However, post therapy the

clonal composition of these tumors had changed potentially

shaped by different sets of factors indicated by depleted propor-

tion of smoking related mutations (Figure S5F). Recent studies

have shown an enrichment of APOBEC mutational signature in

samples from patients who benefit from immunotherapy treat-

ment.35 In two patients, AR_08 and AR_20, we observed a

noticeable increase in fraction of private mutations contributing

to APOBECmutational signatures 2 and 13 in the post-treatment

lesions (48.3% in AR_08 and 14.3% in AR_20) relative to those in

the pre-treatment lesions (5.4% in AR_08 and 1.6% in AR_20).

Given previous studies describing loss of B2M and other

genes such as TAP1, TAP2, and TAPBP involved in AP pathway

as a potential mechanism of immune escape in resistant tumors,

we performed an unbiased analysis to evaluate positive selec-

tion pressure on individual genes before and after therapy.36

As expected, canonical driver mutations in lung cancer such

as KRAS and TP53 were under strong positive selection pres-

sure, and there were no recurrently altered driver genes with sig-

nificant enrichment in post-treatment tumors compared to pre-

treatment (Figures 5C and S5G). However, a nonsense mutation

and a frameshift deletion in B2M were exclusively identified in

post-treatment tumors of AR_14 and AR_19 respectively, and

other immune-related genes such as IL21R, PDCD5, FKBP1A,

and FNIP1 were indeed enriched post-therapy (Figures 5C,

S5H, and S5I). No potential pathogenic mutations were

observed in TAP1, TAP2, and TAPBP genes.

Given the selective identification of mutations in B2M and

other immune-related genes in the ICB-resistant tumor samples,

we evaluated additional gene sets involved in AP pathways using

the GSEA approach. Specifically, we asked whether there was

evidence of an association between IFNg selective pressure

and dysregulation of AP pathways (Figure 5D). Overlaying muta-

tional changes with IFNg status for the cases with both expres-

sion and mutation data, we observed mutation enrichment in the

AP pathway to be more common among patient samples that

show an ‘‘increase’’ in IFNg response in contrast to those with

‘‘stable’’ IFNg response pathway. Notably, three out of four pa-

tient samples with significant change in clonal or sub-clonal ar-

chitecture (AR_20, AR_27, AR_19), also showed presence of

new mutations in the AP pathway genes in their post-treatment

lesions (Figure 5E). All four of these patients (AR_20, AR_27,

AR_19, AR_26) also had available tissue for B2M and class 1

HLA protein expression testing on tumor cells and all were nega-

tive or decreased from baseline (Figures 5F and 5G)

To explore expression patterns of AR in an independent cohort,

we analyzed RNA-seq data from primary and metastatic tumor

samples obtained prior to enrollment onto a phase 1b study of

durvalumab in combination with tremelimumab in subjects with
vs. post-treatment samples. Each point represents an immune cell type and

immune cell estimates for paired samples from each patient (Post vs. Pre) and y

imates.

ade-resistance related gene signatures and estimates of immune cells using

n. * indicates gene sets that were significant after FDR correction (FDR <0.1).

The black dashed line represents FDR cutoff to identify significant genes

ee also Figure S3 and Tables S3, S4, and S5.
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Figure 4. A subset of samples from patients with acquired resistance have elevated IFNg response and T cell exhaustion signatures post-

treatment

(A) Schematics of pseudotime analysis of bulk mRNA aiming to uncover temporal information that traces the underlying biological process of samples from a

cross-sectional cohort of individuals. This analysis assumes that tumors in the cross-sectional cohort behave asynchronously and each patient’s sample is at a

different stage of progression captured along the trajectory of pre- and post-treatment.

(B) Pseudotime estimates based on the 500 most variable genes in pre- and post-treatment samples using PhenoPath.26

(C) Spearman’s rank correlation score between change in pseudotime pre- to post-treatment vs. change in ssGSEA-based enrichment scores of the hallmark and

immune checkpoint blockade (ICB) resistance gene sets. Top ten positively and top three negatively correlated gene sets are shown. **FDR < 0.01,

***FDR < 0.001.

(D) Scatterplot of change in ssGSEA enrichment score vs. change in pseudotime estimates pre- to post-treatment with indication of patient samples separating

into an IFNg response increase (pink) vs. stable (light blue) group.

(E) Patient sampleswere sub-divided into ‘‘stable’’ and ‘‘increase’’ categories based on themagnitude of change in the IFNg response signature between the pre-

and post-treatment samples.

(F) Correlation between change in the IFNg response signature and change in the ICB-resistance signature derived from a mouse model of melanoma for the

paired samples.27 The change in resistance signature was compared to the change in IFN gamma response using a Spearman’s rank correlation.

(G) Change in enrichment scores of key differentially regulated gene sets in either ‘‘stable’’ or ‘‘increase’’ patient samples (pearson correlation p < 0.05) ordered

according to change in enrichment score of IFNg response signature. The extent of overlap between IFNg response signature and each differentially regulated

gene set is represented as the overlap coefficient.

(H and I) Activity of IFNg response associated transcription factors (H) IRF1 and (I) STAT1 in pre- and post-treatment timepoints of patient samples (n = 26) in

‘‘stable’’ and ‘‘increase’’ sub-groups.

(J) Differential change in expression levels of previously reported immune-responsive genes and resistance associated therapeutic targets in literature in the

‘‘stable’’ or ‘‘increase’’ sub-group. Benjamini-Hochberg (BH) method was used for p value adjustment. Statistical comparisons in (H) and (I) were performed using

two-tailed paired t test. See also Figure S4 and Table S6.
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advanced NSCLC (‘‘Study 06’’, NCT02000947). Patients enrolled

in the Study 06 trial were either naive to ICB treatment or failed on

a previous line of anti-PD-(L)1 monotherapy. Those who failed to

respond were further categorized as ICB primary resistant or
ICB AR (Figure 5H). Patients with primary resistance had docu-

mented radiographic disease progression %16 weeks from the

start of treatment with no evidence of clinical benefit. Patients

with AR had radiographic disease progression following initial
Cancer Cell 42, 209–224, February 12, 2024 215
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Figure 5. Genomic dynamics in acquired resistance to PD-1 blockade in lung cancer

(A) Summary of somatic mutations (missense and indels) in samples from our immune checkpoint blockade (ICB)-resistance cohort for known driver genes in

non-small cell lung cancer (NSCLC). Pattern of mutations of recurrently mutated genes derived from a previous study.32 The heatmap also indicates the unique

and shared mutations in each sample and the proportion of mutations associated with key somatic signatures (smoking and APOBEC) associated with lung

cancer.

(B) Percentage loss or gain of clonal and sub-clonal mutations in paired samples (n = 24) from each patient.

(C) Comparison of global p value estimates for genes (n = 20,091) derived from dN/dS analysis of missense, truncations and indels to evaluate gene-level se-

lection pressure in pre- and post-treatment samples estimated using dndscv method.36

(D) Comparison of global p value estimates genes to identify gene sets under positive selection in pre- and post-treatment samples. The change in gene level

global p value between pre- and post-treatment samples (shown in (C)) was used to order genes and estimate GSEA normalized enrichment score and p value for

each gene set.

(E) Summary of key changes in expression and mutations in nine patients with pre- and post-treatment measurements for both expression and exome. The

private mutations in post-treatment lesions of patients in genes part of antigen presentation pathway (KEGG or REACTOME) are shown.

(F and G) Immunohistochemistry based quantification of (F) HLA/MHC-I and (G) B2M. The pre-treatment lesion of patient AR_19 did not have enough tissue for

immunohistochemistry.

(H) Schematics of samples obtained from patients prior enrollment on Study 06—a phase 1b study in advanced NSCLC where patients were treated with

durvalumab (Durva) and tremelimumab (Treme) as a second line therapy. Patients enrolled in the Study 06 trial were either naive to immunotherapy (IO) treatment,

had progressedwithout initial objective response (primary resistant), or progressed after an initial objective response (acquired resistant) on a previous line of anti-

PD-(L)1 monotherapy.

