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ABSTRACT 

Modern infrastructure systems are grappling with increased complexity and 

interdependence, struggling to predict and manage failures amid factors like population 

growth, urbanisation, rapid climate change, and economic challenges. While management 

methods remain fragmented, the rise of digitalisation and artificial intelligence (AI) offers a 

chance to adapt complex software-based approaches for infrastructure applications. One 

such approach is 'self-healing,' which anticipates and autonomously responds to system 

failures. AI's characteristics align well with self-healing concepts, making it a pivotal 

enabler. However, AI's current status in infrastructure management is unclear and there is 

a need to explore its application, learning from best practices in various sectors. Hence, 

this work presents a framework for self-healing infrastructure systems and explores the 

key components and processes necessary for implementation. Furthermore, in order to 

explore practical implementation, the framework is applied to leakage management in a 

water distribution system. Intelligent, data-driven solutions are proposed for each of the 

processes – anticipation, detection, and restoration – required to manage leakage as a self-

healing system and these are trained and tested on a dataset of over 2,000 district 

metered areas (DMAs) managed by a UK water company. By offering a rapid and cost-

efficient method for the identification of potential leakage, the benefits of this approach 

include enhanced resilience, optimised repair strategies, and improved consumer 

confidence, fostering sustainable demand-side behaviours. The contribution is a self-

healing framework for management of leakage in water distribution systems, which 

demonstrates strong performance on the historical data provided and has the potential to 

be adapted to suit other contexts (including other types of infrastructure network).  The 

findings of this research are of value to infrastructure owners and operators, regulators, 

and researchers, who see the potential in adopting a complex system perspective and 
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recognise the role of AI in effectively applying this perspective to the management of real-

world systems.  

Keywords: infrastructure systems, self-healing, machine-learning, artificial intelligence, 

water systems, leakage 
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IMPACT STATEMENT 

This study explores the concept of self-healing in infrastructure systems and the potential 

of AI as an enabler of such systems. These ideas are explored in their application to a case 

study in the water sector, addressing the challenge of leakage management in water 

distribution systems. 

The academic contributions of this research include the development of a framework for 

self-healing infrastructure systems, allowing new and existing techniques to be mapped 

onto a system-based approach. The framework, as well as the complementary discussion 

on its components and steps for implementation, opens a new area of research on self-

healing infrastructure systems, and the potential direction of future research in this area is 

also discussed. A thorough review on the use of AI in infrastructure systems offers 

additional insight into AI as an enabler for self-healing, explores the lessons that could be 

learned by taking a cross-sectoral view on AI application in infrastructure systems, and 

highlights several gaps in this field as areas for further consideration.  

In the application of the framework to a water sector case study using machine learning 

methods, this study develops machine learning tools that, while applied to a specific use 

case, also demonstrate the wider potential of AI-based methods for self-healing systems 

and which could be adapted to suit other infrastructure applications.  

From a policy perspective, the research emphasises the need for improved data collection, 

storage, and sharing standards within and across infrastructure systems. It highlights the 

importance of data formatting and management for achieving systemic self-healing. The 

study calls for mechanisms to balance privacy concerns with the benefits of data access for 

model development and promotes the sharing of insights generated from AI-based 

methods across different sectors to expedite progress towards self-healing systems and 

net-zero objectives. The findings also have policy implications for fostering digitalisation 
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and enhancing workforce skills in intelligent infrastructure systems. The research 

encourages infrastructure operators to upgrade their systems and workforce to fully 

leverage the advantages of increased digitalisation while acknowledging the varying 

maturity levels in different sectors. The flexible approach presented allows for the 

substitution of more sophisticated methods as operators progress in their digitalisation 

journey. 

The findings of this research are of value to infrastructure owners and operators, 

regulators, and researchers, who see the potential in adopting a complex system 

perspective and recognise the role of AI in effectively applying this perspective to the 

management of real-world systems. The developed case study on leakage is particularly 

pertinent for water supply and distribution companies and their contractors. From a water 

sector perspective, the research supports a shift towards a whole-system approach to 

leakage management, advocating for proactive strategies and considering anticipation and 

repair scheduling methods alongside leakage detection capabilities. By offering a rapid and 

cost-efficient method for the identification of potential leakage, the benefits to water 

companies include minimised downtime through improved resilience, optimised repair 

strategies to reduce water loss, and building consumer confidence, which will in turn 

promote sustainable demand-side behaviours.  
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1. INTRODUCTION 

Infrastructure systems provide crucial services such as energy, water, transport, and 

telecommunications. As cities expand and infrastructure networks serve growing numbers 

of people, these systems have become increasingly complex. Additional complexity, and 

the associated interdependencies between networks, increases the difficulty of predicting 

system failure and the propagation of failure throughout the network [1]. In order to 

effectively manage infrastructure systems, systemic approaches, which address failures 

within the wider context of a complex network, are required. 

This research seeks to explore how self-healing, a systemic approach to the management 

of software-based systems, could be effectively applied to infrastructure systems. The 

concept of self-healing is introduced, and the key processes of a self-healing system are 

described. The types of threats and failures present in software-based systems and 

infrastructure systems are then explored, to establish how a self-healing approach might 

be adapted from the former to the latter.  

Artificial intelligence (AI) is a rapidly expanding field of research, with huge strides made in 

recent years in the accuracy, speed, and sophistication of artificially intelligent methods. 

Machine learning is a major subfield of AI, underpinning AI systems and allowing a system 

to ‘learn’ from data independently in order to improve the system or accomplish an 

assigned task [2] [3]. While infrastructure systems have been slower to adopt AI and 

machine learning methods than other sectors such as the technology sector, the push for 

improved digitalisation in infrastructure systems in order to make better use of such 

methods is now well underway [4] [5]. There is a need to explore how AI has been 

implemented in infrastructure systems to date, as there is an absence of review literature 

in this area [6], in order to better understand which methods are best suited to the variety 

of applications seen across infrastructure systems [7]. There is significant opportunity for 
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learning across infrastructure sectors, as many share common challenges and all represent 

complex and interdependent systems. This research will undertake a comprehensive 

examination of the current state of the art of AI in infrastructure systems. It will take a 

cross-sectoral approach, analysing the methods employed and the specific purposes to 

which they have been applied. By exploring various sectors and the intersections between 

them, this thesis aims to gain insights into the diverse range of AI applications in 

infrastructure systems and identify common trends and best practices. 

Due to the ability of machine learning methods to learn from data in the system and 

generate insights autonomously, without the requirement for human intervention 

throughout, the potential for machine learning as an enabler for self-healing systems is 

evident. Rather than simply executing the instructions of human operators, machine 

learning can allow infrastructure systems to adapt to potential failure risks by modelling 

the complexities of the system and generating a response that is based on data-driven 

insight. Depending on the system and methods, machine learning can be used to forecast 

future scenarios, monitor the health of a system, and optimise system repair, among many 

other applications [8] [9] [10] [11]. Given the components of a self-healing system, which 

are explored in the following section, machine learning methods are the obvious choice for 

establishing rapid and comprehensive self-healing approaches for the management of 

infrastructure systems. To establish the potential of machine learning for self-healing 

infrastructure systems, this research presents the case study of a self-healing framework 

for leakage management in water distribution systems, which employs several machine 

learning methods for crucial self-healing processes.  
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1.1 ORIGINS AND ELEMENTS OF SELF-HEALING SYSTEMS 

1.1.1 SELF-HEALING STATES AND PROCESSES 

Self-healing has its origins in software-based systems, where IBM’s autonomic computing 

initiative outlined their vision of ‘self-managing’ systems [12]. Seeking to shift the 

management of increasingly complex computational systems away from error-prone 

human operators, IBM proposed integrating this responsibility into the system itself.  Self-

managing systems were further defined by four sub-characteristics; self-configuring, self-

healing, self-optimizing, and self-protecting, with self-healing described as the ability of the 

system to ‘discover, diagnose, and react to disruptions’ [12]. While true self-healing is 

performed in the absence of human intervention, systems that require some degree of 

interaction with an external agent can instead be described as assisted-healing systems 

[13]. Self-healing terminology remains largely within the realm of computing systems, 

where various frameworks and architectures to enable self-healing have been explored 

[14] [15] [16]. However, self-healing has begun to make its way into the field of 

infrastructure systems, particularly energy systems [17] [18] [19], as is explored in section 

1.3. 

Self-healing cannot be possible without self-awareness. The ability of a system to act, 

either to prevent or react to failure, is dependent upon understanding that the system is 

behaving in such a way that intervention is required. Being able to detect and define the 

state of a system at a given time is thus crucial to self-healing.  Conveyed in Figure 1, which 

is adapted from [13], systems can be categorised as being in one of three states; normal, 

degraded/damaged, and broken. In a normal – or healthy – state, a self-healing system will 

be able to provide resources or services at standard operating levels. What constitutes 

‘normal’ is not always immediately evident, and may fluctuate under variable operating 

conditions. In the degraded or damaged state, a self-healing system must be able to 

specify a threshold at which restorative actions are deemed necessary. This threshold may 
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be defined as bounded acceptable values (possibly provided by standards or regulations), a 

percentage deviation in conditions, or the occurrence of measurable unacceptable 

behaviours within the system. In the broken state, the system is no longer able to provide 

acceptable service, and actions to restore system function must be identified and 

prioritised.  

 

FIGURE 1: SELF-HEALING SYSTEM STATES AND PROCESSES. ADAPTED FROM [13]. 

 

While the status of a self-healing system at a given time can be described by its state, the 

processes by which a system maintains its current state or moves between states fall into 

three categories: detection, preventative action, and reactive action [20]. In the transition 

from normal to non-normal states, the system must detect that performance has deviated 

from normal levels, in order to trigger a self-healing response. This process of detection 

comprises of monitoring the system and recognising when functionality is compromised. In 

instances of sudden service loss, the transition to a broken state can be almost 

instantaneous. An example of this would be when natural disasters sever power lines or 
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broadband cables, burst water pipes, or block roads or railways. However, the transition 

from a normal state to a broken one can also be a progressive degradation. In this case, the 

system experiences a ‘fuzzy zone’ of deterioration, in which it can be difficult to define a 

discrete line between healthy and unhealthy states [13]. Maintaining a healthy state 

requires not only an ongoing process of detection, but proactive interventions to prevent 

any unacceptable change in system parameters that might cause degradation in system 

performance. Any actions undertaken to prevent deviation from the normal state can be 

described as preventative, as these are implemented before system performance is 

compromised. Should such measures fail to prevent transition to a damaged or broken 

state, the return to a healthy state is achieved through interventions that enable system 

recovery. Such actions are reactive, as they follow a degradation of system service.  

1.1.2 SELF-HEALING VS DECISION SUPPORT 

While decision support systems (DSS) can facilitate self-healing processes, the two types of 

system are not interchangeable. Traditionally, DSS have been thought of as a support to a 

human decision-maker, rather than as a replacement, and the human-user interface is 

considered an important component of DSS [21]. The decision support typically offered by 

DSS can be described as passive, with the outcome of the decision-making process 

ultimately down to the system user. Self-healing systems, however, have the potential to 

deliver active decision support; they are able to detect and respond to failure in the 

absence of human intervention [13]. With well-developed system architecture, self-healing 

systems may also have the capacity to select an optimum remediation strategy and 

prioritise certain components in repair scheduling [13]. In complex, inter-connected 

systems, taking the initiative from the user and returning it to the system itself can enable 

a faster, more effective response to disruption.  

This is not to say that DSS cannot play a role in enabling self-healing, particularly in sectors 

where self-healing systems are in their infancy, with human intervention not yet 
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eliminated from the system. Assisted-healing systems share many core elements with DSS, 

including the need to detect and define system failure. It is in their approach to active 

interventions where the two differ, with DSS typically offering advice to a human decision-

maker, while assisted-healing systems are able to make their own decisions but require a 

human agent to implement their chosen course of action [13]. With these two concepts so 

closely linked, and while self-healing terminology remains uncommon in many fields, DSS 

may offer some of the most valuable insights into the progression of self-healing ideas in 

infrastructure systems. 

 

1.2 THREATS AND FAILURES IN A SYSTEM 

1.2.1 INTRODUCTION 

In order to heal itself, a system must first be able to identify when it needs healing. 

Detection of failure requires that a system not only be able to be accurately modelled or 

otherwise represented, but that this representation be able to identify ‘failure’ in the 

system [13]. This section further explores the threats facing infrastructure systems and the 

types of failure that these can lead to. 

1.2.2 THREATS 

Threats are anything that has the potential to disrupt the service of a system. 

Infrastructure systems face a variety of threats, which vary in origin, nature, and impact. 

These threats have to potential to cause system failures, which also differ significantly in 

scope. In order to establish an effective response to such failures, classification of the 

threats and the corresponding modes of failure is an important task in self-healing 

systems. 
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Several works have sought to categorise the threats facing infrastructure networks. Little 

[22] broadly divides these threats into those in the natural realm and those originating 

from anthropological sources. Natural hazards comprise droughts, dust storms, 

earthquakes, extreme  cold,  floods,  fog,  heat,  hurricanes,  landslides,  lightning,  

hailstorms,  ice/sleet,  snow  avalanches,  snowstorms,  tornadoes,  tropical storms,  

tsunamis,  wildfires,  wind,  and  volcanoes [23], while non-natural hazards include both 

malicious threats, such as terrorist acts, as well as poor infrastructure design or 

management, e.g. design faults, excessively prolonged service lives, aging materials, and 

inadequate maintenance [24]. 

Robles et al. [25] recognise the distinction between intended and accidental threats by 

classifying hazards into three categories; natural threats, human-caused, and accidental or 

technical. Human-caused threats may include cyberattacks, rioting, product tampering, 

explosions and bombing, while accidental and technological threats include such issues as 

transportation accidents and failures, infrastructure failures, and hazardous material 

accidents.  

Rehak, Martinek, & Růžičková [26] go beyond the umbrella term of ‘natural’ hazards, 

recognising that there are more distinct sub-classes within natural threats, and grouping 

threats into five categories; 

• Climatological threats – these include exceptional weather events, such as 

tornadoes, hurricanes, and heavy snowfall, and weather-induced hazards, 

including floods and fires.  

• Geological threats – these include earthquakes, volcanic activity, and landslides. 

• Biological threats – these include bacteria, viruses, and toxins that can disable or 

kill people, animals, and crops. This category also includes pandemics.  
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• Technological threats – these include technological emergencies such as radiation 

emergencies, hazardous chemical spills, flooding caused by damage to hydraulic 

structures, widespread disruptions to engineering networks, public water supply 

emergencies or major road, rail, or air traffic accidents. 

• Criminal threats – these include cyberattacks, terrorism, and armed conflict. 

The threats confronting infrastructure systems have the potential to trigger 

events/emergencies that may generate failures. It has been suggested that these proposed 

categories of threat fit discretely into the broader headings of natural emergencies 

(climatological, geological, and biological threats), intentional anthropogenic emergencies 

(criminal threats), and unintentional anthropogenic emergencies (technological threats) 

[27]. However, these categories are describing the origins of emergencies, rather than the 

specific nature of the emergency itself.  

As many threats exist within complex systems, it is not always possible to draw such a 

direct link between their causes and their characteristics. For example, acid rain, while 

climatological in nature, is often a result of, or exacerbated by, human activities. Indeed, 

many extreme weather events have seen an increase in severity and frequency as a result 

of climate change [28], which has been attributed, in large part, to an increase in 

anthropogenic fossil fuel usage [29]. While knowledge of the origins behind threats to 

infrastructure systems is valuable, these origins are not always as straightforward as they 

may seem, due to the complexity of infrastructure networks and their integration with 

natural and industrial systems. 

In real-time computational systems, threats that go on to impact the system are often 

described as faults. Not all threats will necessarily create faults, and not all faults will go on 

to cause failures. Fault prevention seeks to stop threats from becoming faults, while fault 

tolerance is the ability of a system to avoid service failures in the presence of faults. Fault 
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classification, as in threat classification, does consider the origin of faults, but as just one of 

many categories. Avizienis et al. [30] present eight perspectives from which faults can be 

considered, termed ‘elementary fault classes’. These are shown in Figure 2. 

 

FIGURE 2: ELEMENTARY FAULT CLASSES. SOURCE: [30]. 

 

Certain combinations of these elementary classes are more prevalent than others, while 

some combinations are impossible. For example, natural faults cannot be classified by 

objective, intent, and capability. As such, the authors propose 31 likely combinations, 

which correspond to three major groups (with partial overlap) as shown in Figure 3. These 

broader groupings are [30]; 

• Development faults – these include all fault classes occurring during the 

development stage of the system. 

• Physical faults – these include all fault classes that affect hardware. 
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• Interaction faults – these include all faults originating outside of the system 

boundary (external faults).  

 

FIGURE 3: FAULT CLASS COMBINATIONS. SOURCE: [30]. 

 

While these classes stem from a computational systems’ perspective, their broad nature 

enables them to be effectively applied to infrastructure systems. For example, ‘hardware’ 

in the context of the transport sector may represent physical infrastructure like railway 

lines, tube stations, planes, airports etc., while ‘software’ may represent control systems, 

such as air-traffic control or traffic light control systems. As cyber-physical systems are 

increasingly integrated into infrastructure systems, the adoption of computational 

systems-based classification methods may ensure that the increasing digitalisation of 

infrastructure can be represented in threat analysis.     
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1.2.3 FAILURES 

A failure is an event that denotes a deviation between the actual service provided by the 

system and the specified or intended service, occurring at a particular point in real time 

[31]. As with threats, failures can be classified in several ways. 

Perhaps the simplest method of failure classification focuses on the nature of the failure as 

experienced by the user and uses just two groupings: value/content failures, and timing 

failures. This distinction originates in computational systems, where value/content failures 

result in the user being provided different content (or a different value) at the system 

interface than the content intended as the system’s function. On the other hand, a timing 

failure means that a value is presented (i.e. a service is provided) outside the specified 

interval expected of the system [30], [31]. While this definition focuses on the exchange of 

information that underpins computational systems, it is relatively easy to expand this 

definition to infrastructure systems. Put simply, timing failures represent system delays – 

the user doesn’t get their service when they expect it – and content failures represent a 

system functioning incorrectly – the user gets the wrong service, no service, or a poor-

quality service.  

While system delays are somewhat self-explanatory, content failures in infrastructure 

systems encompass a much broader spectrum of failures. This includes damage to any 

physical assets that results in a loss of service, such as broken energy cables leading to 

power outages, as well as any issues with system management or operation that lower the 

quality of system service to an unacceptable level. An example of that latter could be 

treated water supplies having above-regulation pollutant levels.  

Looking again to computational systems, with a particular focus on distributed systems, a 

distinction can be made between omission, arbitrary, and timing failures, with the latter as 

described above. Omission failures occur when the system fails to complete an action 

necessary for service provision, resulting in the absence of that service. Arbitrary failures, 
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also called Byzantine failures in the field of computational systems, arise when a system 

arbitrarily omits intended processing steps or takes unintended processing steps [32]. 

Arbitrary failures present a unique challenge in that they cannot be detected through 

querying, as the system may arbitrarily decide to respond positively, or fail to respond at 

all. This leads to another distinction between failures, based on how users perceive the 

system; consistent and inconsistent failures. With consistent failures, the incorrect or 

degraded service is perceived identically by all system users. However, inconsistent 

failures, which are synonymous with arbitrary or Byzantine failures in distributed 

computational systems, result in some or all system users perceiving failure differently, 

with the potential for some users to actually perceive correct service [30]. It is perhaps this 

distinction in how users perceive failure that best maps to failures in infrastructure 

systems; a failure can impact all users in the same way, or lead to different users 

experiencing different types or levels of service. An example of the former would be a 

signal failure causing all services to or from a given station to be cancelled, while an 

example of the later would be solar or wind generators (distributed renewable sources of 

energy) in a decentralised energy grid experiencing intermittent fluctuations due to varying 

weather conditions. Users connected to the affected renewable sources may 

intermittently experience fluctuations in the energy supply, perceiving a degraded service. 

However, users connected to other renewable sources with stable conditions continue to 

receive consistent power.  

