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� This study provided evidence of memory loss and

altered behavior in a MASLD animal model.

� Cognitive dysfunction was associated with systemic
inflammation and neuroinflammation.

� Microglia activation and diminished synaptic den-
sity were observed in the prefrontal cortex.

� The study suggests a pathophysiological link be-
tween MASLD and cognitive dysfunction.
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Cognitive dysfunction is an increasingly recognised comorbidity in pa-
tients with metabolic dysfunction-associated steatotic liver disease
(MASLD), yet the underlying mechanisms remain unclear. This study
provides evidence of impaired memory and depression-like symptoms
in early experimental MASLD and indicates that hepatic inflammation
may drive a systemic inflammatory response, resulting in neuro-
inflammation and reduced brain synaptic density. The evidence of
impaired memory in MASLD and establishing its underlying patho-
physiological link provides insights that could guide the development of
potential new treatments for this increasingly common condition in
people of working age. The study also emphasises the need to develop
better tools for clinical cognitive testing, which will enable physicians to
assess and manage brain dysfunction early in MASLD.
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Background & Aims: Cognitive dysfunction is an increasingly recognised manifestation of metabolic dysfunction-associated
steatotic liver disease (MASLD), but the mechanistic link remains unclear. The aim of this study was to investigate the hy-
pothesis that experimental MASLD leads to cognitive dysfunction via systemic inflammation and neuroinflammation.
Methods: Twenty male Sprague Dawley rats were randomised to a high-fat high-cholesterol (HFHC) diet to induce MASLD,
or a standard diet (n = 10/group), for 16 weeks. Assessments included: MASLD severity (histology), neurobehaviour,
inflammation (liver, plasma and cerebrospinal fluid), brain microglia and astrocyte activation, and synaptic density.
Results: The HFHC diet induced MASLD with extensive steatosis and lobular inflammation without fibrosis. Several plasma
cytokineswereelevated (CXCL1, IL-6, IL-17,MIP-1a,MCP-1, IL-10; allp <0.05) and correlatedwith increases inhepatic chemokine
gene expression. Cerebrospinal fluid concentrations of CXCL1 were elevated (p = 0.04). In the prefrontal brain cortex, we
observed a 19% increase in microglial activation confirmed by Iba1 immunohistochemistry (p = 0.03) and 3H-PK11195 autora-
diography (p <0.01). In parallel, synaptic density was reduced to 92%, assessed by 3H-UCB-J autoradiography (p <0.01). MASLD
animals exhibited impaired memory to previously encountered objects in the novel object recognition test (p = 0.047) and
showed depression-like behaviour evidenced by increased immobility time (p <0.01) and reduced swimming time (p = 0.03) in
the forced swim test.
Conclusions: Experimental non-fibrotic MASLD, as a model to reflect the early stage of human disease, results in cognitive
impairment and depression-like behaviour. This is associated with an inflammatory phenotype not only in the liver but also in
the plasma and brain, which together with diminished synaptic density, provides a pathophysiological link between liver
disease and cognitive dysfunction in MASLD.
Impact and implications: Cognitive dysfunction is an increasingly recognised comorbidity in patients with metabolic
dysfunction-associated steatotic liver disease (MASLD), yet the underlying mechanisms remain unclear. This study provides
evidence of impaired memory and depression-like symptoms in early experimental MASLD and indicates that hepatic
inflammation may drive a systemic inflammatory response, resulting in neuroinflammation and reduced brain synaptic
density. The evidence of impaired memory in MASLD and establishing its underlying pathophysiological link provides insights
that could guide the development of potential new treatments for this increasingly common condition in people of working
age. The study also emphasises the need to develop better tools for clinical cognitive testing, which will enable physicians to
assess and manage brain dysfunction early in MASLD.
© 2023 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords: Non-alcoholic fatty liver disease; non-alcoholic steatohepatitis; liver-brain
axis; hepatic encephalopathy; neuroscience; cognitive dysfunction; neuro-
inflammation; systemic inflammation; synaptic density; metabolic dysfunction-
associated steatotic liver disease; metabolic dysfunction-associated steatohepatitis.
Received 10 May 2023; received in revised form 9 November 2023; accepted 8 December
2023; available online 21 December 2023
† Shared first authorship

