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Abstract. The underlying dynamics controlling jet streams
are complex, but it is expected that they will have an ob-
servable response to changes in the larger climatic system.
A growing divergence in regional surface warming trends
across the planet, which has been both observed and pro-
jected since the start of the 20th century, has likely altered the
thermodynamic relationships responsible for jet stream for-
mation and control. Despite this, the exact movements and
trends in the changes to the jet streams generally remain un-
clear and without consensus in the literature. The latest IPCC
report highlighted that trends both within and between a vari-
ety of observational and modelling studies were inconsistent
(Gulev et al., 2021; Lee et al., 2021). Trends in jet streams
were associated with low to medium confidence, especially
in the Northern Hemisphere.

However, what is often overlooked in evaluating these
trends is the confused message in the literature around how
to first identify, and then characterise, the jet streams them-
selves. We classify the methods for characterising jet streams
in the literature into three broad strategies: statistics that
isolate individual values from the wind speed profile (jet
statistics), methods for quantifying the sinuosity of the up-
per air (waviness metrics), and algorithms that identify a
mask related to the coordinates of fast-flowing wind through-
out the horizontal and/or vertical plane (jet core algorithms).
While each approach can capture particular characteristics
and changes, they are subject to the spatial and temporal
specifications of their definition. There is therefore value in
using them in combination to assess parametric and structural
uncertainty and to carry out sensitivity analyses. Here, we
describe jsmetrics version 0.2.0, a new open-source Python
3 module with standardised versions of 17 metrics that have

been used for jet stream characterisation. We demonstrate the
application of this library with two case studies derived from
ERA5 climate reanalysis data.

1 Introduction

Jet streams are instantaneous features of the Earth’s general
atmospheric circulation. They manifest as fast-flowing rib-
bons of air, usually found near the thermodynamic boundary
between the troposphere and stratosphere – the tropopause
(Vallis, 2019). As their features are chaotic and loosely de-
fined at any given scale, there is no universal process to cap-
ture jet streams in data (see recent reviews in Maher et al.,
2020; Bösiger et al., 2022). As such, many strategies have
been adopted to capture aspects of the jet stream. Among the
most commonly used approaches is to develop algorithms,
indices, and statistics (here known as metrics) which isolate
and characterise regions in the atmosphere expected to be
synonymous with jet streams within a given spatio-temporal
scale. We divide these common approaches into three broad
types.

1. Jet statistics. These statistics isolate individual quanti-
ties that are synonymous with the jet stream from upper-
level wind speed within a given time window (e.g. lati-
tude, speed, width; Sect. 2.1).

2. Waviness metrics. These statistics and algorithms deter-
mine the “waviness” of upper-level mean flow within a
given time window. These metrics only have meaning at
an integrated global scale (Sect. 2.2).
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3. Jet core algorithms. These methods return a mask of co-
ordinates related to the jet location; e.g. they identify the
maximum wind speed throughout the horizontal and/or
vertical plane within a given time window (Sect. 2.3).

The differences between these types of approaches could
lead to confusion about the trends shown in the planet’s jet
streams across a range of modelling and observational stud-
ies. While the variety of metrics developed can be used to
improve understanding of the interactions of the jet stream
with other components of the climate system, we argue that
any understanding is inherently methodology dependent. As
such, this has made it difficult to understand the past and fu-
ture behaviours of jet streams.

Here, we aim to address the need for a method of com-
bining and/or comparing the various methods for jet stream
identification. The tool we introduce, jsmetrics, is an open-
source Python 3 package built upon xarray that implements
17 existing metrics used for jet stream identification or char-
acterisation. We first review the different metrics included
with the package (Sect. 2) before discussing the design of the
package (Sect. 3) and demonstrating an application (Sect. 4).
We conclude by discussing further potential uses of the pack-
age and future directions for work on jet stream identification
(Sect. 5).

1.1 Background

Although the identification of jet streams is dependent on
the definition used, in general they can be characterised as
strong localised winds within regions of the maximal ther-
mal wind shear, occurring where there are extreme tempera-
ture and pressure gradients (Vallis, 2019). The Earth’s atmo-
spheric circulation gives rise to two processes that develop
strong thermal wind shear and therefore jet streams: eddy-
driven processes (relating to the behaviour of transient ed-
dies in the mid-latitudes; Held, 1975) and thermally driven
processes (relating to conservation of angular momentum at
the poleward edge of the thermally driven Hadley cell; Held
and Hou, 1980).

While eddy-driven processes tend to produce jet fea-
tures that are deeper and more variable in their location
and strength, thermally driven processes produce jet features
that are more shallow, narrow, and less latitudinally variable
(Harnik et al., 2014; Lachmy and Harnik, 2014; Madonna
et al., 2017; Menzel et al., 2019; Stendel et al., 2021). The po-
sition of thermally driven processes is connected to the edges
of the Hadley cell, although recent work suggests that this is
only a loose connection (Menzel et al., 2019).

However, jet streams are often driven by a combination
of both processes, so it is perhaps better to consider en-
tirely eddy-driven or entirely thermally driven jets as two
ends of a spectrum (Lee and Kim, 2003; Manney et al.,
2014; Spensberger and Spengler, 2020; Spensberger et al.,
2023). Tropospheric jet streams in observations often exist
in “merged states”, especially across the mid-latitudes (Sten-

del et al., 2021), but diagnostics included in this package
are not yet able to disaggregate the two “primary” types of
jets. As thermally driven components of the jet streams may
dominate wind speeds in the upper reaches of the tropo-
sphere, using metrics that isolate lower-level winds magni-
fies the relative presence of eddy-driven components, and this
has been a common strategy for identifying these processes
(see Sect. 2; Hallam et al., 2022; Spensberger et al., 2023).
Deeper, eddy-driven jets might stretch from the top of the
troposphere to the atmospheric boundary layer and tend to be
more barotropic (Held, 1975; Held and Hou, 1980; Madonna
et al., 2017). The jsmetrics package, introduced in this paper,
focuses exclusively on metrics for tropospheric jet streams.

Jet streams play an influential role in the climate system.
They help control, modify, and drive pressure systems across
the planet, and their features are often directly involved in the
development of cold waves, heat waves, weather bombs, and
weather persistence. It is important that we are able to as-
sess uncertainties involved in representing the jet streams in
data and, further, to know how they are responding to climate
change (Gulev et al., 2021; Lee et al., 2019). Understanding
how jet streams operate between seasons, between phases
in climate oscillations, and in response to human activities
could enable projections about the regimes of (extreme) sur-
face weather across timescales (Harnik et al., 2016; Manney
and Hegglin, 2018; Cohen et al., 2021).

2 Strategies for characterising jet streams

Despite their importance to climate studies, features of jet
streams are generally quite difficult to identify and charac-
terise in data space because they act in chaotic ways in the
atmosphere (Barnes and Polvani, 2015; Peings et al., 2017).
Any given metric, used in isolation, roots the understanding
of the jet stream to a given context and within a given spa-
tial and temporal frame (e.g. Manney et al., 2011; Woollings
et al., 2018).