Research on failures in real-time systems has proposed two further groupings to 

complement those already discussed [31]. In this classification, shown in Figure 4, failures 

can be sorted by nature, perception, effect, and frequency (termed ‘oftenness’).  

Incorporating the ideas behind failure categories discussed above, the nature of failure 

differentiates between value/content and timing failures, while the users’ perception of 

failure can be classified as either consistent or inconsistent. An alternative class, failure 
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effect, is concerned with the impact of a failure on its environment. A failure is benign if it 

results in costs of the same order of magnitude as loss of normal system utility. A malign 

failure, however, can result in costs that are orders of magnitude greater than the normal 

system utility. Costs are not strictly financial; a malign failure may cause catastrophic 

events that result in significant injury or loss of life, such as plane or train crashes. The 

properties of the application of the system therefore determine whether a failure is benign 

or malign. A final failure category, oftenness, describes the number of times failure occurs 

in a given time frame. A single failure occurs only once, and a permanent failure is a single 

failure after which the system’s service is halted or compromised until restorative action 

takes place.  By contrast, transient failures occur when the system continues to operate 

after a failure. Transient failures that take place with some regularity can be called 

intermittent failures [31]. 

 

FIGURE 4: FAILURE CLASSIFICATION. SOURCE: [31]. 

 

Like their computational counterparts, infrastructure systems are becoming increasingly 

complex. The growing digitalisation of critical infrastructure has intensified the levels of 

interconnectedness between networks which also interact with the larger economic, 

environmental, and societal systems within which they reside [33]. This creates 

interdependencies between systems, which can increase the risk of failure across system 

boundaries and significantly affects how failure travels through a network. Groupings have 

been proposed for assessing the criticality of infrastructure systems, where criticality can 

be defined as the decisive capabilities needed to prevent, mitigate, or compensate for 
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failures due to infrastructure impairment. The general characteristics proposed for 

criticality in infrastructure systems are [34]; 

• Critical proportion – including system load, capacity, redundancies, and 

interdependencies, as well as number of users, assets, and nodes.  

• Critical time – including failure duration, timing of failure, and time to repair, 

replace, restore, or react to failure. 

• Critical quality – including the quality of goods or services provided, public trust in 

quality, and the social or cultural significance of an asset or system.  

Though not classifying failure directly, this approach recognises the criteria that a system 

must satisfy in order to function at healthy levels. Should a system fail to meet a required 

critical value, this could be deemed either a failure or a vulnerability to failure, depending 

on the nature of the criteria.  

Perhaps the most established approach to failure classification in infrastructure systems is 

rooted in the recognition of interdependencies between infrastructure networks [1]. An 

interdependency occurs when there exists a bidirectional relationship between two 

infrastructures through which the state of each infrastructure influences or is correlated to 

the state of the other. Interdependent systems are highly interconnected and mutually 

dependent in complex ways, which can increase the risk of failure across systems. 

Interdependencies significantly affect how failure travels through a network, and Rinaldi et 

al. [1] were the first to classify the basic types of failure propagation in critical 

infrastructure systems; 

• Cascading failure – occurs when a disruption in one infrastructure causes the 

failure of a component in a second infrastructure, which subsequently causes a 

disruption in the second infrastructure. For example, electric power failures can 
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generate failures in other infrastructure systems that rely on electricity to function, 

such as electrified rail. 

• Escalating failure – occurs when an existing disruption in one infrastructure 

exacerbates an independent disruption to a second infrastructure, generally in the 

form of increasing the severity or the time for recovery or restoration of the 

second failure. For example, disruption to a telecommunications system may be 

escalated by separate disruption to a road network being utilised to transport 

equipment or repair crews.  

• Common cause failure – occurs when two or more infrastructure networks are 

disrupted at the same time: components within each network fail because of some 

common cause. Components from multiple infrastructure networks could be 

affected simultaneously, either because the components occupy the same physical 

space or because the root problem is widespread. For example, natural disasters 

can damage multiple infrastructure systems. 

 

1.3 SELF-HEALING IN INFRASTRUCTURE SYSTEMS 

1.3.1 ADOPTION OF SELF-HEALING IN INFRASTRUCTURE SYSTEMS 

The management of complex infrastructure networks, as for complex software-based 

systems, presents a significant challenge for human operators, who may struggle to 

anticipate the effects of interdependencies on failure propagation throughout the system. 

Building self-healing capacity into such a system has many obvious benefits, from the 

removal of human error to a swift reduction in response times.   

The energy sector has already begun to embrace this approach, with self-healing a key 

characteristic of the smart grid [35]. With so many services dependent on a stable power 
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supply, the consequences of failures in power grids have never been greater. A self-healing 

smart grid is able to detect abnormalities, reconfigure the system in order to isolate 

disturbances, and minimise disruption by reducing outage frequency and minimising 

outage length. Self-healing also gives the smart grid end-to-end resilience, with the ability 

to detect and override human errors that may have otherwise resulted in outages [17].  

The water sector offers further examples of complex and highly interdependent systems, 

with dynamic interactions between constructed infrastructure networks, the physical 

environment, and societal pressures. This can result in multi-objective, multidisciplinary 

challenges, giving rise to unpredictable and emergent behaviours [36]. However, a self-

healing approach to system management is yet to be widely adopted in the water sector. 

Vertical integration within water supply and distribution networks, a huge proportion of 

assets being buried underground, lack of accurate geospatial data, and limitations of legacy 

infrastructure are additional challenges faced by this sector that may have contributed to 

this slower uptake.  

The failure threshold in infrastructure systems can be hard to define but should be given 

explicit consideration when adopting a self-healing approach. The failure threshold may be 

set by operators and could be in the form of a required level of service, a percentage of the 

network being operational, a number of customers served etc. The failure threshold may, 

however, be a property of the models used for system management. For example, the 

failure criteria for many anomaly detection methods, including machine learning methods, 

can depend on a number of hyperparameters and features of the training dataset [37]. 

These hyperparameters, once tuned, can provide better accuracy than operator-selected 

thresholds for failure in many cases where there is a high degree of system complexity and 

many variables to consider. However, other factors such as budget and resource 

availability may result in the need to adjust the failure threshold by adding additional 

criteria. For example, repairing of road surface failures may choose to neglect minor 
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defects in favour of fixing more severe cracks or potholes, if the budget does not allow all 

defects to be addressed. 

1.3.2 SELF-HEALING IN A DIGITAL ECOSYSTEM 

Given that appropriate self-healing interventions have a massive dependency on accurate, 

timely, and secure information, the digitalisation of infrastructure systems provides both 

some of the greatest challenges and opportunities for the adoption of self-healing 

techniques.  

Increased digitalisation allows for the possibility of a real-time, or ‘right time’, connection 

between the infrastructure system and theoretical and mathematical models. ‘Right time’ 

connections provide data at a sufficient rate to satisfy the needs of the system, for 

example reservoir levels may be supplied only daily during typical weather conditions, but 

more frequently during storm events. Access to a reliable data connection, typically 

provided by a network of sensors, allows the infrastructure system to be accurately 

modelled in its present state. This data can also be used in scenario modelling, to 

anticipate potential failures and identify vulnerabilities in the system. However, 

implementation of the knowledge and insights generated by such modelling is currently 

limited. For example, in the water sector specifically, at present a human is almost always 

in the loop to facilitate the connection between the outputs of the system model and the 

physical system itself. This common digital set-up is illustrated in Figure 5. What 

digitalisation does offer, however, is the opportunity to minimise the risk associated with 

this human link in the chain by using data science techniques to integrate decision making 

capacity into the system model.  
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FIGURE 5: A COMMON DIGITAL SET-UP FOR INFRASTRUCTURE SYSTEMS. 

 

An assumption made by many of the proposed techniques for infrastructure management 

in the water sector is the availability of accurate and complete data. Research that utilises 

real-time data has found that this is not always the case, with one study on leakage 

detection finding that data corruption issues/logger failures were responsible for 8.2% of 

alerts issued [38]. With buried networks like water distribution pipelines, access to repair 

or replace sensing hardware is costly and time-consuming. As such, data pre-processing 

methods are often employed to improve the quality of data inputted into models [39]. 

Unreliable data can, in some cases, increase the responsibility of the human in the loop, 

who may have to use their discretion to judge whether or not an alert was made in error. 

In such circumstances, the expertise of the human in the loop is key to success. A healthy 

digital ecosystem, while it may benefit from discretionary manual override or input 

capacity [40], seeks to limit the requirement for in-the-moment human judgement during 

complex decision-making, both by ensuring reliable data access and by developing models 

which are able to handle imperfect or unexpected data, increasing confidence in model 

outputs.  
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1.4 ARTIFICIAL INTELLIGENCE FOR SELF-HEALING IN INFRASTRUCTURE 

Self-healing refers to the ability of a system to autonomously detect, diagnose, and 

respond to failures or disruptions, minimising their impact and restoring functionality 

without the need for human intervention [13] [14]. Infrastructure systems are complex due 

to their multiple interconnected components, emergent behaviours, large scale, and 

dynamic environments [41]. The uncertainties, non-linearities, and feedback loops within 

these systems make them challenging to predict and manage effectively. Human 

behaviours, cybersecurity concerns, interoperability issues, and resource constraints 

further add to the complexity, making it difficult to understand and predict how failure can 

manifest and propagate through such systems [27]. It is therefore challenging for 

infrastructure systems to make timely and considered decisions in response to threats 

using human-driven management alone. Such complex and interdependent systems can 

benefit significantly from a self-healing approach. 

AI could play a crucial role in developing and enabling self-healing capabilities in 

infrastructure systems. The AI revolution, which is bringing about great advances in 

machine learning methods, offers significant opportunities to capitalise on the growth of 

digitalisation and has the potential to enable the ‘system of systems’ approach required in 

increasingly complex infrastructure systems. Machine learning can be considered a major 

sub-field within the broader field of AI and represents much of the application of AI to 

digital-based systems. Machine learning methods enable machines to learn and infer from 

large volumes of data [42]. By leveraging machine learning methods, infrastructure 

systems can often achieve higher levels of performance than many traditional manual or 

rule-based approaches [43]. Compared to traditional methods, machine learning-based 

approaches often bring scalability, efficiency, and adaptability to infrastructure systems. 

Depending on the algorithms used, machine learning-powered systems can adapt and 

learn from new data, continuously improving their performance and adaptability to 
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changing conditions [44]. By automating and optimising various processes, AI can reduce 

the opportunity for human error and enable more efficient allocation of time and 

resources, resulting in cost savings and improved system performance. As infrastructure 

systems become increasingly interconnected, complex, and digitalised, machine learning 

will be crucial in providing and maintaining services that ever-increasing numbers of 

people depend upon every day [45].  

While infrastructure systems generate and handle varying levels of data in terms of 

quantity and quality, it is certainly true that such systems are becoming increasingly 

digitalised [46]. This is a crucial step towards providing the data necessary for machine 

learning methods to drive self-healing processes for these systems. Improvements in 

sensing technologies and the rise of the ‘Internet of Things’ has seen more data generated 

by infrastructure systems than ever before, and the handling of ‘big data’ presents its own 

challenges and complexities. Big data is commonly defined as having three attributes; 

volume, variety, and velocity [47]. Volume considers the amount of data generated, which 

can go beyond terabytes and petabytes. Variety means that the data provided can be both 

structured data and unstructured data, while velocity is concerned with the regularity with 

which data is generated, with many big data systems having near-continuous streams of 

the data [5]. In infrastructure systems, data is now available from many new sources, 

including GPS, wireless devices, sensors in supply and distribution networks, and 

communication generated by machine-to-machine interactions [48]. Data in infrastructure 

systems can be rapid, unstructured, and available in many different formats, which is 

difficult to deal with by traditional methods. It is therefore crucial that new methods for 

infrastructure system management are able to suitably process and utilise big data [5]. If 

implemented effectively, machine learning methods have significant potential in this area. 

The potential of AI to deliver self-healing infrastructure systems goes beyond machine 

learning’s ability to handle ‘Big Data’. In infrastructure systems, AI, and particularly 
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machine learning and computer vision methods, can be used for improved system health 

monitoring, which can facilitate the ‘self-awareness’ necessary for a self-healing system 

[49]. In the context of self-healing systems, this awareness is primarily in terms of the 

system state, and so can also be considered ‘state-awareness’. The first step towards self-

healing must be accurate assessment of the current state of a system, so that the system 

can know whether actions are required to either maintain or restore system health. 

Machine learning methods can analyse large volumes of data collected from sensors, 

monitoring devices, and other sources in infrastructure systems. By continuously 

monitoring and analysing this data, machine learning algorithms can detect anomalies or 

identify changes to system characteristics that indicate changes to the state of the system. 

An example in infrastructure systems would be the use of AI for improved monitoring  of 

water quality at various stages of the supply and distribution chain, in order to ensure that 

certain chemicals are kept within acceptable levels for customer consumption [11] [50]. If 

levels remain well within the accepted range defined by industry standards, the system 

could be considered healthy, while if levels fall outside of the accepted range, the system 

may be considered to have suffered a failure. It may be that, should levels shift towards 

the upper or lower bound of acceptability, preventative actions are necessary to stop the 

slide into a failed state, and so knowledge of the system state is critical even before a 

failure has occurred. The high levels of accuracy offered by AI in both system monitoring 

and trend detection thus present a promising solution to the challenge of self-awareness in 

infrastructure systems.  

At the component level, identifying potential changes in the health of a component can 

ensure the continued health of the system even if individual components are damaged. 

Both machine learning and computer vision have been applied to structural health 

monitoring of infrastructure components. For example. by analysing data, including 

camera footage, from wind turbines, machine learning algorithms can detect small changes 
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in turbine blades that could indicate damage to the blade [51]. By detecting small changes 

early, the component can be flagged as degraded and replaced before there is any impact 

on the turbine’s ability to generate power, ensuring the overall system remains at a 

healthy state. 

The predictive capabilities of machine learning can be used to identify potential threats or 

failures in the system and predict system vulnerabilities, dovetailing well with the 

anticipatory process of self-healing systems. This proactive approach can allow 

infrastructure systems to anticipate and prevent issues before they escalate, contributing 

to self-healing through the triggering of preventative maintenance actions. An example of 

this would be forecasting demand in infrastructure systems such as energy [52] and water 

networks [53] to ensure that resources are best allocated to meet expected demand, or 

that measures can be put in place to reduce demand. In energy systems, a forecasted 

surge in demand may result in the use of hydroelectric resources to free up additional 

capacity or the purchasing of additional capacity from other sources such as from abroad, 

in order to keep the system healthy. If resources are limited, the preventative actions 

taken may include demand reduction methods, such as hosepipe bans in the water sector. 

Although this can represent a temporary degradation in service quality, it may be 

necessary to prevent further degradation of the system to a broken state in which service 

levels are further reduced to unacceptable levels. Machine learning’s forecasting abilities 

are well-established [54], outperforming traditional methods in numerous applications [55] 

and certain machine learning and deep learning-based methods able to handle the 

complexities of nonlinear relationships [56]. The adoption of machine learning for 

forecasting in infrastructure systems can therefore enable the development of predictive 

models that anticipate potential failures based on historical data, patterns, and machine 

learning algorithms [44]. By using predictive models to forecast the likely future state of a 

system, infrastructure systems can proactively address vulnerabilities, schedule 
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maintenance activities, and optimise resource allocation. This enhances the self-healing 

capabilities of infrastructure systems predominately through the anticipatory process but 

also facilitates improved early-warning to prevent system progression to the broken state.  

During failure scenarios, AI can enable real-time decision-making by processing data 

rapidly and providing insights to guide actions. When a failure or disruption occurs, 

machine learning algorithms can quickly assess the situation, evaluate available options, 

and determine the most appropriate response. Even in systems where human intervention 

may be necessary to carry out the proposed action, machine learning can take on the role 

of decision-maker, informing the human-in-the-loop of prioritised tasks that have been 

selected through rapid data analysis. An example of this is the task of fault diagnosis of 

vehicle on-board equipment in high-speed rail systems. The faults of such systems are 

usually uncertain and complex, and current fault diagnosis methods rely heavily on manual 

judgement in real-world operations, which is inefficient and highly susceptible to human 

error [57]. The application of machine learning to this task ensures a greater likelihood of 

correct fault diagnosis, which means any necessary repair resources or replacement parts 

can be more rapidly sourced, even if a human is still required to manually fix the identified 

fault. This real-time analysis and decision-making enable infrastructure systems to take 

rapid corrective measures, minimising downtime and mitigating the impact of failures. 

Fully self-healing systems may remove the need for human intervention altogether, 

although for this to be realised at a widespread level in infrastructure systems, 

improvements in the development and implementation of robotics will be necessary. 

In some systems, particularly telecommunication networks and systems with automated 

control systems, AI can also enable autonomous decision-making and control mechanisms 

in infrastructure systems [58]. By combining AI with automation technologies, systems can 

respond to failures or disruptions in real-time without human intervention [59]. For 

example, in software defined wireless networks, deep learning can be used for network 
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traffic control and routing, identifying the best path combination for packet forwarding in 

switches [60]. In this example, network traffic can be rerouted by the system itself, and so 

the restorative action is provided by the system and not a human-in-the-loop. AI 

algorithms can trigger the rerouting of resources, the activation of backup systems, or the 

isolation of affected components to minimise the impact of failures and maintain essential 

services. 

In summary, AI, and machine learning in particular, holds immense potential for 

developing and enabling self-healing capabilities in infrastructure systems. Machine 

learning can be used to provide infrastructure systems with the ability to anticipate, 

detect, and, in some cases, respond to failures autonomously, enabling the main processes 

of self-healing. Furthermore, machine learning's adaptability and capacity for continuous 

learning enable systems to evolve and improve over time, developing resilience in the face 

of changing conditions. In time-sensitive sectors like healthcare, energy, and 

transportation, self-healing systems equipped with AI could make split-second decisions to 

avert potential disaster. Such capabilities significantly reduce human intervention, which is 

essential in situations where a rapid response is critical. Infrastructure systems often face 

time-sensitive threats, and the impacts of failure can be very severe.  The potential of AI in 

infrastructure systems remains to be realised on a widespread level, however, and there 

remain many barriers in the way to successful implementation of machine learning tools in 

many infrastructure systems, some of which will be explored in this thesis. 

However, as interest in AI continues to grow, research into its application to infrastructure 

systems remains largely siloed. Most research to date focuses on a specific problem in 

isolation, and limited review papers cover either a specific subset of AI methods [61] [62], 

or a specific infrastructure sector [63]. There is therefore a need to explore the use of AI in 

infrastructure systems through a cross-sectoral lens. This allows insights and lessons from 

certain sectors to inform how AI is used in others, as well as ensuring that the potential of 
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AI can be maximised at the intersections between sectors. By leveraging AI's capabilities, 

infrastructure systems can enhance their resilience, reliability, and sustainability, 

ultimately providing improved services to meet the needs of growing populations in the 

face of growing system complexity. 

 

1.5 RELEVANCE OF SELF-HEALING IN THE WATER SECTOR 

The water sector is concerned with the supply, treatment and distribution of water and 

wastewater. This is a sector facing considerable challenges, with increasing water scarcity 

and growing population and urbanisation levels putting pressure on both new and aging 

water systems [64].  

In the UK, piped water became available to the vast majority of the population in the late 

18th century. By the early 20th century most people had access to both piped water 

supplies and sanitation. These services were managed by a huge number of individual 

bodies (by 1945 there were more than 1,000 bodies involved in water supply and around 

1,400 bodies responsible for sewage). Following the Second World War, there was 

significant consolidation of water services, ending with the establishment of ten regional 

water authorities for England and Wales in The Water Act of 1973 [65]. The regional 

authorities were later privatised in 1989, and remain privately operated today. The 

economic regulator for the water sector in England and Wales is The Water Services 

Regulation Authority (Ofwat).  

A key issue facing the water sector today is the need to replace or upgrade aging 

infrastructure. While water companies do not publish data on pipe ages, and the pipe age 

for as much as 60% of the water network in England and Wales is unknown [66], it is 

recognised that the water infrastructure in the UK is aging significantly [67]. The costs 

involved in replacing or upgrading water systems, with massive underground pipe 
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networks and often unreliable records, are massive. In England and Wales, the pipe 

replacement/renewal rate per annum sits at around the 0.05% of the network [68], while 

the equivalent average in Europe is 0.5% [69]. 

