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Abstract: In this study, we evaluated the performance of GeoSLAM ZEB Horizon and Stonex X120GO
SLAM handheld mobile laser scanners (HMLS) to address two primary objectives. First, we aimed
to assess and compare the accuracy of positioning achieved using HMLS instruments. Second, we
sought to investigate the influencing factors and their impact on estimation accuracies. The factors
influencing the accuracy of positioning in HMLS Simultaneous Localization and Mapping-aided
solutions were defined, considering the scanner type, distance from the trajectory, forest structure, tree
species, and Diameter at Breast Height. The same type of trajectory was tested in five different stand
structures. The evaluation of GeoSLAM HMLS point clouds yielded an average positional RMSE of
17.91 cm, while the data extracted from the Stonex HMLS resulted in an average positional RMSE
of 17.33 cm. These results underscore the significant potential of HMLS technology in addressing
the critical need for precise positioning data in various applications, from forestry management to
environmental monitoring, wildlife habitat assessment, and climate change studies. By harnessing the
power of handheld mobile laser scanners, our research aims to enhance the accuracy and efficiency of
geospatial data capture in challenging.

Keywords: position; SLAM; tree; mapping; forest

1. Introduction

Precise geospatial data plays a key role in enabling a comprehensive understand-
ing of location, distance, and area within society, while in the domain of forestry, the
widespread adoption of global navigation satellite system (GNSS) based positioning tools
facilitates effective navigation and assist the management decisions [1]. Tree position plays
an important role in research on forest resources and ecological functions, and quickly
and accurately obtaining tree position data has long been the focus of researchers. The
rapid and accurate acquisition of tree position in sample plots is helpful for predicting the
growth of tree diameter at the breast height (DBH) and population development trends
and has important ecological significance for revealing the relationship between trees and
tree species [2]. Accurate tree positioning and measurement of structural parameters are
the basis of forest inventory and mapping. Also, they are important for forest biomass
calculation and community dynamics [3]. The structure and diversity of a forest may be
defined by the spatial distribution of the tree positions, by the particular mingling patterns
of the different tree species that occur in the forest and by the spatial arrangement of the tree
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dimensions [4]. The position plays a significant role in modeling individual-tree growth
and survival, identifying the vertical structure, and growth pattern of trees in the forest
and forms topography.

In early days, the location of sample trees was mainly surveyed in the horizontal
distance by means of compass angle, tape, or lining rope [5], which was very time consum-
ing. More precise technologies that could be used in forestry began to emerge later. Only
recently methods and devices have been developed for locating trees in challenging environ-
ments. The global navigation satellite system (GNSS) can provide positioning coordinate
information in most environments. However, in forested areas with high canopy cover
index and diverse tree densities within sample plots, GNSS signals may experience signal
attenuation or disappearance, impacting positioning accuracy [2]. Many factors, including
dilution of precision, multipath errors, atmospheric refraction, clock errors, and ephemeris
errors, can affect the quality of GNSS data in complex environments. To address this,
researchers explore possible combinations GNSS with other technologies, such as inertial
measurement units (IMUs), to achieve sub-meter accuracy in challenging forest conditions,
benefiting applications like accurate forest mapping and object positioning [6,7]. Recent
advancements in technological combinations, including complex fusions of devices, have
enabled achieving accuracies of less than 0.5 m in challenging forest environments [8–12].
Therefore, it is necessary to investigate new possibilities and pathway patterns that will
allow the accuracy of determining the location of objects in a challenging environment to
be increased. For the purposes of forest inventory data collection, authors used to work
with Field-Map system, a software and hardware technology for computer-aided field
data collection and data processing that combines a real-time GIS software with electronic
equipment for mapping and dendrometric measurements [13–16]. However, accurate
location estimation is not among its primary goals and the position is estimated with
a high error.

Advancements in consumer mobile mapping technologies have enabled easy collection
of geospatial data from challenging environments, both indoors and outdoors, using
laser scanning and powerful computational devices [17]. These laser scanning techniques
provide detailed and accurate environmental images, where the accuracy of locating objects
is dependent on the quality of input data, with some drawbacks of high time consumption
and cost. Terrestrial laser scanners (TLS) are widely used in obtaining 3D representations
of an environment and achieve good accuracy. Their disadvantages have already been
mentioned (time consumption, speed, and equipment acquisition costs).

Handheld mobile laser scanners emerged as an alternative to TLS around 2013, offering
higher efficiency and promising applications in forestry [18,19]. Leveraging Simultane-
ous Localization and Mapping (SLAM) technology, these scanners provide detailed and
relatively accurate environmental point clouds and enable efficient and accurate object
positioning, making them valuable tools in various industries, including forestry [7]. The
use of mapping techniques based on SLAM as a more favorable alternative to traditional
static mapping methods in a complicated environment was described in [20]. SLAM is
a process where a mobile robot simultaneously creates a map of its environment and
determines its own position using this map. It involves estimating the robot’s trajectory
and the locations of all landmarks in real-time, without relying on any prior knowledge
or pre-existing maps [21]. That means SLAM technology does not inherently rely on
a GNSS signal, making it advantageous for use in environments where GNSS signals are
unavailable.

Several works investigate the applications of mobile laser scanners and SLAM technol-
ogy in various industries, including forestry [20,22–24]. With the development of indoor
applications of mobile robotics, the popularity of the technology is increasing. It is also
an interesting alternative solution for creating maps for different and specific purpose in
various industries [25]. In the application of SLAM technology for the forest environment,
research has been moving forward in recent years.
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The first commercial handheld mobile mapping system powered by a smart algorithm
was developed by the GeoSLAM team [26,27]; later, several companies began to develop
the technology of mobile scanners, and more affordable devices began to appear, enable
wider application in practice for forest inventory or natural conditions monitoring (in
2014 Google released “Project Tango” [28,29] or Intel’s RealSense handheld 3D mapping
technology [30]).

SLAM is a longstanding challenge in mobile robotics and artificial intelligence, studied
extensively for more than two decades. Researchers employ diverse techniques to enhance
robot autonomy and self-navigation. Autonomous robots require a deep understanding of
their environment and the ability to navigate in unknown territories. This is vital, especially
in indoor settings where GNSS is unavailable. Researchers continue to develop improved
SLAM techniques to ensure reliable and efficient robot navigation, making it a practical
and essential technology with a wide range of applications in both indoor and outdoor
environments [31]. Hence, it is crucial to explore the capabilities of devices employing
this technology in challenging environments and validate the data from manufacturers’
technical specifications through real-world practical testing.