(I) Violin plot of ssGSEA enrichment scores for the hallmark IFNg response gene set for samples from the three patient groups. ssGSEA enrichment scores of

samples from patients with acquired resistance and patients who were ICB naive were compared using Wilcoxon rank-sum test. See also Figure S5, Tables S7

and S8.
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clinical benefit (i.e., complete response, partial response, or stable

disease on any scan). To investigate expression pattern differ-

ences between ICB naive (n = 58) and patients with AR (n = 27),

available RNA-seq data were analyzed by ssGSEA using hallmark
216 Cancer Cell 42, 209–224, February 12, 2024
and ConsensusTME37 gene sets to compare expression patterns

of cancer-relevant pathways and immune cell infiltration esti-

mated from bulk tumor mRNA. Similar to our pre- vs. post-treat-

ment cohort, samples from patients in Study 06 with AR had
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Figure 6. Cell lines derived from mouse CT26 tumors with acquired resistance to PD-1 show dysfunctional IFNg signaling

(A) Tumor volume over time after treatment with anti-PD-1 therapy or control (Vehicle) for parental (CT26 parental) and resistant cells (CT26 anti-PD-1 Res.) (n = 9

per group).

(B) Percentage of mice that resisted anti-PD-1 treatment.

(C) Experimental design for development of ICB-resistance model from anti-PD-1 treatment of CT26-derived tumors in mice. Cell lines were derived from tumors

and subjected to RNA sequencing.

(D) Principal component analysis (PCA) of IFNg-untreated samples i.e., parental (sensitive), 2nd round and 4th round ICB-resistant cells based on enrichment

scores of hallmark gene sets.

(E) Principal components feature loadings of hallmark gene sets with both magnitude and direction. Biological processes in hallmark gene sets were categorized

into sub-groups as previously described20 and the vectors were color-coded accordingly.

(F–I) Enrichment scores in parental, 2nd and 4th round cells for the following genesets: (F) IFNg response pathway, (G) STAT1, (H) IRF1, and (I) antigen processing

machinery.

(J) Comparison of significance of change in enrichment score between IFNg stimulated (IFNgs) and IFNg untreated (IFNgu) 2nd round and significance of change

in enrichment score between IFNgs and IFNgu parental cells.

(K) Comparison of significance of change in enrichment score between IFNgs and IFNgu 4th round and significance of change in enrichment score between IFNgs

and IFNgu parental cells.

(L–O) Comparison of enrichment scores between IFNgu vs. IFNgs (parental or 2nd or 4th) cells for the following genesets: (L) IFNg response pathway, (M) IRF1, (N)

STAT1, and (O) antigen processing machinery. Statistical comparisons in (F), (G), (H), (I), (L), (M), (N), and (O) were performed using unpaired t test. For all panels,

error bars are the standard error from the mean. See also Figure S6 and Table S9.
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significant enrichment of myeloid cells, T cells, and IFNg-related

ISGs compared to treatment naive samples (FDR < 0.05,

Figures 5I, S5J, and S5K; Table S8).

AR is associated with elevated ISGs and alterations in
tumor IFNg signaling
To further explore the transcriptional features that are associated

with AR to ICB in our clinical cohort, we also examined cancer

cell intrinsic transcriptional programs using a pre-clinical murine

model system of AR to ICB inhibitors. Similar to PD-1-responsive

human lung cancer, the CT26 murine model is carcinogen-

induced, has high tumor mutation burden, and is highly sensitive

to immunotherapy treatment,38 and is therefore awell suited pre-

clinical analogue for interrogating AR. As expected, subcutane-
ous CT26 tumors showed significant reduction in tumor volume

over 3 weeks of anti-PD-1 treatment (Figure 6A). To model

AR, persistent viable cells following anti-PD-1 treatment were

excised, cultured in vitro, and reimplanted in mice. This process

was repeated for several passages until CT26 tumors were no

longer responsive to anti-PD-1 antibody therapy (Figure 6B).

Bulk RNA-seq was performed on the ICB-resistant cancer cell

lines derived from tumors from the 2nd round (n = 2) and 4th round

(n = 4) of in vivo passage and compared against the ICB-sensitive

parental cell line (n = 3; Figure 6C). PCA of whole transcriptome

data did not show any clear trend (Figure S6A); however, PCA of

hallmark gene sets showed the parental and 2nd round samples

tend to cluster separately from the 4th round samples with

the separation mainly driven by IFN alpha/gamma response
Cancer Cell 42, 209–224, February 12, 2024 217
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pathway (Figures 6D and 6E). Systematic comparison of 4th

round samples with parental samples showed a significant upre-

gulation of IFNa and IFNg response pathway genes (Figures 6F

and Table S9). An increase in genes for other biological pro-

cesses including TNFalpha signaling (FDR % 0.1) and the AP

pathway (Figure 6I) were also evident in cells from 4th round

resistant tumors. In contrast, no significant change in gene

sets was observed from the comparison of the 2nd round and

parental cell lines (Figures S6B and S6C). Similar to the human

data, these findings indicate that anti-PD-1 resistance was asso-

ciated with elevated baseline expression of IFNg-related ISGs.

Alongside the increase in baseline IFNg response pathway

genes in the 4th round cells, we also observed an increase in

the activity of IFN-related transcription factors STAT1 and IRF1

inferred from their regulons (Figures 6G and 6H). Consistent

with this increase in transcription factor activity and with our pre-

vious findings linking elevated ISGs to epigenetic changes,39 ex-

amination of chromatin accessibility by ATAC-Seq showed

enrichment of the JAK-STAT signaling pathway in 4th generation

anti-PD-1 resistant cells relative to parental cells (q-value < 0.1;

Figure S6G) or in vivo passaged control cells (q-value < 0.1; Fig-

ure S6H). Moreover, an unbiased search for motif sequences in

the peaks of promoter regions showed significant enrichment of

transcription factor binding motifs for IRF1 in the resistant cells

(Figure S6I) but not in parental cells. These findings suggest

that enhanced activity of IFN-related transcription factors may

contribute to the elevated baseline ISG expression associated

with resistant cancer cells.

To explore if ICB resistant cancer cells with elevated ISGs can

further induce ISGs after IFNg stimulation, cell lines were stimu-

lated with IFNg for 24 h and compared to unstimulated controls.

While the parental and 2nd round cell lines showed an increased

expression of genes involved in IFN signaling after IFNg stimula-

tion, the 4th round cell line did not show an overall induction of

ISGs at the transcriptional level (Figures 6J–6Ll, S6D–S6f, and

Table S9). In addition, transcription factors downstream of

IFNg signaling, such as STAT1 and IRF1, showed the same

pattern with no statistically significant differences in expression

between IFNg stimulated vs. control in the 4th round cell line

(Figures 6M and 6N). As IFNg signaling is known to upregulate

AP machinery pathway genes,40 we also specifically investi-

gated the effect of IFNg on these genes, which further supported

the observations and showed no additional induction to IFNg

stimulation in 4th round cells (Figure 6O).
Figure 7. Acquired resistance to immune checkpoint blockade (ICB) a
LLC1 syngeneic lung cancer mouse model

(A) Experimental design of anti-PD-1 + anti-CTLA-4 therapy treatment schedule i

IFNg stimulated (gLLC1) and ICB-resistant LLC1 cell lines.

(B) Comparison of tumor weights harvested on Day 16 in parental (LLC1), resp

features (gLLC1 and ResResLLC1) do not respond to ICB.

(C) Representative flow cytometric plots to show the expression of PD-1 and TIM

(D) Comparison of percentage of PD-1+ TIM-3+ terminally exhausted CD8 T cells

(E) Unsupervised clustering of CD8 T cell population based on expression of T c

(F) A heatmap to indicate the levels of the different T cell related markers across

(G and H) Comparison of percentage frequency of meta-clusters 5 (MC05) and 6

LLC1, gLLC1 and ResResLLC1 tumors. The boxplots in (B), (D), (G), and (H) indi

quartiles. The upper whisker extends from the hinge to the largest value no furthe

from the hinge to the smallest value at most 1.5 * IQR of the hinge. Statistical com

See also Figure S7.
To examine ISG expression and IFNg response after AR in

another well-established immunogenic tumor model, we also

analyzed MC38 colorectal carcinoma tumors. Consistent with

reports that MC38 is highly responsive to anti-PD-1 treatment

with better immunogenicity than the CT26 model41 (Figure S6J)

indeed, subcutaneous MC38 tumors showed significant reduc-

tion in tumor volume after three weeks of anti-PD-1 treatment

(Figure S6K). Similarly to CT26, we also derived serially progres-

sive MC38 tumors no longer responsive to anti-PD-1 after the 5th

round (n = 4) of in vivo passage. Resistant MC38 cancers cells

showed significantly higher levels of multiple ISGs, including

Stat1, Stat2, Ifitm2, and Ifitm3 when compared to parental cells

(Figures S6L–S6P). Stimulation with IFNg for 24 h further

increased expression; however, compared to parental controls,

resistant cells had significantly reduced transcriptional induction

for several of these ISGs (Figures S6Q–S6U). Thus, like CT26 tu-

mors, MC38 tumors that relapse after anti-PD-1 are associated

with elevated baseline ISGs and develop an altered response

to IFNg stimulation. This altered IFNg response could be either

a broad insensitivity or a blunted induction for a subset of ISGs.