The water sector in England and Wales is facing huge pressure from the public to act on 

high leakage rates. While rates vary across England and Wales, with Thames Water (the 

company responsible for managing water in London and areas of South East England) the 

worst performing water company in the sector [70], it is estimated that 21% of total water 

supplied by the industry is lost as leakage [71]. There is significant backlash to spending on 

new infrastructure projects in the water sector while leakage remains so high. Leakage 

reduction also represents an area with great potential for improving sector efficiency, and 

reducing leakage is therefore a priority for Ofwat.  

Improving efficiency also represents an opportunity for the water sector to reduce its 

energy use in water treatment and distribution. The water sector in England and Wales has 

a goal of achieving net zero by 2030, which will require improved efficiency as well as 

changes in demand behaviour [72]. While the water sector suffers from a poor public 

image, consumers are less likely to engage with demand-side behavioural change 

initiatives, perceiving the suppliers as not pulling their weight when it comes to improving 

the energy efficiency of the sector.  

Many of these challenges facing the water sector can be addressed more effectively when 

considering water systems in a holistic manner. As complex and highly interconnected 

networks, water systems could benefit greatly from the adoption of a self-healing 

perspective. This includes both a systems-based approach and the integration of a 

proactive component to the management of water networks [73].  

Self-healing systems can enable proactive monitoring and early detection of deteriorating 

infrastructure by leveraging near-real-time data and intelligent algorithms (often with 

machine learning). In systems such as water distribution systems, where failures such as 
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leakages can be widespread and the replacement rate of the network is so low, there is a 

significant complexity in deciding which components or regions of the network to prioritise 

in order to make the necessary upgrades to the system in the most effective way. Self-

healing systems can take on the challenge of identifying key areas for intervention and can 

automatically initiate repair or maintenance scheduling, minimising factors such as water 

loss and making the best use of available resources. This proactive approach can also 

incorporate early warning systems for potential water quality issues, such as 

contamination or chemical imbalances. Through continuous monitoring and analysis of 

water quality parameters, the system can detect anomalies and trigger alerts that can 

enable prompt action to mitigate risks and protect public health. 

Self-healing systems can also optimise energy consumption in water treatment and 

distribution processes by employing methods such as machine learning tools to regulate 

pump operations, pressure management, and water flow control. These systems can 

dynamically adjust parameters based on incoming data, optimising system efficiency. Self-

healing systems can also identify and rectify inefficiencies or malfunctions promptly, 

contributing to overall energy savings in the sector. 

By demonstrating the proactive approaches enabled by self-healing, water companies can 

enhance consumer confidence in the sector. Improving performance on issues such as 

leakage, energy use, and sewage disposal, will rebuild public trust in water companies. 

Additionally, self-healing approaches should see a larger percentage of issues in the 

network identified by water companies themselves, rather than reported by consumers – 

leakage is an example of this. This not only improves system efficiency but demonstrates 

that improvement in practice.  

The water sector is a good fit for a self-healing system approach due to its critical 

importance to society, the complexity of water distribution networks, and the potential for 

significant resource and cost savings. The implementation of self-healing systems within 
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the water sector in England and Wales has the potential to address challenges related to 

increased demand, aging infrastructure, and growing environmental concerns. By 

leveraging advanced technologies, data-driven decision-making, and automated responses, 

self-healing systems can generate valuable insights into water usage patterns, 

infrastructure performance, and system vulnerabilities, and rapidly create a response to 

best act upon this insight. In adopting self-healing technologies, water companies can 

enhance operational efficiency, resilience, and sustainability, ultimately benefiting both 

the providers and consumers of water services. 

 

1.6 RESEARCH QUESTIONS 

The above sections outline the need to explore a self-healing approach for infrastructure 

system management, as well as the potential of AI to enhance self-healing capabilities. 

Therefore, this thesis seeks to address the following research questions;  

• How can self-healing approaches, inspired by complex software-based systems, be 

adapted and applied to infrastructure systems? 

• What are the key components and processes necessary for the implementation of 

a self-healing framework in infrastructure systems? 

• How can AI techniques enable the processes of self-healing and be utilised within a 

self-healing framework for infrastructure systems? 

• Which cross-cutting purposes can AI be applied to in infrastructure systems? 

• What knowledge on AI application and methods could be transferred across 

infrastructure sectors? 

• How would a self-healing framework be implemented in a case study scenario? 
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1.7 THESIS STRUCTURE 

This thesis seeks to explore the overlapping fields of self-healing and AI, within the context 

of infrastructure system management. This thesis is comprised of six chapters, including 

this introduction (chapter one), which identifies the key research questions to be 

addressed in this study, introduces the self-healing approach, and explores the wider 

context of this research. This is followed by a literature review (chapter two) which details 

how both AI and self-healing have been applied to infrastructure systems. Regarding self-

healing, there is a specific focus on the water sector, in anticipation of a water sector case 

study. Chapter three covers methodology, providing details of the methods used to 

conduct the literature reviews and describing how the dataset used for the case study is 

pre-processed in preparation for training the frameworks.  This is followed by chapter four, 

focusing on the case study of a self-healing approach to leakage management. This chapter 

introduces the case study and presents the dataset used, before covering the development 

of frameworks to address the self-healing processes of anticipation, detection, and 

restoration of leakage in water distribution systems. The frameworks are then validated 

using a dataset provided by a large UK water company, and the results are presented. 

Chapter five presents a discussion, first presenting and exploring the comprehensive self-

healing framework that has been developed and iterated throughout this research. The 

results of the case study are also discussed, as well as their implications for both academia 

and industry. This section also considers the limitations of the research and the 

considerations necessary for implementation of this research in a real-world setting and 

suggests possible areas for future research. Finally, the conclusion (chapter six) reflects 

upon the research and presents the contributions of this study. 
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2. SYSTEMATIC LITERATURE REVIEW 

2.1 SELF-HEALING IN THE WATER SECTOR 

2.1.1 LITERATURE SEARCH STRATEGY  
 

2.1.1.1 Introduction  

This section details the process of conducting a systemic literature review on the topic of 

self-healing in the water sector. As self-healing-specific terminology has not yet seen 

widespread uptake in this sector, the search strategy must consider how existing 

terminology and processes could contribute to a self-healing approach. The original search 

was conducted in 2020, but an additional search was performed in 2023 to ensure the 

review is up to date with any recent developments. The search uses the Scopus database. 

The findings of this literature review are presented in sections 2.1 and 2.2. The detailed 

search strategy and exclusion criteria are detailed in the following subsections.  

2.1.1.2 Primary search terms 

A systematic literature review is conducted to assess the state of self-healing within the 

water industry. With limited adoption of self-healing terminology in the water sector, it is 

decided that returning to the field of computational systems, where self-healing research 

originates, would provide a greater range of initial search terms. Papers describing the 

origins, principles, and development of self-healing systems are therefore used to create a 

broad list of terms linked to the concept of self-healing [49] [13] [14]. These are listed in 

Table 1 

TABLE 1: SELF-HEALING SEARCH TERMS 

Self heal* Survivable Self routing Self recover* 

Self protect* Self repair Self stabili* Self adapt* 

Self configur* Self reconfigur* Self optimi* Artificial immune system 
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Key terms in the fields of water and wastewater, listed in Table 2, must also be included to 

ensure that search results address the appropriate sector. To ensure a manageable, yet 

relevant, list of papers, it is decided that, due to the broad nature of the water sector 

search terms, at least one of these terms must be present in the title of a paper. However, 

with self-healing terms still finding traction in the water sector, the presence of any one of 

the self-healing terms in either the title or keyword list is sufficient for inclusion. 

TABLE 2: WATER SECTOR SEARCH TERMS 

Water Sewage Irrigation 

 

2.1.1.3 Secondary search strategy 

Secondary targeted searches are conducted to ensure terminology specific to certain 

processes is included, yielding additional papers on autonomous decision support and 

system restoration.  

Of the papers returned by the primary search, some of those most relevant to self-healing 

focus on DSS. While DSS are not inherently self-healing, the two types of system share 

several core principles. For example, both require an awareness of system state and 

thresholds to be set for any given interventions. While fully-developed instances of self-

healing systems remain uncommon in the water sector, there is a more substantial body of 

research on DSS, which can overlap significantly with self-healing criteria. In order to 

understand the extent to which DSS have been applied to self-healing in the water sector, 

as well as the elements of self-healing that are most prevalent in this field, a second search 

was undertaken on the topic of DSS as applied to self-healing in water systems. As the 

focus of this search is on a specific method, the phrase ‘decision support’ has to appear in 

either the title, abstract, or keyword list, in addition to both a sector-specific term and a 
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self-healing term. It is decided that a self-healing term must also be included to account for 

the varying degrees of autonomy in DSS. Any term beginning with ‘self’ is included, due to 

the lack of consensus in self-healing terminology within the water sector. It is noted that 

initial results feature many papers that are on a unit scale, rather than at system level, and 

so additional terms are added to ensure proposed solutions are addressing a network. 

Error! Reference source not found. shows the search string used to find papers in this 

secondary search. 

FIGURE 6: SECONDARY SEARCH STRING FOR DECISION SUPPORT TOOLS 

 

2.1.1.4 Mapping strategy 

After searches on both self-healing generally, and DSS specifically, are conducted, the 

findings are mapped onto the key processes of self-healing systems. It is discovered that, 

while maintenance of system health and detection of system failure are addressed in the 

literature, there is an absence of work on the process of system restoration. To establish 

whether this is due to a genuine research gap or whether the terminology in the water 

sector for this process is not covered by the initial self-healing terms selected, a final 

search is undertaken. This search removes the need for any self-healing term but requires 

the presence of a variant of the word ‘restore’, as well as a water sector term. As in the 

previous search, the inclusion of system-wide terms is warranted due to a large number of 

results at unit level.  

FIGURE 7: ADDITIONAL SEARCH STRING FOR RESTORATION PROCESSES 

 

 

TITLE-ABS-KEY ( ( "decision-support"  OR  " decision support" )  AND  ( "water" OR 

“sewage” OR “irrigation”)  AND  ( "system"  OR  "network" )  AND  ( "self-*"  OR  "self *" )   

TITLE ( "restor*"  AND  ("water" OR “sewage” OR “irrigation)  AND  ( "network"  OR  

"system" ) )  
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2.1.1.5 Inclusion criteria 

The results of each search are screened for relevancy. The following criteria are applied to 

establish the final list of papers reviewed in this study. 

1) A full text version of the article is available at the time of search. 

2) The article addresses infrastructure at the system/network level, rather than 

household/unit level.  

3) As self-healing is concerned with the health of existing systems, articles focussing 

on the design of entirely new infrastructure are not within scope. Similarly, articles 

proposing optimisation techniques are not included unless healthy and failed 

network states are defined, as this is necessary for the processes involved in self-

healing to occur.  

4) The article must address self-healing, or a process within the framework of self-

healing. This must involve at least one of the following within the system; 

detection, preventative action, reactive action.  

5) Where the article does not propose any interventions (actions) to the system but 

focusses on monitoring or detecting the state of a network, a ‘healthy’ threshold 

must be defined or demonstrated through a use case or case study. This threshold 

must either specify when the system has entered an abnormal or failed state, or 

establish a point at which interventions are required.  

 

2.1.2 FINDINGS – SELF-HEALING IN WATER 

Through the lens of self-healing processes, the current state of system management in 

water infrastructure is examined, to establish the extent to which current approaches align 
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with a self-healing methodology. A systematic review of self-healing in the water sector is 

conducted. With self-healing terminology not in widespread use in the water sector, and 

few examples of systems-based approaches, there must be a method for aligning the body 

of research in this sector with self-healing processes. Initially, based on literature covering 

a range of infrastructure systems, the self-healing processes are divided into cycles, with a 

cycle representing the process of remaining at or deviating from and then returning to a 

healthy state (this is discussed further in section 5, see Figure 1). However, it is instead 

found that the areas covered by the reviewed literature on water systems better aligns 

with the processes of detection, preventative action, and reactive action, which are shown 

in Figure 1. Each paper identified in the search is thus assessed and classified according to 

which of the three processes of self-healing – detection, preventative action, and reactive 

action – are addressed by the paper’s proposed approach to system management. It is 

immediately evident that there are very few examples of complete self-healing systems. 

Instead, most research is focused on tackling issues that sit within a sub-section of a larger 

system. While limited research spans all three processes, each component of self-healing is 

represented within the full pool of papers. The dominant terminology found for each 

process, as well as in papers covering multiple processes, is presented in Figure 8, along 

with a selection of the techniques and algorithms employed.  
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FIGURE 8: TERMINOLOGY AND METHODS FOUND IN REVIEW OF SELF-HEALING IN WATER 

INFRASTRUCTURE. 

 

Additionally, an analysis of the most commonly-used keywords found across the body of 

work shows high levels of connectivity, with each word linked to many others in the 

mapping. This demonstrates that the complex and interconnected nature of water systems 

is represented to an extent in the established body of research. While most individual 

research papers may align to only one or two of the three self-healing processes of 

preventative action, detection, and restorative action, it is seen that the components of 

water systems and the methods used to manage these components and their wider 

systems show significant connectivity. This demonstrates the suitability of a systems-based 

approach for the management of water systems; while often siloed in research, these 

systems are highly interconnected in practice. This mapping is shown in Figure 9. 

‘Decision support systems’ appear as a highly used keyword, indicating that research in this 

area is acknowledging that the complexity of the systems and subsystems in the water 
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sector presents a significant challenge for operators, and that computational support is 

required to achieve improved system management. It can also be suggested that the high 

number of links from terms such as ‘artificial intelligence’ show the widespread potential 

of this technology in the water sector. 

 

FIGURE 9: MAPPING OF THE 20 MOST FREQUENTLY-USED KEYWORDS, DONE USING VOSVIEWER 

SOFTWARE. 

 
 

2.1.2.1 Detection techniques in literature 

With self-awareness such a crucial element of self-healing, it is promising that detection 

techniques have been proposed for a large range of applications, including water quality 

[74], pipe leakage [75], irrigation [76], and reservoir monitoring [77]. The position of water 

infrastructure systems within larger environmental systems means that they are often 

affected by various environmental factors, such as rainfall, river flow, and groundwater 

levels, that are challenging to accurately monitor at scale. Integration of forecasting tools 
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into models allows these variables to be considered, whilst also providing opportunities for 

failure anticipation [50] [78]. Forecasting of failure can also be facilitated by data from 

either hydrological forecasts or real-time sensors, with models able to predict the 

likelihood of failure events such as ice-jam or dry-up in river channels [78], allowing 

preventative interventions to be introduced. Another form of forecasting, damage 

forecasting, has been utilised in restorative approaches for networks where failure 

locations can be numerous and difficult to locate, such as water supply systems following 

an earthquake. A hydraulic analysis can instead take known information regarding the 

network and disruption, such as pipe properties and earthquake intensity respectively, to 

forecast damage within the system, allowing prioritised repair schedules to be developed 

[79] [80] [81].  

For largely closed systems, such as water treatment plants, or those where data is required 

from specific sites, such as reservoirs, sensor-based approaches to detection are generally 

preferred. It is important to note that, in order to facilitate restorative interventions, a self-

healing system must not only detect its present state, but define a threshold at which that 

state is deemed unhealthy. Approaches to this have included defining an unacceptable 

deviation from previous measurements [82] or training data [39], and using limits defined 

in standards or legislation.  

2.1.2.2 Detection with preventative action techniques in literature 

Effective monitoring can detect minor fluctuations and enable early interventions to 

prevent a degradation in service. The most popular research direction at the overlap of 

detection and preventative action is the design of controllers. Many of these are fuzzy self-

adaptive controllers, providing greater system autonomy even in fluctuating or uncertain 

conditions. As might be expected, these are particularly prevalent in multi-variable 

water/wastewater treatment systems [83] [84] [85] [86], although controllers can also 

facilitate the operation of canals [87] [88] and water supply systems [89]. Preventative 
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action interventions in the absence of detection technologies were found to be relatively 

rare, again underscoring the importance of system awareness in self-healing. The few 

papers that attempt this have centred on resource allocation in water management, 

seeking to optimise variables such as cost and reliability and reduce flood risk in a range of 

potential resource distribution scenarios [90]. With multiple variables to consider, multi-

objective evolutionary algorithms have proven popular for tackling water resource 

allocation problems [91] [92].  

2.1.2.3 Detection with reactive action techniques in literature 

It is at the intersection of reactive interventions and detection methods that DSS sit. Whilst 

human operators are largely still necessary, the actions of operators are guided by insights 

generated by the system itself. Triggering these actions can be as straightforward as the 

sending of automated alerts in response to the detected variable crossing beyond a failure 

threshold [38]. DSS operating with high degrees of automation have been applied to 

pathogen monitoring in drinking water [74], siphon operation for flood mitigation in 

wetlands and shallow ponds [93], and river pollution control [94]. 

2.1.2.4 Preventative and reactive action techniques in literature 

A notable finding is that preventative and reactive actions are rarely addressed within the 

same paper. Instead, research is focussed either on preventing failures that can be 

anticipated, or on restoring the system after unavoidable failure. Interestingly, both have 

been approached from a resource allocation perspective, with the former allocating water 

across rivers and reservoirs, and the latter allocating emergency response resources such 

as repair crews. It is evident that it is in the area of reactive interventions that water 

systems still rely on a significant degree of human involvement. With the complexity 

involved in fixing water infrastructure, particularly underground services, it is likely that 

many systems in this sector will need to be assisted-healing systems until advances in 

enabling technologies can be made. Existing research in this area, however, takes decisions 
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on how to prioritise repairs out of human hands. In disaster response scenarios, reactive 

approaches vary from a dynamic cost-benefit method [81] to prioritisation of restoring 

water supplies to emergency facilities such as hospitals and fire stations [95].  

2.1.2.5 Self-healing techniques in literature 

Only two papers are identified that include all the core components of self-healing 

systems, with detective capabilities in addition to both preventative and restorative 

interventions. The first tackles irrigation, where the difference between damaged and 

broken states is typically down to the degree of severity. Recent developments in smart 

irrigation systems have enabled extensive system monitoring through the Internet of 

Things. The authors adopt a constraint-based approach, defining the properties that a 

solution is required to have, rather than a set of specific instructions, and delegate the 

decision making to a solver [76]. The second is an ambitious attempt at real-time 

regulation of resources within the Yellow River basin. Access to real-time information on 

user requirements and channel flow allows for dynamic adjustments in water diversion 

and reservoir release. The paper is somewhat lacking in detail regarding how decisions are 

made during periods where river discharge is unable to meet the needs of all users, but it 

demonstrates well how a systemwide approach can be applied beyond smaller water 

infrastructure networks to the more challenging systems of river basins, which themselves 

sit within wider and more complex environmental systems [78].  

 

2.1.3 FINDINGS - DATA FOR SELF-HEALING IN THE WATER SECTOR 

2.1.3.1 Introduction 

A crucial element of self-healing systems is their ability to detect their present state and 

distinguish between healthy and failed states. As such, access to up-to-date sensing data 

regarding the properties and key variables within an infrastructure network very much 
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underpins the effectiveness of a self-healing system. It is found, however, that many of the 

techniques considered in this review are yet to be demonstrated on data from a live 

network. This may speak to the relative newness of system-based approaches such as self-

healing in the water sector. Several alternatives, including historical and benchmark data, 

are used instead to establish the performance of proposed techniques. While this is often 

sufficient to demonstrate how active interventions would utilise data to heal the system, 

some methods may not address potential challenges in data collection and accuracy. 

2.1.3.2 Inputs absent 

In several instances, it is not evident how inputs would be measured or from which 

database they would be imported. Where access to the required information is assumed, it 

is often the case that the article is focussed on developing a system architecture, such as a 

decision support framework, rather than on integrating the required knowledge base. Such 

techniques can depend on the user being able to input known data themselves [94].  