Recently, the Stonex X120GO SLAM appeared as a possible alternative tool for 3D
point cloud acquisition, potentially replacing the Geo SLAM ZEB Horizon. A series of
studies has delved into the use of handheld and mobile laser scanning technologies for
a range of applications. Researchers have explored the potential of mobile handheld laser
scanners in assessing external structures influencing the quality of wood in trees [32]. These
technologies have been employed to compare various scanning approaches, including
SLAM-based HMLS called TORCH, and close-range terrestrial photogrammetry for mea-
suring surface deformation on forest roads [33]. Garden settings have been the subject
of extensive laser scanning studies, evaluating both static TLS and mobile laser scanning
(MLS), utilizing equipment such as the Focus 3D S120 and the Leica BLK2GO [34]. A mixed-
species Mediterranean forest was used as the testing ground for estimating individual
tree attributes with HMLS [35]. Furthermore, 3D laser scanning data from SLAM-based
portable sensors have been tested for cadastral surveys in complex urban areas [36]. These
advanced technologies have been applied for documenting intricate architecture [37]; addi-
tionally, HMLSs have gained attention for documenting cultural heritage in various urban
environments [38]. Additionally, authors often compare HMLSs with various technologies,
such as TLS, airborne laser scanning (ALS), photogrammetry, or other remote sensing
outputs [39–42], but, to the best of our knowledge, no one has yet compared these two
devices and their precision and limits in forests environment.

The main goal of this study is to compare the accuracy of individual devices in terms
of positional accuracy and to look for factors that influence this error. In addition, we
investigate the possibilities of two different HMLSs with SLAM technology in challenging
environment of forest stands with different structure, including the device with a long-
standing tradition (GeoSLAM) and the new more affordable Stonex device. Comparing
two different HMLSs in a challenging environment can be beneficial for several reasons,
primarily in evaluating performance, assessing data quality, and identifying potential
issues. This study assessed the scanners’ performance and capabilities, compared their
performance, and easily outlined cost-effectiveness, which can help individuals and organi-
zations make informed decisions when selecting the most suitable scanner for their specific
needs. Our comparisons of devices provide a benchmark for understanding the relative
performance of these devices, enabling users to gauge which SLAM HMLS offers better
results or reliability in challenging environments. This is crucial in various applications
like forestry, architecture, archaeology, or surveying, where data accuracy is paramount.

Accuracy of forest inventory data collection with emphasis on individual tree position
will be evaluated. The factors that affect the accuracy of positioning HMLS SLAM-aided
solutions will be defined. Overall, understanding how different forest types impact the
performance of HMLS systems is crucial for accurately interpreting and utilizing laser
scanning data in forest environments. In addition, it is important to determine that the
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HMLS position error achieved is not an obstacle to being able to derive important tree,
stand, and environmental parameters.

2. Materials and Methods

Test plots are in the middle of Slovakia (Central Europe), in the forest stand of the
University Forest Enterprise of the Technical University in Zvolen. Five test plots with
dimensions of 30 × 30 m2 were established and permanently marked with steel survey
markers (Figure 1). We selected areas with flat terrain while ensuring they met our retrains.
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Figure 1. Location of the research plots.

We began data collection in March 2022, marking the start of the leaf-on season in
our region. Plots were measured from March to November 2022. We collected reference
data initially and then scanned the stands while striving to maintain consistent collection
conditions across all research plots. Within each test plot, all trees with a DBH > 2 cm were
accurately positioned, using the Topcon 9000 total station combined with the Topcon Hiper
SR GNSS receiver (Topcon Corporation, Tokyo, Japan), and the diameters of trees were
measured at the height of 1.3 m above the ground using measuring tape (Ben Meadows
Co., Madison, WI, USA). All reference data and ground control points (GCPs) positions
were collected in the System of the Unified Trigonometrical Cadastral Network coordinate
system. The first corner of the research area represents the first position of the total station
with additional measurements to at least two known points obtained by post-processed
GNSS baselines with base station data obtained from Slovak real-time positioning service
(SKPOS®, Bratislava, Slovakia). To measure all the trees on the research area, it was
necessary to change the position of the total station several times in denser stands, while
the orientation was carried out each time to the known corner points of the research plots.
The corner points of the research plots were permanently stabilized by geodetic anchors.
The polar method and angular offset were used to determine the position of the trees. The
method records the horizontal angle and the distance of the object from the connection
point of the total station position and the orientation point—from the known direction
with the zero value of the horizontal angle. Each distance of the tree from the device
was adjusted by 1/2 DBH during office work to ensure the exact location of the point in
the center of tree. The accuracy of determining the position of the corner GCP and tree
positions was below the limit of 3 cm. The reference data set was created in compliance
with the legislation in force in the field of forest mapping. In the Slovak Republic, two
main laws have influenced forest mapping (Slovak Technical Standards—STN; 1. Geodetic
points and 2. Charts with scales 1:200, 1:250, 1:500, 1:1000. General and special charts).
Essentially, the standards define the classes of accuracy valid for the geodetic control points,
which are used as a base for calculation of the other consequential objects-representing
points. The fifth class of accuracy is used in the field of forestry, which is brought about
by GNSS decreasing effects of forest stands. However, the reference data set was collected
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with the aim to reach at least the third class of STN—Geodetic control points—with the
highest allowed error being 0.06 m [43]. Site conditions are shown in Figure 2. The research
areas include different structured stands and are dominated by European beech (Fagus
sylvatica L.) and Norway spruce (Picea abies (L.) Karst.). Research plots include 37 to
166 trees with an average DBH from 16.07 to 29.25 cm (based on our measurements).
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Figure 2. Research plots—situation maps based on reference data measurements.

For a better illustration of the conditions at the research plots average DBHs can be
found in Table 1. The research areas contained deciduous and coniferous trees, in various
degrees of mixing.

The data acquisition by HMLSs were performed using a GeoSLAM Horizon scanner
(GeoSLAM Ltd., Nottingham, UK) and Stonex X120GO SLAM Laser Scanner (Stonex®

Srl., Paderno Dugnano, Milan, Italy). According to producers’ data both GeoSLAM ZEB
Horizon and Stonex X120GO SLAM offer high-quality handheld scanning capabilities
with similar relative accuracy and collection rates (Table 2). In the user sector, the choice
between the two may depend on specific project requirements, price, user preferences, and
the interface or software that best aligns with the user’s workflow.

The research areas were scanned continuously in four parallel lines with 10 m distance
between each other. This measurement method was chosen to obtain a high density of
points and time efficiency. Used HMLS systems captured GCPs using the reference plate
accessory. Scanning always started in the lower left corner and proceeded along the lines
at 10-m intervals. Both HMLSs required static initialization in the first step. The devices
were moved at a uniform speed over the research area, maintaining a 10-m gap between
individual lines (Figure 3). For easier orientation and adherence to the scanning scheme,
we used simple markers placed beyond the border of the research area.
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Table 1. Research plots summary information.