Chronic IFNg stimulation of lung cancer cells promotes
elevated ISGs, resistance, and immune dysfunction
We previously demonstrated that chronic stimulation of cancer

cells with IFNg can be sufficient to render cells resistant to

ICB.14 Moreover, like with the CT26 and MC38 tumors that AR

to anti-PD-1, these chronically stimulated cells increase their

baseline expression and chromatin accessibility for a subset of

ISGs.39 In order to determine if chronic IFN stimulation is suffi-

cient to render NSCLCs resistant to ICB and also promote

T cell dysfunction, we utilized two syngeneic mouse lung cancer

models: the Kraslox-stop-lox(lsl)-G12D/+; Trp53flox/flox (KP) genetically

engineered mouse model and the Lewis lung carcinoma (LLC1)

(Figures 7A and S7A). With both models, tumors that spontane-

ously relapsed after ICB were compared to tumors derived from

cancer cells that were treated with low levels of IFNg for

3–4 weeks in vitro prior to implantation into mice (Figures 7B

and S7B). Like KP and LLC1 tumors derived from cells that

persist after ICB (ResKP2, ResResKP, ResKPlate, and

ResResLLC1), KP and LLC1 tumors from cells exposed to

chronic IFNg (gKP and gLLC1) were more resistant to ICB and

showed increased expression of IFNg-related ISGs, as assessed

from cancer cells sorted from untreated tumors (Figure S7C).

Tumors associated with chronic IFN signaling either by chronic
ssociates with induction of terminally exhausted CD8+ T cells in the

n the LLC1 mouse model following implantation of parental (LLC1), 3–4 weeks

ective tumor types following ICB demonstrated that tumors with chronic IFN

-3 on CD8+ T cells from non-treated and ICB-treated tumors.

in tumors.

ell focused immune profiling panel.

the 12 meta-clusters, defined of the unsupervised clustering of CD8 T cells.

(MC06) within the CD8 T cell population between non-treated and ICB-treated

cate median and the lower and upper hinges correspond to the first and third

r than 1.5 * IQR (inter-quartile range) from the hinge. The lower whisker extends

parisons in (B), (D), (G), and (H) were performed using Wilcoxon rank-sum test.
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IFNg stimulation in vitro for 3–4 weeks (gLLC1) or a late relapse-

derived tumor cell line (ResResLLC1) showed a diminished

response to double ICB, a combination of anti-PD-1 + anti-

CTLA-4 (Figure 7B). These pre-clinical data confirm our previous

finding that high ISGs are associated with progression after ICB

in murine tumor models. The diminished ICB efficacy in the LLC1

models harboring chronic IFN signaling (gLLC1) or late relapse-

derived LLC1 tumor cell line (ResResLLC1) are characterized by

the accumulation of dysfunctional PD-1+TIM-3+ exhausted

T cells in the tumor post-ICB (Figures 7C and 7D). We then sys-

tematically characterized the immune infiltrate in the LLC1 tu-

mors (Figures 7E and 7F). Tumor-infiltrating immune cells were

categorized into twelve meta-clusters using unsupervised clus-

tering. Interestingly, meta-clusters 5 and 6, that were dominant

for T cell exhaustion markers (PD-1+, TIM-3+, etc.), showed an

increase in frequency post-ICB in the chronically IFN stimulated

or late relapsed tumor samples, but not in the initially sensitive

tumor samples (Figures 7G, 7H, and S7D).

DISCUSSION

Although PD-1 blockade has been transformative in the treat-

ment of patients with NSCLC, AR is common and understand-

ing of the molecular mechanisms of resistance remains quite

limited. Before embarking on this report, we had hypothesized

that ‘‘non-inflamed’’ or ‘‘cold’’ tumors, characterized by exclu-

sionary immunologic barriers or an absence of T cell infiltration,

would significantly contribute to resistance.3 Previously, neoan-

tigen loss and tumor-mediated immunosuppression have been

associated with primary resistance to immunotherapy.5,42,43 In

contrast, we found that neoantigen depletion does not appear

to be a dominant mediator of AR. In fact, most tumors have re-

tained or increased inflammatory characteristics, rather than

immune excluded or desert phenotype, with significant upregu-

lation of IFNg suggestive of persistent, but evidently insufficient

anti-tumor immune response. The persistent, if incomplete,

anti-tumor immune response may also manifest in the clinical

observation that some patients who develop AR can still have

durable survival for many years following initial emergence of

resistance. In addition to associations with chronic upregulation

of the IFNg response pathway, we also observed strong upre-

gulation of oxidative phosphorylation and DNA repair pathway

genes which are consistent with a recent report44 which pro-

poses acquisition of a hypermetabolic state with high expres-

sion of glycolytic and oxidative phosphorylation pathway

genes as a potential escape mechanism in ICB-resistant mela-

noma cells.

The inflammatory phenotypeswe identify have implications for

future rational development of new immunotherapy strategies for

patients with AR. Most notably, immune recruitment and infiltra-

tion did not appear to be the primary biologic challenges, which

provide credence to strategies aimed to reprogram and rescue

native anti-tumor immunity. Delivery of de novo anti-tumor im-

munity via engineered antigen-specific cellular or T cell recep-

tor-based therapies45–49 also appears well-suited to exploit the

lack of barriers to immune trafficking and persistent tumor anti-

gen expression. Supporting this hypothesis, we have reported

notable responses among patients in this population.46,50 We

are also exploring strategies to interrupt persistent IFNg
220 Cancer Cell 42, 209–224, February 12, 2024
signaling to reinvigorate immune function and immune check-

point inhibitor activity in tumors resistant to ICB.51 While we

did observe a few instances of sub-clonal/clonal neoantigen

loss, these changes were relatively uncommon and mutation

burden was generally unchanged pre- vs. post-treatment.

One potential limitation of our clinical cohort is that it relies on

bulk exome and transcriptome data which are prone to be

affected by tumor purity. Due to constraints associated with

sample purity, we were unable to accurately analyze copy num-

ber or loss of heterozygosity. Furthermore, IFNg groupings

were only possible for patients with paired pre- and post-pro-

gression samples because they were determined relative to

each individual. Interestingly, recent analyses utilizing single-

cell multi-omics have demonstrated enrichment of CD8+

T cell exhaustion in the setting of AR to PD-1 blockade in sam-

ples from two patients, similar to the exhausted CD8+ T cells

we found in our lung cancer mouse model.52 Future efforts

incorporating single cell multi-omics will be important to parse

cancer cell-intrinsic vs. immune or stromally related mecha-

nisms of resistance. Our analysis is limited to correlational ob-

servations and focused on PD-1 immunotherapy and not on

PD-1 and chemotherapy combination. Although this is now a

routine treatment regimen, it is complicated by the uncertainty

of contributions of components both to response and to resis-

tance, so for the moment, we have excluded analyses of sam-

ples from these patients.53 Further, heterogeneity in the dura-

tion and depth of response to PD-1 blockade in the clinical

cohort could not be explored deeper in our molecular cohort

due to small sample sizes. Future work is needed to both

address heterogeneity in response to mono-therapy with ICB

as well as resistance to combinations of chemotherapy and

immunotherapy regimens.