* Corresponding author. Address: Department of Hepatology and Gastroenterology,
Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, C117, 8200 Aarhus N,
Denmark.
E-mail address: karethom@rm.dk (K.L. Thomsen).
Introduction
Metabolic dysfunction-associated steatotic liver disease
(MASLD), formerly known as non-alcoholic fatty liver disease
(NAFLD), is estimated to affect up to 30% of the adult population
worldwide.1 MASLD is closely associated with the metabolic
syndrome and has been linked with several extrahepatic com-
plications including cognitive dysfunction.2,3 Given the large
number of patients at risk, cognitive dysfunction in MASLD is an
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increasing cause for concern, because it negatively affects patient
quality of life and because it may already occur in the early stages
of liver disease.4,5 However, the underlying mechanisms behind
MASLD-related brain abnormalities have not been substantially
investigated.5 The experimental evidence linking fatty liver with
cognitive dysfunction is limited to a few animal studies in
models that do not resemble the human phenotype of MASLD, or
with sparse examination of behaviour and neurobiology.6

MASLD is accompanied by chronic low-grade systemic
inflammation, even in its early stages before the development of
hepatic necro-inflammatory changes and fibrosis.7–10 This sys-
temic inflammation may affect the brain and induce neuro-
inflammation, which is believed to be important in the
pathogenesis of neurodegenerative diseases associated with
cognitive decline.11,12

We hypothesised that, in rats with early non-fibrotic MASLD,
a chain of events from hepatic and systemic inflammation to
neuroinflammation results in behavioural cognitive disturbances
and neurodegenerative changes. The present study aimed to test
this hypothesis, in the hope of identifying possible future targets
for therapy.
Materials and methods
Animal model
Male Sprague Dawley rats (body weight 298 ± 7 g; Taconic Bio-
sciences, Köln, Germany) were housed in standard cages
(GR1800; Tecniplast, Buguggiate, Italy) at 20 ± 2 �C with a 12-
hour on/off light cycle. The animals were housed in pairs with
free access to tap water and food. All animals were allowed to
acclimatise for 1 week followed by randomisation to a standard
diet or to a high-fat high-cholesterol (HFHC) diet at 10 weeks
old.13 The standard diet consisted of 11% fat, 24% protein and 65%
carbohydrates (3,227 kcal/kg) (1324, Altromin, Lage, Germany).
The HFHC diet consisted of 39% fat (35% cocoa butter, 3% soybean
oil, 2% cholesterol), 27% protein, 19% carbohydrates, and 0.5%
cholic acid (4,057 kcal/kg) (D09052204, Research Diets, New
Brunswick, NJ). All animals were weighed once per week
throughout the experiment. The animals were monitored at least
once daily and terminated if they met one of the following hu-
mane endpoints: weight loss >−20% of initial weight and lack of
self-hygiene or activity. The protocol was approved by The
Danish Animal Experiments Inspectorate (2016−15−0201
−01105), and all experiments were performed according to the
current law on animal experimentation and ethics. The animal
experiments are reported in accordance with the ARRIVE
guidelines.14

Study design
Twenty rats were randomised to a control group fed a standard
diet or to a group fed a HFHC diet for 16 weeks to induce MASLD
(n = 10 in each group). Starting 9 days before termination, all
animals were assessed for cognitive function and for depression-
and anxiety-like behaviour using validated behavioural tests.
Following euthanasia, cerebrospinal fluid (CSF), blood samples,
brain and liver tissue were collected for further analyses. The
outcome measures were behavioural changes, measures of
inflammation (liver, plasma and cerebrospinal fluid cytokines),
brain microglia activation and astrogliosis, and brain synaptic
density.
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Neurobehavioural studies
The neurobehavioural studies were performed at the Trans-
lational Neuropsychiatry Unit, Aarhus University, over 9
consecutive days in the order listed below. The studies were
performed in a designated experimental room, where the ani-
mals were acclimatised for 1 h before and after every test. All
tests were recorded by video camera for subsequent analysis and
were either analysed by automatic software or rated by an
observer blinded to the intervention groups. The behavioural
methods are described briefly below and in further detail in the
supplementary materials and methods.