Plot Age
(Average) *

Average
DBH **

Number of
Trees

(Overall) *

Density *
(Tree/ha) Species **

Tree Species
Composition

(%) **

1 85 27.49 37 411 European beech
(Fagus sylvatica L.) 100

2 80 28.9 47 522 European beech
(Fagus sylvatica L.) 71

White fir
(Abies alba Mill.) 27

Sycamore maple
(Acer pseudoplatanus) 2

European ash
(Fraxinus excelsior) 0

Norway spruce
(Picea abies (L.) H. Karst.) 0

3 60 27.18 70 777 Norway spruce
(Picea abies (L.) H. Karst.) 100

4 65 16.17 137 1522 European beech
(Fagus sylvatica L.) 100

5 40 18.99 166 1844 White fir
(Abies alba Mill.) 45

Sycamore maple
(Acer pseudoplatanus) 41

European beech
(Fagus sylvatica L.) 6

Sycamore maple
(Acer pseudoplatanus) 41

European Ash
(Fraxinus excelsior) 5

Norway spruce
(Picea abies (L.) H. Karst.) 3

* Data taken from ISLHP (nlcsk.org) © NLC Zvolen; “https://gis.nlcsk.org/islhp/mapa (accessed on 14 September
2023)”; ** Measured at the plot.

Table 2. Technical specifications handheld mobile laser scanners.

Technical Specification GeoSLAM ZEB Horizon Stonex X120GO SLAM

Range 100 m 120 m
Laser Class 1/λ 903 nm Class 1
FOV 360◦ × 270◦ 360◦ × 270◦

Scanner points per second 300,000 320,000
Processing Post Post
No. of sensors 16 -
Relative accuracy Up to 6 mm 6 mm
Scanner weight 1.45 kg 1.6 kg
Datalogger weight (incl. battery) 1.4 kg -
Colorized point cloud supported supported
Protection class IP 54 IP 54

Operating time Approximately 3 h 2.5 h (1 battery set—
4 pieces)

Mobile app no yes
Price (Approximately) €41,000 €26,400

Based on the manufacturer’s description.

https://gis.nlcsk.org/islhp/mapa
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During the data acquisition process, four GCPs were recorded, one in each corner
of the test plot. GCPs were measured by keeping the HMLS stationary for 5–10 s during
a scan, and these GCPs were subsequently recognized during the processing stage. The
data acquisition in one plot, including scanning and uploading 4 GCPs, did not exceed
10 min (Figure 4). At the end of the scanning, the HMLS was always placed at the same
place as at the beginning of work.
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GeoSLAM Horizon scanner has a collection rate of 300,000 points per second, a relative
accuracy of 6 mm, and a range of 100 m, based on the manufacturer’s description. It is
controlled by a button directly on the scanner, and a cable connection to the datalogger
and batteries are required. For GCPs measurement, it is only necessary to remain in
a stationary position on the GCP for a few seconds. For the post-processing of scanned
data, GeoSLAM Hub software (ver. 5.3.1) was used. During processing in GeoSLAM Hub,
we used default parameters and workflows. Subsequently, point clouds from each research
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area were georeferenced into the national JTSK system (EPSG 5514) using GeoSLAM Draw
software (ver. 3.1).

Stonex X120GO SLAM Laser Scanner has a collection rate of 320,000 points per second,
a relative accuracy of 6 mm, and a range of 120 m. It uses an RGB camera with a resolution
of 5 MPx and a viewing angle of 200◦ × 100◦; as a result, the scanner can color point clouds.
It is controlled by the GO app where scans are updated and displayed simultaneously, and
it was possible to see the progress of scanning directly in the mobile phone. In this case, it
is necessary to stay a few seconds in a stationary position on the GCPs and, at the same
time, to record the GCPs in the app. In the field, the GO app was used to control the device
and to check and manage projects. For the post-processing of scanned data, the GOpost
1.0.5. software was used. During processing, we used default parameters and workflow.

Nowadays, there is a multitude of open-source software applications available for lidar
data segmentation, visualization, measurement, and exporting various tree parameters
(e.g Simpletree [44], CompuTree [45], 3DForest [46], 3DFin [47], or DendroCloud [48]. In
this study, the position of the trees were detected by the Forest Structural Complexity
Tool (FSCT) [49], which allows research area measurements to be extracted automatically
from most high-resolution forest point clouds from a variety of sensor sources (TLS, MLS,
and ALS).

The FSCT extracts and generates detailed outputs such as fundamental measurements
of the trees (coordinates of the tree, DBH, tree height, tree volume, indicator of stem
coverage completeness), images presenting straightforward point cloud outputs, and
point cloud outputs (various classified and segmented point clouds—terrain, vegetation,
stems, etc.).

The subsequent analysis was focused on calculating the distances between individual
trees and the trajectory of HMLSs. There is an assumption that the location of the object
relative to the HMLS trajectories will affect the result. However, in a complex environment
such as forest stands, it is quite difficult to define the share of the influence of surrounding
objects on the correct recording of the object of interest (shading by surrounding objects,
possible movement of objects in lower layers of the stand, etc.) without interfering with
the algorithms in the devices used. For this reason, we decided to calculate the men-
tioned distances between all objects and subsequently consider and describe the minimum,
maximum, and average distances of objects from HMLS trajectories. These values were
calculated for each data collection session in all research plots between the trajectory and
the reference dataset. The average distance of each tree from the trajectory of the HMLSs
provides insights into the magnitude of positional deviations. To facilitate the analysis,
linear distance matrices were prepared for both the reference positions of trees within
the research areas and the trajectories of both HMLSs. Prior to this step, we reduced the
number of points along each trajectory from approximately 28,000 to include a point every
10 cm, thereby reducing the total number to approximately 1000 points per trajectory. The
outcome of this process yielded a dataset comprising distances of each tree from the HMLS
trajectory. We examined the minimum, maximum, and average values of these distances to
better understand the influence of distance between tree and HMLSs trajectory.

Accuracy Assesment

We compared the estimation of position obtained by point clouds with the traditional
manual field measures. For each pair of points, the difference in the direction of the
axes was calculated in the first step. The position estimation error was computed as the
difference between the estimated coordinates (xest, xest) and the reference coordinates (xref,
Yref). To assess the accuracy of the tree-level positional estimations we calculate Euclidean
distance between reference and HMLS estimated tree position as follows:

distance =
√(

x di f 2
(xre f −xest)

+ y di f 2
(yre f −yest)

)
(1)
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In addition, we calculated the RMSE as follows:

RMSE =

√√√√∑n
i=1

(
xre f − xest

)2

n
(2)

where:

• n is the number of data points in the dataset.
• xref (yref) is the true (observed) value of the target variable for the i-th data point.
• xest (xest) is the predicted value of the target variable for the i-th data point.
• The summation ∑n

i=1 goes through all data points and calculates the squared difference
between the true and predicted values for each data point.

To evaluate the factors that affect the accuracy of positioning SLAM-aided solutions
the following methods of evaluation were used.