Our work informs and builds upon the prior pre-clinical and

translational data supporting the intricate role of IFNg in sensi-

tivity and resistance to immunotherapy. Whereas initial IFNg

exposure may be fundamental to T cell activation and a hallmark

of immune response, persistent IFNg related effects and upregu-

lation may potentially signal immune dysfunction14,15 and IFNg

insensitivity.13,16,54 In contrast to previous reports linking IFNg

insensitivity to mutations in the JAK-STAT pathway, we did not

identify specific defects in the IFNg signaling pathway to explain

the dysfunctional nature of IFNg response observed in a subset

of patient samples. While we found some evidence of B2M and

other AP alterations, these changes were predominantly sub-

clonal and generally co-occurred in tumors with upregulation

of IFNg potentially suggesting they may be an evolutionary

consequence rather than an initiating cause of resistance. We

have previously shown that chronic IFNg signaling may trigger

a cascade of epigenetic modifications in tumor cells including

enhanced ISGs and ultimately generate a feedback loop of

innate and adaptive immune exhaustion and dysfunction.14,15

Acrossmultiple murine models of acquired resistance presented

here, we recapitulate how acquired resistance is associated with

upregulated cancer-intrinsic IFNg response and ultimately tumor

insensitivity to effective anti-tumor immunity. Separately, we

also show that pre-treatment exposure with IFNg in vitro leads

to resistance in vivo to ICB treatment. Furthermore, we prelimi-

narily observe that in vivo generated acquired resistant cell lines

in general have altered ISG response as IFNg stimulation in vitro
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is associatedwith relatively lower activation of ISGs compared to

parental cells stimulated with IFNg. Further work is needed to

identify the specific mechanistic deficits in response to the dy-

namics of IFNg signaling in both immune cells and tumor cells.

Overall, these data can further guide more rationally guided ther-

apeutic strategies to prevent, overcome, and reverse AR to PD-1

blockade for patients with lung cancer.
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Antibodies

BUV395 Rat Anti-Mouse CD44 BD Biosciences 740215; RRID: AB_2739963

BUV496 Rat Anti-Mouse CD45R/B220 BD Biosciences 612950; RRID: AB_2870227

BUV563 Rat Anti-Mouse CD4 BD Biosciences 612923; RRID: AB_2870208

BUV661 Rat Anti-CD11b BD Biosciences 612977; RRID: AB_2870249

BUV737 Rat Anti-Mouse CD127 BD Biosciences 612841; RRID: AB_2870163

BUV805 Rat Anti-Mouse CD8a BD Biosciences 612898; RRID: AB_2870186

Brilliant Violet 421� anti-mouse FOXP3 Biolegend 126419; RRID: AB_2565933

BV480 Mouse Anti-Mouse CD45.2 BD Biosciences 566073, RRID: AB_2739488

BV605 Hamster Anti-Mouse KLRG1 BD Biosciences 564013; RRID: AB_2722497

BV650 Anti-Mouse TCRB Biolegend 109251; RRID: AB_2810348

BV711 Anti-Mouse CD366 (Tim-3) Biolegend 119727; RRID: AB_2716208

Brilliant Violet 785� anti-mouse CD62L Antibody Biolegend 104440; RRID: AB_2629685

BB700 Ly108 BD Biosciences 742272; RRID: AB_2871448

PE Mouse Anti-TCF-7/TCF-1 BD Biosciences 564217; RRID: AB_2687845

PECy5 CD69 Biolegend 104510; RRID: AB_313113

PECy7 PD1 Biolegend 109110; RRID: AB_572017

TOX Antibody, anti-human/mouse, APC, REAfinity� Miltenyi 130-118-335; RRID: AB_2751485

Alexa Fluor� 700 anti-mouse/rat/human CD27 Antibody Biolegend 124240; RRID: AB_2810383

Biotin Anti Mouse CX3CR1 Biolegend 149018; RRID: AB_2565701

eBioscience� Foxp3 / Transcription Factor Staining Buffer Set Thermo Fisher 00-5523-00

C57BL/6 WT mice Charles River Laboratories Stock 027

CTLA4, Clone: 9H10 BIOXCELL BE0131; RRID: AB_10950184

PD1, Clone: RMP1-14 BIOXCELL BE0146; RRID: AB_10949053

CD40, Clone: FGK4.5 BIOXCELL BE0016-2; RRID: AB_1107601

HLA-1/MHC-1, Clone: A4 eBioscience 14-9958-82; RRID: AB_1210772

B2M Polyclonal DAKO A007202; RRID: AB_812325

Biological samples

Patient tumor tissue from MSKCC Cohort MSK –

Patient tumor tissue from Study 06 Cohort Astra Zeneca –

CT26 RNA samples for RNAseq Azenta/Genewiz –

CT26 DNA samples for ATACseq Azenta/Genewiz –

MC38 RNA samples for qPCR Shattuck Labs –

KP RNA samples for RNAseq University of Pennsylvania –

LLC1 RNA samples for RNAseq University of Pennsylvania –

Chemicals, peptides, and recombinant proteins

Interferon Gamma R&D Systems 485-MI-100

Collagenase StemCell Technologies 07902

Venor GeM Mycoplasma Detection Kit Sigma MP0025

Critical commercial assays

First Strand cDNA Synthesis Kit Origene NP100042

RNeasy Kit Qiagen 75144

QIAshredder Qiagen 79656

RNase-Free DNase Set Qiagen 79254

SsoAdvanced Universal SYBR Green Supermix Bio-Rad 1725270

(Continued on next page)

Cancer Cell 42, 209–224.e1–e9, February 12, 2024 e1



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

NextSeq 500/550 v2.5 Illumina 20024906

TruSeq� Stranded Total RNA Library Prep Human/Mouse/Rat

(96 Samples)

Illumina 20020597

Deposited data

Raw Exome data from human clinical samples of MSK Study This paper dbGaP Study Accession: phs002834.v1.p1

https://www.ncbi.nlm.nih.gov/projects/gap/

cgi-bin/study.cgi?study_id=phs002834.v1.p1

Raw microarray data from human clinical samples of

MSK Study

This paper GEO Accession Number: GSE248249

Raw RNASeq Data from CT26 Mouse Model This paper GEO Accession Number: GSE249000

Raw ATACSeq Data from CT26 Mouse Model This paper GEO Accession Number: GSE249001

Raw RNASeq Data from LLC1 Mouse Model This paper GEO Accession Number: GSE246922

Raw RNASeq Data from KP Mouse Model This paper GEO Accession Number: GSE246922

Experimental models: Cell lines

Mouse CT26 Cell Line ATCC ATCC Cat# CRL-2638, RRID: CVCL_7256

Mouse MC38 Cell Lines License through NCI RRID: CVCL_B288

Mouse LLC1 Cell Line ATCC CRL-1642

Mouse KP Cell Line N/A

Experimental models: Organisms/strains

BALB/cJ mice The Jackson Laboratory RRID: IMSR_JAX:000651

C57BL/6J mice The Jackson Laboratory RRID: IMSR_JAX:000664

Oligonucleotides

Rps18 Mouse qPCR Primer Pair Origene MP212910

Stat1 Mouse qPCR Primer Pair Origene MP215434

Stat2 Mouse qPCR Primer Pair Origene MP215435

Tap1 Mouse qPCR Primer Pair Origene MP217519

Ifitm2 Mouse qPCR Primer Pair Origene MP206690

Ifitm3 Mouse qPCR Primer Pair Origene MP206691

Software and algorithms

ImageJ https://imagej.nih.gov/ij/

Illustrator https://www.adobe.com

Python2.7 https://www.python.org/download/releases/2.7/

R 3.6.1 https://www.r-project.org

Bioconductor R https://www.bioconductor.org/

Deseq2 Bioconductor https://bioconductor.org/packages/release/

bioc/html/DESeq2.html

Trimmomatic v.0.36/v.0.38 Usadel Lab http://www.usadellab.org/cms/?page=

trimmomatic

Affymetrix Expression Console Software Affymetrix https://www.thermofisher.com/uk/en/home/

technical-resources/technical-reference-

library/microarray-analysis-support-center.html

ComBat Bioconductor https://rdrr.io/bioc/sva/man/ComBat.html

limma Bioconductor https://bioconductor.org/packages/release/

bioc/html/limma.html

GSVA package Bioconductor https://bioconductor.org/packages/release/

bioc/html/GSVA.html

PhenoPath Bioconductor https://www.bioconductor.org/packages/

release/bioc/html/phenopath.html

bwa aligner v0.7.17 Sanger Institute https://github.com/lh3/bwa

MATH Bioconductor https://rdrr.io/bioc/maftools/man/

math.score.html
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Oncotator v1 Broad Institute https://github.com/broadinstitute/oncotator