While it is recognised that there is often value in integrating weather or rainfall forecasting 

into water system methods [96], it is typically expected that this information is supplied by 

external agencies, rather than generated by the proposed technique. It is not uncommon 

for the source of forecasting data to remain unspecified, particularly in the absence of a 

real-world case study [93].  

2.1.3.3 Benchmark data 

For more established scenarios, such as wastewater treatment processes, benchmark 

models have been developed in order to evaluate proposed interventions. Benchmarks set 

particular parameter values, define average and threshold values, and specify performance 

assessment metrics. An established benchmark utilised by reviewed articles is Benchmark 

Simulation Model no. 1 (BSM1), a nonlinear process benchmark for the wastewater 

treatment process developed by the International Water Association and composed of a 
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five-part activated sludge reactor [97]. BSM1 is used to assess the performance of model 

predictive control for self-optimisation of wastewater treatment plants, modelling 

disturbances caused by various weather events [98] [85].  

2.1.3.4 Chosen values  

In some cases, it can be necessary to make assumptions about the values of particular 

variables. It may be that sufficient or reliable data is unavailable, or that arbitrary values 

are deliberately chosen to illustrate the generality of the proposed technique. Chosen 

values are often selected for only a small number of relevant variables, with other 

variables relying on benchmark, historical, or modelled data. In many cases, chosen values 

are informed by expert knowledge of operating conditions, such as in wastewater 

treatment processes [99].  

Perhaps the most common example of the use of chosen values in the literature reviewed 

is in restoration of water networks. Again, knowledge from industry experts can be of 

value here, with one study on repair scheduling assuming 13 pipe breakages to be dealt 

with by three repair crews, based on maximum break rates and minimum crew levels 

provided by the company managing the case study area [100]. When more arbitrary values 

are used, it is often for the purpose of comparison of either different models or of different 

scenarios. For example, a study on post-earthquake repair selects reasonable if 

unexplained values for pipe properties, earthquake intensity, source and consumer head, 

and then demonstrates the proposed framework on models of a small and medium 

network, ensuring that these parameters are kept consistent across both models [101]. 

While this may not be representative of a real-life network, it allows for a simple 

comparison of the performance of the framework across the two scenarios. 
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2.1.3.5 Simulated data 

Where input data is required from known yet rare phenomena, this data can be simulated 

using pre-existing models or simulators. Restoration of water networks again offers a 

useful example of this, particularly when considering an extreme event such as an 

earthquake. As earthquakes are rare events, data on pipe breakages and repairs in their 

aftermath can be very limited. Rather than relying on limited, and perhaps very context-

specific, historical data, research can use a model to predict how, under earthquake 

conditions, breakages might occur in a given network [79]. Once these breakages are 

mapped onto the network, methods for optimising repair can then be explored. As any 

network, real or simulated, could be input into the initial earthquake breakage model, 

some of the context-specific limitations of using historical data can be avoided. For 

example, countries with decentralised or low-tech water systems are less likely than those 

with centrally-managed, higher-tech systems to have complete and comprehensive 

records of breakages and repairs in the event of an extreme earthquake. Similarly, repair 

priorities may differ across nations and regions [81]. Thus, using predictive models for 

breakages can allow a range of contexts to be explored.  

It is worth noting that it is not only in cases of extreme events that simulation data can be 

used. Established simulators such as EPANET, a widely-known water distribution network 

simulator, are often favoured by researchers as a base on which to develop and validate 

their methods [102] [103]. Using a simulator can get around the challenge of securing 

access to sufficient data, and widely-used simulators have the benefit of being trusted 

within the research community. Furthermore, if a simulator is sufficiently adopted as the 

standard within a given field, it allows for easy comparison of proposed methods.  
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2.1.3.6 Historical data 

Historical data from a real-world system can be a valuable option for validating model 

performance. Indeed, many traditional and machine learning-based methods require 

sufficient quantities of training data that is best provided through historical datasets of the 

same system being modelled. That being said, it is important, when using historical data, to 

ensure that the sample provided is representative. For infrastructure systems, shifts in 

population levels and distribution, advances in technology and efficiency, and changing 

consumer demand behaviour may render some historical datasets too different from 

current patterns to be useful for model training. Similarly, extreme events may result in 

periods of unusual data, and this can be either beneficial or detrimental to model training 

and validation depending on whether this data is flagged as unusual and how this data is 

used. If a model is to be able to capture or predict behaviour of infrastructure systems 

during a rare extreme event, such as an earthquake, training data that contains examples 

of system behaviour during a previous event can be very rare and thus very valuable if 

identified as such. However, some models may want to exclude any examples of atypical 

system behaviour, for example those seeking to forecast usual daily water usage may want 

to remove any training data with large bursts or firefighting events. This again relies upon 

the unusual data being identified in the dataset. If extreme events are not picked up and 

flagged as such, this can present difficulties in training a model. While short extreme 

events may have a limited impact on training, extended periods of unusual behaviour can 

be more damaging. For example, consumer demand of both energy and water during a 

weekday has historically followed a regular pattern, with peaks right before and after 

typical working hours. However, during the recent COVID-19 pandemic, which saw 

widespread working from home for a large portion of the population, these long-

established patterns changed to reflect the shift from out-of-home to in-home working. A 

model trained on data gathered during a COVID-19 lockdown would therefore be expected 
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to produce different results than a model training on pre-2020 energy or water demand 

values. It is therefore important to recognise extended periods of change in any historical 

data and assess which sections of the dataset, if any, can be said to best reflect to current 

live system. 

There are numerous examples of utilising historical data in the literature covered by this 

review. One study, which uses a co-evolutionary artificial immune system model to derive 

water-supply reservoir operating rules based on reservoir inflow and water demand data 

from 1956 to 2000, demonstrates the importance of considering long-term unusual events 

in historical data. An analysis of initial classification results found that samples 

corresponding to a drought period were more frequently misclassified. By adding further 

examples into the training data that had been identified by the rules that had misclassified 

the drought data, identification rates improved across the board but particularly for 

drought years [104]. Hence, the authors recommend continuously adding ‘abnormal’ 

samples to the training dataset to better enable the model to deal with abnormal 

operation environments such as drought.  

Using datasets spanning several decades is not unusual in the field of water resource 

management, particular for reservoir data. One study on resource allocation in Iraq’s 

Diyala river basin uses a monthly dataset of reservoir releases from 1981 to 2012 [91], 

while another study in the Dongjiang river basins of South China uses inflow data from 

1956 to 2005 [105]. Finally, an early-warning system for reservoir release is demonstrated 

on seven years of data recorded by operators of the Timah Tasoh reservoir in Malaysia 

from 1998 to 2005 [77]. The use of such volumes of historical data is perhaps in part due to 

reservoir data being largely dependent on weather patterns, which are often heavily 

seasonal and thus similar patterns would be expected year-on-year. The availability of data 

stretching so far back is likely also a factor. However, the growing impacts of climate 

change should be considered when assessing whether historical climate data can be 
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representative of modern patterns, and a greater frequency of extreme events such as 

droughts should be expected. The multi-objective immune algorithm used in the Dongjiang 

study also makes use of population and water demand data from 2010, as well as 

economic data from the 2000s [105]. This highlights another factor that should be 

considered when using historical data, which is whether datasets for different variables 

need to cover the same time period. While this may be the ideal scenario, factors such as 

availability of data and maturity of technology may limit some data. Utilising data from 

different periods may therefore help develop a more comprehensive model, but explicit 

consideration should be given to whether the datasets are similarly representative.  

2.1.3.7 Testbed setup 

An alternative to data from a live real-world system can be data from a testbed setup. Such 

setups can be run as a live system and thus do accurately represent some of the challenges 

of dealing with incoming data in real-time, such as having the necessary computing power 

and dealing with sensor errors. Testbed setups can also allow for the trialling of new 

technologies for which widespread or rapid rollout may currently be unfeasible. An 

example of this would be acoustic monitoring in water distribution systems [106]. Trials 

using testbed setups can better establish the potential of such technologies and provide 

insight into how to most effectively implement the technology at a larger scale. Limitations 

of testbed setups are of course that the data may not be fully representative of the real-

world system. For systems such as water distribution systems, assumptions have to be 

made about demand behaviour and about modes of failure. Testbed setups also tend to be 

significantly smaller in size than their real-world counterparts, consisting of fewer 

components and representing small geographic area.  
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2.1.3.8 Live data 

While access to sensor data from live real-world systems can be very challenging to 

acquire, this data is incredibly valuable is assessing the effectiveness of proposed methods 

for managing these systems. Many infrastructure owners and operators are hesitant to 

share such data, often citing data security and privacy concerns, as many elements of 

critical infrastructure systems are concerned with the safety and privacy of consumers. 

These issues can extend to historical data as well as live sensor data. Data security 

concerns can perhaps be overstated, however, as a reason for limiting access to 

infrastructure data. Having data architecture in place to systematically record, store, and 

share data streams can be an additional limitation, as well as concerns regarding public 

perception of infrastructure performance that may arise from open data. Typically, access 

to live data is secured through an agreement with the infrastructure provider that 

guarantees a level of protection regarding what can be publicly shared.  

One study, which analysed flow data for anomaly detection across a live water network, 

had access to regular flow data for over 140 district metered areas (DMAs) for one year. 

This case study produced almost 200 alerts, 36% of which were found to correspond with 

bursts. Other alerts were attributed to abnormal flow demand, data issues, or ‘ghost’ 

events [38]. This illustrates how using live data can expose potential issues with proposed 

techniques, with the identification of a reliable failure threshold being perhaps one of the 

biggest challenges. 

The historical data used to demonstrate proposed techniques can be from a system with 

the capacity to provide real-time data. In such instances, historical records, rather than a 

live data sample, may have been chosen for reasons of access, simplicity, or to ensure a 

representative spread of data was selected. These methods should, therefore, be able to 

operate with real-time data with relatively minimal technical changes. However, it is 

important to recognise that importing real-time data can pose additional challenges, 
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including data completeness, reliability, and security issues, that may not be addressed in 

research that uses historical data to verify proposed techniques. In one example, a leakage 

detection methodology designed to operate on a live system is trained on three years of 

historical data [75]. Recognising that a significant portion of this data contained missing or 

erroneous values, it is necessary to pre-process this data to provide complete and 

continuous data to the proposed model. As live data would likely have the same, if not 

more, issues, any potential impact of this pre-processing on the feasibility of model 

implementation should be considered.  

 

2.2 ARTIFICIAL INTELLIGENCE METHODS AND THEIR APPLICATION IN 

INFRASTRUCTURE SYSTEMS 

2.2.1 LITERATURE SEARCH STRATEGY 

2.2.1.1 Introduction  

This section details the process of conducting a literature review on the topic of AI in 

infrastructure systems. This review adopts a systematic literature review approach in 

combination with a snowballing literature review method proposed by Wohlin [107], which 

is applied to review papers or highly significant papers. Wohlin’s systematic literature review 

with snowballing is chosen over a sole database search-based review due to the 

interdisciplinary nature of the research area, which spans a range of sectors, making it 

challenging to formulate comprehensive search strings. This helps to overcome the 

additional difficulty of creating precise searches, with the risk of yielding many irrelevant or 

redundant papers [108]. This search was initially conducted in 2021 but updated in 2023 to 

address any new research in this field. The search uses the Scopus database.  
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The scope of this review is very broad in it’s aim. The field of AI is rapidly developing and 

research in this area is growing in both quantity and complexity. The exploding interest in 

this field was evident from the 2023 update of this review, which saw an exponential 

increase in the number of papers meeting search criteria. It is therefore worth clarifying the 

goals and limitations of this review.  

This review brings to light the most common applications to which AI has been applied in 

infrastructure systems, and the most common methods that have been used. The coverage 

of methods refrains from being too specific regarding the many subtypes of machine 

learning algorithms, sticking largely to broader categories of algorithm. This is a reflection of 

the focus on infrastructure applications of AI, rather than the detail of the AI methods 

themselves. By reviewing this literature from multiple perspectives, it is hoped that these 

insights will be of value to researchers concerned with specific infrastructure sectors as well 

as those looking at cross-sectoral applications of AI in infrastructure. The findings provide a 

starting point, considering the strengths of proposed solutions as well as the research gaps 

in existing literature, from which researchers can delve deeper into their specific interests. 

With research in this field continuing to grow and evolve, it is expected that the landscape 

of AI in infrastructure will change dramatically in the coming years. This review could 

therefore act as a reference from which to compare the state of the art in this field in the 

future.  

2.2.1.2 Primary search terms  

The systematic selection of a tentative starting set of papers is undertaken. Search terms are 

divided into two categories: AI terms and infrastructure terms. AI terms cover the range of 

subtopics within the field (Table 3). Infrastructure terms vary across systems, so these terms 

can be subdivided into the infrastructure systems of transportation, energy, 

water/wastewater and telecommunications (Table 4). These terms are used for a primary 

search, the results of which informs the purposes chosen for discussion in section 2.2.3. To 
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ensure the key papers are covered for each purpose, a range of more general terms 

pertaining to purpose are applied to multiple infrastructure sectors as part of a secondary 

search (Table 5). The reviewed papers are categorised by AI method, infrastructure sector 

(or sectors), and purpose.  

This review was originally written mid-2021 and was updated in 2023 to reflect recent 

advancements in what is a rapidly advancing field. As such, the number of papers returned 

by an updated search of the original search terms show exponential growth in publications 

over the interim years. In order to ensure both that this review is sufficiently concise and 

that the most relevant latest research in AI is included, the search strategy is refined for this 

update. First, to include any significant new work covering purposes that are already 

explored, targeted searches were carried out for each of the purpose terms in Table 5. To 

be included in this search, papers must include at least one AI term from Table 3, an 

infrastructure term from Table 4, and the selected purpose term from Table 5. This process 

is repeated for each purpose term. Then, to make sure that any new or emerging purposes 

are captured in the update, a search is carried out using only the AI and infrastructure terms 

in Table 3 and Table 4, with results sorted by most citations. Papers that are already picked 

up by the purpose-specific searches are removed, and then the most cited of recent work is 

subject to a title and, if necessary, abstract screening. If the paper is found to be relevant to 

this review and represents a new purpose to which AI had been applied in infrastructure, it 

is selected for inclusion and the purpose section is updated to reflect the new application of 

AI in infrastructure. 

 

 

 

TABLE 3 : AI TERMINOLOGY 
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Artificial Intelligence Terms  

Artificial Intelligence Fuzzy Logic 

Artificial Neural Network Knowledge representation 

Automated Reasoning Machine Learning 

Autonomous Robotics Natural Language Processing 

Computer Vision Ontology 

Convolutional Neural Network Robotics 

Deep Learning Semantic Web 

Expert System  
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TABLE 4: SEARCH TERMINOLOGY FOR INFRASTRUCTURE SECTORS 

Transportation Energy Water and 

Wastewater 

Telecommunications 

Transport Energy Water Telecom 

Rail Smart grid Wastewater Data demand 

Highway Renewable Sewage Customer churn 

Motorway Wind  Water treatment Smartphone 

Road Solar Pollutant removal Network design 

Traffic Nuclear Irrigation Network 

management 

Vehicle Oil Water quality Software Defined 

Network 

Freight Gas  Traffic routing 

Shipping Bioenergy  4G 

Car Hydropower  5G 

Bus Electricity  Passive Optical 

Network 

Electric vehicle Generation  Satellite  

Accident forecasting   VANET 

Navigation    
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TABLE 5: PURPOSE TERMS FOR SECONDARY SEARCH 

Infrastructure Purpose Terms  

Forecasting Anomaly detection 

Demand forecasting Maintenance 

Supply forecasting Inspection 

Price forecasting Monitoring 

Site selection Quality 

Security Routing 

 

2.2.1.3 Screening strategy  

 

Initial searching combines each AI term with the sector-specific infrastructure terms. An 

expert in telecommunication systems, Dr Oughton of Oxford University, is consulted in order 

to ensure domain-specific terminology is included. Search strings combining multiple 

infrastructure sectors are also used, to find papers covering overlaps in infrastructure 

sectors such as the water-energy nexus. The results of this initial search inform the 

infrastructure purpose terminology selected. In an additional step, the purpose terms 

identified from the primary search results are then used in a secondary search, where they 

are combined with AI terms in order to account for key papers pertaining to specific 

applications. Results are subject to title screening to ensure relevance. Further exclusionary 

criteria are applied, removing those not papers written in English, those that fall outside of 

the scope of infrastructure systems, or those that explore algorithms outside of machine 

learning models. Papers are collated, and those concerned with the same infrastructure and 

purpose are assessed, with factors considered including date of publication, number of 

citations and number of comparative models studied. Papers are also labelled to identify 

those that could be described as review papers. Review papers and the most relevant and 

comprehensive of non-review papers are then subject to snowballing. Title screening of 

https://eur01.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.eci.ox.ac.uk%2Fpeople%2Feoughton.html&data=02%7C01%7C%7C2938de921ebd43d6dd8a08d7d72cd775%7C1faf88fea9984c5b93c9210a11d9a5c2%7C0%7C1%7C637214459905126353&sdata=k9%2By8MqjnnS3rn5nWytcUnTEGWW1k8hwRvZShNd7bPg%3D&reserved=0
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results establishes relevance, and a secondary abstract screening is sufficient to apply 

exclusion criteria in the majority of cases. Where this is not the case, the full paper is 

assessed prior to inclusion.  

2.2.1.4 Review statistics 

There are a total of 349 papers selected for this review. The papers included in this review 

are published between 1991 and 2023. 86% of papers are published in the year 2014 or later, 

with the publishing years of all papers shown in Figure 10. The huge growth of AI in recent 

years is evident from Figure 10, with this field expected only to grow in the coming years 

based on current trends. 

 

FIGURE 10: PUBLISHING YEARS OF PAPERS INCLUDED IN REVIEW OF AI IN INFRASTRUCTURE SYSTEMS 

 

2.2.2 INTRODUCTION TO FINDINGS 

AI methods enable machines to learn and infer from large volumes of data [42]. As 

infrastructure systems become increasingly interconnected, complex and digitalised, AI will 

be crucial in providing and maintaining services that ever-increasing numbers of people 

depend upon every day [45]. However, as interest in AI continues to grow, research into its 

application to infrastructure systems remains largely siloed. Most papers focus on a specific 

problem in isolation, and the handful of review papers cover either a specific subset of AI 
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methods [61] [62], or a specific infrastructure sector [63]. There is a need to consider the 

body of research into AI in infrastructure systems as a whole, looking at the most common 

and effective methods and the purposes to which they have been applied, which often span 

multiple infrastructure sectors. This review explores the current state of research on AI in 

infrastructure at the system level. The most widespread methods are first detailed, in order 

to provide context for the second subsection which investigates some of the more popular 

purposes to which AI has been applied across infrastructure systems.    

2.2.3 FINDINGS - AI METHODS 

Alan Turing proposed his ‘Turing test’ to offer an operational definition of AI, stating that a 

truly intelligent system must be capable of matching human cognitive performance to an 

extent that a human interrogator cannot tell the difference between human and machine 

when interacting via a teletype system [109]. In a ‘total’ Turing test, perception and 

physical abilities are tested alongside cognitive functioning. Each of the following 

components represents a field of AI that help to attain one or more of the Turing test’s 

goals: 

• knowledge representation, to store data 

• automated reasoning, to infer and make use of conclusions from the stored data 

• machine learning, to identify patterns and modify behaviour  

• computer vision, to perceive the environment 

• robotics, to interact with the physical environment 

• natural language processing, to communicate in human language 

While these components can describe attributes of an ideal intelligent computer system, 

they can also be considered topics in the field of AI research, each concerned with 

techniques that contribute to an element of system intelligence.  
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There is significant overlap between fields, with automated reasoning inherently 

dependent on the knowledge base it reasons from, machine learning techniques – 

particularly convolutional neural networks – increasingly utilised in computer vision 

systems, and such vision systems often integrated into intelligent robots. Models which 

include both a reasoning and machine learning element, such as adaptive neuro-fuzzy 

inference systems (ANFIS), are also growing in use. The following section describes each 

field of AI and explores some common methods within each field. It should be noted that 

the methods described in this section are not a comprehensive review of all techniques but 

rather the most common methods found in the body of work reviewed, as to provide 

context for further discussion. 