The Kruskal–Wallis test [50] was utilized to compare the medians of positioning error
across different forest types, allowing us to determine whether there were significant
differences in accuracy based on the density of individuals in each forest. That means to
find out if there is a difference in the positional error across areas that are made of different
tree species.

The independent samples t-test was employed to compare the average positioning
error between two distinct HMLS devices, allowing us to determine if there were significant
differences in accuracy between the devices.

We used Pearson’s correlation [51] for the estimation of influence between the scan-
ner’s trajectory data and the accuracy of tree position. Correlations results can indicate
a relationship between the positional error and the distance between the tree and the
HMLS trajectory.

3. Results

The procedure allowed the evaluation of 417 trees from 457 individual trees. The
reference dataset was measured via traditional survey and forest inventory methods. The
experimental data consists of point clouds produced by GeoSLAM and Stonex (HMLSs
working with SLAM technology). SLAM technology in its essence does not need a GNSS
signal; this is the reason why it is advantageous to apply it even in an environment
where GNSS is absent. On the other hand, in our work we presented a methodology that
is a kind of geodetic basis (transformation into a coordinate system using four known
points) in combination with SLAM technology in a complex environment; thus we demon-
strate that it is possible to achieve interesting results with good positional accuracy in
an affordable way.

3.1. Positional Accuracy and Scanner Influence

The RMSE values for the positioning based on GeoSLAM and Stonex data are pre-
sented under various tree density scenarios. Table 3 provides insights into the comparative
accuracy and highlights their performance differences in various dimensions (X, Y, and
Distance) for each specific density and the overall dataset. Comparable results in terms of
distance RMSE were observed between the two HMLSs instruments. An average positional
RMSE of 17.91 cm was reached from the GeoSLAM HMLS point clouds evaluation, and
17.33 cm from the data extracted from the Stonex HMLS. Overall, the Stonex device shows
a smaller positional error. The results differ the most in the mixed stand with a density of
1552 individuals per hectare and an average DBH of 18.99 cm (Plot 4). In the case of both
devices, the highest RMSE value was recorded in the spruce forest stand with a density of
777 trees/ha and an average DBH of 27.18 cm (Plot 3).
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Table 3. The accuracy of the HMLSs GeoSLAM Horizon and Stonex X120GO SLAM in estimating
tree positions (Unit: cm). Red represents the highest value, and green represents the lowest.

RMSE
GeoSLAM Stonex

Density
(Tree/ha)x y Dist. x y Dist.

Overall 12.67 12.65 17.91 12.89 11.58 17.33

Plot 1 13.08 11.26 17.26 13.25 10.63 16.98 411
Plot 2 6.46 8.04 10.31 6.20 7.18 9.49 522
Plot 3 16.68 13.49 21.45 17.27 13.47 21.91 777
Plot 4 12.90 10.62 16.71 12.18 10.75 16.25 1522
Plot 5 11.88 14.96 19.10 12.31 12.87 17.81 1844

Overall, Table 3 provides a concise representation of how the positioning errors vary
between Stonex and GeoSLAM across different distance intervals. In the 0–5 cm distance
range (Figure 5). Stonex and GeoSLAM exhibit similar percentages for x, y, and overall
distance differences, with Stonex having a slightly higher percentage in the y-axis category.
As the distance range increases, the percentage of points acquired in x and y axes tends
to show a gradual decrease for both devices. In the higher distance ranges (26–30 cm,
31–35 cm, and 36+ cm), GeoSLAM seems to consistently outperform Stonex in terms of the
proportion of points with smaller errors in both x and y axes. Graphical visualization in
Figure 5 indicates that GeoSLAM performs relatively better than Stonex for larger distances,
which might be valuable information for selecting the appropriate positioning method
based on the required accuracy and distance range.
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3.2. Influence of Distance from the Trajectory

Due to a more complex view of the research study, the distances of the trees from
the trajectory of both devices were calculated according to the procedure described in the
previous part of the study. For both HMLS approaches, the maxima occur in the same
stand types—mixed stand and spruce stand with high density of individuals per hectare.
GeoSLAM exhibits slightly higher average distances (x: 9.59 cm, y: 9.63 cm, distance:
15.13 cm) than Stonex (x: 9.65 cm, y: 8.89 cm, distance: 14.65 cm) in both x and y coordinates
and overall distance (Table 4). GeoSLAM exhibits higher average distances than Stonex
in all dimensions for plot with density of 1522 trees/ha (young beech forest stand). In
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a density of 411 trees/ha, GeoSLAM demonstrates slightly higher average distances in the
x and y coordinates, but similar average overall distances (old beech forest). In a spruce
tree forest with a density of 777 trees/ha, GeoSLAM has higher average distances than
Stonex in both x and y coordinates and overall distance. In mixed stands with densities of
522 and 1844 trees/ha, GeoSLAM shows higher average distances compared to Stonex in
the y and overall distance dimensions for lower density and demonstrates slightly higher
average distances than Stonex in all dimensions for higher density. The largest maximal
distance between trees and the trajectory can be seen at the data from the plot with a mixed
stand and a density of 1844 trees/ha. For the largest average distance, we could look at the
values from spruce plot with density of 777 trees/ha. This is due to the shape of the trunk
specific to spruce, which is branched almost from the base of the trunk.

Table 4. Distances of trees from the trajectory of GeoSLAM and Stonex (Unit: m). Red represents the
highest values.

GeoSLAM
Density
(tree/ha)

x y Distance

MIN MAX AVG MIN MAX AVG MIN MAX AVG

Overall 0 54.1 9.59 0 56.7 9.63 0 61.49 15.13

Plot 1 0.17 32.62 11.07 0 41.2 8.86 3.28 45.59 15.41 411
Plot 2 0.15 17.76 4.61 0 26.8 5.96 0.65 31.41 8.21 522
Plot 3 0.09 42.6 12.12 0.3 39.99 10.6 1.53 42.95 18.01 777
Plot 4 0.5 31.7 9.62 0.2 32.7 8.51 1.92 33.11 14.81 1522
Plot 5 0 54.1 8.73 0.09 56.7 11.46 1.99 61.49 16.28 1844

Stonex
Density
(tree/ha)

x y Distance

MIN MAX AVG MIN MAX AVG MIN MAX AVG

Overall 0 54.6 9.65 0 52.9 8.89 0 59.64 14.65

Plot 1 0.53 31.51 11.05 0.09 39.8 8.37 1.82 44.79 15.15 411
Plot 2 0.03 17.34 4.59 0 25.6 5.22 0.2 29.68 7.56 522
Plot 3 0.19 45.3 12.33 0.3 36.59 10.56 1.58 45.51 18.37 777
Plot 4 0 30.39 9.08 0.09 34.69 8.63 1.03 35.52 15.15 1522
Plot 5 0.19 54.6 9.06 0.2 52.9 9.92 1.93 59.64 15.1 1844

We utilized Pearson correlations to explore the relationship between the distance of
the tree from the HMLS trajectory and the size of the positioning error. The resulting
correlation coefficients revealed relatively small values, predominantly around 0.2 or lower,
indicating the presence of weak correlations between the tree distance from the trajectory
and the error size. According to the previous results, the distance from the trajectory does
not affect the positioning error.