Sigfit University of Cambridge https://github.com/kgori/sigfit

dNdScv Sanger Institute https://www.sanger.ac.uk/tool/dndscv/

PhyloWGS Morris Lab https://github.com/morrislab/phylowgs

NetMHC 3.4 Immune Epitope Database

and Analysis Resource

http://tools.iedb.org/mhci/download/

GSEA R package version 1.2 Broad Institute https://rdrr.io/github/GSEA-MSigDB/GSEA_R/

FlowSOM FlowJo, LLC https://bioconductor.org/packages/release/

bioc/html/FlowSOM.html

MACS2 2.1.2 Python bioconda https://pypi.org/project/MACS2/

Homer v4.11.1 University of California,

San Diego

http://homer.ucsd.edu/homer/

STAR aligner v2.4.0k/v.2.5.2b Cold Spring Harbor

Laboratory,

https://code.google.com/archive/p/rna-star/

Bio.pairwise2 package Biopython https://biopython.org/docs/1.75/api/

Bio.pairwise2.html

CIBERSORT Stanford University https://cibersortx.stanford.edu

GATK v.4.0.2.1 Broad Institute https://github.com/broadinstitute/gatk

Pyclone-VI University of British

Columbia

https://github.com/Roth-Lab/pyclone-vi

snpEff.v4.3t Wayne State University https://pcingola.github.io/SnpEff/

OMIQ Dotmatics https://www.dotmatics.com/solutions/omiq

Other

BioRad CFX Opus 96 and CFX touch 96 Bio-Rad –
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Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Matthew

Hellmann (matt.hellmann@gmail.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Microarray expression data from MSK Study Cohort has been deposited in GEO database (GSE248249). Exome sequencing data

from MSK Study Cohort has been deposited in dbGaP database (phs002834.v1.p1): https://www.ncbi.nlm.nih.gov/projects/gap/

cgi-bin/study.cgi?study_id=phs002834.v1.p1. RNA-seq and ATAC-Seq data from CT26 mouse model and RNA-seq data from

LLC1 and KP mouse models have been deposited in GEO database (GSE249000; GSE249001; GSE246922) and are publicly avail-

able. This paper does not report original code. Any additional information required to reanalyze the data reported in this paper is avail-

able from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Clinical cohort
MSK study

FollowingMSK institutional review board approval, patients with advanced NSCLC treated with PD-(L)1 based therapy between April

2011 and December 2017 were identified. Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 was used to assess

objective response outcomes (n = 1201). Patientswith primary resistancewere defined as thosewith progressive disease (PD) at their

first on-treatment scan evaluation. Pseudoprogression was excluded from the non-responder group. Patients with AR were defined

as those with partial or complete response (PR/CR) followed by isolated or systemic progression on or before the date of their last

scan (median follow-up 33.6 months). Post-progression overall survival was calculated from the date of progression on PD-(L)1 in-

hibitor. Patients who did not die were censored at the date of last contact. A cumulative incidence function with death as a competing

risk was used to estimate the proportion of AR over time. Overall survival was estimated using the Kaplan-Meier method. Tumor
Cancer Cell 42, 209–224.e1–e9, February 12, 2024 e3
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tissue samples were obtained with informed consent from patients under protocol #06-107 and #12-245 approved by MSK. This

study was approved by the MSK Institutional Review Board and was conducted in accordance with the US Common Rule.

Study 06
NCT02000947was a global, non-randomised, open-label, phase 1b study investigating the safety and tolerability of escalating doses

of durvalumab in combination with tremelimumab. Subjects were 18 years of age or older, with histologically or cytologically

confirmed NSCLC and must have failed to respond to, relapsed following, been ineligible for, or failed to tolerate any line of standard

treatment. Patients had to have at least one measurable lesion, with adequate organ and marrow function, and Eastern Cooperative

Oncology Group (ECOG) performance status of 0–1. During the initial dose-escalation phase, subjects must not have had prior expo-

sure to immunotherapy. Once the maximum tolerated dose (MTD) or highest protocol-defined dose for each agent in the absence of

exceeding the MTD was determined for the immunotherapy-naı̈ve cohort, subjects who had prior exposure to immunotherapy were

evaluated. The study was undertaken in accordance with the ethical principles of the Declaration of Helsinki and the International

Council on Harmonization guidelines on Good Clinical Practice. The study protocol was reviewed and approved by the Institutional

Review Board or Independent Ethics Committee at all participating centers and written informed consent was obtained from all pa-

tients. Patients were treated for up to 12months or until progression or discontinuation due to toxicity. Patients who achieved disease

control within the initial 12-month period entered follow-up, and upon evidence of progressive disease were eligible for readminis-

tration of treatment provided they had not received additional treatment and continued tomeet the protocol defined eligibility criteria.

Animal models
For CT26 and MC38 models, female inbred BALB/cJ (RRID:IMSR_JAX000651) or C57BL/6J mice (RRID: IMSR_JAX:000664),

respectively, between 8-12weeks of agewere purchased from The Jackson Laboratory.Micewere housed and acclimated in groups

within the internal vivarium for approximately 5–10 days before beginning tumor inoculations. Mice were given a standard diet, al-

lowed free access to water, and were housed on 12-hour light/dark cycles. Animal protocols were approved by an internal Institu-

tional Animal Care andUseCommittee (IACUC) and licensed veterinarian.Micewere humanely euthanized throughCO2 asphyxiation

followed by cervical dislocation if their tumor volume exceeded 1800mm3, there was evidence of severe ulceration at the tumor cell

injection site, or if any other significant distress was noted.

All animal experiments for the LLC1 and KP models were performed according to protocols approved by the IACUC of the Uni-

versity of Pennsylvania. Five- to seven-week-old female C57BL/6 (stock# 027) were obtained from Charles River Laboratory.

Mice were maintained under specific pathogen free conditions and randomly assigned to each experimental group. Mice were accli-

mated for 7 days in the vivarium before tumor inoculation. Mice were given a standard diet, allowed free access to water, and were

housed on 12-hour light/dark cycles. When tumors reached 15mm in any dimension the mice were euthanized through CO2 asphyx-

iation followed by cervical dislocation.

Cell lines
CT26 colon adenocarcinoma cells (of female origin, RRID:CVCL_7256) were purchased from ATCC. CT26 cells were cultured in

RPMI-1640 media containing 10% fetal bovine serum, 2mM glutamine, 10mM hepes, 1mM sodium pyruvate, 4500 mg/L glucose,

1500 mg/L sodium bicarbonate, and penicillin/streptomycin. Cells were grown at 37�C in a humidified incubator and cell lines in cul-

ture were tested monthly using the Venor GeM Mycoplasma Detection Kit (Sigma).

MC38 colon adenocarcinoma cells (of male origin, RRID:B288) were licensed from the National Cancer Institute (NCI). MC38 cells

were cultured in Dulbecco’s modified MEM with 10% fetal bovine serum, 2mM glutamine, 0.1mM nonessential amino acids, 1mM

sodium pyruvate, 10mM Hepes, and penicillin/streptomycin.

LLC1 cells were purchased from ATCC, and KP (Kras mutant P53mutant) lung cancer cells were a gift from the laboratory of David

Feldser. Cells are cultured in GlutaMAX DMEM (DMEM, high glucose, GlutaMAX Supplement, pyruvate, Catalog number: 10569010)

in 10% FBSwith 100U/mL penn/strep. Cells were passaged every two days andmaintained in a 37C incubator. Chronic IFN cell lines

(gKP, gLLC1) were chronically stimulated for 3.5 weeks with 10ng/uL of IFNg (peprotech Catalog Number:315-05) andmedia replen-

ished every 2 days during splitting, then IFNgwashed off and passaged for an additional week before implanting into mice or freezing

cell stocks. Res[istant] cell lines were generated by harvesting late relapse tumors from parental cell lines implanted into mice and

treated with immune checkpoint blockade.