2.2.3.1 Knowledge Representation  

Knowledge representation is concerned with building and structuring a knowledge base 

that captures information about the world in a way that allows it to be processed by 

computing systems. In the field of AI, it has been suggested that knowledge representation 

is fundamentally a computational surrogate for real-world entities, providing the capacity 

to determine consequences through thinking about the world, rather than taking action in 

it [110]. Knowledge representation tools include semantic networks, ontologies, frames 

and system architectures.  

Semantic networks represent knowledge using a graphical structure of interconnected 

conceptional nodes and directional relationship arcs [111]. These are one of the most 

conceptually straightforward knowledge representation tools, so their intuitive structure 

has seen semantic nets applied to a range of infrastructure systems, including energy 

management [112] and the challenge of creating a large-scale sensor network architecture 

in the form of a ‘web of things’ [113]. Frames are derived from semantic networks, with 

nodes and ‘relations’ between nodes arranged in a series of levels to represent a 

stereotyped situation [114].  
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Ontologies capture and present formal terminology for entities in a given application 

domain, while employing a semantic approach to illustrate relationships between them, in 

order to simplify the challenge of generating meaningful information from raw data [115]. 

Such domain ontologies provide a controlled vocabulary of concepts, syntax and semantics 

that facilitate communication between user and machine [116]. Ontology-based 

approaches are used in a variety of infrastructure systems [115] [117] [118], and have been 

proposed as a tool for organising the sensor networks that play an important role in the 

‘Internet of Things’ [119] [120].   

A key purpose of explicitly representing knowledge is to be able to reason about that 

knowledge, allowing the system to draw conclusions and deduce new knowledge. As a 

result, most knowledge representation languages have an integrated reasoning or 

inference engine, demonstrating the close link between knowledge representation and 

automated reasoning [121]. 

2.2.3.2 Automated Reasoning  

Automated reasoning is concerned with utilising system knowledge to make logical 

inferences from given premises. In the context of AI, this is often used to provide a 

decision-making framework that allows the system to independently work towards goals 

without human interaction. The efficiency of reasoning methods is therefore heavily 

dependent on the knowledge representation approach selected [122]. Expert systems 

combine a knowledge base and reasoning mechanism to emulate the decision process of a 

human expert. The reasoning process is typically performed by an inference engine, 

classifier, or rule interpreter, which applies predetermined logical rules to the knowledge 

base in order to determine new information [121].  

While automated reasoning can utilise classical logic, which typically yields Boolean ‘true’ 

or ‘false’ outcomes, other techniques have attempted to account for the fact that human 

reasoning is often based on imprecise, partial, or qualitative data. Bayesian inference takes 
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a probabilistic approach, updating probabilities based on observed data. This reasoning 

method underpins some machine learning techniques, including Bayesian network-based 

methods and Naïve Bayes classifiers. In infrastructure systems, examples of their 

application include flow prediction and anomaly detection [123] [124] [125].  

Another reasoning system that seeks to incorporate the ambiguity of many real-world 

situations is fuzzy logic, which assigns a value between 0 and 1 to represent the extent to 

which inputs can be mapped to membership values [126]. It is possible for inputs to be 

assigned multiple memberships, although to varying degrees. Using this ‘degree of 

membership’ methodology, human subjectivity can be factored into the reasoning process. 

As an example, the wind speeds at a potential wind farm site could be classified as ‘high 

speed’ to a degree of 0.8, ‘average speed’ to a degree of 0.2. As membership functions can 

be designed to account for population variables, different assignments may be expected 

for different seasons or geographic regions – what is ‘high’ in the British summertime may 

be considered ‘low’ during typhoon season in Asia. Fuzzy logic is widely applied to site 

selection [127] [128] [129], and in a range of applications across renewable energy systems 

[61].  

2.2.3.3 Machine Learning 

Machine learning is the process by which machines, able to access the necessary 

knowledge, can modify and adapt their actions to learn independently how to solve 

problems [130]. Machine learning is a subset of AI, but there exist further subsets of 

machine learning, including deep learning, as shown in Figure 11. There are a large range 

of machine learning models, which generally utilise three widely recognised types of 

learning: supervised, unsupervised and reinforcement. Learning styles typically address 

how, and the extent to which, models are trained.  
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FIGURE 11: THE RELATIONSHIP BETWEEN AI, MACHINE LEARNING, AND DEEP LEARNING. 

 

Learning Types 

A. Supervised Learning 

In this type of learning, the system is trained using a set of examples with the desired 

responses provided [131]. Given sufficient training, which can take hours, days, or longer, 

the system can generalise in order to map inputs to outputs for new data sets. This can 

also be described as learning from exemplars [130]. Supervised learning models may 

require retraining to account for changes in their inputs over time.  

B. Unsupervised Learning 

Unlike in supervised learning, in unsupervised learning, the correct outputs are not 

provided alongside inputs. Instead, an unsupervised learning agent has to rely on its own 

ability to identify the embedded structures or patterns in inputs, so that those with 

similarities can be categorised together [130] [131]. This approach to learning typically 

aims to discover analogous input groups, a process known as clustering, or to establish the 

distribution of data within the input space, a statistical approach known as density 

estimation [132].  
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C. Reinforcement Learning 

In reinforcement learning, there are no pre-classified examples, but there is some form of 

long-term objective. An agent ‘experiments’ with a system, and receives rewards or 

punishments based on these interactions. The agent tries different possibilities, optimising 

its behaviour over numerous iterations in order to maximise rewards and minimise 

punishments [133]. While the agent is never explicitly given instructions as to how to 

achieve its goal, acting in ways that maximise the cumulative reward allows it to develop 

optimal behaviours, in as many iterations as needed [131]. In most cases, the longer a 

model is run, the more refined the solution will be.  

Common Machine Learning Models 

Although the specific details of a model’s architecture and algorithm vary for each 

individual case, there are a number of popular machine learning models that have 

established themselves as some of the best performing.  

 

A. Artificial Neural Networks (ANNs) 

Artificial neural networks (ANNs) are a popular type of machine learning model that 

simulate the mechanism of learning in the human brain, which contains networks of 

billions of nerve cells. In ANNs, a neuron is a computational unit consisting of ‘dendrite’ 

inputs scaled with ‘synaptic’ weights that affect the function computed at that unit, and an 

‘activation’ internal state [134]. Neurons exist in a network, forming a directed, weighted 

graph that is typically arranged in layers. The learning process occurs by modifying the 

weights and thresholds of the network to achieve accurate results.  

Although there are so many variations of ANNs in use today that it is impossible to cover all 

of them in detail, a few of the most popular model structures are outlined here. ANNs can 

be divided into two classes based on their general architecture: feed-forward and feed-
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back networks. Feed-forward networks are non-recurrent networks comprised of inputs, 

hidden layers, and outputs, where signals can only travel in one direction. Examples 

include multilayer perceptrons (MLPs) and radial basis function (RBF) networks. Use cases 

in infrastructure research have seen MLP models employed to predict energy consumption 

[135] and for pollutant removal [136] in water networks. RBF networks have also been 

applied to water treatment [136].Conversely, feed-back networks permit signals to travel 

in either direction, owing to the inclusion of feed-back loops. In feed-back networks, also 

called recurrent neural networks (RNNs), neurons can be connected in any possible format, 

which can account for dependencies between neurons. Popular RNNs are echo state 

networks (ESNs), and long short-term memory (LSTM) networks. Interesting examples in 

infrastructure have seen ESNs applied to demand forecasting in water networks [137], 

while LSTM networks can be found in a range of forecasting applications. LSTM networks 

have been used to predict energy use [138], telecommunication traffic [139] and accident 

risk in transport networks [140], to give just a few examples.  

Another type of ANN, convolutional neural networks (CNNs), have been widely used for 

image classification and object detection purposes. This particular application of AI can be 

described as computer vision and is covered separately.  

B. Support Vector Machines (SVMs) 

Support vector machines (SVMs) are popular machine learning models widely used in 

classification and regression tasks, although used most extensively for the former. When 

applied to regression tasks, SVMs may be described as support vector regression (SVR). 

SVMs work by mapping input vectors into a high dimensional feature space and finding an 

optimal hyperplane to classify the data. The dimension of the feature space is dependent 

on the number of input features [141]. The SVM algorithm seeks to maximise the margin 

between data points and hyperplane, which it does using a loss function. SVM-based 

approaches have been used in energy demand and price forecasting [142] [143], for 
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routing in vehicular networks [144], and to assess and improve quality and security in 

telecommunication systems [145] [123] [146].  

C. Decision Trees (DTs) and Random Forests (RFs) 

Another technique that has been applied to both classification and regression tasks is 

decision trees (DTs). In DTs, inputs begin at a root node, where a specific attribute is 

tested, with the result dictating the branch down which the unit is sent. This process is 

repeated, with different tests at each node, until a terminal, or ‘leaf’, node is reached 

[147]. Regression trees, which are applied to continuous variables, obtain leaf node values 

from the mean response of regional observations. However, the leaf node values of 

classification trees, which deal with categoric variables, are the mode of regional 

observations.  

Random forest (RF) models consist of large numbers of DTs operating as an ensemble. 

Building units using random feature selection results in low correlation between the trees, 

limiting the spreading of errors between them [148]. RFs have seen wider exploitation than 

DTs in infrastructure systems, where they have been applied to quality of experience 

prediction [149] and anomaly detection [150] in telecommunication networks, price 

prediction [151] and pollutant removal [136] [152] in water systems, and behaviour 

prediction in transport [153].  

D. K-means Clustering 

One of the most common unsupervised learning tools is k-means clustering, which assigns 

inputs to a cluster based on the distance from cluster centroids, in order to maximise 

similarities within groups [154]. In infrastructure, k-means has been used in 

telecommunication routing [155] and security [156], as well as for behavioural prediction 

in transportation modelling [153]. 
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Deep Learning 

Deep learning is a relatively new branch of machine learning, describing computational 

models composed of multiple processing layers that learn representations of data with 

multiple levels of abstraction [157]. While the first deep learning algorithms and 

architectures were developed in the 1960s and 1970s, massive advances in computer 

hardware are responsible for the deep learning revolution of the past ten years. 

In practice, deep learning applies specifically to ANN models, although architectures can 

show significant variation. Deep ANNs are any that contain multiple hidden layers. 

Examples of deep neural networks include Deep Belief Networks (DBNs), autoencoders, 

LSTM and CNNs. The depth of these networks allows very complex functions to be learned. 

Models such as DBNs and autoencoders often include an unsupervised pre-training stage, 

which capture the main variations in inputs and can yield better generalisation [158]. 

Capable of handling problems with very large quantities of data, deep learning has proven 

to be very successful at tackling particularly complex problems, such as image 

classification, natural language processing, and speech recognition. However, deep 

learning is not without drawbacks. Large datasets, in addition to the increased 

computational complexity of deep ANNs, can result in longer training and run times, which 

are of particular concern for real-time applications.  

2.2.3.4 Computer Vision 

Computer vision is concerned with learning the relationships between observed image 

data and aspects of the world, such as the 3D structure or the object class, and exploits this 

knowledge to make new inferences from new image data [159]. Both biological and 

computational vision systems require several basic components: a radiation source, a 

camera, a sensor, a processing unit, and an actor. A complete computer vision system uses 
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these to cover a range of processes from image construction to formulating a response to 

perceived actions [160].  

Traditional methods in computer vision have utilised feature-based approaches such as 

scale invariant feature transform (SIFT), speeded up robust features (SURF), features from 

accelerated segment test (FAST), Hough transforms and geometric hashing, sometimes in 

combination with machine learning classifiers. While these tools still have a place in 

computer vision, the adoption of deep learning methods has transformed this field [161]. 

In recent works, deep learning often underpins the design of the processing unit in 

computer vision systems.  

The most dominant tool used in the processing stage of computer vision systems is the 

CNN. CNNs are biologically inspired networks which are widely used for image recognition, 

classification, object detection and localisation [134]. Although developed in the 1980s, it 

was the development of graphics processing units in the 2000s that saw CNNs take off in 

popularity, by vastly reducing run times. CNN architecture is designed for grid-structured 

inputs with strong localised spatial dependencies. The convolutional layer utilises kernel 

elements, which are 3-dimensional structural units, to abstract an image to a feature map, 

in order to extract high-level features such as edges. Each layer of a CNN is 3-dimensional, 

with a spatial extent and a depth corresponding to the number of feature maps in that 

layer [162]. In infrastructure, CNNs have been applied to structural health monitoring 

[163], water quality assessment [164], and autonomous vehicles [165]. 

2.2.3.5 Robotics 

Robotics is a unique branch of AI that operates in the real-world, rather than computer-

simulated worlds. The discipline of robotics is concerned with the design, construction, and 

use of machines to perform traditionally human tasks. Not all robots can be said to be 

intelligent robots, however, and the field of robotics can be thought of as overlapping with 

the field of AI, rather than as an enclosed subset. At the intersection of robotics and AI are 
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highly autonomous robots, which are able to perform tasks without direct human 

intervention [166].  

Robotic autonomy can be subdivided into perceiving, planning, and execution [167], with 

each stage able to facilitate the next. Perception covers the ability of robots to learn from 

sensory data, with examples including object detection and voice recognition [168]. The 

ability to sense an environment can be provided by integrated sensors or computer vision 

techniques. In infrastructure, computer vision-enabled robots have been used to identify 

damage to dams [169], hazards to power lines [170], and road positioning for self-driving 

cars [165]. Planning tasks typically utilise the sensory data gathered through perception, 

reasoning from knowledge in order to decide which actions to take. Path and motion 

planning are some of the most common challenges, and are increasingly required in the 

growing field of swarm robotics, where a number of robots co-ordinate their behaviours to 

achieve a collective aim. Automated reasoning and machine learning techniques can help 

to enable intelligent autonomous planning, with examples in infrastructure including path 

planning using deep ESNs for unmanned aerial vehicles in wireless networks [171], and 

intelligent ontology-based planning for autonomous underwater vehicles [172]. Although 

fully autonomous robots require further research, robots with integrated artificial 

intelligence tools can execute of complex challenges, such as driving [173] [165], with high 

degrees of autonomy. 

2.3.2.1 Natural Language Programming (NLP) 

Natural language programming (NLP) concerns the interaction of computer systems with 

human language, in the form of speech and text. Techniques used in this branch of AI 

centre around syntactic analysis, which deals with the association of natural language and 

grammatical rules, and semantic analysis, which attempts to make sense of words and 

sentences. The topic of natural language processing can be further divided into the fields 

of understanding and generation.  
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Natural language understanding seeks to allow machines to comprehend written texts or 

unstructured language data. Speech recognition is often treated as a separate field, as it 

deals with the additional challenge of converting speech to text [174]. An ideal natural 

language understanding system would be able to paraphrase, translate, answer questions 

relating to, and draw inferences from, the content of an input text [175]. On the other 

hand, the goal of natural language generation is to enable computer systems to take 

structural data and produce natural language text, which may then be converted to speech 

if desired. The utilisation of NLP in infrastructure has been very limited, with the few 

existing examples primarily concerned with natural language generation. A bilingual 

natural language-based route advisor for public transport has been proposed [176], while 

recent work in the energy sector generates custom advisory reports based on the 

characteristics and priorities of household consumers [177].  

Characteristics of Machine Learning Methods 

With numerous machine learning tools available, and further subtypes of each, the 

justification for selecting one method over another is not always immediately evident. 

Presented below are the most common machine learning methods utilised in 

infrastructure systems and discusses the characteristics of each. Examples are drawn from 

various sectors to demonstrate how the traits of a given method contribute to its 

suitability for the desired application.  

ANN 

Strengths: ANNs are a versatile approach to solving complex, non-linear problems [178]. 

ANNs can be fault tolerant, and so are able to solve problems despite some failure 

elements on the network. After training, an ANN is able to produce an output even if 

presented with incomplete data [179]. 
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Weaknesses: ANNs are a black box approach, and thus the structure of an ANN cannot 

provide insight into the function being approximated. ANNs require training, which can be 

time-consuming, and their effectiveness can depend on access to sufficient quantities of 

training data. ANNs can require retraining over time [179]. ANNs can suffer from 

overfitting and local minima issues [143]. 

Example of effective use: ANNs have been applied to the short-term forecasting of vehicle 

traffic flow, where they have outperformed traditional methods due to the stochastic 

nature of traffic flow and highly nonlinear characteristics of short-term prediction. Able to 

approximate functions regardless of non-linearity and without prior knowledge of 

functional form, ANNs have demonstrated the ability to predict vehicle count accurately 

even if vehicle category and corresponding speed are considered separately as input 

variables. ANNs also perform consistently across variation in time intervals [180].  

Deep learning 

Strengths: The problems where deep learning outperform traditional machine learning 

techniques are those involving very large quantities of data. Deep learning has proven to 

be very successful for high-dimensional datasets with very noisy data problems, such as 

image classification, natural language processing, and speech recognition [157].  

Weaknesses: As a large quantity of data is typically required to train deep networks, 

problems where limited data is available may be unsuitable for this approach. Working 

with large datasets, in addition to the increased computational complexity of deep ANNs, 

often results in longer training and processing times, which are of particular concern for 

real-time applications [181].  Deep learning requires a higher standard of hardware than 

many other methods. As with most machine learning techniques, deep learning is a black 

box approach.  
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Example of effective use: Deep learning has been shown to improve upon conventional 

open shortest path first (OSPF) protocol for packet routing in telecommunications. With 

network traffic becoming increasingly complex, deep learning offers a smart strategy that 

is capable of considering multiple network parameters, outperforming traditional routing 

methods that consider only a single network parameter. Deep learning techniques can 

reduce overall packet loss rate and average delay per hop [182].  

SVM 

Strengths: SVM can solve the nonlinear problems while using small quantities of training 

data. While both ANN and SVM can solve the nonlinear problems, SVM only requires a 

small quantity of data to do so [179]. SVM methods are able to effectively handle data with 

both high degrees of uncertainty and heterogeneity [183]. SVM classifiers typically run at 

good speeds [143].   

Weaknesses: SVM is a black box approach, so the intrinsic relations between inputs and 

outputs cannot be completely known [183]. This is as it is a kernel method, so has a 

maximum of one parameter per training data sample, rather than per variable. SVM has 

limited tolerance to noisy data or data with missing values, and can be susceptible to 

overfitting [143].  

Example of effective use: SVM methods have performed consistently well in load and 

demand forecasting for the energy sector. In many energy forecasting scenarios, SVM 

techniques have consistently yielded lower mean absolute percentage error (MAPE) values 

than other machine learning methods, including ANNs [179]. The focus on empirical risk 

minimisation, rather than the “expert rules” learning technique of ANNs, enables SVM 

models to achieve accurate load forecasting in a relatively short time [184]. 

 

 



 

81 
 

RF 

Strengths: RFs are a versatile method, able to handle binary features, categorical features, 

and numerical features. There is very little pre-processing that needs to be done for RFs. 

The data does not need to be rescaled or transformed. RFs are able to handle noisy 

datasets, as well as those with missing values [152]. RFs do not suffer from overfitting, and 

are the fastest tree-based technique [143].  

Weaknesses: RF is another black box approach (though not as much as other methods, as 

variable importance can be extracted from results). RF’s execution time, though typically 

low, can significantly increase with large volumes of data [185]. RFs for large datasets can 

also take up large amounts of memory. 

Example of effective use: RFs outperformed numerous other machine learning classifiers 

in the modelling of travel mode choice. The high accuracy of tree-based ensemble 

classifiers indicates that the flexibility which is obtained by combining multiple trees is 

particularly useful for modelling transport choice. The dominance of RF over other tree-

based classifiers can be attributed to the larger diversity among the learned trees of RF, 

which is a result of the RF’s procedure for randomised splitting at nodes [186]. 

K-means 

Strengths: K-means is a scalable, rapid, and simple learning algorithm, able to handle large 

quantities of data [187]. 