The conditioned fear paradigm (CFP) evaluated cognitive
function.15 The test was performed in three phases: On day 1
(conditioning), a mild electric shock was used to condition a fear
response to a spatial context and to a high-pitch noise stimulus.
On day 2 (contextual test), the animals were observed for
freezing behaviour (%) when reintroduced to the conditioned
spatial context as a measure of hippocampal-dependent mem-
ory. On day 3 (cued test), the animals were observed for freezing
behaviour (%) when reintroduced to the high-pitch noise in
another spatial context as a measure of non-hippocampal-
dependent memory.

The open field test (OFT) evaluated locomotion and anxiety-
like behaviour. Moreover, the OFT served as habituation for the
novel object recognition (NOR) test performed the following day.
The animals were placed in a square arena to explore, and they
were observed for distance travelled (cm) and time duration
spent (%) in the periphery of the arena.

The NOR test evaluated recognition memory.16 The animals
were placed in the OFT arena with two identical objects
(encoding). Three hours later, the animals were reintroduced to
the arena, with one of the two objects changed to a novel one
(test). The NOR ratio (%) was calculated using time spent
exploring the two objects ((tnovel*100)/(tnovel+told)).

The elevated plus maze (EPM) was performed to evaluate
anxiety-like behaviour.17 The animals were placed in a maze
shaped like a plus with two open arms and two closed arms.
Time spent in the open arms was measured.

The forced swim test (FST) was performed to evaluate
depression-like behaviour.18 The experiment was performed in
two phases. As pre-test, the animals were placed in a clear
plexiglass cylinder filled with water. Twenty-four hours later, the
animals were tested in the same setting. The behaviour was
scored manually every 5 s as either climbing, swimming, or
immobility.19
Termination and tissue preparation
The procedures were performed between 9 am and 5 pm in a
designated room at the Translational Neuropsychiatry Unit,
Aarhus University. First, the animals were anaesthetised with an
intraperitoneal injection of phenobarbital sodium (1 mg/kg;
Fagron, Copenhagen, Denmark). Immediately after the loss of
interdigital and corneal reflexes, CSF was extracted by percuta-
neous puncture into the cisterna magna, and blood was obtained
from the retrobulbar plexus using heparinised capillary tubes.
Next, the animals were decapitated, and the cerebrum was
secured and split in two hemispheres. The right hemisphere was
fixed in 10% formalin for immunohistochemistry. The left
hemisphere was immersed in isopentane cooled to -30 �C with
dry ice for 30 seconds and stored at -80 �C until processing for
2vol. 6 j 100992



autoradiography. The liver was removed surgically and weighed.
Liver tissue samples were snap-frozen in liquid N2 and stored at
-80 �C for quantitative real-time PCR analysis. The remaining
liver tissue was fixed in 10% formalin overnight followed by
paraffin embedding for liver histology.

Blood and CSF analyses
Plasma was analysed for alanine aminotransferase, alkaline
phosphatase, bilirubin, albumin, total cholesterol, HDL choles-
terol, LDL cholesterol, triglyceride, and creatinine. Cytokines
were analysed in plasma and CSF using a Luminex Immunoassay
(Bio-plex ProTM Rat Cytokine Assay, Bio-Rad Laboratories,
Copenhagen, Denmark). Serum a2-macroglobulin was evaluated
using a specific rat ELISA (ICL Inc., Portland, US), performed ac-
cording to manufacturer instructions.

Liver tissue analyses
Histopathology
Liver histology was evaluated by an experienced liver pathologist
(SHD) blinded to the diet regimes. MASLD severity was scored on
tissue sections stained with haematoxylin-eosin using the
MASLD activity score, as previously described.20 Fibrosis grade
was evaluated with the Kleiner fibrosis score on sections stained
with Sirius red.20

mRNA measurements
The mRNA levels of two chemokines macrophage inflammatory
protein-1a (MIP-1a, also known as CCL3) and fractalkine
(CX3CL1) were analysed in liver tissue using quantitative real-
time PCR. The mRNA levels of the genes of interest were nor-

malised to a reference gene as 2-
OCt values. The results are

reported as 2-
OOCt values, which is the 2-

OCt of HFHC animals
relative to the mean controls. The mRNA measurements are
described in detail in the supplementary materials and methods.