In general, the metrics included within the jsmetrics pack-
age have been developed in relative isolation from each other
to answer specific questions about the jet streams’ form, po-
sition, and/or trends over time and space. In this version of
jsmetrics (v0.2.0), we include 17 methods from the litera-
ture. This initial set of metrics was included based on, first,
their ease of implementation into Python, and second, the fre-
quency of their usage in the literature. In Sect. 1, we make a
distinction between the metrics in the three broad categories,
discussed in further detail in this section.

2.1 Jet statistics

Jet statistics are a group that broadly encompasses all statis-
tics and indices that extract individual values from upper-air
wind, synonymous with features of jet streams, and within
a given time window and spatial reference. Most commonly,
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this includes metrics that extract a jet latitude (e.g. the lat-
itude of maximum wind speed in a given spatial reference)
and/or jet speed (maximum wind speed in a given spatial
reference), but there are also methods for other characteri-
sations such as jet width and jet depth. These metrics are
generally not designed to capture individual events or gen-
eral forms in the jet, such as troughs or ridges, but instead
to capture the general climatological characteristics of a jet
stream, such as its position and speed (e.g. Koch et al., 2006;
Barton and Ellis, 2009; Rikus, 2018). As such, they are most
useful for understanding the general regimes of jet streams
and so have been adopted to evaluate latitudinal shifts, slow-
ing or speeding up of the jet, and narrowing or widening of
the jet stream’s operating range (Martin, 2021; Hallam et al.,
2022). In Table 1, we review the 10 jet latitude metrics from
the literature that feature in the jsmetrics package.

Jet statistics (Table 1) have typically been developed for
pressure levels relatively close to the surface (700–925 hPa)
and primarily with one variable: the zonal component of
wind (u). As thermally driven components of the jet streams
may dominate wind speeds in the upper reaches of the tro-
posphere, using lower-level winds, as these methods do, is
mostly motivated by magnifying the relative presence of
eddy-driven components (Hallam et al., 2022). Jets domi-
nated by eddy-driven components tend to be more barotropic,
extending further down towards the surface than the shal-
lower thermally driven and more latitudinally fixed subtrop-
ical jets (Held, 1975; Held and Hou, 1980; Madonna et al.,
2017). However, by isolating lower-level winds, these meth-
ods may miss aspects of jet streams whose eddy-driven com-
ponents do not extend throughout the atmospheric column
within the method’s given time window. They also do not
capture behaviour near the level of maximum wind speed or
the presence of multiple jet streams (Melamed-Turkish et al.,
2018; Manney et al., 2021).

In each case, the jet statistics available in jsmetrics all cen-
tre around extracting individual quantities from upper-level
wind to characterise the jet stream in a given temporal and
spatial frame. Most commonly, this involves extracting lati-
tude and/or speed quantities at the point of the fastest zonal
wind, either for an entire study region (all metrics except
K20) or by longitude (K20). While each jet statistic pro-
duces outputs that are directly comparable to each other, a
degree of variation is provided by how each method achieves
their outputs. Metrics from GP14, BS17, B18, C18, and Z18
use various smoothing functions (quadratic, cubic spline,
and centroid) to downscale the resolution for the jet speed
and latitude estimate (commonly to a resolution of 0.01◦).
W10, BP13, and BS17 express the jet latitude estimate as
an anomaly from the seasonal cycle to distinguish seasonal
modes of the jet latitude and their preferred positions over a
study area.

Each of the methodologies is relatively adjustable and fast
to compute (compared to the other metrics in the package),
so they can be used to produce quick diagnostics of fast-

flowing wind over a given time period and region. Notably,
these types of metrics have been employed mainly to evaluate
shifts in the position and speed of the jet streams at relatively
longer timescales (intra-seasonal and interannual) to evaluate
their response to changes in polar–tropical temperature gra-
dients in a warming world (e.g. Barnes and Simpson, 2017;
Zappa et al., 2018).

Approaching any day-to-day spatial variation shown in the
jet stream with this form of metric is generally regarded to
be limited (Koch et al., 2006; Rikus, 2018). And when con-
sidering that the jet streams are inherently three-dimensional
and multifaceted structures, it is restrictive to view wind
speed within one isolated slice of the atmosphere (Strong and
Davis, 2005, 2006). As such, jet latitude metrics are typically
less useful for diagnosing trends in synoptic-scale events
(Manney and Hegglin, 2018), such as cold-air outbreaks.
Further, these metrics are developed to find a single-jet struc-
ture (one stream), so they are less appropriate for studying
splitting and merging in the jet (Hallam et al., 2022).

2.2 Waviness metrics

Waviness metrics can be considered to be more derived meth-
ods that describe the general nature of the winds in the up-
per parts of the troposphere. They look to quantify waves,
meridional excursions, and/or sinuosity within the structure
of a single global jet stream. They broadly describe propa-
gation of Rossby waves in the structure of the upper-level
mean flow, and they do not necessarily isolate which parts of
the mean flow are jet streams, nor do they diagnose the eddy
or thermal processes driving them (Martin, 2021). Two jet
waviness metrics feature in the jsmetrics package: (1) Francis
and Vavrus (2015), who calculate the meridional circulation
index by comparing the ratio of the meridional wind com-
ponent to total wind speed, and (2) Cattiaux et al. (2016),
who calculate sinuosity by comparing the length of a geopo-
tential height contour corresponding to the 500 hPa average
over 30–70◦ N to the 50◦ N latitude circle. We outline the two
waviness metrics in Table 2.

These metrics consider the jet stream to be a continuous
pan-global feature, as opposed to a regional, split, or emer-
gent structure (Molnos et al., 2017; Martin, 2021). This con-
ceptualisation is more observable in upper-air mean flow at
seasonal and longer time aggregations (Koch et al., 2006;
Spensberger et al., 2017). By framing the identification of jet
streams as being about their propagation in Rossby waves,
these metrics move towards diagnosing the propensity for
peaks and troughs and thus can be used as a proxy to describe
the poleward/equatorward transport of the underlying surface
air masses (Hanna et al., 2017; Vavrus et al., 2017). Waviness
metrics have been used to evaluate trends in jet stream flow
in response to the warming world and whether this has en-
couraged extreme weather (Francis and Vavrus, 2015; Hanna
et al., 2017; Vavrus et al., 2017; Cohen et al., 2020). The no-
tion that a “wavier” jet stream leads to more extreme (win-
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Table 1. Jet statistics from the literature included in the jsmetrics package (u and v refer to the zonal and vertical wind components).