Weaknesses: The simplicity of k-means comes at the cost of high sensitivity to initialisation 

- the user must provide a number of clusters without necessarily knowing what an 

effective number of clusters will be. K-means can also struggle with clusters of a ‘non-

convex’ nature [154]. 

Example of effective use: K-means clustering has been effectively applied to data 

congestion control in vehicular ad hoc networks  (VANETs). A closed-loop congestion 
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control strategy utilised k-means to cluster the messages, with a control unit then 

determining parameters for each cluster, which are sent to vehicles stopped at 

intersections. This approach outperforms numerous existing methods, reducing packet loss 

ratio, average delay, and collision probability. This strategy also increased average 

throughput and packet delivery ratio considerably [187].  

2.2.4 FINDINGS - PURPOSES 

The reasons for investigation and adoption of AI methods include system provision (of 

network capacity), forecasting, routing, monitoring and security, and improving the quality 

of resources or services. This section reviews the main purposes across infrastructure sectors 

to which AI methods have been applied.  

2.2.4.1 System Provision 

AI tools can be used to assist in the delivery of infrastructure systems, both in the sense of 

adding to generation capacity through the creation of additional supply sites, and in 

facilitating the provision of new independent networks.  

A. Site Selection 

In the oil and gas sector, comprehensive review papers discuss the potential of robotics in 

exploration and site selection [188] [189]. Research regarding applications has, to date, been 

limited to establishing the capabilities of UAVs [190] and autonomous underwater vehicle 

(AUVs) [191], and although these machines are becoming increasingly autonomous, there 

remains work to be done on developing truly intelligent robotics in the field of site 

exploration.  

However, robotics is not the only category of AI used by the energy industry in the site 

selection process. The use of fuzzy logic in renewable energy systems is reviewed [61], with 

the authors finding that this form of automated reasoning has been widely used to assess 

the suitability of potential solar [192] [193] [128] [194], wind [127] [195] [196] [197], biomass 
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[198] [199], hydro [200], and hybrid renewable energy [201] plant locations. Fuzzy logic is 

particularly appropriate to this application due to its ability to capture heuristic reasoning 

among individuals. This allows fuzzy models to combine energy generation forecasting with 

environmental, economic, and socio-political variables to account for factors such as job 

creation and social acceptability in the selection process [199].  

Fuzzy logic has also been employed in site selection of water and transportation 

infrastructure, albeit to a lesser extent. Integrated fuzzy logic and multicriteria decision 

models are used to select the locations for a wastewater treatment plant in Kahak, Iran 

[129], and a solar desalination plant on the Caspian sea coast [202], with both cases 

considering a spectrum of criteria ranging from land use and geology to distance from roads, 

rivers, and settlements. This approach is also employed to identify potential sites for car 

parking infrastructure [203] [204] and for electric vehicle charging stations [205]. This limited 

body of work demonstrates how other infrastructure systems could benefit from the 

flexibility of fuzzy logic as a decision-making tool for site selection. 

B. Dynamic Network Creation 

In the field of telecommunications, recent work proposes the use of AI-enabled UAVs as 

mobile aerial base stations, providing a wireless network for cellular users. As 

communication networks transition to 5G, UAVs can offer a dynamic approach, intelligently 

positioning themselves to offer an efficient and cost-effective service that can overcome 

challenges including random fluctuation of wireless channels, blocking and user mobility 

effects [206]. 

A number of machine learning approaches have been applied to facilitate effective network 

provision through UAVs. A machine learning framework based on a Gaussian mixture model 

(GMM) is utilised to predict network congestion, for the purpose of deploying UAVs in a way 

that minimises power usage for mobility and transmission [207]. A deep reinforcement 

learning approach, based on ESN cells, is employed to create a path planning scheme for 
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cellular-connected UAVs, maximising energy efficiency and minimising both wireless latency 

and ground interference [171]. 

2.2.4.2 Forecasting 

A. Supply forecasting 

Supply forecasting covers the use of AI to predict the capacity of infrastructure systems, and 

by extension their ability to meet expected demand.  Both automated reasoning and 

machine learning tools have been applied to supply forecasting in the energy sector. Fuzzy 

logic, ANNs, SVMs, RFs, deep learning, and hybrid models have all been used to predict 

meteorological variables and associated power outputs in renewable systems [61] [208] 

[209] [210] [211] [212]. Solar radiation, wind speed, and rainfall forecasting allows 

researchers to assess the energy generation potential of current and prospective solar, wind, 

and hydropower energy sites [208] [213] [10]. A fuzzy logic model has also been used to 

estimate the potential electricity output of biomass plants based on their inputs at a regional 

level [214]. Outside of renewables, an ANN-based approach outperforms traditional 

methods in forecasting oil, gas, and water production rates for a hydrocarbon reservoir 

[215]. 

In the water sector, the forecasting of available water is crucial to effectively managing 

resources. While the forecasting of variables such as groundwater level can give an indicator 

of supply levels [216], both machine learning [217] and deep learning [218] have also been 

applied to the more direct measure of reservoir inflow forecasting. This is an application 

where the size of the dataset can vary [217], which is an important factor to consider when 

choosing between standard machine learning methods and deep learning, which favours 

large datasets.  

Forecasting the quality of potable water supplies is an emerging area of research [219], with 

ANNs performing well on case study data [220]. In sewage systems, where accurate sensing 

of chemicals can be very challenging and time consuming, a deep learning-based approach 
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has been applied to the forecasting of water quality, achieving greater accuracy than 

traditional forecasting methods [221]. In more specialised applications, ANNs and SVM 

perform well when applied to water quality forecasting of groundwater for irrigation 

purposes [222] and of marine water for coastal hydro-environment management [223] 

A hybrid approach incorporating machine learning has been employed to predict available 

ship supply in the freight industry [224]. By forecasting future destination, arrival and anchor 

time for each ship, it is possible to assign each journey to a suitable vessel and establish the 

number of available vessels in a given region. An alternative to machine learning, Markov 

decision processes, is judged superior to ANN and SVM approaches to destination 

prediction. As a result, the final hybrid approach uses Markov decision processes for 

destination forecasting, and extreme gradient boosting, a machine learning system based 

on DT models, to predict arrival and anchor times.  

B. Demand forecasting 

AI methods, dominated by machine learning, have been incredibly widely used in demand 

forecasting for infrastructure systems. Table 6 summarises the machine learning techniques 

applied to demand forecasting in each paper reviewed. 

Numerous papers and several review papers examine the use of machine learning in energy 

demand forecasting. The majority of work to date takes a supervised learning approach, with 

ANN and SVM the most common methods used [225] [226] [227] [228] [142] [179] [143] 

[229] [230] [10] [231] [232]. An alternative approach, combining genetic algorithms, ant-

colony optimisation and fuzzy logic, suggests that an expert systems-based approach can 

rival the prediction capabilities of ANNs in this area [233]. Recent work explores deep 

learning as a forecasting tool [138] [234] [235] [236] [237], with evidence suggesting it 

outperforms standard machine learning methods [238]. Hybrid methods have also become 

more common in recent years, with a variety of combinations incorporating both traditional 

techniques, machine learning, and deep learning methods [244] [245] [246]. While most 
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work focuses on general energy demand, specific studies apply machine learning and deep 

learning-based models to demand forecasting of crude oil [247] and natural gas [248] [249]. 

Many of these machine learning techniques are also applied to water demand forecasting, 

with ANNs again dominating among chosen methods [250] [251] [208] [252]. Comparative 

studies show ANN-based approaches capable of achieving greater accuracy in water demand 

prediction than other machine learning systems [253] [254]. However, recent work has 

sought to apply deep learning and wavelet-based models to this task, yielding promising 

results for urban demand forecasting at the 15-minute [255], hourly [137] [255], and daily 

level [256] [257]. 

At the water-energy nexus, a tool for predicting energy and water demand in irrigation 

systems utilises both ANNs and genetic algorithms in the developed model [258]. While 

traditionally the optimisation of irrigation energy and water use has necessitated access to 

data from a wide range of sources and experts, the proposed model combines AI with 

satellite remote sensing to allow a more rapid response to changing conditions [258].  

Demand forecasting in telecommunications can be split into two categories: traffic and 

churn forecasting. Regarding the former, machine learning and automated reasoning have 

been used to forecast call volume in a university network through a recurrent fuzzy-neural 

model [259] [260], while ANNs have been utilised to predict incoming requests in call centres 

[261] [262] and to forecast traffic in telecommunications networks [263] [264]. Much of the 

recent work in the field of telecommunications focuses on the application of machine 

learning to forecasting in 5G networks [266], with deep learning increasingly common in this 

field [267] [139]. Customer churn describes the movement of consumers away from a given 

supplier, and there is significant use of machine learning for churn forecasting in the 

telecommunications industry. An SVM-based approach shows the highest accuracy of 

common machine learning methods [268]. 
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The transportation sector sees machine learning applied to traffic, destination and mode 

choice forecasting [62], each a factor in anticipating network demand. ANNs have been used 

to predict traffic flows in road networks [180] [269] [270] and combined with deep learning 

to predict citywide car, taxi, and public bike share traffic flows [63] [271] [272] [273] [274] 

[275] [276] [277] [278] [279] [280] [281]. In aviation, a LSTM-based model is able to predict 

air traffic well, despite anomalies in traffic control [285]. It is worth noting that the 

application of forecasting can be very time-sensitive, and so the run time of machine learning 

techniques is a significant factor to consider in the feasibility of these solutions. Finally, mode 

choice prediction can be used to gain an understanding of the factors influencing individuals’ 

transport choices. A range of machine learning tools have been applied to this purpose, but 

a majority of comparative studies show a RF classifier gives the greatest accuracy [153] [286]. 

Results find journey length to be the most important variable in transport mode selection, 

although climate is also seen to contribute significantly [186]. 

Recent work at the energy-transport nexus looks into forecasting transportation energy 

demand [229] [287] [288] [289] [290], with some going further to consider both energy 

demand and CO2 emissions [291]. With the increasing popularity and affordability of 

electric vehicles, forecasting of  electric vehicle charging demand is a growing area of 

research, with the aims of minimising stress on the energy grid and reducing the cost of 

electric charging [292]. Deep learning-based methods are shown to be the best-performing 

methods for this application [293] [294] [295].
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TABLE 6: MACHINE LEARNING METHODS USED IN PAPERS ON DEMAND FORECASTING. ONLY PAPERS WHICH PROPOSED THEIR OWN TECHNIQUES ARE INCLUDED.  ○ INDICATES THAT 

A GIVEN METHOD WAS UTILISED BY THE PAPER, WHILE ● INDICATES THE BEST PERFORMING METHOD (WHERE MULTIPLE TECHNIQUES WERE APPLIED TO THE SAME PROBLEM). E, W, 

T AND C CORRESPOND TO ENERGY, WATER, TRANSPORT AND TELECOMMUNICATIONS RESPECTIVELY. 

Reference Sector  Machine learning Method 

  ANN SVM DT RF K nearest 

neighbour 

K-

means 

DL Hybrid Other 

[226] E ○         

[186] E/T ○         

[227] E ●   ○      

[81] E ○       ○ 

ANN + FL 

● 

Genetic Algorithm 

[138] E ○ ○     ●   

[234] E       ○   

[236] E ○      ●   

[237] E  ○ ○ ○   ●   

[238] E ○ ○     ●   

[135] E ○         

[231] E ○ ○  ○    ● 

ANN + firefly 

algorithm 

 

[232] E    ● ○     

[79] E ○ ○ ● ○ ○     

[233] E   ○ ●      
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[188] E/T ○         

[187] E/T        ○ 

ANN + FL 

 

[289]  E/T   ●   ○    

[290] E/T       ●   

[234] W ○         

[251]  W ○         

[253] W ○         

[254] W ○ ○  ○ ●     

[137] W ○ ○     ●   

[259] C        ○ 

ANN + FL 

 

[260] C        ○ 

ANN + FL 

 

[261] C ○         

[262] C ○         

[263] C ○         

[264] C ○ ○     ●   

[265] C ○        ● 

Gaussian Process 

[266] C ○     ○   ○ 

Gaussian Process 

[267] C       ●   

[139] C       ●   

[268] C ○ ● ○      ○ 

Naïve Bayes 

[180] T ○         

[269] T ○         
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[270] T ○ ○      ● 

ANN + 

ARIMA 

 

 [271] T ○  ○    ●   

[272] T       ○   

[273]  T ○      ●   

[274] 

 

 

T ○      ○ ● 

DL + Bayesian 

 

[275] T ○    ○  ●  ○ 

Bayesian Gaussian 

tensor decomposition 

[276] T ○ ○     ●   

[277] T       ○   

[278] T  ○     ○ ● 

CNN + gated 

recurrent 

units 

 

[282] T  ○     ●  ○ 

Gaussian Process 

[283]  T ○      ●   

[285] T  ○     ●   

[286] T  ● ○ ● ○     

[186] T ○ ○ ○ ●     ○ 

Naïve Bayes 

[291] E/T ○ ○     ○    

[245] E ○       ●  
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ANN + 

Discrete 

Wavelet 

Transform + 

Particle 

Swarm 

Optimization  

[246] E        ○ 

CNN + DL + 

Grey wolf 

optimization 

 

[244] E        ○ 

ANN + 

Bayesian 

optimization 

algorithm 

 

[239] E  ○     ○   

[258] E/W        ○ 

ANN + 

Genetic 

algorithm 

 

[294] E/T ○      ●   

[292] E/T       ○   

[293] E/T       ●   

[295] E/T       ○   

[255] W ○      ○ ● 

Wavelet + 

CNN-LSTM 
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[256] W        ● 

Wavelet + 

Principal 

Component 

Analysis + 

LSTM 

 

[257] W ○ ○  ○    ● 

Wavelet + RF 

 

[252] W        ○ 

ANN + 

Genetic 

algorithm 

 

[280] T ○  ○    ●   

[281] T       ●  ○ 

Gaussian Mixture 

Model 

[232] E ○         

[248] E ○      ○ ●  

[249] E          

[247] E        ○ 

ANN + 

Genetic 

algorithm 

 

[284] T ○      ●   
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C. Price forecasting 

Although an extensive range of machine learning methods are used in energy price 

prediction [296] [297] [298], reviews find ANNs and SVMs to be the most popular [143] 

[299]. While the forecasting of crude oil [300] [301] [302] [303] and electricity prices [304] 

dominates the work in this field, it is found that a handful of papers predict the prices of 

other energy commodities such as fuelwood, natural gas [305], and carbon prices using 

machine learning [306]. Deep learning sees widespread use in the projection of electricity 

prices [307] [308] [309] [310], but has only more recently been applied to the crude oil 

equivalent [311] [312] [313]. Recognising that energy demand patterns changed in a rapid 

way during the COVID-19 pandemic, several studies apply machine learning methods to the 

prediction of energy prices [314] [315] and crude oil prices [316] during the pandemic.  

ANNs [317] [318] and RF regressor models [151] have been utilised to predict water trade 

prices for Australia’s Murray river basin and the Western United States respectively, 

enabling participants to make more efficient decisions in the face of uncertain asking and 

offering prices.   

Several machine learning methods have been applied to the forecasting of used car prices, 

with gradient boosted DTs performing well [319] [320] [321]. Although this more directly 

represents an application of machine learning at the unit (vehicle) level, rather than the 

network level, it could be reasoned that they used car market has a relationship to both the 

adoption of electric vehicles and the development of reliable public transport networks. 

Hence there is a need to develop methods further to explore these complex dynamics. One 

novel application in the transport sector sees gradient boosting DTS used for the forecasting 

of road prices in Japan, where road prices represent an indicator used to determine Japan's 

fixed asset tax [322]. 
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D. Safety forecasting 

In the transportation sector, machine learning methods have also been applied to 

forecasting of road accidents and casualties [63] [323] [324] [325] [326] [140]. One novel 

study applies a deep learning ensemble method to the forecasting of traffic accidents using 

social media data, which can provide real-time and detailed information on road traffic 

accidents [327]. Another unique approach sees RF combined with the Gaussian distribution 

method to forecast road traffic ‘black spots’, with the aim of providing warnings to system 

users travelling in unfamiliar locations [328]. Though accident forecasting is largely focussed 

on accidents involving one or more road vehicles, there is also consideration of pedestrian 

fatalities due to road vehicles [329].  

Both machine learning and deep learning-based methods can be used to forecast the 

severity of road traffic incidents [62] [330] [331]. Comparative studies, which compare 

multiple machine learning algorithms as well as single and ensemble-based methods, find 

RF and DTs to be among the best performing methods [332] in both single and ensemble 

machine learning methods, while ensemble methods are found to have greater accuracy 

than single methods [333]. Distance between vehicles and various weather variables are 

found to be the most significant factors influencing accident severity [334].  

There have been recent efforts to apply accident forecasting outside of road traffic accident 

forecasting. A CNN-based model is found to outperform other machine learning methods 

including RF and DTs in the forecasting of accidents at highway-rail grade crossings [335], 

while in the maritime sector, a stacked machine learning model outperforms individual 

models such as RF in forecasting accident density and accident severity in areas of the Fujian 

sea [336]. 
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2.2.4.3 Routing 

A range of machine learning methods have been applied to telecommunications routing, the 

process of selecting paths to send data packets within or across networks [337] [182] [338] 

[339]. Optimal routing processes minimise delays and improve quality of service. In WSNs, a 

routing protocol using an unsupervised ANN in the form of a self-organising map (SOM) 

performs favourably when compared to existing routing methods, especially in scenarios 

with high levels of node failure [340] [341]. In opportunistic networks, where link 

performance is subject to high variability, ANNs and DTs have been successfully applied to 

routing [342], although more recent work claims that a Gaussian mixture model approach 

outperforms existing machine learning tools [343]. Deep learning has also been applied to 

routing in both wired and wireless networks, where several supervised and reinforcement 

learning methods are shown to reduce delays and improve throughput [344] [345].  

Recent developments in the field of telecommunications have seen a move away from 

hardware-based networking, with a new software-based approach offering greater 

automation by de-coupling the control and data planes. Reinforcement learning is the 

favoured tool in recent work on routing in software defined networks (SDNs) [346], often in 

combination with deep learning architecture [347] [348]. An alternative, supervised deep 

learning approach is applied to SDN routing in order to minimise end-to-end delay in virtual 

network function section [349]. 

At the intersection of telecommunications and energy is the need to consider efficient load 

balancing through the development of ‘green’ or ‘energy-aware’ routing techniques that 

reduce energy consumption and prolong network lifetime in wireless sensor networks [350] 

[351] [352]. A variety of machine learning-based techniques, including deep learning and 

reinforcement learning, show potential in developing intelligent energy-efficient routing 

strategies, due to their ability to respond rapidly to environmental changes and integrate 

multiple factors into routing decisions [350] [353] [354]. Fuzzy logic has also been applied to 
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green routing and is effective in allowing the consideration of various factors including the 

routing parameters charge, residual energy, and expected transmission count [351] [59]. 

VANETs are an instance of telecommunications being used in the development an intelligent 

transport system. These wireless networks connect moving and stationary vehicles, allowing 

exchange of information between vehicles and infrastructures in order to facilitate the safe, 

efficient and environmentally-conscious flow of traffic. A variety of machine learning 

approaches have been applied to routing in VANETs [355], including supervised ANN and 

SVM methods [356] [144], an unsupervised k-means approach [357], and deep 

reinforcement learning [155].  

Machine learning extends to urban road traffic routing [62] [358] [359] and ride-hailing 

service vehicle pairing [360]. Routing in transport can be extended to include technologies 

that facilitate the independent navigation of autonomous vehicles. This is an emerging area 

of research, which often combines machine learning and robotics to enable safe movement 

of vehicles. AI supports three primary functions in autonomous road vehicles; perception, 

localisation and mapping, and decision making [362] [363] [165] [173] [364] [365]. To date, 

most of the work in this field is at agent, rather than system, level [361]. At the network 

level, however, security concerns can emerge from the use of machine learning techniques 

in connected systems of autonomous vehicles, and more research is needed to ensure their 

robustness to attack [366].  