3.3. Influence of Forest Structure

Testing the influence of the plot (density) on the position error was tested with the
Kruskal–Wallis test; this showed that there is a statistically significant difference between the
plots regarding the error. Thus, forest density affects the positional error. When comparing
the size of the positional error between the mentioned location and all other results from
the research areas, a statistically significant difference was observed and a statistically
significant difference in the size of the individual’s location error was demonstrated.

The distance between reference tree position and position calculated from point cloud
from Stonex and GeoSLAM were tested. Based on the investigation, it was demonstrated
that, in the case of both HMLSs, a statistically significant difference was recorded to
a greater extent in connection with the error on the x axis. Regarding HMLS GeoSLAM,
statistical significance was observed in five cases when examining the x-axis, and only in
two cases when examining the y-axis. With HMLS Stonex, the p-value exceeded the
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significance level in four cases in connection with the x-axis and in three cases with
the y-axis.

For the X-axis, the significance level was exceeded by both HMLS systems when
comparing a mixed stand with a density of 522 trees/ha with stands having densities
of 1844 trees/ha, 777 trees/ha, and 1522 trees/ha. Similarly, statistical significance was
observed when comparing a mixed stand with a density of 1844 trees/ha with a beech
stand having a density of 1552 trees/ha and average DBHs of 18.99 cm and 16.17 cm,
respectively.

The difference was displayed in the data from HMLS GeoSLAM, where the p-value
exceeded the significance level when examining the error in stands with a similar structure
and number of individuals. Specifically, this was evident when comparing a mixed stand
with a density of 522 trees/ha and an average DBH of 28.9 cm with a beech forest having
a density of 411 trees/ha and an average DBH of 27.49 cm.

The statistical significance of the type of plot affecting the position error was displayed
in the direction of the Y-axis only when comparing a mixed stand with a density of
522 trees/ha and plot densities of 1844 trees/ha (mix plot), and 777 trees/ha (spruce plot)
in HMLS GeoSLAM data evaluation. With HMLS Stonex, the p-value dropped below the
value of 0.05 even at a density of 1552 trees/ha.

The varying tree densities, local mixing in the mixed forests, and canopy structures in
young plots present distinct challenges for data collection and contribute to the differences
in positional error on the X-axis. Additionally, the specific characteristics of each HMLS
system may also interact differently with the diverse forest conditions, further influencing
the observed results. For example, the high noise in Stonex data may relate to strong
p-values in the influence of forest structure testing when comparing an old mixed forest
with a density of 522 trees/ha with all plots situated in a young forest with a higher density
of trees per hectare.

3.4. Influence of Tree Species

The influence of tree species on positional error was examined, and it was found
that tree species significantly affect the error, except for the x-axis error, in Stonex data.
Specifically, when analyzing the errors along the y-axes, Stonex showed statistically signif-
icant differences between fir and maple (p-value = 0.036) and between beech and maple
(p-value = 0.03). On the other hand, for the x-axis errors in GeoSLAM data, statistically
significant differences were observed between fir and beech (p-value = 0.014) and fir and
spruce (p-value = 0.024). Furthermore, when evaluating the y-axis errors in GeoSLAM data,
there were significant differences between fir and maple (p-value = 0.002) and between
beech and maple (p-value = 0.000).

These findings show that the tree species composition can have a substantial impact on
the positional error in HMLS data, highlighting the importance of considering tree species
when analyzing and interpreting such data in forest environments. The influence of the
tree species on the positioning error was demonstrated in all cases, except for the x-axis
with the Stonex device.

The observed influence of tree species on positional error can be attributed to the
inherent variations in tree morphology and bark characteristics among different species
and ages. Coniferous and deciduous tree species exhibit distinct differences in their growth
patterns, which can impact the accuracy of positioning based on HMLS. Furthermore, the
distinct bark textures and colors of different tree species can also impact laser reflection
and absorption.

Additionally, tree species also vary in their growth rates and overall size. Younger trees
of certain species may have different canopy structures and branch arrangements compared
to older, more mature trees. These differences can affect the laser beam penetration and the
resulting point cloud data, contributing to variations in positional error (lower branching,
twigs at the base of the trunks, branch shoots, etc.).
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3.5. Influence of Diameter at Breast Height

The Pearson’s correlations showed that there is no correlation between position deter-
mination error and DBH or DBH determination error (Table 5 (a)). The diameter of the tree
does not affect the position error; in other words, there is no more significant position error
on thick trees than on thin ones. When examining the relationship between position error
and thickness error (Table 5 (b)), we aimed to determine whether trees with inaccurately
determined positions also exhibit inaccuracies in DBH. However, the correlation between
these two variables was not confirmed. In other words, the error in DBH is not necessarily
related to the position error. Consequently, a significant position error does not necessarily
imply a significant DBH error.

Table 5. DBH and DBH determination error correlation coefficients.

(a) DBH (b) DBH Error

Stonex
x 0.124 0.084
y 0.102 0.014
distance 0.108 0.063

GeoSLAM
x 0.124 0.013
y 0.014 0.05
distance 0.1 0.09

Upon examining the correlation along individual axes and among HMLS devices
(Table 6), it is obvious that the correlation value exceeds the significance threshold (0.7) in
cases of examining the relationships between the error in the direction of individual axes
(x(dif ) GeoSLAM and x(dif ) Stonex with a value of 0.962 and simultaneously y(dif ) GeoSLAM
and y(dif ) Stonex with a value of 0.93).

Table 6. The correlation coefficient for individual axes and HMLS devices.

x(dif ) Stonex x(dif ) GeoSLAM y(dif ) Stonex y(dif ) GeoSLAM

x(dif ) Stonex 1 0.962 0.102 0.093

x(dif ) GeoSLAM 0.962 1 0.111 0.113

y(dif ) Stonex 0.102 0.111 1 0.93

y(dif ) GeoSLAM 0.093 0.113 0.93 1

When examining the relationship between position error and thickness error, we aimed
to determine whether trees with inaccurately determined positions also exhibit inaccuracies
in DBH. However, the correlation between these two variables was not confirmed.

4. Discussion

In this study, we evaluated the performance of GeoSLAM ZEB Horizon and Stonex
X120GO SLAM HMLSs addressing two main issues: (i) to assess and compare the results
of the positioning achieved based on HMLSs instruments and (ii) to investigate influencing
factors and their impact on estimation accuracies. For data collection, the same type of
trajectory in five different stand structures were tested. The assessments of tree position
and usability of HMLS were satisfying, independent of the device used.