Study Variable(s) Pressure Temporal Method
(hPa)

Archer and Caldeira (2008) (AC08) u, v 100–400 Monthly Mass-flux-weighted mean latitude
Woollings et al. (2010) (W10) u 700–925 Daily Low-pass then Fourier filter over max wind speed
Barnes and Polvani (2013) (BP13) u 700–850 Daily Low-pass filter then quadratic interpolation
Grise and Polvani (2014) (GP14) u 850 Daily Quadratic interpolation of max wind speed
Barnes and Polvani (2015) (BP15)1 u 700–925 Daily Fit a parabola around wind speed profile
Barnes and Simpson (2017) (BS17) u 700 10 d average Maximum wind speed
Bracegirdle et al. (2018) (B18) u 850 Annual and Cubic–spline interpolation of max wind speed

seasonal
Ceppi et al. (2018) (C18)2 u 850 Monthly Centroid of wind speed profile
Zappa et al. (2018) (Z18)2 u 850 Monthly Extends Ceppi et al. (2018)
Kerr et al. (2020) (K20)3 u 500 Daily Smoothed max wind speed by longitude

1 Adapted from Barnes and Polvani (2013). 2 Extended to include jet speed in Screen et al. (2022). 3 Adapted from Barnes and Fiore (2013).

Table 2. Jet waviness metrics from the literature included in the jsmetrics package (u and v refer to the zonal and vertical wind components;
zg refers to the gravity-adjusted geopotential height)

Study Variable(s) Pressure level (hPa) Temporal Method

Francis and Vavrus (2015) (FV15) u, v 500 Daily Meridional circulation index
Cattiaux et al. (2016) (C16) zg 500 Daily Sinuosity metric

ter) weather in response to the warming world is a highly
contested topic (Francis, 2017; Manney and Hegglin, 2018;
Cohen et al., 2020, 2021), but it is suggested that the slower
progression of the jet stream in a wavier regime encourages
surface weather systems to take a longer and broader path
across the planet’s latitudes and as such encourages the trans-
port of colder air to be pushed further equatorward and vice
versa. Robust conclusions about changes in jet waviness have
so far been difficult to establish due to variation in the re-
gion and years studied, as well as the methodology used (e.g.
Barnes, 2013; Barnes and Simpson, 2017; Blackport et al.,
2019; Blackport and Screen, 2020).

2.3 Jet core algorithms

Jet core algorithms are rule-based methods which return a
mask of coordinates associated with jet streams in the upper-
air wind throughout the horizontal and/or vertical plane.
Their outputs consist of a multidimensional collection of
points describing coordinates associated with the main body
of the jet streams, known variously as “jet cores”, “jet oc-
currences”, or “jet centres” (here we refer to them all as
jet cores). Using these coordinates, it is possible to then
mask/extract further dynamical information, e.g. pressure, al-
titude, or speed, at the locations of the jet cores. Most com-
monly, the jet core algorithms extract coordinates using wind
speed thresholds before applying more rule-based algorithms
to classify the jet cores further (into types of jet core occur-
rence, local maxima, zonally continuous structures, etc.). We

review the six jet core algorithms featured in the jsmetrics
package in Table 3.

Typically, these algorithms are more computationally ex-
pensive than the other types of strategies outlined in this re-
search. However, they provide relatively more detail about
the features in the jet streams at a synoptic scale (Molnos
et al., 2017; Kern et al., 2018). We note that the implemen-
tations of SO9, M11, PO13, and K14 can provide three-
dimensional outputs for each time step, including altitude
coordinates about the jet cores they extract, and K06 and
ACO8 instead return mass-weighted output, which provides
two-dimensional jet cores for each time step.

The determination of jet cores varies between the algo-
rithms, and they have been selected based on (i) predefined
maximum speeds expected for jet streams (varying over 27–
40 m s−1; Koch et al., 2006; Strong and Davis, 2007; Schie-
mann et al., 2009; Manney et al., 2011; Pena-Ortiz et al.,
2013; Kuang et al., 2014), (ii) their relation to wind speeds of
neighbouring data points (local wind speed maxima; Schie-
mann et al., 2009; Manney et al., 2011; Pena-Ortiz et al.,
2013; Kuang et al., 2014), or (iii) retaining continuity of a
core across longitudes and/or pressure levels (e.g. Molnos
et al., 2017). By relying on defined wind speed thresholds
and local maxima, these methods can discount the influence
of multiple streams of jet streams, i.e. if they are only select-
ing the maximum jet speeds (Spensberger et al., 2017; Rikus,
2018). Furthermore, they may also underestimate the posi-
tions of the jet cores in different seasons, in climate regimes
different from the present (e.g. SSP5-8.5), and within differ-

Geosci. Model Dev., 17, 1229–1247, 2024 https://doi.org/10.5194/gmd-17-1229-2024



T. Keel et al.: jsmetrics: a Python package for jet stream metrics and algorithms 1233

Table 3. Jet core algorithms from the literature included in the jsmetrics package.

Study Variable(s) Pressure level Temporal Method
(hPa)

Koch et al. (2006) (K06) u, v 100–400 Daily Event-based jet stream climatology
and typology

Archer and Caldeira (2008) (AC08)1 u, v 100–400 Monthly Mass-flux-weighted wind speed
Schiemann et al. (2009) (S09) u, v 100–500 6 h Local maxima and above 30 m s−1

Manney et al. (2011) (M11)2 u, v 100–400 Daily Wind speed maxima and jet core separation
Pena-Ortiz et al. (2013) (PO13) u, v 700–850 Monthly–yearly Local wind maxima
Kuang et al. (2014) (K14)3 u, v 200–250 Any Jet occurrence and jet occurrence centres

1 They also include a method for extracting the jet latitude statistic. 2 Method refined in Manney and Hegglin (2018) to include a physically based method to distinguish between
subtropical and polar jets. 3 Adapted from Ren et al. (2011).

ent phases of the given climate oscillations (e.g. Woollings
et al., 2010; Madonna et al., 2017; Manney and Hegglin,
2018; Manney et al., 2021). We expect jets to be faster and
the eddy-driven and thermally driven components to be more
latitudinally separated in the winter versus summer, although
this relationship also expresses significant regional variation
(Manney and Hegglin, 2018; Maher et al., 2020; Manney
et al., 2021).

Different processes are known to drive the jet streams that
form over the planet (Ahrens and Henson, 2021), but, in the
Northern Hemisphere especially, these processes are known
to exist in combination and interact (Li and Wettstein, 2012;
Madonna et al., 2017; Maher et al., 2020). Broadly, this has
made it difficult to isolate the relationship between changes
to the different processes driving jet streams and the patterns
shown in upper-level wind conditions (Molnos et al., 2017;
Manney and Hegglin, 2018; Hallam et al., 2022).

While there is no clear-cut method to separate eddy-
driven and thermally driven components of the jet stream (or
the subtropical jet from the polar jet), some jet core algo-
rithms consider that the jet streams are driven by two mecha-
nisms and attempt to separate them. K06 subdivides jet core
“events” by depth. PO13 develops a method based on lat-
itude to distinguish between merged and separate states of
the polar and subtropical jets after the initial detection of jet
cores but was only able to separate the Northern Hemisphere
subtropical jet in January–February. The M11 method was
extended by Manney and Hegglin (2018) by introducing a
physical-based identification of the subtropical jet (based on
the thermal tropopause altitude) to more robustly separate it
from the polar jet. Manney et al. (2014) found that separat-
ing the M11 cores by a latitude criterion is effective only at
a climatological scale. Although not currently implemented
in jsmetrics, Christenson et al. (2017) and Spensberger et al.
(2023) propose methods which use the potential temperature
of jet cores to distinguish eddy-driven jets from thermally
driven jets. Finally, we also note that there are some methods
that have been developed exclusively for the subtropical jet
(see Maher et al., 2020, for a review of such methods) and

envisage that these could be incorporated in a future release
of jsmetrics.