In examples from the shipping sector, data from an extensive network of shipboard sensors 

has been used in conjunction with a CNN to enable safe, autonomous navigation through a 

route containing multiple hazards [367], while fuzzy logic can support dynamic decision-

making for autonomous navigation through international shipping routes [368].  

In public transport, an interesting case study applies an ANN and SVM to campus shuttle bus 

route optimisation in a study that also considers fuel efficiency and vehicle emission, finding 

that the ANN yields better results for both peak and off-peak travel [371].  
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2.2.4.4 Monitoring and Security 

This topic covers the use of AI for the purpose of maintaining a safe and effective 

infrastructure network. This includes inspection and preventative maintenance and extends 

to fault and hazard detection and response.  

A. Inspection and Monitoring 

In various infrastructure sectors, robotics has been utilised for inspection purposes. This has 

proven especially beneficial in the energy sector, where inspections can be necessary in 

hostile environments, such as nuclear environments [372] [373], but many systems are still 

heavily reliant on human operators. In the oil and gas industry, robots have been used for 

years for the inspection of assets [188] [189], but utilising their full potential requires a 

greater level of autonomy. Recent work seeks to automate the planning process of AUVs 

used in offshore oilfields, using an intelligent knowledge base to allow strategic planning 

that accounts for unexpected obstacles, in the absence of human input [172]. Outside of 

energy infrastructure, work has been done on the design of autonomous robots for bridge 

maintenance and inspection [374].  

Other AI methods can aid robots undertaking inspections. For example, a machine learning-

based computer vision approach has been integrated with UAVs to identify, map out, and 

monitor electrical infrastructure, which the authors suggest could be used to prepare 

preventive maintenance in the event of tree branches encroaching on power lines [170]. 

While computer vision has been applied to vegetation detection in electrical infrastructure, 

it’s potential to detect defects in cables or insulation remains undeveloped [375]. UAVs have 

also been combined with machine learning methods for the systematic inspection of solar 

plants [376]. In aquatic environments, unmanned underwater vessels have been used to 

monitor dams and their surrounding ecosystems, utilising a computer vision approach to 

detect rock slides and cracks, as well as monitor native and invasive fish species [169]. In the 

transport sector, UAVs have been combined with CNNs for the purpose of detecting cracks 
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and potholes on road network, with the UAVs able to move autonomously by also tracking 

the yellow line [377]. Road inspection is a complex challenge, with CNNs and other deep 

learning-based methods showing the most potential in this field [378].  

Independent of robotics, machine learning has been applied to structural health monitoring 

of infrastructure. Examples of methods that can be applied in a range of infrastructure 

systems include computer vision–based crack detection in steel and concrete structures 

[379] and a deep learning approach to dealing with anomalies in sensor data [163].  A review 

covering machine learning for structural health monitoring in wind turbines shows that a 

range of supervised and unsupervised methods can be used to identify blade delamination, 

mud and dirt build-up, and loose bearings [380]. RFs and DT algorithms show high 

effectiveness in predicting anomalies in wind turbine function, informing preventative 

maintenance strategies [381]. Utilising both machine learning and automated reasoning, 

ANFIS has been applied to health monitoring of a full wind energy generation system, with 

the author suggesting a similar approach may be effective for photovoltaic or other 

generation systems [382]. In the oil and gas sector, a variety of machine learning and deep 

learning-based methods have been explored for fault prognosis, detection, and diagnosis, 

with a Gaussian mixture model found to be most effective in clustering risk of failure [383].  

Machine learning has been employed to identify abnormalities in a water distribution 

network, with examples using machine learning tools alone and in combination with 

automated reasoning [384] [385] [386].  In another contribution to the development of an 

intelligent water distribution system, an ontologies-based approach to decision support has 

been applied for the purpose of identifying and mitigating failures [115].   

AI has been utilised for safety monitoring in transport networks, where a computer vision-

based approach is explored for traffic infrastructure inventory creation and assessment 

[134]. Results indicate that it is possible to achieve at least semi-automated inspection of 

road signage. The stability of tunnelled roadways has been assessed using machine learning 
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tools, with a hybrid ANN and particle swarm method proving most effective [387]. In railway 

networks, deep learning and CNNs in particular show promise in surface defect [388] [389] 

and fastener [390] inspection. Deep machine learning has also been applied to fault 

detection for high speed rail [391]. As the use of high-speed rail spreads around the world, 

deep learning shows great potential as it has the capacity to deal with massive amounts of 

unsupervised data.  

B. Security and Hazard Detection 

While inspection and monitoring covers damage to networks from general wear and tear, 

the use of AI for security and hazard detection purposes deals with the protection of 

infrastructure systems from potentially destructive hazards or deliberate attacks.  

Automated reasoning has been applied to hazard perception, with a rule-based reasoning 

approach used for automatic identification of marine risks that may lead to the grounding 

or sinking of vessels [392]. A combination of automated reasoning and machine learning has 

been utilised in VANETs to detect rear-end collisions along a stretch of highway. An ANN can 

predict the position of moving vehicles with high levels of accuracy, while a fuzzy inference 

system is used to create a safety index that allows different levels of risk to be identified in 

the modelling of rear-end collisions [393].  

In telecommunications, network security is a major consideration and has been the subject 

of a large volume of research in recent years [394]. In SDNs, a spectrum of machine learning 

techniques including ANNs, SVMs, DTs, RFs, k nearest neighbour and Naïve-Bayes classifiers 

have been applied to the detection of denial-of-service and intrusion attacks, as well as to 

identify vulnerable nodes and select an appropriate responses to threats [185] [395] [125] 

[124] [396] [397] [398] [399]. Deep learning tools have also been employed for security 

purposes in SDNs [400] [402] [156]. Deep learning methods, including CNN-based 

approaches and hybrid deep learning techniques, are shown to be highly accurate for multi-

vector denial-of-service attack detection [403] [404] [405]. The use of machine learning in 



 

100 
 

optical networks is reviewed, with Bayesian and cognition-based methods among those 

applied to anomaly detection, and supervised SVM, ANN, RF, and DT techniques used in 

failure management  [123] [146].  

Cloud computing allows on-demand access to computer system resources without direct 

active management by the user, often available to a large network of consumers. A selection 

of machine learning algorithms have been reviewed for anomaly detection in cloud 

infrastructures including primarily DT-based algorithms, as well as an RF classifier [150]. This 

study finds that all algorithms are able to predict anomalies with relatively high precision 

and recall measures, although this can be diminished when aging effects are considered. In 

a review of the use of deep learning in 5G networks, security is identified as a significant area 

of ongoing study [406], with growth in data bringing concerns regarding security and privacy 

[407]. For 5G mobile network architecture, where unpredictable traffic fluctuation is to be 

expected, a deep learning approach consisting of a DBN layer and separate LSTM recurrent 

network layer has been designed to detect anomalies and recognise patterns of cyberattacks 

[132]. This two-layer approach demonstrates an ability to self-adapt in real-time, based on 

the volume of network flows.  

At the intersection of telecommunications and energy is the cybersecurity of smart-grids, 

which can be vulnerable due to their dependence on advanced information and 

communication technology.  Machine learning, which can rely on adaptive baseline 

behaviour models, can be used to effectively detect other-wise unknown threats [408]. Deep 

learning methods have been applied to the detection of false data injection attacks in smart 

grid networks [409] [410], which can bypass many traditional bad data detection 

mechanisms [411]. The proposed deep learning methods can balance the need to identify 

such attacks with the need to preserve the privacy of data in the network [412]. 

2.2.4.5 Quality 

A. Water Quality 
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AI has been used to assess and improve water quality at various stages of the water 

treatment cycle [413] [414] [415]. The bulk of work to date is concerned with water 

treatment facilities, which includes plants dealing with surface water, ground water, and 

wastewater.  

Accurate assessment of incoming water quality is critical to designing effective water 

treatment facilities. As accurate and thorough sampling is not always possible, machine 

learning tools have been applied to the forecasting of water quality indicators. ANN-based 

techniques have been applied to the prediction of numerous water quality indicators, with 

dissolved oxygen, temperature, and biological and chemical oxygen demand among the 

most common variables assessed [416]. Looking at other machine learning methods, 

support vector regression is proven more effective than a regression tree approach to 

predicting key wastewater quality indicators across a range of drainage basins, though both 

are found to give robust predictions [417]. The value of fuzzy logic in quality assessment has 

also been established, primarily in fresh water systems [413]. Finally, a hybrid approach 

combining DTs and a shallow CNN is effective in analysing the pollutant levels of industrial 

wastewater [418].  

Once water has entered a treatment facility, it is critical that operators know that 

decontamination methods are effective. A range of machine learning approaches have been 

widely utilised in water and wastewater treatment for the purpose of modelling pollutant 

removal, where nutrients, heavy metals, and persistent organic pollutants are some of the 

most common contaminants [419] [420]. While ANN-based methods dominate, techniques 

such as SVMs, RF, ANFIS, and deep learning are also successfully utilised, and hybrid methods 

that combine ANNs with other machine learning approaches show high accuracy and 

robustness [136] [421]. ANNs are also shown to outperform response surface methodology 

in predicting pollutant removal [422]. 
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Another application of ANNs in water treatment is the modelling of membrane performance, 

where membranes are barriers that block certain substances from passing through, as part 

of the water cleaning process [420] [423]. This can assist with treatment plant design.  

In wastewater treatment, the activated sludge process uses aeration and a biological floc 

composed of bacteria and protozoa to treat contaminated water. Machine learning 

approaches have been employed to assist in the understanding of this ecosystem, identifying 

some functional features that are crucial to the effective adaptation of activated sludge 

bacteria to the wastewater treatment bioreactor environment [152] [183]. As with other 

stages of the water treatment process, water quality monitoring is necessary throughout 

wastewater treatment, with ANN-based techniques among the most commonly used 

machine learning-based methods [424]. A machine learning framework explores the 

operational factors that most significantly influence effluent quality, with influent 

temperature and levels of total suspended solids in the aeration process found to have the 

greatest impact on effluent parameters [425]. 

ANN-based models are also proven reliable in predicting the efficiency of desalination 

technologies, which are concerned with the removal of salt from surface water, 

groundwater, or wastewater. Most work to date has focused on utilising such models to 

assist in the control of desalination plants [420].  

In the development of knowledge representation in water systems, ontology-based 

approaches has been proposed for water quality management [426] [427]. In the field of 

potable water quality, a range of AI assessment techniques, including fuzzy logic and ANNs, 

are considered at the consumer level, where simple, accessible, and affordable techniques 

are preferred. While potable water is concerned with drinkable water conditions, much of 

the work to date focuses on groundwater [428] [429]. In a promising example of portable 

water assessment, a deep learning based mobile application platform employs a deep CNN 

to assess the presence of E.coli in water using an inbuilt smartphone camera [164]. 
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B. Quality of Service 

For telecommunication companies, providing a high quality of service is critical for 

preventing customer churn. AI has been applied to the assessment of consumer quality of 

experience, and is also used to improve network quality in a variety of ways [430]. 

Supervised machine learning has been applied to quality of experience assessment for 

smartphone users in cellular networks. Key performance indicators incorporate user-

reported data on experience and accessibility with quality of service traffic measurements, 

to quickly and accurately predict end-user satisfaction. A range of classifiers are considered, 

with RF and DT-based models outperforming SVM, ANN, and Naïve Bayes approaches [149]. 

A quality of service-centred approach to classification of traffic flows in SDNs is proposed, 

with an SVM-based classifier assigning quality of service classes to traffic flows through a 

semi-supervised machine learning approach. Key factors such as delay, jitter, and loss rate 

are used to assign a quality of service class, which the authors suggest using to efficiently re-

route extremely large continuous flows (known as ‘elephant’ flows) [145]. To meet the 

quality of service requirements of 5G networks, base stations need real-time optimisation 

of radio resources in time-varying network conditions. A deep learning-based framework 

finds that cascaded neural networks perform better than fully-connected neural networks 

in meeting quality of service requirements with given bandwidth allocation [431]. 

To predict quality of transmission in optical networks, case-based reasoning, SVM, and RF 

methods are among the machine learning methods that have been utilised [123]. An ANN 

approach achieves high levels of accuracy with microsecond response time, facilitating 

dynamic network operation [432]. 

Machine learning and automated reasoning tools are also applied to video streaming over 

wireless networks, where an ANFIS approach has been utilised for the purpose of improving 

picture quality [433], and in the application of fog computing to cellular networks. Fog 

computing seeks to position resources at the network edge, between the data source and 
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cloud, to bring them closer to the end user and improve network efficiency. A fuzzy 

clustering algorithm is proposed for an unsupervised machine learning approach to selecting 

fog nodes in a 5G network, with the aim of reducing system latency [434]. 

2.2.5 FINDINGS – INFRASTRUCTURE SECTORS  

The use of AI varies between each of the economic infrastructure sectors: energy, water and 

wastewater, transport, and telecommunications. This section reports on the use of AI 

methods in each sector and each pair of sectors, the latter recognising the increasing 

blurring of sectoral boundaries.  

2.2.5.1 Energy 

In the energy sector, AI tools have been extensively applied to demand forecasting [235] 

[138] [242] [225] [233], especially at residential and building level [226] [238] [142] [228] 

[179]. Further applications include price forecasting [143], demand side management [435], 

and the monitoring of electrical cable networks [170]. Facilitating energy use reduction is of 

increasing concern in this sector, and methods ranging from efficiency-centred ontologies 

[117] to natural language generation of consumer advice reports [177] have been utilised 

for this purpose.   

Much of the rest of the work in the energy sector focuses on generation systems, where 

many of the most developed applications pertain to renewable energy infrastructure [436]. 

Robotics shows significant potential as an aid in the oil, gas and nuclear sectors, but the 

machines used to date remain limited in their autonomy [188] [189] [372]. In renewable 

energy systems, there has been increasing use of AI in supply forecasting. Key elements of 

this include meteorological forecasting, where ANN and fuzzy logic techniques are popular 

[437] [61] [438] [11] [439], and solar tracking, which often utilises computer vision tools 

[440]. Artificially intelligent methods of inspection and structural health monitoring for 

renewable energy assets have also been investigated [380] [382].  
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2.2.5.2 Water and wastewater 

AI methods have been utilised across water networks, from initial water treatment through 

to distribution and consumer-related challenges. At the supply end, much of the research is 

concerned with water quality [426] [413] and pollutant removal [136], in both standard and 

wastewater treatment [417] [183] [152] [419] [423]. Machine learning methods have also 

been utilised in desalination, where they can have implications for plant design [420].  

Deep learning has grown in popularity in the water sector in recent years, and has been 

applied to a variety of problems including runoff prediction, flood forecasting, groundwater 

modelling, water quality, and water treatment [441].   

The use of robotics in water systems for inspection purposes has been largely limited to 

semi-autonomous machines [374], although computer vision-enabled robots have recently 

been successfully utilised to monitor assets such as dams [169]. In water distribution 

networks, both ontology-based knowledge representation [115] and machine learning 

techniques [384] [385] have been applied to the detection of bursts and abnormal flows. 

From an end-usage perspective, a range of machine learning techniques, including ANNs, 

RFs, SVMs, k Nearest Neighbour, regression trees and DBNs, have been applied to water 

demand forecasting [254] [137] [251] [253] and price forecasting [317] [318] [151] across a 

range of geographic scales. A selection of machine learning and computer vision methods 

have been applied to quality assessment at consumer level [428], where smart-phone based 

approaches show significant potential as a widely accessible tool [429] [164].  

2.2.5.3 Transportation 

The transportation sector has seen perhaps the most variation in tasks to which AI has been 

applied [63] [62]. Looking at transportation networks as a whole, a number of knowledge 

representation systems, many ontology-based, are proposed [118] [442] [116] [443], while 

recent research into how the public interact with transport systems from a behavioural 
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perspective, including transport mode selection, benefits from a range of machine learning 

techniques [153]. Although it is recognised that traffic flow and accident prediction can be 

utilised for a variety of urban transportation systems [273] [326], much of the remaining 

work in this sector has focused on individual modes of transportation. 

Regarding road vehicle usage, a range of machine learning methods have been applied to 

traffic [269] [180] [272] [62] [279] and accident forecasting [325] [326] [140] [63] [62], as 

well as for navigational tools [62]. Similar tools have also been utilised in demand forecasting 

[271] [282] and destination prediction for taxi services [62] [360]. Several researchers have 

sought to apply AI to identifying and mapping road networks [444] [445] [446], whilst 

computer vision-based approaches to monitoring traffic infrastructure have been proposed 

[447]. In-vehicle and roadside sensors have the potential to provide more data on road 

networks than ever before, and deep learning methods are likely to play a significant role in 

the development of an intelligent transport network, with CNNs used in object detection, 

localisation, and classification for a variety of applications [448]. Work on the development 

of self-driving cars has seen massive interest in recent years, and automated reasoning [173] 

[364], machine and deep learning [363], and computer vision have all been utilised in what 

could be considered a primarily robotics-based challenge [165] [63] [362].  

The application of AI in transport is not limited to the roads. Shipping and freight has seen 

increased interest in autonomous vessels [361], and efforts to facilitate autonomous 

navigation [367] and hazard awareness [392] are important steps towards this goal. Machine 

learning has also been applied to supply forecasting in the shipping sector [224]. Railway 

networks have primarily seen AI applied to inspection and monitoring purposes. Though 

robotics, and specifically UAVs, demonstrate much potential in the monitoring of railway 

assets, many are still reliant on a significant level of human interaction [449] [374]. Deep 

learning tools, however, prove themselves effective at surface defect [388] [389] and 

fastener [390] inspection, as well as fault diagnosis, in high-speed rail [391], which is 
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expected to grow in popularity as a mode of travel.  While most other work in public 

transport is primarily focused on traffic flows or choice of transportation method [62] [153], 

bus networks have been the subject of individual research, which focuses largely on 

scheduling issues [450] [451]. 

2.2.5.4 Telecommunications 

Machine learning methods are seen as highly significant for the success of the next 

generation of wireless networks [131] [452] [453] [58] [454]. Research covers a variety of 

network types, with some works covering the more general ‘cellular’ or ‘wireless’ networks, 

and others focusing specifically on software-defined networks [455] [456] [457], optical 

networks [123] [146], 5G [131] [139] [266], and the cloud [150].  

As in other infrastructure sectors, telecommunications has seen machine learning utilised in 

traffic and demand forecasting [259] [260] [263] [261] [262] [264] [266], with recent work 

focused on deep learning approaches [267] [139]. Another common application of machine 

learning, where all learning types have been employed, is in routing [340] [341] [342] [182] 

[347] [346] [343] [344] [345] [348] [349], where effective solutions can help reduce latency.  

From a consumer perspective, quality of both transmission and overall experience are very 

important in telecommunication networks. Assessing customer experience and network 

quality, which can be dependent on factors including latency, jitter, loss rate and image or 

video definition, are active areas of research, utilising a range of machine learning classifiers 

[149] [432] [123]. The design of traffic clustering techniques that factor in quality of service 

has also been suggested [145]. Additionally, the accuracy of several machine learning 

methods has been compared in predicting customer churn [268]. 

Security is a critical concern in telecommunications, especially in wireless networks and 

SDNs [394]. A spectrum of machine learning approaches have been used in anomaly 

detection [123] [146] [150] [132], the identification of denial-of-service [125] [396] [403] 
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[405] and intrusion attacks [185] [395] [402], and for selecting an appropriate response 

[458]. 

Due to the increasingly wireless nature of telecommunications, it is possible to provide 

dynamic networks that utilise UAVs as mobile base stations. Although not yet widespread, 

it is anticipated that interest in this area will continue to grow, and research to date has 

looked at how to deploy UAVs effectively [207] [171].  

2.2.5.5 Energy and Water 

A range of AI techniques have been applied at the water-energy nexus, which describes the 

intersection of water and energy systems [208] [459]. Hydropower, the generation of 

electricity from directing water through a turbine, sits at this nexus as an example of water 

use for energy applications. Unsupervised k-means clustering has been utilised in modelling 

the distribution of hydropower facilities and nearby land cover, to estimate system 

evaporation [460]. Of supervised techniques, ANNs have been applied to hydropower 

reservoir inflow forecasting [438], while SVMs have been used to analyse the division 

between hydropower and irrigation in worldwide reservoir usage trends [461]. ANNs and 

genetic algorithms have also been incorporated into a forecasting tool for energy and water 

demand for the irrigation systems of water user associations [258].  