METHOD DETAILS

Generation of the molecular dataset from MSK cohort
Tumor tissue samples from pre- and post-treatment timepoints were obtained from a subset of patients with NSCLC treated with

PD-1 blockade (n = 29). All samples were processed as formalin-fixed paraffin-embedded (FFPE). Sixteen samples were obtained

prior to initiation of therapy (pre-treatment) and 37 samples were obtained at time of AR. Most patients had a best overall response of

CR or PR per RECIST criteria (n = 22, 76%), with a small subgroup with stable disease (SD, less than 10% tumor shrinkage). Lesion-

level response was obtained for all samples (Figure S2). Pre-treatment lesions were those that had at least a 30% reduction in size on

treatment or were resected prior to initiating therapy (n = 4). In patients with resected lesion samples, lesion-level response could not

be obtained so overall patient-level must have been CR or PR per RECIST. Of note, consistent with prior work demonstrating
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generalized inter-tumor uniformity of response, pre-treatment samples derived from resected tumors had similar molecular features

of tumors in which the lesion-level responsewas known (Figure S2). All post-treatment samples were obtained following radiographic

progression to PD-1 blockade. Post-treatment samples were defined as ‘‘rebound’’ or ‘‘de novo’’ growth (Figure S1A). Rebound le-

sions were those that were present at initiation of therapy, responded on treatment, but subsequently progressed. De novo growth

lesions were those that were not present at initiation of therapy and newly grew following treatment. Time to progression in rebound

lesions and growth of de novo lesions were similar (Figure S1B). Only patients with at least one post-treatment sample were included

in this analysis. Samples weremolecularly profiled bymicroarray-based transcriptome sequencing and/or whole exome sequencing.

Expression and exome data were available on the same sample for 28 tumor lesions. The following antibodies were used for the

immunohistochemistry of the clinical samples: B2M (B2M Polyclonal, DAKO, A0072; RRID: AB_812325) and HLA (HLA-1/MHC-1,

Clone: A4, eBioscience, 14–9958; RRID: AB_1210772).

Gene expression profiling from MSK cohort
RNA was extracted from FFPE samples using the RecoverAll Total Nucleic Acid Isolation from Thermo Fisher Scientific (Catalog

Number: AM1975). Global RNA expression was measured using the human Affymetrix Clariom D Pico assay. The RNA samples

quantification on Affymetrix Arrays was performed in two separate batches. Samples from each batch were processed indepen-

dently using Affymetrix Expression Console Software. Initially the samples were normalized using the SST-RMA algorithm and outlier

samples were excluded. Samples from the two batches were then combined into a single dataset and subject to batch normalization

using ComBat. Finally, all the samples were further normalized together using LOESS normalization. For genes with multiple mea-

surements, we selected the measurement with the highest coefficient of variation. The data analysis was focussed on 14,668 anno-

tated protein-coding genes with expression measurements in the arrays. The expression dataset was thoroughly evaluated for tech-

nical artifacts such as batch effects (Figure S3A). Differential expression analysis was performed using the limma55 package in R.

Normalized expression data of protein-coding genes were fitted to a linear model using lmFit function and subject to empirical Bayes

(eBayes) moderated t-statistics test to identify differentially expressed genes in paired lesions.

Estimation of gene set enrichment scores from expression data
Enrichment scores were calculated for gene sets from the normalized expression matrix of protein-coding genes using the GSVA

package18 in R with default parameters except for method = ‘ssgsea’ and norm = ‘TRUE’. This approach was used to estimate

enrichment scores for the hallmark gene sets (msigdb v6.1 database19) and non-redundant cancer and immune-related gene sets

in literature. Although clinical data for AR to immunotherapy is fairly limited, recent studies have investigated the impact of chronic

ICB treatment in in vitro cell lines and in vivo settings usingmousemodels generating either bulk or single-cell RNA-Seq datasets. We

manually collated gene sets reported in many of these studies to build an extensive resource of biological processes and gene sets

associated with cancer and immune pathways and more specifically ICB resistance (Table S4). In order to select for non-redundant

gene sets from this resource, jaccard similarity coefficient was calculated between gene sets based on the number of shared genes

and used this metric to perform hierarchical clustering of gene sets and construct a dendrogram with similar gene sets clustering

together. Clusters of gene sets were obtained by cutting the dendrogram at a particular level using cutree function in r (h = 1.1). A

non-redundant list of gene sets was created by selecting one gene set per cluster (Table S4).

Patient samples were classified into ‘increase’ and ‘stable’ sub-groups based on the difference in the enrichment of IFNg response

pathway between the paired pre- and post-treatment samples. The ‘increase’ subgroup consisted of samples from patients with dif-

ferences in scaled enrichment score of IFNg pathway >0.025 while ‘stable’ subgroup was defined by minimal change in enrichment

score of IFNg pathway (<0.025 and > �0.025). Overlap coefficients were calculated between IFNg gene set and other gene sets to

make sure correlation in enrichment score across samples was not driven by shared genes. Change in enrichment score in paired

samples was calculated by first scaling the signed enrichment scores values using min-max normalization and then taking the dif-

ference in the scaled enrichment scores for paired post and pre-treatment samples for each patient. Enrichment scores were also

calculated for transcription factors using the same approach as for other gene sets using previously published regulons of each of the

164 transcription factors.56 Deconvolution of immune cells from bulk microarray expression data was performed using

CIBERSORT21 tool with default parameters and normalized protein-coding gene expression matrix as input. Significance of change

in enrichment score or immune cell estimates for paired samples was calculated using either paired t-test, welch t-test, or wilcoxon

signed-rank test depending on the evaluation of equality (Bartlett’s test or Levene’s test) of variance and normality assumptions. All

pairwise correlations between gene sets based on change in enrichment scores were performed using spearman’s rank-order cor-

relation method.

Pseudotime analysis
To decode temporal information that traces the underlying biological process from a cross-sectional cohort of individuals, we applied

pseudotime analysis to 13 patients with both pre- and post-treatment gene expression data by using the R package PhenoPath.26

This analysis assumes that individuals in the cross-sectional cohort behave asynchronously and each is at a different stage of pro-

gression. Furthermore, we assumed that the ICB treatment reverses the stage of progression for each individual. Specifically, we

used the 500 most variable genes among pre-treatment and 500 most variable genes among post-treatment tumor samples for

the pseudotime analysis. Since each subject contributed two gene expression profiles, two covariates (subject and treatment status)

were specified in the regression model. To identify the pathways that were associated with pseudotime, we assessed the Spearman
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correlations between change in pseudotime and change in ssGSEA enrichment scores of 131 pathways of the hallmark and ICB

resistance gene set. To account for multiple testing, we calculated false discovery rate (FDR).

Whole exome sequencing of MSK cohort
Whole exome sequencing was performed using the Illumina protocol at the Broad Institute of MIT and Harvard, Cambridge, MA, USA

using the same protocol as described in Jimenez-Sanchez et al. 2017.57 Exome samples were aligned to human reference genome

(hg19) using bwa aligner (v0.7.17)58 and the aligned BAM files were subjected to deduplication and base recalibration methods in

GATK (v4.0.2.1).59 These processed BAM files were used for all subsequent analyses. Mutation calling for SNPs and Indels was per-

formed for each tumor-normal (serum) pair using GATK-Mutect2 (v.4.0.2.1) with default parameters and additional filters to remove

germline mutations including SNPs detected in gnomAD (Genome Aggregation Database)60 and mutations in PoN (panel of normal)

samples obtained from combining all normal samples in the cohort. Since exome samples were generated in multiple batches with

different capture kits (Illumina’s Rapid Capture Exome Kit (38Mb target territory), Agilent SureSelect Human All Exon V2 (44Mb target

territory), Agilent SureSelect Human All exon V4 (51MB target territory)), mutations were only called on common regions captured by

the three different kits. The mutation calls were annotated using the Oncotator v161 tool.

Tumor heterogeneity and clonality
Tumor heterogeneity was evaluated using the Mutant-Allele Tumor Heterogeneity (MATH) score derived from the variant allele fre-

quencies of somaticmutations as described previously.62 The clonal population structure of somaticmutations in tumor sampleswas

inferred using Pyclone-VI.63 This method uses a Bayesian statistical approach to estimate cellular prevalence of mutations after ac-

counting for purity of samples. The tumor purity estimates for Pyclone-VI were obtained from FACETS64 and manually corrected for

each sample based on the distribution of variant allele frequency. The mean cellular prevalence (MCP) estimates from Pyclone-VI

were used to classify somatic mutations as clonal (MCP >0.6), sub-clonal (MCP % 0.6) or absent (MCP <0.02).

Estimation of somatic signatures in tumor exome data
Mutational signatures were estimated using the Sigfit65 package in R. For each exome sample, the proportion of mutations associ-

ated with each of the 30 mutational signatures in the COSMIC66 database were estimated. Signature 4 corresponds to smoking

signature while Signature 13 corresponds to APOBEC signature.