Brain tissue analyses
Immunohistochemistry
The right hemisphere was embedded in 5% agar and sectioned at
65 lm thickness on a semi-automatic vibrating blade microtome
(Leica VT1200, Leica Biosystems, Nussloch, Germany). All sec-
tions that included the prefrontal cortex and hippocampus were
saved in 10% formalin. Twenty sections from the prefrontal cor-
tex and from the hippocampus were selected by a systematic
random sampling principle. Half of the sections were saved for
analysis of microglia activation (stained for ionised calcium-
binding adaptor molecule 1 [Iba1]) and the other half were saved
for analysis of astrocyte density (stained for glial fibrillary acidic
protein [GFAP]). Immunohistochemical analysis was performed
in eight randomly chosen animals from each group.

Free-floating coronal sections were washed three times in
Tris-buffered saline (TBS) (pH 7.4), immersed in endogenous
peroxidase blocking solution for 30 min, and incubated in Target
Retrieval solution at 85 �C for 30 min (Dako, Glostrup, Denmark).
Tissue sections were incubated overnight at 4 �C in buffer (1%
skimmed milk in TBS-T) with added anti-Iba1 (Abcam, Cam-
bridge, UK, ab108539, dilution 1:500) or anti-GFAP (Dako,
Glostrup, Denmark, ref Z0334, dilution 1:500). Sections were
then washed three times with TBS and incubated in buffer (1%
skimmed milk in TBS-T) with added secondary antibody for 2 h
at room temperature. Sections were then washed three times for
10 minwith TBS before and after the staining was visualised with
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0.1% 3,3’-diaminobenzidine containing 0.3% H2O2 in TBS. Finally,
sections were mounted on gelatine-coated slides, dehydrated
with alcohol gradient, and cleared with xylene. GFAP sections
were counterstained with 0.25% thionin solution (Thionin, Sigma
T3387).

The stained sections were digitally scanned (NanoZoomer 2.0
HT, Hamamatsu, Shizuoka, Japan) and analysed using a machine
learning plugin tool for ImageJ (FIJI Is Just ImageJ v1.53t; Train-
able Weka Segmentation). The software was trained to classify
Iba1 and GFAP staining against background and quantify the
following outcomes (see supplementary materials and methods
for details): number of microglia per area (/inch2) and mean
perimeter of microglia (inches) as expression of microglia pro-
liferation and microglia activation (Iba1), respectively, and per-
centage of area stained with GFAP (%) as expression of
astrogliosis.21

Autoradiography
Autoradiography experiments were performed in the prefrontal
cortex and hippocampus using the tracers 3H-PK11195 and 3H-
UCB-J. 3H-PK11195 (Exp. 1) binds to mitochondrial translocator
protein (TSPO), which is upregulated on activated microglia. 3H-
UCB-J (Exp. 2) binds to synaptic vesicle glycoprotein 2A (SV2A),
which is a transmembrane protein of presynaptic vesicles, and
therefore 3H-UCB-J binding was used as a biomarker for synaptic
density. The autoradiography experiments were performed in
eight randomly chosen animals from each group, as previously
described.22 The fresh-frozen left brain hemispheres were sliced
into 20 lm thick coronal sections using a cryostat, mounted on
poly-L-lysine coated slides (8 slices per slide, Thermo Scientific),
and stored at -80 �C. Slices at the approximate levels of the
prefrontal cortex (Bregma 3.7 mm) and dorsal hippocampus
(Bregma -5.2 mm) were selected according to the stereotaxic
coordinates of the rat brain atlas.23 For each region and experi-
ment, three consecutive slides were used; two slides were used
to measure total binding and one slide was used to measure non-
specific binding of the tracers. The slides were left to thaw at
room temperature and pre-washed for 5 min in 50 mM Tris-HCl
buffer (pH = 7.4). Slides for total binding were incubated with
1 nM 3H-PK11195 (specific activity 82.7 Ci/mmol; PerkinElmer,
Exp. 1) or 3 nM 3H-UCB-J (specific activity 82 Ci/mmol; cat. no.
NT1099, Novandi Chemistry AB, Sweden, Exp. 2) for 60 min in
assay buffer, while slides for non-specific binding were incu-
bated in the same concentration of radioligand but in the pres-
ence of the blocking reagents unlabeled PK11195 (20 lM, Exp. 1)
or levetiracetam (600 lM, Exp. 2). All slides were post-washed in
cold buffer two times for 1 min each, briefly dipped in Milli-Q
water (4 �C), and dried under a stream of cold air. Slides with
3H-PK11195 were read for 6 h and slides with 3H-UCB-J were
read for 2 h using BeaQuant v. 1.14 (ai4r, France). The images
were analysed using the Beamage v.2.1.7 software. Specific
binding of the tracers was obtained by subtracting the non-
specific binding from the total binding. In-house standards
with known radioactive 3H concentrations were included in
every reading to generate a standard curve for calculation of the
specific binding concentration (nM).