3 Description of jsmetrics

The jsmetrics package contains implementations of various
metrics and algorithms for identifying and/or characterising
jet streams, written in Python 3. The package can be installed
from the Python Package Index (PyPI) repository using pip
and is also available on GitHub. It is published under the
GNU v3.0 licence.

The main focus of the package is to standardise the meth-
ods used to either characterise or identify jet streams in atmo-
spheric data such that they can be compared with each other.
The hope is that a tool allowing for this inter-compatibility
would help the research community to not only quantify what
different metrics show about jets as features of atmospheric
circulation, but also provide a platform for researchers to edit
existing and develop new metrics and algorithms in a stan-
dardised framework. The design of this framework is dis-
cussed in this section, and there are more details about how
to add new metrics to the package in Sect. 5.1.

3.1 Design

The package is built using xarray – an open-source Python
package for working with labelled multidimensional arrays
that has become a popular package for Earth science re-
search (due in part to its ability to interface with NetCDF4
and GRIB data formats; Hoyer et al., 2023). As the package
is built from xarray, each individual metric and algorithm in
the package is particular about its inputs – only accepting an
xarray dataset or DataArray object as an input. Further, the
inputs are expected to contain dimensions and variables with
standardised names conforming to the “controlled vocabu-
lary” of Taylor et al. (2011) (e.g. ua, va, zg, plev, lat, long).
Whilst the current iteration of jsmetrics is only compatible
with data with standard pressure levels (plev), for future de-
velopment of the package, it is a priority to include compat-

https://doi.org/10.5194/gmd-17-1229-2024 Geosci. Model Dev., 17, 1229–1247, 2024



1234 T. Keel et al.: jsmetrics: a Python package for jet stream metrics and algorithms

ibility with other vertical coordinate systems. The use of the
standard inputs in this way allows the package to have a log-
ical output, i.e. xarray dataset containing additional variables
computed by the given jet stream metric.

The design philosophy of this package was to decom-
pose and decouple each metric and algorithm into a collec-
tion of base functions that each perform one specific part
of the methodology, e.g. to calculate a climatology, calcu-
late a zonal mean, or extract cells with wind speed match-
ing given criteria. This design decision was taken to allow
metrics to share components, potentially making subsequent
metrics easier to verify and implement, and also to improve
bug detection and traceability. The package is built such that
existing metrics can be modified by replacing the statistical
filtering method used and the wind speed threshold limit or
by tweaking the steps of an algorithm, for example. Unfor-
tunately, this flexibility requires making all base functions as
simple and one-use as possible, which has sometimes led to
a decrease in readability. For example, it became necessary
to keep some base functions more specific, which may make
some of these harder to use without a familiarity with the
package and/or more advanced Python knowledge. We hope
to have alleviated any loss of readability with the use of more
verbose naming conventions throughout the package and de-
tails of the individual method’s docstring.

3.1.1 Flexibility

The jsmetrics package was designed in a way that does not
predefine any sub-setting of input data and is not partic-
ular about receiving data of a given resolution; i.e. it can
meet specifications defined by the various definitions of the
methodologies of the metrics provided in the literature. In-
stead, the package passes the handling of sub-setting of the
data onto the user. As such, each metric can be run on the
same data without requiring sub-setting. In cases where not
having sub-setting is nonsensical (i.e. methods that can only
run on one pressure level or require specific temporal or spa-
tial resolutions), the user is notified. Because of this, each
metric is flexible, so it is possible to change the resolution of
the input data, the spatial region, or the number of pressure
levels used. The motivation was to open up the possibility of
sensitivity analysis with the metrics and the quantification of
parametric uncertainty of the metrics. If there were any ad-
justments or differences between the literature’s implemen-
tation and the (Python) implementation provided by jsmet-
rics, we made a note of these in the metric’s docstring un-
der “notes”, available in the online documentation (see Keel,
2023a).

3.1.2 Package organisation

The aim of designing the layout of the jsmetrics package
was to keep it well organised, hierarchical, and easy to
navigate and to hide all the implementation-level detail of

each metric within a function sharing the given metric’s
name. To achieve this, we break the package down into
three main folders: core – containing all the main func-
tions for the package, metrics – containing the implemen-
tations of the jet stream metrics, utils – containing scripts
with utility functions for general data as well as spatial- and
wind-related operations. We further break down the met-
ric folder in Table 4. Notably, during the process of de-
signing this package, it became important to distinguish be-
tween three distinct types of methods described earlier, here
stored in three files: jet_statistics.py, waviness_metrics.py,
and jet_core_algorithms.py. These files contain the instruc-
tions (functions) to calculate a given metric or algorithm
at a high level of abstraction. In each case, they call sub-
functions in three component files, and these component files
can call upon various utility functions available within the
utils folder. The implementation details of each metric are
kept intentionally hidden (and decoupled from the metric it-
self) in sub-functions to allow for readability and also to al-
low for the construction of new metrics and/or to edit the
existing ones. Finally, the package also provides a specifica-
tion file, details_for_all_metrics.py, which details all the data
sub-setting needed to replicate the specification from which
the method was built on; i.e. Woollings et al. (2010) was built
from zonal wind speed (ua) data at 700–925 hPa between 15–
75◦ N and 120–180 ◦W. This file also provides a description
of the metric including citation details.

3.2 Development

The process by which metrics have been added to the jsmet-
rics package is diagrammatically represented in Fig. 1. This
process applies to metrics already added to the package but
also serves as a guide for adding metrics in the future, with a
code review on GitHub being an essential part of the devel-
opment of this project. As shown, we break down the process
into four successive stages (which we organise in GitHub as
a kanban board under “projects”).

As shown in Fig. 1, after the identification of a relevant
metric (not started), we first produce a pseudo-code imple-
mentation on paper using the description of the method from
the respective paper (in progress). After this, we translate the
pseudo-code to Python in Jupyter Notebook, where we refac-
tor the code so that it runs as fast and independently as possi-
ble (with an emphasis on minimising third-party packages/li-
braries, i.e. using only NumPy, xarray, and base Python). In
this stage, we start to write documentation (docstrings) for
each function and class and plan unit tests for when the met-
ric is moved over to jsmetrics. After writing the implementa-
tion, we validate its accuracy by reproducing the results from
the given study where possible in stage 3 (undergoing vali-
dation), after which we either debug the method further if it
fails the validation or write unit tests, finish the documenta-
tion, and integrate the metric into the jsmetrics package if it
succeeds. As of version 0.2.0, 10 jet statistic metrics, 2 jet
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Table 4. File layout of the metric folder in the jsmetrics package.

File Purpose

Higher level of abstraction

jet_core_algorithms.py Stores all the instructions to run the jet core algorithms.
jet_statistics.py Stores all the instructions to run the jet statistics.
waviness_metrics.py Stores all the instructions to run the waviness metrics.