Between March and November 2022, when we collected data, our forests were in
the leaf-on season. We assume that the effect of foliage on the quality of the data needs
to be investigated, but we also assume that, in our conditions, other important factors,
especially the weather (rain and snow), could potentially make data collection impossible.
This is especially true in our conditions during the leaf-off season when the wind blows,
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which could result in more significant challenges when using mobile technologies and,
consequently, affect the results adversely.

In the future, we also consider it necessary to investigate the influence of the shape
of the terrain on the quality of the subsequent output. In our work, we chose flat terrains
because we could examine the effects on the HMLS SLAM technology gradually and later
examined the problems in a wider and wider context.

We assume that HMLS SLAM technology, as well as other LIDAR based technologies,
can encounter several challenges when scanning on steep slopes; for example, the scanner
may have a limited line of sight due to the steep angle, potentially missing parts of the
terrain, or the scanner’s laser beams may have extremely varying angles of incidence.
This can lead to geometric distortions in the data, affecting the accuracy of the point
cloud. However, on the other hand, for SLAM technology, this phenomenon might not be
a problem; on the contrary, it could be an advantage.

In the FSCT study [49], where a comparison of the manual reference DBH against
the automatically extracted measurements was evaluated, RMSE DBH error results were
−0.007 m, 0.008 m, and 0.072 m, respectively, and of the 588 reference trees, 535 (90.98%)
were successfully detected [49].

The FSCT algorithm was able to match 5141 of the reference diameter measurements
fully automatically, with mean, median, and RMSE of 0.032 m, 0.02 m, and 0.103 m,
respectively. In previous studies, FSCT offered the advantage of being a robust, sensor-
agnostic, and fully automated forest point cloud measurement tool [49]. In a comprehensive
exploration of automated extraction for forest parameters at the individual tree level,
where a comparison of MLS and TLS applications were performed, 26 of 192 trees were
not identified (23.5%). The FSCT algorithm attained RMSE values consistent with the
reference measurements for diameter (6 cm) and height (approximately 3 m). These values
correspond to 37% of the average height and 26% of the average DBH values in described
research [52].

In the case of our study, 417 of 457 trees were successfully detected, conferring
a success rate of 91.247%.

4.1. Scanner Type

In terms of control, the GeoSLAM ZEB Horizon utilizes a button directly on the scanner
and may require a cable connection to the datalogger and batteries. On the other hand, the
Stonex X120GO SLAM is controlled through the GO app, providing a user-friendly interface
for scan updates and synchronous display. For GCPs measurement, both scanners are
required to stay in a stationary position on the GCP for a few seconds during the scanning
process. Post-processing is conducted using GeoSLAM Hub software for the GeoSLAM
ZEB Horizon and the GO post 1.0.5 software for the Stonex X120GO SLAM. Ultimately,
the choice between these scanners may depend on specific project requirements, preferred
control interfaces, and post-processing workflows. In example A (Figure 6), while analyzing
an area of a spruce stand with a tree density of 777 trees/ha, Stonex collected 24,829 points
in a sample cross-section from the point cloud, whereas GeoSLAM collected 25,625 points.
In the overall point cloud, Stonex gathered 24,730,078 points, whereas GeoSLAM obtained
21,458,522 points. In example B (Figure 6), for an area of beech stand with a higher tree
density of 1522 trees/ha, Stonex gathered 45,271 points in a sample cross-section from the
point cloud, while GeoSLAM collected 44,627 points. In the overall point cloud, Stonex
collected 22,957,603 points, whereas GeoSLAM collected 19,944,746 points.

In both examples, Stonex shows a higher number of points in the overall point cloud
compared to GeoSLAM. This can be attributed to Stonex’s higher data acquisition rate,
which allows it to capture more points during scanning. Noise in the point cloud may
potentially negatively influence accuracy and reliability for further analysis and appli-
cations (Figure 7). Higher noise indicates a lower quality sensor or a different SLAM
algorithm approach.
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Figure 7. DBH cross-section details (A) Sprue tree stand detail—Stonex HMLS; (B) Sprue tree
stand detail—GeoSLAM HMLS; (C) Beech tree stand detail—Stonex HMLS; (D) Beech tree stand
detail—GeoSLAM HMLS.

Based on our results, the choice of device for similar tasks ultimately rests with the
user. However, as this research is in its initial stages, it is essential to explore other potential
factors that may influence the results, including foliage, slope, undergrowth, and more. In
essence, while there are some differences between the devices, they are not substantial but
also not negligible, encompassing aspects such as processing, point cloud quality, and price.
In both cases, the devices have not yet undergone extensive testing in a forest environment,
and only long-term use will determine their suitability for critical tasks in forest inventory
and related fields.

4.2. Data Acquisition Time Assessment

The usability of HMLS in a complex environment has been studied in several stud-
ies [22,24,53,54]. In these studies, the authors demonstrated that HMLS mapping in complex
environments (forest ecosystems, coastal reefs, etc.) is about forty times faster than using
TLS and six times faster than using photo-survey, which is processed with structure from
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motion and stereo algorithms with multiple views [22]. In addition, it provides evidence of
a DBH extraction comparable to the TLS estimate.

With HMLS, authors often evaluate the correctness of determining the strains from the
point clouds, which, with HMLS, is up to 90%, since the route is usually planned according
to environmental conditions. When compared to TLS and the objects that were scanned
with the HMLS ZEB HORIZON in two scan surveys, with different walking speeds the
accuracy of tree detection of 96% was investigated [55]. The rate of correct tree trunk
detection was 93.3% [53]. In case of this study, the accuracy of tree detection of 96.56% was
investigated.

To demonstrate the potential of HMLS with SLAM technology, a comparison with
other options in the field of data collection efficiency in a specific environment is necessary.
The authors use different methods and procedures, so it is convenient to calculate the
area (m2) versus time (min) for one operator for comparison (Table 7). Depending on the
author, various are achieved from 20 m2 to 277.78 m2 per min. per operator, when HMLS is
compared to TLS, mobile close-range photogrammetry (mCRP) and classic data collection
methods [18,22,24,43,47,53,54,56–58]. In this context, mCRP also demonstrates its potential
as a fast method of obtaining data that covers an area from 30.63 m2 to 136 m2 per min.
per operator [57]. The TLS data acquisition rate was lower than the two previous methods
(0.85–72.46 m2 per min per operator) [18,22,24,43,56,58,59]. In the case of this study average
acquisition rate was 183.67 m2/min per surveyor when a total area of 9000 m2 was captured
via HMLS. This method includes a stop at 4 GSPs on each research plot with both HMLS
devices (Figure 3).

Table 7. Time consumption of data collection via various methods.