Statistical analyses
Statistical analyses were performed using Stata 17 (StataCorp
LLC, TX, USA). Normality and homogeneity of variance were
checked by QQ-plots and the F-test, respectively. If assumptions
of normality and variance homogeneity were met, groups were
3vol. 6 j 100992
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compared using the Student’s t test and reported as mean ± SD. If
not, the Mann-Whitney U test was used and data reported as
median (IQR). Statistical analyses of plasma cytokines were
adjusted for multiple comparisons using the Holm-�Sídák
method. Correlation analyses were performed using Pearson’s
correlation coefficient or Spearman’s correlation coefficient in
the case of skewed data. A p value below 0.05 was considered
statistically significant in a two-tailed test.

Results
HFHC diet induced liver steatosis, lobular inflammation and
metabolic changes
Animal characteristics and liver histology for theHFHCanimals and
controls are illustrated in Fig. 1 and summarised here. No animals
were excluded based on humane endpoints. At termination, the
body weight of the HFHC animals was slightly higher than that of
control animals (Fig. 1A; mean 562 ± 54 g vs. 512 ± 36 g, p = 0.03).
Mean food intakewas lower inHFHCanimals than controls (Fig.1B;
p <0.001). The liver weight (p <0.0001) and liver/body weight %
(Fig.1C; p <0.0001) were increased. The HFHC diet inducedMASLD
with grade 3 steatosis and a varying degree of inflammation (mean
NAFLD activity score 4.1 ±0.9), but not hepatocellular ballooning or
fibrosis (Fig. 1D,E). The MASLD animals had hypercholesterolemia
and elevated plasma LDL cholesterol levels (both p <0.01) as
anticipated with a HFHC diet, but no change in plasma triglyceride
levels compared with controls (Table 1).

MASLD animals exhibited chronic systemic inflammation
which was associated with hepatic inflammation
The induction of MASLD was accompanied by a consistent in-
crease in systemic pro-inflammatory cytokines (Fig. 2A). There
was a two-fold increase in the cytokines C-X-C motif chemokine
ligand 1 (CXCL1) and monocyte chemoattractant protein 1 (MCP-
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1), whilst interleukin (IL)-6 and IL-17 were increased more than
three-fold, and the chemokine MIP-1a was increased by more
than 10 times compared with controls. Also, a2-macroglobulin,
an important acute phase reactant, tended to increase (median
18.5 vs. 13.5; p = 0.07). The rise in pro-inflammatory cytokines
was accompanied by an increase in the anti-inflammatory
cytokine IL-10 (Fig. 2A).

In the liver, gene expression of the chemokine MIP-1a was
increased by 9-fold (p <0.0001) and CX3CL1 by 4-fold (p <0.01) in
the MASLD animals (Fig. 2B). The pro-inflammatory plasma cy-
tokines IL-6 (Spearman’s q = 0.6, p = 0.005), MIP-1a (Spearman’s
q = 0.8, p <0.001) and MCP-1 (Spearman’s q = 0.7, p <0.001) were
strongly correlated with hepatic inflammation, as reflected by
levels of MIP-1a expression in the liver (Fig. S3).

MASLD animals demonstrated neuroinflammation and loss of
synaptic density
In the brains of MASLD animals, Iba1 staining revealed a
decrease in the mean perimeter of microglia in the prefrontal
cortex, an expression of microglia activation (Fig. 3E; p = 0.03).
Moreover, there was a trend towards an increased percentage
area stained positive for GFAP, a sign of astrogliosis (Fig. 3F; p =
0.13). There was no evidence of changed microglia perimeter or
astrogliosis in the hippocampal regions, CA1 and dentate gyrus
(Fig. 3E,F). The overall density of microglia was equal in all
measured regions (data not shown).