Lower level of abstraction

jet_core_algorithms_components.py Sub-functions for the jet core algorithms.
jet_statistics_components.py Sub-functions for the jet statistics.
waviness_metrics_components.py Sub-functions for the waviness metrics.

Specification file

details_for_all_metrics.py Stores all the data sub-setting specifications and de-
scriptions for each algorithm and metric

Figure 1. Stages involved in developing the jsmetrics package.

waviness metrics, and 6 jet core algorithms have been added
to the package. We have detailed the progress status of each
metric included, and this is available via ReadTheDocs (see
Keel, 2023a).

4 Application of jsmetrics to ERA5 reanalysis data

Having covered some key features of jsmetrics, the aim of
this section is to introduce how to install the package and to
demonstrate its application on a climate dataset – here cho-
sen to be the European Centre for Medium-Range Weather
Forecasts’ ERA5 (Hersbach et al., 2020). For the demonstra-
tion here, a limited amount of knowledge about Python is
needed to replicate our results, as the jsmetrics package is
built to be simple and user-friendly. For more advanced use
of this package, we recommend some working knowledge of
Python and xarray.

4.1 Experiment setup, installation, and input data

The jsmetrics package is compatible with Python version
3.7 or later and can be installed via PyPI using the com-
mand pip install jsmetrics. Installing via pip au-
tomatically collects and installs all the dependencies re-
quired for the package, but the source code is also accessi-
ble via GitHub. More details about installing jsmetrics are
provided in its documentation (https://jsmetrics.readthedocs.
io/en/latest/, last access: 5 December 2023). To introduce
the features of the package, we look at two case studies us-
ing data from the ERA5 climate reanalysis (Hersbach et al.,
2020), which we have accessed via the Climate Data Store
API. We provide a link to the scripts we used for extracting
data from the Climate Data Store API in the “Data availabil-
ity” section at the end of this paper.
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4.2 Case study 1: comparison of winter jet latitude and
jet speed estimations

In this first case study, we use lower-tropospheric u-
component wind data (in m s−1) from the ERA5 climate re-
analysis to compare the daily latitudinal position of the jet
stream over the North Atlantic, North Pacific, and Southern
Hemisphere as determined by eight jet statistics available in
jsmetrics (Fig. 2). The data are in NetCDF version 4.0 and
consist of 1.0◦ by 1.0◦ global u-component wind speed for
each winter day (DJF or JJA) between 1 January 1979 and
31 January 2022 at the pressure levels 700, 775, 850, and
925 hPa. In Fig. 2, each violin plot is produced from 3912
(DJF) or 3956 (JJA) data points representing the daily win-
ter day averages during this 43-year period. The thicker black
line in the centre of each violin plot indicates the interquartile
range, and the thinner line indicates the 95 % confidence in-
terval. The white dot represents the median, and the shading,
which forms the body of each violin, is a kernel density esti-
mation, with wider sections representing a higher probability
of occurrence. The latitude–longitude bounds of each region
included in this figure are not consistently defined across the
literature, and so we vary these according to each metric’s
respective study. We exclude two metrics from this section:
AC08, as this method uses v-component wind speed, and
K20, as the methodology does not specifically look at any
of these three regions.

As shown in Fig. 2, the distribution of the daily latitude of
the jet stream in the winter is shown to be relatively wider
in the North Atlantic region (interquartile range (IQR) vary-
ing between 5.32–12.5◦ N across the metrics) than in the
North Pacific (IQR = 5.14–7.79◦ N) and Southern Hemi-
sphere (IQR = 3.85–9.94◦ S) across the metrics. For the
North Atlantic, we show that the degree of uncertainty aris-
ing from the choice of jet latitude statistic (or the metric un-
certainty) on the mean position is 3.81◦ N (between 45.26–
49.08◦ N). In contrast, the uncertainty arising from internal
variability, for which we use IQR as a proxy, is 7.18◦ N (be-
tween 5.32–12.5◦ N) across the metrics, implying the internal
variability has a relative larger impact on uncertainty associ-
ated with the jet position. The mean position of the jet stream
across 1979–2022 is shown to be between 37.24–40.81◦ N
for the North Pacific and between 46.85–51.01◦ S for the
Southern Hemisphere, as estimated by these metrics.

In Fig. 2, some general differences between the metrics
may arise due to differences in the region definition, e.g.
BP15 and C18, and differences in the pressure level from
which the metric has been calculated, e.g. BS17 (see Ta-
ble 1). Further, while W10, BP13, and BP15 adopt a sim-
ilar methodology and look at data from pressure levels be-
tween 700–925 hPa, GP14, BS17, C18, Z18, and B18 use
one pressure level (either 700 or 850 hPa). The motivation
for using relatively low-level pressure levels (between 700–
925 hPa) is to remove the signal of thermally driven parts of
the jet stream and isolate the eddy-driven parts (which act as

an important control on various aspects of the mid-latitude
climate; Hallam et al., 2022). Eddy-driven jet streams tend
to be deeper and are thus more likely to extend down to-
wards the surface than thermally driven jets, which tend to be
shallower and generally higher up in the troposphere (Held,
1975; Held and Hou, 1980; Madonna et al., 2017; Spens-
berger et al., 2023).

The above example demonstrates that when viewing jet
latitude estimations in this manner, researchers may be able
to evaluate metric uncertainties arising from differences
in methods used to characterise jet streams. These figures
highlight some preliminary divergence in metric uncertainty
across different regions of the globe arising from various ex-
isting metrics.

4.3 Case study 2: identifying the jet stream across
North America during the February 2021 North
American Cold Wave

For the second case study, we examine the representation of
the jet stream across North America during the 2021 North
American Cold Wave event, which occurred between 6 and
21 February 2021. This event was associated with an anoma-
lous cold-air outbreak over North America occurring in late
January 2021 (Cohen et al., 2020, 2021; Rao et al., 2021) and
has been linked with a (strong) negative phase of the Pacific–
North American pattern (Hsu et al., 2022). For this section,
we have used 6 h averaged u- and v-component wind speed
data from the ERA5 climate reanalysis (Hersbach et al.,
2020) at a 1◦ by 1◦ grid for the pressure levels 100, 250, 300,
400, and 500 hPa accessed via the Climate Data Store API.
We isolate just one 6 h period from the cold wave, 00:00 UTC
on 15 February 2021, and compare wind speed at 250 hPa to
five jet core algorithms from the jsmetrics package in Fig. 3.
We note that the vertical resolution and grid spacing of the
data used in this case study may not be adequate for some
of the methods to effectively capture jet cores (see a discus-
sion of vertical resolution and grid spacing in Manney et al.,
2017). Instead, the data have been selected based on faster al-
gorithm run time and reproducibility of the figures included
in this section. Finally, we have selected jet cores at 250 hPa
from M11 and PO13 for comparison with wind speed and
K14, but we acknowledge that these two algorithms also re-
turn jet core outputs at different altitudes.