Author Total Area (m2)
Method (m2/min per Surveyor)

TLS HMLS FS Reference Data Positional
RMSE (cm)

[22] 780 26 123.81 - TLS (Riegl VZ-1000) 20.2

[24]
100 0.85 20 -

TLS (FARO Focus 3D;
3 scans) 3.1500 - 50 -

2500 - - 0.43

[18] 225
22.5

17.31 7.03
TLS (FARO Focus 3D;

1 and 5 scans)
2.8 ± 14 cm
4.2 ± 7.5 cm3

[47] 10,000 51.55 107.53 - TLS (FARO Focus 3D;
10 scans) 3.5

5000 72.46 277.78 - TLS (FARO Focus 3D;
4 scans) 2.4

[56] 531 8.85 75.86 0.74 Field data 9.3

[58] 3500 50 20.83 Field data 20

[54] 25,446 - 217.49 - HMLS single scan 9.1
HMLS single scan 13.9

[53] 300 - 30 0.91 Field data 26

[43] 804 8.29 80.4 1.04 Field data 3.28
3600 - 300 - 1.65

Our
research 9000 - 183.67 3.1 Field data 17.91 GeoSLAM

17.33 Stonex

Not all the mentioned studies documented time data on the length of the collection
of reference data via total station and GNSS receiver, as it is a series of complex time-
consuming activities that must be planned to consider influencing factors such as weather,
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challenging environment, experienced staff, etc. The average ground-truth data acquisition
rate was around the value of 3.1 m2 per minute per surveyor.

It is important to emphasize that the time of data acquisition is related to the cost of
data acquisition, and it is also necessary to consider the cost of acquiring the equipment [60].

4.3. Positional Accuracy

In the application of SLAM technology to the forest environment, research has been
moving forward in recent years. Many authors investigate the possibilities of using this
technological process in connection with the forest environment and various ecosystems,
for example following the work process in the forest and the navigation of mining-transport
technologies [11] compared to other mobile laser scanning technologies in boreal forest
conditions [61] in the context of mobile robotics, autonomous driving research, and forest
operations [62]. As already mentioned, the forest environment is a challenge for many
technologies. In recent years, works have been published that also dealt with solving the
issue of the location of objects, but most of them were focused on complex integrated
systems based on GNSS and INS, which would find their location very difficult in common
operations, despite the excellent results (considering the quantum of knowledge that
is associated with handling, collection, and overall processing of data, not to mention
financial demands). In connection with our research, it is necessary to summarize the works
focusing on the problem of localization and mapping in forestry and to summarize the basic
characteristics for a more comprehensive overview in the given area. The authors are aware
that improving the quality of positional data will also improve the quality of subsequent
outputs. For this reason, they are investigating various technological combinations and
approaches to determine the location of objects in a challenging environment, but it is
necessary to consider the requirements for the accuracy of the location determination and
the effort expended.

When the tropical forest tree positioning accuracy was evaluated, and GNSS-enabled
smartphones and tablets in data collection were used, the findings indicate that the hori-
zontal positioning accuracy detected by the instruments used in this study were mostly
accurate within 5 to 15 m. The RMSEs were higher in the areas surrounded by larger canopy
diameter trees [63]. This was to simulate the worst-case scenario when there is absence
of Internet or cell phone data coverage. When positioning accuracy of the trajectories of
GNSS + IMU and SLAM + IMU were evaluated and the results show that the positioning
accuracy in the selected test field was improved by 38% compared to that of a traditional
tactical grade IMU + GNSS positioning system in a mature forest environment, the RMSEs
0.52 m and 0.32 were reached [7]. From more recent works, when a portable backpack lidar
to measure and locate trees in a nature forest plot was investigated, and the point cloud
data and GNSS location records were used the average tree positioning error was 4.64 m [3].
Results were significantly affected by the distance and route length from the measured trees
to the data acquisition start position, whereas it was affected little by the habitat complexity
and characteristics of tree stems. The research area comprised an area of 10 ha and tree
density in the plot was about 8600 trees/ha. The intensive literature review in the area of
localization and mapping in agriculture and forestry leads to the main conclusion that only
a few methods can achieve simultaneously the desired goals of scalability, availability, and
accuracy, due to the challenges imposed by these critical environments [8].

4.3.1. Positional Accuracy HMLS Compared to TLS

SLAM technology in HMLS offers user-friendly alternative to more technologically
complex custom-made devices. When evaluating the accuracy of determining the position
of trees, we encounter two approaches. The authors compare HMLS data with reference
datasets created by the TLS or with field data acquired by classical geodetic approaches
(GNSS in combination with a total station). For different approaches and methods, the
RMSE varies from 2.4 cm to over 20 cm. When the accuracy of positioning was evaluated
at 2500 m2, the reference TLS data (Faro Focus, 3 scans) were compared with ZEB1. For
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trees with DBH less than 10 cm study states values RMSE 3.9 cm and for trees with DBH
more than 10 cm RMSE was 2.1 cm. Total value reach 2.3 cm and RMSE 3.1 cm [24]. The
reference TLS data set (Faro Focus, 3 scans) was compared with ZEB1 on 225 m2 with
Bias 4.2 ± 7.5 cm for observed trees with DBH up to 10 cm. The azimuth and distance
from the plot center represented tree position [64]. HMLS ZEB REVO data were compared
with TLS (Faro Focus) data merged/from 10 scans on an area of 10,000 m2 with the RMSE
3.5 cm [59]. Two types of trajectories compared with a HMLS (ZEB1) single scan at the area
of 25,446 m2 were investigated and reached overall RMSEs of 9.1 and 13.9 cm [54]. Trunk-
based SLAM backend for smartphones with online SLAM for large- scale forest inventories
was tested; the distance mean between the estimated and reference tree positions was
13.3 cm. The method was tested at 5120 m2 (in 5 field sample plots (32 × 32 m2), and the
reference tree positions were collected using TLS through multi-scan method [10].

4.3.2. Positional Accuracy HMLS Compared to Local Coordinate

On research areas with an area of 300 m2, the overall RMSE of 26 cm was achieved.
Reference dataset used the independent coordinate system established by the total station
and experimental dataset made by HMLS ZEB-REVO-RT was transform into local coordi-
nate system by four targets [53]. The results show a small difference in the position of the
trees. However, it is necessary to pay attention to the reference data used for the accuracy
assessment because for many areas of research the position of objects in the real coordinate
system is important. Based on the above mentioned, we can see that if TLS (or HMLS) is
used as a reference base, positional deviations reach smaller values to than when compared
with references obtained by classical geodetical and forest inventory measurement. How-
ever, it is necessary to state that if we want to evaluate how accurately we can determine
the position of objects from the HMLS clouds in the real coordinate system, the comparison
with TLS and the results from it do not have an appropriate informative value because they
contain similar errors from postprocessing of the data.