Analysis of selection pressure in mutation data
Gene-level selection pressure was quantified for pre-treatment and post-treatment samples using the dNdScv36 package in R. The

dNdScv approach quantifies dN/dS ratios based onmissense, truncations (nonsense and essential splice site) and indel mutations in

a group of samples and identifies genes under positive selection in cancer based on the global p values derived from likelihood tests.

Selection pressure was calculated for each gene for pre-treatment and post-treatment samples separately and the difference in se-

lection pressure between the two groups was used to identify potential biologically important genes associated with AR to ICB treat-

ment. Gene sets with significant change in selection pressure between pre- and post-treatment samples were identified via the

GSEA67 approach using the clusterProfiler68 package in R with the difference in the -log10(global p values) between pre- and

post-treatment samples, used as a metric to rank genes.

Phylogeny tree reconstruction
For 12 patients with both pre- and post-treatment whole exome sequencing available, mutations were filtered based on the following

criteria: 1) total coverage for tumorR10, 2) variant allele frequency (VAF) for tumorR4%, 3) number of readswith alternative alleleR9

for tumor, 4) total coverage for normal R7, and 5) VAF for normal %1% at a given mutation. These filters applied to all mutations

except for mutations in the KRAS gene. Then pre- and post-therapy mutations were aggregated per patient. PhyloWGS69 software

package (https://github.com/morrislab/phylowgs) was used to infer the clonal structures and estimate clone sizes.

Neoantigen prediction and fitness score
Filtered mutations were annotated with snpEff.v4.3t software70 with options set as ‘‘-noStats -strict -hgvs1LetterAa -hgvs -canon

-fastaProt [fasta file name]’’. All wild-type (WT) and mutant genomic sequences corresponding to coding mutations were translated

to an amino acid sequence consistent with the GRCh37 reference genome (GRCh37.75). Only annotations without ‘‘WARNING’’ or

‘‘ERROR’’ were kept and the most deleterious missense mutation was prioritized in mapping a genomic mutation to a gene.

The mutant amino acid from amissense mutation was centered in a 17 amino acids long peptide. Then 9-mers were extracted in a

left-to-right sliding fashion. Each mutant 9-mer contained the mutant amino acid on one of the nine positions. In essence, one

missense mutation produced up to nine 9-mer peptides. Predictions of MHC class-I binding for both wildtype peptide (PWT) and

mutant peptide (PNeo) were estimated using the NetMHC 3.471 software with patient-specific HLA-I types. All PNeos with predicted

IC50 affinities <500 nM to a patient-specific HLA-I type were defined as neoantigens. Filtered neoantigens were aligned to the known

positive epitopes in the Immune Epitope Database72 (IEDB, http://www.iedb.org) for all human infectious disease, class-I restricted

targets with positive immune assays using blastp73 software (https://blast.ncbi.nlm.nih.gov/Blast.cgi). We then calculate the align-

ment scores with the Biopython Bio.pairwise2 package (http://biopython.org) for all identified alignments.
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Clonal structure, MHC class-I affinities, and epitope alignment scores were put together into the fitness modeling framework in

Luksza et al.74 Neoantigens were mapped to the clonal structure based on the underlying genomic mutations. Then fitness score

was calculated for each clone, and the scores were averaged over all the clones in a sample after weighting on clonal sizes.

Study 06 sample cohort and transcriptomic analysis
Patients enrolled into the Study 06 trial (https://clinicaltrials.gov/ct2/show/NCT02000947) were either naive to ICB treatment or failed

on a previous line of anti-PD-(L)1 monotherapy. Those who failed to respond were further categorised as ICB refractory (i.e. primary

resistant) or ICB relapsed (i.e. acquired resistant). Patients who were refractory to ICB had documented radiographic disease pro-

gression% 16 weeks from the start of treatment with no evidence of clinical benefit. Patients who relapsed had radiographic disease

progression following initial clinical benefit (i.e., CR, PR, or SD on any scan).

Transcript-per-million (TPM)-normalised RNA-Seq data was available for 26,334 genes in 113 samples from 111 unique patients

from Study 06: 58 samples from patients who were ICB-naı̈ve, 28 post-ICB samples from patients who relapsed, and 27 post-ICB

samples from patients with refractory disease. The TPM matrix was used as input for ssGSEA as implemented in GSVA R package

version 1.42.0 to compute hallmark IFNg signature enrichment scores (ES) in individual samples. ssGSEA ES were compared be-

tween samples from patients who relapsed and samples from patients who were ICB naı̈ve or refractory using wilcoxon rank-

sum test.

Gene set enrichment analysis (GSEA) fromGSEA_R package version 1.2 was performed on 50 hallmark as well as ConsensusTME

immune cell gene sets, using the TPM matrix as input. Briefly, t-tests were run for all 26,334 genes to compare TPM distributions

between samples from patients who relapsed and who were ICB naı̈ve or refractory. Genes were then ranked based on t-statistics

andGSEAwas run on the ranked gene list with 1000 permutations to compute normalised enrichment scores and associated FDR for

each gene set. The analysis was run separately for hallmark and ConsensusTME gene sets and volcano plots show combined output

of these separate runs.

Generation of anti-PD-1 resistant CT26 tumors
BALB/C mice were acquired from The Jackson Laboratory, after several days of acclimation, mice were inoculated with 500k CT26

on the rear flank. When the average tumor volume reached 80–100mm3 (indicating day 0), mice were given a series of intraperitoneal

injections of anti-PD-1 (clone RMP1-14; BioXcell), consisting of 100 mg each on days 0, 3, and 6. Tumors were excised frommice that

did not respond to anti-PD-1 therapy, approximately 10–14 days following the initial treatment. Tumors were dissociated using colla-

genase (Stemcell Technologies), washed in 1X PBS, and plated in IMDM culturemedia supplemented in 10% fetal bovine serum, 1%

GLUTiMAX, and 1% Antibiotic-Antimycotic (all GIBCO). Cells were passaged at least 5 times and then inoculated into new recipient

mice according to the same protocol as above. Again, when tumors reached 80–100 mm3, another treatment course of anti-PD-1

began. This process was repeated for a total of four rounds, at which point none of the treated mice responded to anti-PD-1 therapy.

The cell lines generated after two rounds of anti-PD-1 selection are referred to throughout this manuscript as ‘2nd round’, ‘2nd gen-

eration’ or ‘F2 generation’, and the cell line generated after four rounds of anti-PD-1 selection are referred to as ‘4th round’, ‘4th gen-

eration’, or ‘F4 generation’.

Transcriptomic and ATAC-Seq profiling of anti-PD-1 resistant CT26 cell lines
Three distinct vials of parental CT26 cells (ATCC; ‘experimental replicates’), two independently isolated tumors from ‘2nd round’

mice, and four independently isolated tumors from ‘4th round’ mice (both ‘biological replicates’), were cultured +/� 20 ng/ml of

mouse IFNg (Biolegend) for 24 hours at 37�C/5%CO2. The following day, RNA was isolated from cells using Qaigen RNAeasy re-

agents according to manufacturer’s instructions, including QiaShredder homogenization and on-column DNase I digestion. Isolated

RNA was sent to Genewiz (www.genewiz.com) for library generation, RNA-sequencing, and data processing. The NEBNext Ultra II

RNA Library Prep Kit for Illumina & NEBNext Poly(A) mRNA Magnetic Isolation Module (New England Biolabs, Ipswich, MA, USA),

including clustering and sequencing reagents, was utilized according to the manufacturer’s recommendations. Briefly, mRNAs

were initially enrichedwithOligod(T) beads. EnrichedmRNAswere fragmented for 15minutes at 94�C. First strand and second strand

cDNA were subsequently synthesized. cDNA fragments were end repaired and adenylated at 30 ends, and universal adapters were

ligated to cDNA fragments, followed by index addition and library enrichment by PCRwith limited cycles. Briefly, sequencing libraries

were generated and sequenced on an Illumina HiSeq (2x150 paired end reads), targeting >20x106 reads per sample. Sequences

were trimmed using Trimmomatic v.0.3675 and mapped to Mus musculus GRCm38 reference genome using STAR aligner

v.2.5.2b.76 Unique gene hits were calculated by using featureCounts from the Subread package v.1.5.2.77 Only unique reads that

fell in exonic regions were counted. The TPM values were obtained for each protein-coding gene and subsequently log-transformed

(log2(TPM +1)) for downstream analysis. Mouse orthologs of genes in hallmark gene sets and antigen processing machinery78 and

regulons of IRF1 and STAT1 were identified using Ensembl v8779 and ssGSEAwas performed in a similar fashion as described for the

clinical cohort.