The findings from immunohistochemical analyses were
confirmed by 3H-PK11195 autoradiography showing a 19% in-
crease in microglia activation in the prefrontal cortex of MASLD
animals when compared with controls (Fig. 4C; p = 0.008),
whereas there was no indication of increased microglia activa-
tion in the hippocampus. The chemokine CXCL1 was increased in
the CSF of MASLD animals, supporting the presence of neuro-
inflammation in the prefrontal cortex (Fig. 2C; p = 0.04).
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Table 1. Blood biochemistry.

Blood biochemistry Control HFHC

Total cholesterol (mmol/L) 2.02 ± 0.27 4.31 ± 1.53*
HDL cholesterol (mmol/L) 0.54 ± 0.07 0.47 ± 0.06
LDL cholesterol (mmol/L) 0.70 ± 0.24 3.19 ± 1.45*
Triglycerides (mmol/L) 1.71 ± 0.39 1.43 ± 0.53
ALT (U/L) 111 ± 84 118 ± 66
Albumin (g/L) 13.5 ± 1.1 12.7 ± 1.5
Glucose (mmol/L) 11.0 ± 4.2 10.7 ± 3.0
Creatinine (lmol/L) 33.3 ± 3.1 33.4 ± 7.4
a2-macroglobulin (lg/L) 13.5 (10.3-26.2) 18.5 (12.0-105.0)

Blood biochemistry at termination in control animals and animals fed a HFHC diet for
16 weeks. Number of animals = 10 per group. Values are reported as mean ± SD or
median (IQR). Level of significance: *p <0.05 (Student’s t test).
ALT, alanine aminotransferase; HDL, high-density lipoprotein; HFHC, high-fat high-
cholesterol; LDL, low-density lipoprotein.
Furthermore, additional brain injury was demonstrated by 3H-
UCB-J autoradiography, revealing diminished synaptic density in
the prefrontal cortex of MASLD animals, which was reduced to
92% of that in controls (Fig. 4D; p = 0.005) but with no difference
in the hippocampus.

MASLD animals displayed distinct neurobehavioural changes
MASLD animals exhibited impaired memory in the NOR test, as
reflected by a decreased exploration of the novel object
compared with control animals (Fig. 5A; mean NOR ratio 61% vs.
78%, p = 0.047) and no significant learning effect (one sample t-
test compared with 50%, p = 0.1). Furthermore, MASLD animals
spent more time being immobile (Fig. 5B; mean immobility 24%
vs.10%, p = 0.007) instead of swimming (Fig. 5B; mean swimming
25% vs. 34%, p = 0.03) in the FST, which is interpreted as a sign of
despair and depression-like behaviour. We did not find any dif-
ferences between MASLD and control animals in the OFT, EPM, or
CFP (Figs 5C and S4). There was no correlation between the body
weight of the animals at termination and the behavioural test
results (Fig. S5).

Discussion
Using a well-established rodent model of early MASLD, we
demonstrate the presence of cognitive dysfunction and show this
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is associatedwith systemic inflammation and neuroinflammation
in addition todiminished synaptic density in theprefrontal cortex.
Thedemonstration that cognitive dysfunction is closelyassociated
with systemic and neuroinflammation in a MASLD model is an
important finding, which provides a pathological basis for the
changes in brain function observed in early non-fibrotic stages of
MASLD.

We used a comprehensive panel of established neuro-
behavioural tests and showed that MASLD animals had impaired
memory and exhibited depression-like behaviour. In the NOR
test, MASLD animals had no preference for the novel object in
contrast to controls who showed almost 80% preference for the
novel object, indicating an impaired memory. In the FST, MASLD
animals showed signs of despair by responding to the stress with
immobility rather than swimming. Importantly, spontaneous
locomotion assessed in the OFT was equal in MASLD animals and
controls, suggesting the behavioural changes were not caused by
physical limitations in the HFHC model. Moreover, none of the
behavioural test results were correlated with body weight.
However, we cannot exclude the possibility that obesity-related
sarcopenia or altered body composition might affect the behav-
ioural results, particularly during the FST. We also assessed
cognitive function by the conditioned fear paradigm, and
anxiety-like behaviour using the elevated plus maze and OFT, in
which no differences were observed.