4.3.3. Positional Accuracy HMLS Compared to GNSS

Regarding the comparison of the derived position of the trees with their position in
the real coordinate system, we found a smaller number of works than those comparing
the outputs of HMLS with TLS. Authors comparing the derived position of objects under
the forest canopy with a reference dataset measured on a GNSS basis achieve RMSE val-
ues from 4.5 to 20 cm [43,53,56,58]. In our work, overall RMSE was achieved for Stonex
17.33 cm and for GeoSLAM 17.91 cm. The results were achieved by a user-friendly workflow,
in which 4 known points on the path of the HMLS device were used for transformation into
a coordinate system, all tested in different vegetation conditions. The results, in terms of
RMSE (approx. 17 cm), place us in the middle position among other authors with a similar
device. When ground truth data were gained by GNSS receiver (plot center), hypsometer
for distance and compass for azimuth to each tree, overall RMSE of 9.3 cm, when HMLS
was investigated [56]. The area of 3500 m2 with overall RMSE 20 cm was mapped, tree
positions were obtained using the total station and a prism placed in front of the tree center,
and the reference tree positions were estimated with a standard deviation of 4.5 cm [58]. In
2015 a SLAM-aided positioning solution with point clouds collected by a small-footprint
LiDAR was investigate [7] and the potential of SLAM positioning and mapping in for-
est inventories was evaluated. The results show that the positioning accuracy of the
224 selected test trees was improved by 38% compared to that of a traditional tactical grade
IMU + GNSS positioning system in a mature forest environment. For forest mapping
an integrated GNSS/INS/LiDAR-SLAM positioning method was tested in boreal forests
at the approximately 800 m long trajectory with 224 trees [12]. Although the horizontal
accuracy of the entire trajectory reaches 6 cm, the devices used herein were relatively
expensive and displayed better performance.
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4.4. Possible Applications of HMLS in Forestry and Precise Positioning

We consider the examination of HMLS outputs also for the purpose of evaluating the
accuracy of location determination to be extremely important on an overall scale. With both
investigated devices, we were able to achieve results with a positioning error in the real
coordinate system of less than 18 cm with relatively simple terrain workflow, at different
plot conditions. Based on what is known, the exact position of trees in a forest has several
practical uses and benefits, especially in the context of forest management, environmental
monitoring, and research, the possibility of exact positional derivation from a device that
works very efficiently, and generated outputs are widely applicable, it can be of great benefit
to forest practice and development in the field of forest management and nature protection.
From the point of view of accurate location determination, there is no significant difference
between the examined devices, however, the more expensive GeoSLAM devices provide
better quality outputs. The point clouds show less noise, which is a definite advantage,
especially in more complex forest structures. However, since the effect of the vegetation
and trees density on the accuracy of the location determination has been confirmed, at the
same time the positional RMSE is similar for both devices. The final decision regarding the
choice of HMLS is on the user which must consider other advantages and disadvantages
e.g., user environment, conditions of usage, price. If the lower price and user-friendly
simple operation of the device provided by HMLS Stonex are preferred, but at the expense
of the quality of the output point cloud, then the more expensive GeoSLAM variant with
more powerful sensors and SLAM, which reduce the point clouds noise typical of mobile
scanning technologies, would be the better choice.

It is important to note that while specific competitive indexes do not directly involve
XY coordinates, there are other spatial analysis techniques and methods in forestry that
can use tree coordinates for various purposes. Geographic Information Systems (GIS)
can be used to create spatially explicit models to study tree distributions, spatial patterns,
and competition across a landscape. Additionally, individual tree mapping data (with
extract XY coordinates) can be used to analyze point pattern processes, tree clustering,
and spatial relationships between trees. Spatial Point Pattern Analysis, method used
to study the structural arrangement of individual trees within a forest stand helped to
identify patterns like clustering, regularity, or randomness, which can provide insights
into natural regeneration, competition, and other ecological processes, and directly involve
XY coordinates [65]. Precise positioning improves interpolation methods used to estimate
values of forest attributes (e.g., tree height, species composition) at unsampled locations
based on data from sampled locations effectively collected via HMLSs [66].

Knowledge about the exact location of individuals helps identify areas with similar
characteristics and can assist in zoning for specific management strategies (spatial autocor-
relation [67–70]) or helps understand the fragmentation or connectivity of forest patches,
which is crucial for wildlife habitat assessment and biodiversity conservation (patch anal-
ysis [71–73]). The exact positions of the trees will find their application in the creation of
digital twins or in modeling, or as an input to growth simulators, too. It is evident that the
variations in HMLSs results are not significant; instead, distinctions arise in equipment
handling, data processing, and the quality of point clouds. Consequently, the choice of
device for a similar task ultimately rests with the user.

The paper describes the beginning phase of a long-term research project, focusing on
investigating additional factors that we anticipate will influence the outcomes. These factors
include foliage, slope, and undergrowth. We are comparing a device with a long-standing
presence in the market with a relative newcomer in the field. Nonetheless, predicting the
future of HMLS usage in forestry remains challenging.

Just as it is possible to discuss the rapid development of electronic devices and their
fast obsolescence, there is also an assumption that HMLS, thanks to their advantages, can
be applied in practice and move the collection of detailed data for forest inventory to
a new level.
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5. Conclusions

Accurate tree positioning data is vital for informed decisions about land use, conser-
vation, and sustainable management. It enhances measurement precision under forest
cover, improving mapping and subsequent data processing for both scientific research and
forestry practice.

The study’s significant advantage lies in its unique comparison of two HMLS de-
vices, exploring their precision and limitations in forest environments—an area largely
unexplored in previous research.

The study outlines the methodological procedures for HMLS data collection using
the GeoSLAM ZEB Horizon and Stonex X120GO SLAM devices as alternative approaches.
The goal is to assess the accuracy of locating objects recorded beneath the forest canopy, as
automatically derived from these devices’ outputs. The advantage of comparing two HMLS
devices in a challenging environment is a comprehensive assessment of each device’s
performance and capabilities under difficult conditions. This can aid users in making
informed decisions about which device suits their specific needs best.

The positional RMSE was 17.33 cm for Stonex and 17.91 cm for GeoSLAM across
various forest types, considering species composition and density. The research confirms
that tree species and forest density influence positioning accuracy. Additionally, the analysis
reveals a weak association between tree distance from the HMLS trajectory and positioning
error. These results demonstrate that HMLS accuracy is sufficient for deriving tree and
forest parameters with satisfactory precision. GeoSLAM HMLS performs better than Stonex
for larger distances, which provides valuable insights for selecting the appropriate data
collection method based on required accuracy and distance range.

However, it’s worth noting that while Stonex HMLS has low positional error, its point
cloud may contain more noise, posing challenges in young stands with branches close to
the trunk base. In contrast, it works well in older stands, but issues may arise in areas with
undergrowth or taller herbaceous vegetation.

This study could help determine the value for money each device offers, allowing
users to balance cost against performance in demanding scenarios. Overall, this testing
of two commonly used HMLS devices in challenging environments could enhance our
understanding of their real-world applicability and limitations.
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