When viewing the upper-level jet stream over North Amer-
ica at this given instance of the North American Cold Wave
event and between five unique jet core algorithm metrics, it
is clear that each metric is identifying the same broad pattern
– a well-defined singular band across North America and a
trough that extends down towards Texas. Notably, S09, M11,
P013, and K14 all use a 30 m s−1 threshold (but not in the
same way), and both S09 and PO13 select only cells of lo-
cal maxima; M11 and K14 also extract regions around each
core/maxima. There are only slight visual differences be-
tween the jet cores in PO13 and S09 because both algorithms
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Figure 2. A comparison of the daily mean position of the jet stream during the winter months between 1 January 1979 and 31 January 2022
in three study regions as specified by eight jet latitude metrics available in the jsmetrics package. The thicker horizontal lines inside each
violin represent the interquartile range, and the thinner lines represent the 95 % confidence interval. The white dot represents the median, and
the shading, which forms the body of each violin, is a kernel density estimation. The region of the North Atlantic is combined with North
America in Barnes and Polvani (2015) and with Europe in Ceppi et al. (2018) (data: ERA5 climate reanalysis product; Hersbach et al., 2020).

Figure 3. Comparison of the estimation of the jet stream position during the North American Cold Wave event at 00:00 UTC on 15 Febru-
ary 2021 as estimated by five jet core algorithms available in the jsmetrics package. The top left panel shows the 250 hPa resultant wind
speed as calculated from u- and v-component winds (data: ERA5 climate reanalysis product; Hersbach et al., 2020).
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Figure 4. A comparison of jet waviness during the North American Cold Wave event between 12:00 UTC on 11 February and 12:00 UTC
on 19 February 2021 as estimated by two waviness metrics available in jsmetrics. The metric from Francis and Vavrus (2015) is a mean of
MCI calculated for each 6 h time step between 12:00 UTC on 11 February and 12:00 UTC on 19 February 2021. When MCI is 0, the wind is
purely zonal, and when MCI is 1 (−1), the flow is from the south (north). The sinuosity metric from Cattiaux et al. (2016) is calculated over
a standard North Pacific region (0–90◦ N and 120◦ E–120◦W) (data: ERA5 climate reanalysis product; Hersbach et al., 2020).

make use of a wind speed threshold of 30 m s−1 to extract lo-
cal maxima in the altitude/latitude plane, but S09 isolates jet
cores only where the u-component wind is also shown to be
above 0 m s−1. M11 uses an additional algorithm after the
initial discovery of local maxima to divide jet cores occur-
ring within the same local maxima region based on whether
(1) two or more cores are more than 15◦ of latitude apart and
(2) the wind speed drops more than 15 m s−1 between those
cores; otherwise these jet cores in the same region will be
considered part of the same core, at the location of the largest
of the local wind speed maxima. As such, the jet core output
from M11 at 250 hPa may vary slightly from other similar
methods (e.g. S09 and PO13), as the jet cores in each may be
associated with different altitudes. K14 also rely on check-
ing for local maxima but within the longitude/latitude plane.
The methodology checks for jet occurrence and jet centres,
which are defined in grid cells, whereby wind speeds above
30 m s−1 are local maxima (so they have a higher wind speed
than all eight surrounding grid cells). As such, this algorithm
distinguishes between two different categories of jet stream
occurrences: making the assumption that the centres of jet
streams are important features in their own right, as opposed
to regions where a given wind threshold is exceeded (Kuang
et al., 2014).

With this case study, we demonstrate the slight differences
in the estimations of the jet stream from various jet core al-
gorithms and suggest that the difference at the 6 h scale will
likely be amplified when aggregating into coarser time reso-
lutions.

Next, we look at two waviness metrics during the North
American Cold Wave event in Fig. 4. As estimated by FV15,
a large negative MCI (MCI less than 0 indicates northerly
flow) patch is shown over western North America during the
10 d period encompassing the North American Cold Wave

event. C16 provides a more limited view of the event but
shows some variation in the temporal profile of the upper-
air sinuosity (jet waviness) during the North American Cold
Wave event, with relatively higher and more sustained sinu-
osity in the upper-air flow being associated with 00:00 UTC
on 13 February and 18:00 UTC on 15 February.

4.4 Other potential uses

The jsmetrics package is designed to be flexible with both
the inputs and the calculation of a given metric. While a
user can change the exact specifications by which some met-
rics are calculated (e.g. changing wind speed thresholds and
filter window sizes), users can also pass different subset-
s/specifications of data into the metrics (e.g. different spatial–
temporal regions and resolutions). As such, this opens up the
possibility to do sensitivity analysis to explore or evaluate the
following:

1. metric uncertainty, by comparing the estimations of the
jet stream using multiple statistics or algorithms on a
single dataset;

2. parametric uncertainty, by comparing the estimation of
the jet stream from a given metric using slightly dif-
ferent specifications, i.e. filter window sizes, thresholds,
etc.;

3. input uncertainty, by comparing the estimation of the jet
streams in different domains (pressure levels, spatial–
temporal resolution) and with different datasets.

In Figs. 5 and 6, we demonstrate a simple evaluation of
metric uncertainty using the same dataset and metrics as case
study 1 (Sect. 4.2: winter jet latitude and speed) but with a
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single set of specifications: vertical levels of 700–925 hPa,
for the four fixed regions of the North Atlantic (15–75◦ N
and 60–0◦W), North Pacific (0–90◦ N and 120◦ E–120◦W),
Northern Hemisphere (0–90◦ N), and Southern Hemisphere
(0–90◦ S). We include the extension to C18 and Z18 pro-
posed by Screen et al. (2022) to produce an associated jet
speed for those methods. To demonstrate the sensitivity of
the jet statistics to parameters in their definition, we also
show in Fig. 6 the distribution of jet speed over the various
regions used in the respective studies (see Table 1), rather
than a single common region.

As shown in these figures, there are clear divergences in
the distribution of the daily jet latitude position and jet speed
estimated by the various metrics using the same dataset.
In Fig. 5, the mean jet position varies more in the North-
ern Hemisphere (33.22–49.75◦ N) than in the North At-
lantic (44.62–49.55◦ N), North Pacific (31.57–46.81◦ N), and
Southern Hemisphere (42.37–50.59◦ S). The estimation of
the jet mean position from C18 over this period is found to
perform less similarly to the other jet latitude statistics, show-
ing the most equatorward estimation in each region.

In Fig. 6, the strongest and most variable jet speed esti-
mations are shown in the North Atlantic (8.92–15.31 m s−1)
versus the North Pacific (6.56–11.51 m s−1), Northern Hemi-
sphere (5.04–7.77 m s−1), and Southern Hemisphere (8.15–
13.07 m s−1). We also find that the BP13, BS17, and C18
methods are sensitive to the original definitions of the North
Pacific region (Fig. 6).

By viewing the jet statistics in this manner, we hope to
have demonstrated that using any one metric in isolation is
associated with a significant level of metric uncertainty – so
estimates of how much a jet has shifted will strongly depend
on the metric. In particular, Fig. 5 shows that some metrics
show more variation in their estimates across multiple re-
gions than others. As such, the jsmetrics package could be
used to evaluate the sensitivity of each metric to varying def-
initions of regions.