The induction of MASLD resulted in chronic systemic
inflammation, as demonstrated by elevated plasma levels of
several pro-inflammatory cytokines and the acute phase reactant
a2-macroglobulin.24 Thus, the animal model exhibited a key
feature of human MASLD with systemic inflammation, which is
increasingly recognised as a driver of the disease and its extra-
hepatic complications.25 In particular, increased levels of IL-6,
MIP-1a, and MCP-1 have been reported in human MASLD.8,9,26

IL-10, which is regarded as an anti-inflammatory cytokine, was
also increased in the MASLD animals. Although results regarding
IL-10 levels in MASLD are conflicting, similar observations have
been reported for human MASLD and may be regarded as a
compensatory anti-inflammatory response.27,28 The chemokine
MIP-1a was elevated in the liver and highly increased in the
blood of MASLD animals. Hepatic MIP-1a expression was posi-
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tively correlated with the pro-inflammatory plasma cytokines,
IL-6, MIP-1a and MCP-1. MIP-1a is released by macrophages
upon activation, including by hepatic Kupffer cells, which
constitute the majority of macrophages in the human body.
Accordingly, plasma MIP-1a levels are associated with MASLD
severity, and hepatic MIP-1a is regarded as an important driver
of systemic inflammation in MASLD.26,29

Chronic systemic inflammation is believed to be an underly-
ing cause of various neurodegenerative diseases, as it may induce
brain immune activation and neuronal dysfunction in a number
of ways; pro-inflammatory cytokines from the periphery do not
cross the blood brain barrier (BBB) but can activate immune cells
within the central nervous system through mechanisms such as
direct action on vascular endothelial cells in the BBB, active
transportation, or through receptor binding in circumventricular
regions lacking the BBB.11,12 By similar mechanisms, neuro-
inflammation has been hypothesised to be a key factor for
cognitive dysfunction in MASLD.5,30 We found evidence of
microglia activation in the prefrontal cortex of MASLD animals
confirmed by both autoradiography and immunohistochemical
imaging methods. MASLD animals exhibited increased specific
binding of [3H]PK11195, a tracer which labels the TSPO. TSPO is
generally expressed at low levels in the normal brain but
JHEP Reports 2024
increases greatly in microglia upon activation as well as in
reactive astrocytes.31 For this reason, PK11195 binding is utilised
as a marker of neuroinflammation in various diseases, where
TSPO positron emission tomography imaging also allows for the
assessment of neuroinflammation in humans.32,33 Complemen-
tary to the autoradiography findings, microglia morphology
assessed with Iba1 immunohistochemistry showed reduced
microglia perimeter in MASLD animals, further indicating
increased microglia activation.34 Moreover, there was a trend
towards increased astrocyte proliferation in the prefrontal cortex
assessed with immunohistochemical GFAP staining. It is a limi-
tation that we were unable to measure brain cytokine levels
given the lack of viable brain tissue after the autoradiography
and immunohistochemistry analyses. However, in neuro-
inflammatory conditions, microglia activation is normally asso-
ciated with a pro-inflammatory cytokine response, also noted in
MASLD animal models.35–37 To this end, our observation of
elevated CSF levels of CXCL1, a potent chemokine drawing in
immune cells to sites of inflammation, further supports our
contention that neuroinflammation occurs in this model.

Recent evidence suggests MASLD to be a driver of neuro-
degenerationwith reports of reduced brain volume and increased
risk of dementias, such as Alzheimer’s disease, in patients with
6vol. 6 j 100992
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MASLD.38–40 We found decreased 3H-UCB-J binding in the pre-
frontal cortex of the MASLD animals, indicative of neuro-
degeneration. The tracer binds to the SV2A protein, which is
universallyexpressed inpresynaptic terminals of neurons, and the
decline in SV2A synaptic density is a pathological hallmark of
neurodegenerative and psychiatric disease, supported by UCB-J
in vivo imaging studies.41 In accordance with previous studies,
we used 3H-UCB-J binding as a biomarker of synaptic density. It
remains to be clarified as to what extent SV2A is capable of
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representing the synapse as a whole when decreased.41 Our
findings of neurodegeneration by molecular imaging in experi-
mental MASLD are novel and are in line with previous experi-
mental studies showing reduced brain-derived neurotrophic
factor and increased neuronal cell death in the brains of MASLD
animal models, reviewed in.6 It is unclear how this may be
translated into human MASLD, since in vivo imaging studies of
neurobiology in patients with MASLD are essentially lacking.5