For ATAC-Seq, CT26 cell pellets from two distinct vials of parental CT26 cells, five independently isolated tumors from mice, and

five independently isolated tumors from ‘4th round’ mice were collected according to the same procedure as described above for

RNA isolation, and pellets were sent to Genewiz (www.genewiz.com) for nuclei isolation, library generation, and sequencing. Nuclei

were treated with Tn5 enzyme (Illumina, Cat. #20034197) for 30 minutes at 37�C and purified with Minelute PCR Purification Kit

(Qiagen, Cat. #28004) to produce tagmented DNA samples. Tagmented DNA was barcoded with Nextera Index Kit v2 (Illumina,
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Cat. #FC-131-2001) and amplified via PCR prior to a SPRI Bead cleanup to yield purified DNA libraries. ATAC-Seq raw data was

trimmed using Trimmomatic 0.3875 to remove sequencing adapters and low-quality bases. Cleaned reads were next aligned to refer-

ence genomemm10 using bowtie2.80 Aligned reads were filtered using samtools 1.981 to keep alignments that have aminimummap-

ping quality of 30 and are aligned concordantly. Peak calling was performed usingMACS2 2.1.282 to identify open chromatin regions.

For each pair-wise comparison, peaks from the relevant conditions are merged and peaks found in either condition are kept for

downstream analyses. Reads falling beneath peaks were counted in all samples, and these counts were used for differential peak

analyses using the R package Diffbind. Gene sets with significant change in peak binding between 4th generation and control

(parental or in vivo) cells were identified via the GSEA67 approach using the clusterProfiler68 package in R with the mean fold change

in peak binding used as a metric to rank genes. Motif analysis was performed using de novo motif search in promoter peak regions

using findMotifsGenome.pl algorithm (with default parameters) in Homer v4.11.1 software.83

Generation of anti-PD-1 resistant MC38 tumors
Wild-type (WT) MC38 (colorectal carcinoma) cells were acquired by license from the NCI, and were cultured in IMDM media, with

10% FBS, antibiotic/antimycotic, and gentamycin (all GIBCO), and were cultured in an incubator at 37�C with 5% CO2. Cell lines

in active culture are tested monthly using the Venor GeM Mycoplasma Detection Kit (Sigma). MC38 cells were inoculated

(500,000 cells) on the hind flank of C57BL/6 mice (Jackson Laboratories), and when tumors became palpable, mice where either

treatedwith vehicle (PBS) or anti-PD-1 (100 mg of cloneRMP1-14 on days 0, 3, and 6 via intraperitoneal injection (IP); BioXCell). Tumor

growth wasmeasured over time and after approximately 20 days following the first treatment, tumors were isolated (indicating round

1), dissociated using collagenase (StemCell Technologies), washed in 1X PBS, and plated in culture media. Cells were passaged a

minimum of two times andwere then used to inoculate newC57BL/6mice. Again, another course of vehicle or anti-PD-1was given to

the animals, tumor measurements were taken over time, and tumors were isolated approximately 20 days after treatment, from non-

responding animals (indicating round 2). This in vivo anti-PD-1 selective pressure was performed for a total of five rounds until none of

the mice responded to anti-PD-1 therapy. These isolated tumors are referred to throughout as ‘5th round’ and represent the tumor

cells used to characterize the MC38 acquired resistance model (MC38/AR).

Gene expression profiling of anti-PD-1 resistant MC38 cell lines
Cells from four WT (or vehicle treatedmice) and four 5th round AR tumors were treated +/� 20 ng/mLmouse IFNg (R&D Systems) for

three hours. After three hours, cell culture supernatant was removed and RLT lysis buffer (Qiagen) prepared with 5%

2-mercaptoethanol was added directly to the cells. Following lysis, lysates were homogenized with the Qiagen QIAshredder and

RNA was harvested using Qiagen RNeasy columns including on-column DNase I digestion. Then, 1 mg of RNA was reverse tran-

scribed using Origene First Strand cDNA synthesis reagents. cDNA was diluted further with nuclease-free water and qPCR was per-

formed at a series of genes, in triplicate, and SYBR Green signal was assessed on the BioRad CFX Opus 96 and CFX Touch 96.

Mouse validated gene primer sequences from Origene were used, and included mouse Stat1, Stat2, Tap1, Ifitm2, Ifitm3, and the

house-keeping control Rps18. Fold-change in gene expression at baseline was calculated using the DDCT method where the first

WT tumor sample was set to 1. Each additional gene was compared to this sample and the Rps18 house-keeping control. Fold-

change in IFNg responsivenesswas also calculated using theDDCTmethodwhere each IFNg treated tumor sampleswas normalized

to its representative IFNg untreated samples.

Generation of LLC1 and KP tumor cell lines
Tumor injection and treatment schedule were done as previously described (Twyman-Saint Victor et al., 2015). A single flank was

injected per mouse. Antibodies against CTLA-4 (9H10) or PD-1 (RMP1-14) were given on days 4, 7, and 10 for LLC1 and on days

5,8,11 for KP unless otherwise specified. Antibodies against CD40 (FGK4.5/FGK45) were given on Day 11 for KP studies. On day

15, tumors were harvested, red blood cell (RBC) lysis was performed, and a single cell suspension was created. Tumor cells were

stained with Live/Dead Aqua and CD45. Samples were sorted on an Aria (BD) by gating on live, CD45 negative cells.

Generation and analysis of RNA-seq of sorted mouse tumor cells
Total RNA was isolated and purified from the cells using Isol-RNA Lysis Reagent (Fisher) and treated with DNase I (Fisher). RNA-Seq

libraries were prepared using the TrueSeq Stranded Total RNA Library Prep Kit (Illumina) and sequenced on Illumina HiSeq 2500 with

100 base paired end reads. Reads were trimmed first using cutadapt v1.9 (http://code.google.com/p/cutadapt/) with parameters -q

10 -m30 -O 4. Trimmed reads that were aligned to rRNAs sequenceswere removed and the remaining sequenceswere aligned to the

GRCm38 reference genome using STAR v2.4.0k76 with parameters –outFilterMultimapNmax 100 –outFilterMismatchNmax 999 –out-

FilterMismatchNoverLmax 0.06. Primary aligned reads were counted against GENCODE84 annotation vM4 using Subread v1.4.677

with parameters -s 2 -minReadOverlap 10. Raw counts were subjected to variance stabilizing transformation (VST) in Deseq285

before downstream analysis. Mouse orthologs of genes in Hallmark IFNg signature gene set were identified using Ensembl v8779

and ssGSEA was performed in a similar fashion as described for the clinical cohort.

In vivo mouse lymphocyte studies in LLC1 mouse model
Tumors, spleens, and draining lymph node (DLN) were harvested at day 16 post tumor implantation. For spleens and DLNs, single-

cell suspensions were prepared after RBC lysis with ACK Lysis Buffer (Life Technologies). Tumors were weighed prior to enzymatic
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digestion with Type 4 collagenase and DNAse I at 1mg/mL. After enzymatic digestion or ACK Lysis, all tissues were filtered through

100-micron filters. Cells were stained with Fc Block and Zombie Live/Dead stain for 10 minutes prior to surface stain. Surface stain

was done for 30 minutes at room temperature. Samples were fixed and permeabilized by incubating in 100 ml of Fix/Perm buffer at

room temperature for 30 minutes and washed in Perm Buffer. Intracellular stains were performed overnight at 4�C. Cell counting
beads were spiked into each sample prior to data acquisition. Data acquisition was done on a FACSymphony A5. See key resources

table for list of antibodies and buffers.

Flow cytometry feature clustering
For quantification and statistical analysis of flow cytometry data, both OMIQ and custom R scripts were utilized. Manual gating was

used to define total CD8+ T cells and subsets of exhausted CD8+ T cells among the TILs. Furthermore, 15K CD8+ T cells were equally

sampled from each FCS file and projected into opt-SNE space using OMIQ. FlowSOM clustering identified 12 clusters which was

biologically defined based on geometric mean fluorescence intensity levels detailed in the heatmap.86,87

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical tests were performed in R. Statistical details of individual experiments can be found in the relevant figure legend and

results section. For all analyses, p values <0.05 were considered significant.
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