Jet streams are chaotic actors in the atmosphere, and as
such, there is no universal strategy to capture their features
at any timescale in data (e.g. Maher et al., 2020; Bösiger
et al., 2022, and references therein). Therefore, in the next
example, we explore the effect of input uncertainty by using
a jet core algorithm on data with different time-averaging pe-
riods. We use the K14 metric, which defines jet occurrence
and jet centres in the upper-air wind (200–250 hPa). The jet
occurrences are defined as grid cells where wind speed is
above 30 m s−1. Jet centres are defined as grid cells above
30 m s−1 and that are also local maxima compared with the
surrounding eight grid cells. We examine the effect of six
different time-averaging periods (all centred at 12:00 UTC
on 15 February 2021) on the characterisation of the North
American Cold Wave event in February 2021, using the same
data detailed in Sect. 4.3.

Figure 7 shows a clear trough in upper-level jet occurrence
and jet occurrence centres, extending south towards Texas in

mid-February, but the extent to which this feature is visible
depends on the timescale used. This feature is robust up to
about 4 d, but a trough structure becomes less clear in the
jet occurrences and jet centres beyond that. We expect large-
scale and persistent features of the jet stream (in this case
a stationary/standing wave over North America) to be more
defined/stable at broader timescales if the weather system re-
mains and the features of the jet stay in place over a region.
Note that this metric finds jet features over Greenland at the
finer timescales, but these features are lost with temporal av-
eraging.

Next, we compare the 8 d mean with the count of 6 h
means of the jet occurrence centres from K14 around the
North American Cold Wave event between 12:00 UTC on
11 February 2021 and 12:00 UTC on 19 February 2021. We
use a 2σ Gaussian filter around the 32 6 h jet centres to
smooth the counts in each 1◦ by 1◦ grid cell. The comparison
(Fig. 8) demonstrates the losses and gains of time averaging:
some features are diluted using the mean, while counts show
more detail but can also include more noise.

These examples highlight the care needed in study design.
Using only one temporal scale, without considering the ef-
fect of temporal averaging on jet features (given the current
lack of knowledge about which scales are appropriate for a
given purpose), is likely to underestimate uncertainty in the
estimation of the jet streams.

In our last example, we extract a single value – the latitude
of the jet stream over a study area – to compare the estima-
tions of six jet core algorithms to the estimation of the lati-
tude of the jet stream to seven metrics available in jsmetrics
that are purpose-built for extracting a jet latitude. We use 8 d
of the 2021 North American Cold Wave and the region out-
lined in Fig. 8 (20–60◦ N, 120–80◦W) to do this (Fig. 9). To
create an estimate for jet latitude from the jet core algorithms,
we first compute the estimation of jet cores using a given al-
gorithm and use these locations as a mask to extract wind
speed values for each day. Using these values, we then ex-
tract the zonally averaged maximum wind speed and define
the associated latitude as the jet latitude value at the native
resolution. For consistency’s sake, we use a single method to
extract the latitude from the multidimensional field returned
by the algorithms in this case study. This is the latitude of
the maximum wind in the region (despite other options being
available to do this for the multidimensional fields; e.g. Man-
ney et al., 2011, would select all the indexes of returned jet
cores). Future versions of jsmetrics could contain a variety of
procedures that process the outputs of jet core algorithms into
jet statistics. AC08, BS17, and B18 all produce a single value
of jet latitude due to the temporal resolution used for this ex-
ample. These estimates are 37.42, 32, and 31.78◦ N, respec-
tively. This figure shows the jet latitude to be generally more
polewards, as determined by the jet core algorithms, com-
pared with the jet latitude metrics. This is most likely due
to the altitude of the methodology, as the jet core algorithms
look at the upper troposphere, and the jet statistic algorithms
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Figure 5. A comparison of the 700–925 hPa winter daily mean position of the jet stream between 1 January 1979 and 31 January 2022 in
four standard regions as estimated by eight jet latitude metrics available in the jsmetrics package. The thicker horizontal lines inside each
violin represent the interquartile range, and the thinner lines represent the 95 % confidence interval. The white dot represents the median,
and the shading, which forms the body of each violin, is a kernel density estimation (data: ERA5 climate reanalysis product; Hersbach et al.,
2020).

Figure 6. A comparison of the 700–925 hPa winter daily mean jet speed between 1 January 1979 and 31 January 2022 in four standard
regions as estimated by eight jet speed metrics available in the jsmetrics package (data: ERA5 climate reanalysis product; Hersbach et al.,
2020). Where the original studies used a different regional definition (see Table 1), the distribution of jet speed using that altered region is
shown underneath the distribution determined from the common standard region.

look at the lower troposphere (Tables 1 and 3). Notably, only
a few of the metrics produce a bimodal distribution of the
jet latitude, which is observed in the maximum zonal wind
speed profile during this period, but this includes none of the
jet core algorithms, which use a wind speed threshold.

5 Future work

The jsmetrics package is a work in progress but aims to be
a flexible and useful research tool for comparing and refin-
ing existing jet metrics, as well as a platform for develop-
ing new metrics in the future. Apart from adding new met-
rics to the module, detailed in Sect. 5.1, there are a few di-
rections for the current use of the jsmetrics package. As a
package, jsmetrics provides no scripts for running analysis

of various jet stream metrics in combination, as we demon-
strate in Sect. 4. Therefore, one direction for the use of js-
metrics is scripts or a module built on top of jsmetrics that is
made to run a comparison of multiple metrics. For the anal-
ysis in Sect. 4, we used scripts that make use of specification
files (like details_for_all_metrics.py) that detail the data sub-
setting, expected input variables, and the function to run. We
then wrote a script containing an “AnalysisRunner” class to
actually handle the experiment and loop over and calculate
the metrics in a manner specified by the specification files on
a given dataset. As outlined in Sect. 3, this is made possi-
ble as the package does not attempt to subset the input data:
instead, it is expected that the user handles the quality and
specification of data passed into jsmetrics. Running metrics
in combination opens up the possibility of evaluating the in-
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Figure 7. Jet occurrence and jet occurrence centre points as determined by the algorithm from Kuang et al. (2014) at 250 hPa at 6 h, 12 h, 1 d,
2 d, 4 d, and 8 d averaging periods during the North American Cold Wave event centring on 12:00 UTC on 15 February 2021 (data: ERA5
climate reanalysis product; Hersbach et al., 2020).

Figure 8. A comparison of 8 d daily counts versus the mean of jet occurrence centres, as determined by the algorithm from Kuang et al.
(2014), during the North American Cold Wave event centring at 12:00 UTC on 15 February 2021 (data: ERA5 climate reanalysis product;
Hersbach et al., 2020).

put, metric, and parametric uncertainty associated with the
estimations of the jet stream latitude, speed, waviness, or lo-
cation (depending on the experiment and which metrics are
currently in the package).