However, in this study, we clearly show experimental MASLD to
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be associated with microglia activation and diminished synaptic
density in the prefrontal cortex, a brain region that is pivotal for
higher cognitive function.42We also assessedmicroglia activation
and synaptic density in the hippocampus and found no changes.
We chose to focus our investigations on the prefrontal cortex and
hippocampus since synaptic connections between these two re-
gions have been suggested to be required for normal cognitive
function43 and given previous studies reporting neurobiological
changes in these regions in MASLD animal models.44–46 Optimal
protein synthesis, c-Fos activation, and functional glial cells in the
prefrontal cortex are required for normal performance in the NOR
test.47,48 Furthermore, preserved function of the prefrontal cortex
is essential in the FST.49 Hence, the results of the behavioural tests
in the present study are in accordance with the neurobiological
findings in theprefrontal cortex. Bycontrast, the contextual part of
the fear conditioning paradigm is known to be hippocampus-
dependent,50 and we found no changes in this test aligning with
the lack offindings in this region in the neurobiological analyses. It
is possible that other brain regions could be affected in MASLD
animals besides those studied here, and this remains a question to
be addressed in future studies.

Considering the growing number of clinical studies suggest-
ing MASLD is independently associated with impaired cognitive
function, the underlying mechanisms have so far not been
investigated in detail.5 A major obstacle when studying the
pathophysiology of MASLD cognitive dysfunction is isolating the
direct effect of fatty liver from effects associated with the
metabolic syndrome, including obesity, insulin resistance and
atherosclerosis, and their individual contributions to brain
dysfunction.5 Importantly, it was recently shown by Hadjihambi
et al. that solitary elimination of hepatic steatosis through ge-
netic knockout of the MCT1 gene ameliorated neuro-
inflammation and anxiety-like behaviour in obese mice fed a
high-fat diet.37 These findings support the hypothesis investi-
gated in the present study that there is a direct link between
fatty liver and brain dysfunction. Another challenge is choosing a
relevant model for investigating brain involvement in MASLD;
such a model should encompass both hepatic steatosis with
JHEP Reports 2024
inflammation and ideally features of the metabolic syndrome in
order to mimic human MASLD. The 16-week HFHC diet for in-
duction of MASLD resembles the human liver phenotype, and we
demonstrated that the model exhibits both cognitive and
neurobiological changes, making it suitable for preclinical
studies of cognitive dysfunction in MASLD. A limitation to the
HFHC model is the lack of peripheral insulin resistance and
hypertriglyceridemia in mimicking the metabolic phenotype of
patients with MASLD.51 However, our model does emphasise the
direct effect of MASLD, since animals had severe steatosis and
inflammation associated with cognitive disturbances that could
not be attributed to brain insulin resistance or cardiovascular
complications. Moreover, the strong association between hepatic
and systemic inflammation, and the fact the MASLD animals
were not grossly obese, indicates the fatty liver as the source of
the systemic inflammation. Importantly, the model does not
involve the use of neurotoxic agents like carbon tetrachloride,
nor deprivation of nutrients that are essential for brain function,
as is the case with methionine- and choline-deficient diets.6 This
study aimed to characterise the animal model in the context of
its cognitive function, but it is a limitation of the study that it was
not designed to demonstrate a causative link between fatty liver
and cognitive dysfunction. Our results should prompt further
investigations into the mechanistic role of systemic inflamma-
tion in cognitive dysfunction in MASLD.52 Furthermore,
numerous treatments targeting inflammatory pathways in
MASLD are being tested, and future studies should investigate
the potential of such drugs to reverse cognitive dysfunction
along with the liver disease.

In conclusion, experimental MASLD leads to cognitive dysfunc-
tion in the formof impairedmemoryanddepression-likebehaviour
at an early stage of liver disease. The cognitive dysfunction is
associated with hepatic and systemic inflammation as well as
neurobiological changes in the form of neuroinflammation and
diminished synaptic density. Our results suggest a role for liver-
derived systemic inflammation in the development of MASLD-
related cognitive dysfunction, which may guide the design of
future studies to identify potential targets for therapy.
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