Another direction is to write a script to run the analysis on
multiple datasets, built on top of modules using specification
files. This could be used to evaluate jet stream estimates not

only in different input reanalysis datasets (as in Pena-Ortiz
et al., 2013; Manney et al., 2017, 2021), but also in multiple
climate model projections (e.g. the CMIP6 multi-model en-
semble; Eyring et al., 2016), to search for coherent patterns
and emergent observational constraints of future jet stream
behaviour.
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Figure 9. A comparison of the 6 h latitude of maximum wind speed estimations from jet latitude metrics and jet core algorithms available
in jsmetrics during the North American Cold Wave event between 80–120◦W and 20–60◦ N between 12:00 UTC on 11 February and
12:00 UTC on 19 February 2021. Maximum zonal wind is the zonally averaged maximum wind speed, calculated using u- and v-component
wind (data: ERA5 climate reanalysis product; Hersbach et al., 2020).

Other metric libraries and packages are written in Python
and developed for use with NetCDF4 and xarray datasets.
There is the potential to include various metric implementa-
tions within Python’s xclim – a Python library of derived cli-
mate variables and climate indicators, based on xarray (Lo-
gan et al., 2022). Further, a comparison of various jet stream
metrics as calculated with the jsmetrics package has the po-
tential to be integrated as a recipe for the ESMVal Tool for
evaluating CMIP6 model data (Andela et al., 2022).

5.1 Adding metrics

The jsmetrics package has a guide to contributing, available
on ReadTheDocs (https://jsmetrics.readthedocs.io/en/latest/
contributing.html, last access: 16 October 2023). This project
is a strictly open-source project and has a strong copyleft
licence (GNU General Public Licence v3.0). The jsmetrics
package is designed to be easy to contribute to, and there is
an emphasis on future metrics being built upon a collection
of generalised sub-functions that can be shared with similar
metrics, e.g. for calculating zonal mean wind speed or ap-
plying a low-pass filter. Because of the inherent similarity of
some existing metrics currently implemented in jsmetrics, we
recommend first looking for similar metrics that have been
implemented and viewing how they are defined within this
package. The aim of adding any new metric should be to try
to minimise the amount of repeating code and to standard-
ise the components of the metrics as much as possible so
that they can run with slightly altered inputs, i.e. with differ-
ent wind speed thresholds, different filter window sizes, etc.
We recommend experimenting with various designs of any
prospective addition to jsmetrics in a Jupyter Notebook and
to prioritise fast and simple implementations of that given
metric.

We have used the capabilities of GitHub to log the progress
of any given metric. We open a new GitHub issue to log and
describe a new potential metric and GitHub projects to track
the progress of a given metric in the manner explained in
Sect. 3.2 and Fig. 1. In Table 5 we outline some further met-
rics that are in the process of being implemented or could be
implemented in the future. It is possible that as the package
expands, there is an opportunity to refine the categories de-
veloped to contain and define different types of metrics and
also those that look at different types of jet streams, i.e. low-
level jets, eddy-driven jets, thermally driven jets, etc. Finally,
we note that some metrics may be too complex for the re-
mit of this package (e.g. Kern et al., 2018; Kern and West-
ermann, 2019; Bösiger et al., 2022). When developing the
package, we avoided metrics that use variables describing
different aspects of the upper-level flow synonymous with
(characteristics of) jet streams, such as wind shear (e.g. Lee
et al., 2019) and the magnitude of atmospheric waves (e.g.
Chemke and Ming, 2020). Similarly, we did not include any
potential metrics that require a training element to run and
those that are currently very computationally expensive (e.g.
Limbach et al., 2012; Molnos et al., 2017).

6 Conclusions

In this work, we have introduced the features of jsmetrics – a
Python package containing an implementation of 17 metrics
or algorithms used to identify atmospheric jet streams, and
we have demonstrated its use on climate reanalysis data. The
motivation for developing this software comes from a desire
to standardise, and make openly available, various methods
used to identify and characterise jet streams such that they
can be used in combination, compared, and contrasted. It is
hoped that this software can open up new avenues for re-
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Table 5. Techniques for identification or characterisation of jet streams in the literature not yet implemented in the jsmetrics package (u, v,
and w refer to the zonal, meridional, and vertical wind components; zg refers to the gravity-adjusted geopotential height).

Study Variable(s) Pressure level (hPa) Temporal Method

Jet statistics

Strong and Davis (2007) 1 u, v 100-500 6 h Surface of max wind speed
Barton and Ellis (2009) u 300 Daily Latitude of maximum wind speed
Harnik et al. (2014) u 300 hPa Daily Jet latitude index
Messori and Caballero (2015) u, v 200–400 and 700–925 Any Jet angle index and jet latitude index
Simpson et al. (2018) u 700 Monthly 20-year-running mean zonal wind
Liu et al. (2021) u 250 and 850 Daily Extends Barnes and Polvani (2013)
Mangini et al. (2021) 2 u 700–900 Daily Jet clusters using K means
Blackport and Fyfe (2022) u 700 Daily Extends Barnes and Polvani (2015)
Hallam et al. (2022) u 250 Daily Maximum wind speed by longitude

Jet waviness metrics

Screen and Simmonds (2014) 3 zg 500 Daily Wave amplitude metrics
Martineau et al. (2017) 4 zg 500 Daily Local finite-wave activity

Jet core algorithms

Gallego et al. (2005) zg 200 Daily Geostrophic streamline algorithm
Chenoli et al. (2017) u, v 100–300 Daily Extends Pena-Ortiz et al. (2013)
Spensberger et al. (2017) 5 PV 280–380 K PVU 6 h Jet axis algorithm
Rikus (2018) u 0–1000 Any Discrete object algorithm

1 Adapted from Strong and Davis (2005, 2006). 2 Adapted from Madonna et al. (2017). 3 Adapted from Screen and Simmonds (2013). 4 Adapted from Chen et al.
(2015) and Huang and Nakamura (2016). 5 Adapted from Berry et al. (2007).

searchers for evaluating both the location and the characteri-
sation of jet streams and also open up a more comprehensive
quantification of various uncertainties associated with using
different methods, datasets, and specifications (metric, para-
metric, and input uncertainty, respectively).

We have tried to keep the package as simple as possible
to use and install for those who wish to use the package as a
research tool, but there is also a lot of scope for the package
to be built upon and extended. As we outline in Sect. 5.1, the
process of adding new metrics to the package is relatively
formulaic and extensively logged on GitHub. The package
provides a collection of generalised functions that form com-
ponents of the metrics, so it is easy enough to edit aspects of
existing metrics included in the module and also to develop
new metrics from these generalised functions. Furthermore,
the metrics included in the package make no explicit attempt
to change or subset the input data to the original specifica-
tions of the paper they stem from, so they are adaptable to
different regions, times, scales, and future data products.

Code and data availability. The up-to-date version of jsmetrics
is available at https://github.com/Thomasjkeel/jsmetrics (last ac-
cess: 12 February 2024). The jsmetrics package is also accessi-
ble on PyPI via the Python pip package manager. It is archived
at https://doi.org/10.5281/zenodo.10246319 (Keel, 2023b). All data

used are available from ERA5 climate reanalysis accessible from
https://doi.org/10.24381/cds.bd0915c6 (Hersbach et al., 2023).
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