On a consumer level, there are many systems that both utilise water and require energy, 

such as dishwashers, washing machines, and showers. Research applies machine learning 

tools, including SVMs [462] and Hidden Markov model combined with stacked autoencoders 

[463], to classify such water end-use events on a residential scale. 

2.2.5.6 Energy and Transport 

Energy demand forecasting for transportation has received less attention than equivalent 

forecasting for buildings, although researchers recognise its importance in the 

decarbonisation of cities. Machine learning techniques such as ANNs and ANFIS allow both 
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transport and socio-economic indicators to be considered when predicting future demand 

[229] [288] [287] [289] [290]. 

AI tools have also been applied to electric and hybrid vehicles, the numbers of which are 

rapidly growing worldwide. Deep reinforcement learning has been shown to improve energy 

efficiency in individual units [464], while research at network level focuses on routing, 

charging point selection, and integration of electric vehicles into the smart grid [465], all of 

which can benefit from some level of local demand forecasting [466] [467] [293] [292] [294]. 

At the vehicle-grid intersection, minimising energy peaks can be done through load 

balancing, congestion pricing, and market selling and purchasing strategies [465].  

2.2.5.7 Water and Transport 

Though an area of minimal research, it has been recognised that water and transportation 

systems are not unconnected. In particular, abnormally intense periods of rainfall have the 

potential to cause significant disruption to rail and road transportation networks. This is an 

argument in favour of monitoring water levels in lakes and reservoirs, to which ANN 

methods have been applied [468].  

2.2.5.8 Energy and Telecommunications 

Recent work in telecommunications is beginning to recognise the significance of efficient 

energy usage in communication systems. Machine learning tools have been applied to 

energy-efficient resource allocation in cloud networks [469], and research on utilising UAVs 

to provide dynamic networks has prioritised low energy usage [207] [171] [470].  

2.2.5.9 Transport and Telecommunications 

VANETs, which facilitate dynamic wireless connections between vehicles, sit at the 

intersection of transport and telecommunications. As in other telecommunication networks, 

machine learning has been utilised in VANETs for routing [357] [144] [356] [155] and security 

[471] [472]. AI tools have also been used to improve VANET efficiency in the context of 
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enhanced road safety, with ANNs and fuzzy inference systems applied to rear-end collision 

avoidance [393] and k-means clustering utilised to improve safety at congestion points such 

as intersections [187].  

2.2.5.10 Water and Telecommunications 

The research in this area is largely limited to flood prediction and mitigation, where the 

‘Internet of Things’ wireless sensor network (WSN) has been combined with ANNs to predict 

flooding events [473] and communicate warnings for those at risk [474]. There remains an 

absence of work utilising AI to predict, assess, or mitigate the effects of flooding on 

telecommunications infrastructure.  

 

2.2.6 FINDINGS - CROSS SECTORAL 

2.2.6.1 Analysis framework  

The structure of this cross-sectoral analysis is based on a framework proposed by Sharifi, 

which consists of 11 qualities with associated evaluation criteria [475]. This framework is 

concerned not only with innovative solutions, but effective implementation, which is often 

dependent on recognising the interconnections between systems and the interdisciplinary 

nature of work in cities and infrastructure [476]. Two additional criteria, comparison and 

vulnerability, have been added to the original framework in order to align the analysis with 

AI in infrastructure. Table 7 outlines how each criterion relates to infrastructure systems, as 

well as the extent to which each is satisfied by the overall body of research covered by this 

review. Criteria with limited coverage would benefit from greater consideration in future 

research in this field; this is explored more in section 2.2.7. Where possible, examples of a 

paper that meets the description of the criterion to a high degree are provided, as are 

examples which show a low level of sophistication in regard to a criterion, but do not neglect 

it entirely. 
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TABLE 7: ANALYSIS FRAMEWORK 

Key High coverage Medium coverage Low coverage    

     

Quality Criteria description Extent of 

coverage 

Low level example High level example 

Comprehensiveness The extent of inclusion of indicators related to different themes 

(which can include the economy, society, governance, the 

environment, mobility, and data) and sub-themes in the selected 

tools. 

 

Small range of 

indicators [471] 

Multi-criteria, multi-

dimension [196] 

Stakeholder 

engagement 

Whether participatory approaches (which include interviews, 

questionnaire surveys, focus group discussions, community 

workshops, and consultations) are considered in the 

development and implementation of the selected tools. 

 

Includes opinion as 

an indicator [196] 

High level of 

feedback [149] 

Context-sensitivity Whether the selected tools take account of user needs and 

context-specific needs and challenges. 

 Overview of method 

with examples [394] 

Method adapted to 

context [282] 

Strategic needs Whether the selected tools are aligned with strategic needs and 

priorities. This includes attempts to evaluate performance 

against local or higher-level strategic targets. 

 Recognition of global 

strategic direction 

[139] 

Looks at effects of 

policy [326] 

Uncertainty 

management 

Whether iterative processes are adapted and future scenarios 

are developed to take account of future uncertainties. 

 Automatic updates 

considered [444] 

Adaptive technique 

[296] 

Interlinkages and 

interoperability 

Whether interlinkages and interoperability between different 

indicators and systems are considered in the assessment 

process.  

 Research at an area 

of overlap between 

systems [205] 

Nexus between 

infrastructures [208] 

Temporal changes Whether selected tools track temporal changes.  
Short-term 

forecasting [254] 

Range of temporal 

scales and 

resolutions [238] 
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Flexibility Whether issues related to flexibility, scalability, and replicability 

are considered by the selected tools. 

 
Method specific to 

application [368] 

Scalable and 

adjustable method 

[432] 

Feasibility Whether issues related to technical and financial feasibility are 

considered by the selected tools. 

 
Financial feasibility 

recognised [429] 

Multiple indicators 

to consider 

feasibility [201] 

Presentation and 

communication 

Whether the selected tools take appropriate approaches to 

effective presentation and communication of the results. 

 Short, clearly 

presented paper 

[434] 

Good visualisations 

[274]  

Comparison Whether selected tools are compared against other methods, 

using a common dataset that is large enough to be 

representative. 

 
Two models 

compared [152] 

Several independent 

models compared 

[343] 

Vulnerability Whether potential failure methods are considered by the 

selected tools. 

 Improving network 

security [125] 

Focus on failure 

identification [391] 

Action-oriented 

approach 

Whether assessment findings are used for developing action 

plans and broader infrastructure implementation roadmaps. 

 
No examples found No examples found 
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2.2.6.2 Comprehensiveness 

There are examples of work in the field of infrastructure that consider a spectrum of 

influencing variables, with site selection research yielding some of the best. One example, 

investigating wind farm location, applies a total of 28 evaluation criteria across six 

dimensions; safety and quality, economy and benefit, social impression, environment and 

ecology, regulation, and policy [196]. The widespread utilisation of fuzzy logic for this 

application allows for the inclusion of variables with levels of uncertainty, such as average 

wind speed and intensity of natural disaster occurrence [197]. Site selection of electric 

vehicle charging stations, which also makes use of fuzzy logic, considers 11 sub-criteria 

within economic, social and environmental sectors [205].  

In contrast, much of the work on forecasting considers only historical data of the same kind. 

While this will reflect a number of indicators, the research does not seek to identify them or 

quantify their contribution or significance. This means that should economic, social, 

environmental or other factors fluctuate outside of the range of what was experienced in 

training data, forecasts maybe be inaccurate. While systems with large volumes of training 

data will be less susceptible to fluctuations outside of training range, this method, seen often 

in demand forecasting, remains limited in comprehensiveness. An exception is transport 

energy demand forecasting, where a variety of socio-demographic indicators have been 

considered, including vehicle ownership levels and fuel prices [229] [288] [287] [289]. The 

inclusion of a range of variables is also seen in other forms of forecasting, with quality of 

experience forecasting in telecommunications assessing 12 key performance indicators 

[149], and water price forecasting taking into account a range of transaction, economic, 

demographic, meteorological and hydrological variables [151]. Passenger density, 

population size, and gross national product are among the input variables used in transport 

casualty forecasting [326] [325]. In customer churn prediction, up to 19 indicators centred 

on network usage, such as call frequency and duration, have been considered [268].  
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One area that shows significant range in variable comprehensiveness is network routing. 

While some approaches seek to optimise a single variable, typically network congestion or 

delay [356], other work incorporates 12 inputs, including buffer occupancy and success ratio 

[342], and seeks to account for multiple noise parameters [341]. 

Many instances of the use of AI in infrastructure are very subject specific. It may be argued 

that, even if cases where a single variable is the primary concern, multiple indicators should 

be considered if only to show their significance. However, it is the case that much research 

in infrastructure is concerned with a narrow selection of factors. For example, pollutant 

removal is concerned solely with levels of particular pollutants [136], and quality of 

transmission is often measured by latency [432].  

Comprehensiveness, while not evidenced across the board, is a quality that has been 

demonstrated in a significant number of papers investigated, and it is expected that the 

benchmark will be raised as papers with a narrow range of indicators are outperformed by 

those with more comprehensive techniques. In select cases, however, focusing on a tight 

selection of variables may be beneficial, including instances of time-sensitive analysis or 

limited computational capacity.  

2.2.6.3 Stakeholder engagement 

Engagement through participatory approaches in infrastructure AI research has been scarce, 

with only a handful of instances discovered. Participatory approaches have been extended 

to include consultation with stakeholders in this context. A paper trying to assess quality of 

experience for telecommunication end-users combines a passive monitoring tool with a 

feedback application in participants’ smartphones. In total, around 700 instances of 

feedback are recorded, which helps to establish relationships between quality of experience 

and several other performance indicators, such as length of session [149]. This approach 

shows significant potential and could be incorporated in customer churn prediction, which 

is heavily linked to user experience. Other examples of stakeholder engagement have been 
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limited to consultation for the purpose of evaluating social indicators, such as consulting 

local residents during wind farm site selection [196].   

2.2.6.4 Context-sensitivity 

Many techniques explored in this review are applied to particular contexts, as the complex 

nature of machine learning tools often makes then unsuitable to broad circumstances. 

Several papers frame their findings in a context-specific way through the use of case studies 

[197] [438] [201] [151] [273], although it is worth noting that often no adaptation has been 

done to the method, rather a specific dataset has been used.   

The best examples of context-sensitive research in this field incorporate context at the 

method level. In one very unique situation, which forecasts traffic accidents in Turkey, the 

potential for Turkey to become an EU-member state is considered as part of the variable 

selection process [325]. In another very context-aware case, time-series data is been 

combined with textual data for taxi demand prediction in event areas. The authors utilise 

online information regarding events scheduling at venues within the study area, recognising 

that this is likely to influence local taxi demand [282]. A final example attempts to establish 

the context in which the consumer is making decisions when generating energy-saving 

advice tailored to households [177]. 

2.2.6.5 Strategic needs 

Despite the high relevance of many strategic plans to infrastructure systems, minimal 

research to date has taken a strategic viewpoint. Much of the work covered in this review 

could be used to inform policy or strategy, rather than the inverse of research being 

informed by strategy. A contributing factor may be the discrepancies in geographic scale, 

with a substantial quantity of research focused on specific applications or individual systems 

on a local level, while strategic plans often take a broader approach and deal with significant 

geographic areas and/or multiple systems. That is not to say that opportunities do not exist 
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to incorporate strategy in this type of work. In one example, an effort is made to predict the 

impact of railway development policy on road casualties in Turkey [326]. Though not aligned 

with any stated strategic goal, a substantial body of recent work in telecommunications 

pertains to the widespread transition towards 5G [131] [132] [171] [139] [266] [469] [434].  

2.2.6.6 Uncertainty management 

While supervised machine learning has proven its effectiveness in a wide range of 

applications, other approaches may be needed to deal with the increasing uncertainty that 

comes with larger and more interconnected systems [464]. Several AI methods lend 

themselves well to uncertainties, including fuzzy logic and unsupervised learning. The 

iterative nature of reinforcement learning also allows adaptation to uncertainty.  

Treating uncertain indicators as fuzzy parameters allows them to be considered alongside 

more concrete variables, with the probabilistic nature of this approach allowing levels of 

uncertainty to be considered. This has been effectively applied to variables in the selection 

of sites for assets such as wind turbines [197] and car parks [204].  

Where uncertainties are in outputs, unsupervised learning can assist in identifying 

relationships and clusters in a given dataset without prior knowledge any links between 

data. The potential of unsupervised learning has been exploited for numerous infrastructure 

applications, including anomaly detection [156], churn prediction [477] and traffic clustering 

[266] in telecommunications.  

One example in reservoir inflow forecasting uses historical forecast residuals to generate 

additional realisations on top of the initial point forecast, to account for uncertainties in 

hourly forecasts [438]. In another example, concerned with software attacks, an ‘ambiguous’ 

category is included, consisting of the most uncertain samples. The data that falls into this 

category is separately classified and used to re-train the model, offering more learning 

potential than clear-cut positive or negative scenarios [185].   
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Reinforcement learning is an inherently iterative approach, which thus lends itself well to 

dealing with uncertainty, and has seen increased uptake in recent years. Applications have 

included improving energy efficiency in vehicles [464], and routing in telecommunication 

networks [348].  

2.2.6.7 Interlinkages and interoperability 

As infrastructure networks can be considered a ‘system of systems’, interlinkages are an 

important part of infrastructure research. However, possibly due to the high level of subject-

specific research and the limited extent of research that is broad in nature, the literature 

covered in this review is very restricted in its consideration of interlinkages and 

interoperability. Even the more abstract work in knowledge representation struggles to 

establish connections between different systems, although an attempt has been made to 

link different transport networks [118].  

The limited recognition of relationships and dependencies between systems is evident in a 

review of the water-energy nexus [208]. Despite this nexus representing a significant overlap 

in systems, few papers sit in this region, and those that do are often very subject-specific, 

and thus typically deal with a narrow range of indicators.  While the existence of this review, 

and its attempt to categorise papers into subgroups such as ‘water-for-energy’, is a 

promising step in this field, there remains a lack of research considering connections 

between the two systems, and an even greater absence of papers concerned with the 

intersection of other infrastructure sectors. Perhaps the only other significant area of 

interconnectivity research is the junction of energy and transport, where several papers 

have looked at the energy demands of transport [229] [288] [287] and other have considered 

the integration of electric vehicles into the smart grid [465]. 

2.2.6.8 Temporal changes 



 

119 
 

As one of the most extensively researched purposes, forecasting of various variables has 

been studied across a wide range of temporal scales and resolutions.  It is worth noting that, 

for many machine learning methods, both temporal scale and resolution are dependent on 

the historical data available.  

Illustrating the temporal scalability achieved by research to date, one study predicting 

energy consumption at building level is able to produce forecasts for 15 minutes, hourly, 

daily, weekly, or yearly intervals, at resolutions ranging from one minute to weekly, using 47 

months of sampled data [238]. In different sectors, forecasting across a span of several years 

is not uncommon. For example, forecasting of road traffic causalities over a decade into the 

future has been attempted [325].  

Despite the apparent accuracy challenges that arise when dealing with larger temporal 

scales, the inherent structure of many machine learning tools renders them valuable assets 

in learning from past data changes and using this knowledge to forecast future trends. It is 

also worth noting that forecasting is not the only purpose for which AI has been applied to 

the monitoring of changes over time. Computer vision tools in particular prove valuable in 

structural health monitoring, allowing the condition of assets such as bridges, dams and 

wind turbines to be assessed over time, and deterioration signs such as corrosion or cracks 

to be identified [169] [380].  

Additional temporal elements to consider are training and operating speeds, which are 

particularly pertinent to real-time applications. For supervised learning, there is a training 

period, ranging from hours to days, required before the model has processed enough data 

to offer accurate predictions. Although this is an up-front activity, it can be necessary to re-

train models over time as inputs change. Advances in the field of machine learning do offer 

alternative solutions given appropriate resources including semi-supervised learning or the 

ability to train ‘as you go’ by adding labels to incoming data [478].  
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The computational complexity of machine learning techniques also affects operating speeds. 

Therefore, papers addressing time-sensitive tasks should explicitly consider their method’s 

run time, in addition to accuracy, as an indicator of performance.  While the trade-off 

between complexity and running speed warrants consideration, it is worth noting that 

improvements in hardware, bandwidth, data transmission speeds and cloud computing 

make the adoption of AI more feasible than ever [479]. These improvements do not come 

without a cost, and this cost goes beyond the financial to include the carbon emissions 

associated with higher computational and data needs. 

2.2.6.9 Flexibility 

The flexibility of many of the machine learning techniques utilised in infrastructure is 

promising. Ultimately, the vast majority of models can be adapted to a range of conditions, 

provided adequate training data is available. A change in conditions may include a new 

geographic location, increased or decreased significance of input variables, or changing 

relationships between input variables. Flexibility goes hand in hand with feasibility for 

machine learning, as computational expense increases with the complexity of the model.  

In terms of scalability, the forecasting undertaken by machine learning tools for 

infrastructure purposes has spanned a range of geographic scales. For example, energy 

demand has been estimated at building level [242] [238], and for the whole urban area of 

Sydney [241]. Research in the field of telecommunication networks, which are increasingly 

moving away from hardware and towards software-defined architectures, recognises the 

need to consider scalability in a range of applications [338], including intrusion detection 

[471] [395], quality of transmission [432] and traffic forecasting [139].  

It is worth noting that other areas of AI face different issues with flexibility and scalability. In 

knowledge representation, for example, structuring large quantities of concepts, 

relationships and interdependencies is a significant challenge. If a true ‘system of systems’ 
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approach is to prevail in infrastructure, knowledge representation systems must be 

developed that can encompass a great number of interconnected networks.  

2.2.6.10 Feasibility 

Machine learning techniques, particularly deep learning methods requiring large datasets, 

have the potential to be very computationally expensive. In time-sensitive environments, 

the computational power required to achieve a result quickly enough may be prohibitively 

expensive. While model accuracy is important, run-speed, especially as compared to 

alternative techniques, is often also a very significant factor [240]. While a few papers allude 

to such reasons as justification for selecting one method over another, feasibility is rarely 

considered beyond this.   

Other examples of studies that consider feasibility include the use of smartphones to allow 

consumers to assess water quality, demonstrating an awareness of the financial constraints 

many end-users face that may prohibit more complex technology [429]. Feasibility concerns 

may also extend to include the priority of energy-conservation in UAVs used for network 

provision, where excessive energy cost or recharging requirements may impact viability 

[171] [207]. While feasibility is considered in these cases, it is worth noting that it is in a 

qualitative sense, with no research reviewing the feasibility of a proposed method in a 

systematic or quantitative sense. While feasibility can include financial viability, applications 

dealing with physical infrastructure can often experience other concerns. In the selection of 

renewable energy sites, for example, exposure to energy source and appropriate ground 

conditions are crucial for providing adequate energy generation, while public support can 

be key to getting projects approved. These variables can be quantified, and included as 

inputs in the site selection process [201].  

As regards technical feasibility, one of the core requirements of machine learning systems is 

access to sufficient training datasets. While research may yield promising findings for a given 



 

122 
 

dataset, if an adequate supply of training data is not available for the desired application, 

many machine learning methods are not technically feasible in that context.  

2.2.6.11 Presentation and communication 

As journal or conference papers are selected for this review, the quality of written 

communication is high across the board. A range of figures and graphs are used to aid 

understanding, with comparative studies often using graphical methods to highlight the 

differences between different models or techniques [149]. As mentioned earlier, a 

substantial number of papers also use case studies to demonstrate their findings. 

2.2.6.12 Comparison 

The studies reviewed, particularly those that fall into the category of machine learning, 

encompass a large range of models, many of which seek to outperform traditional methods. 

In order to demonstrate a solution is effective, many researchers either compare their work 

to existing models or set out to find the best method out of several contenders, using 

variables such as accuracy, speed, and sensitivity to judge performance [149] [186]. An 

important caveat to this is that the comparative indicators selected tend to be 

overwhelmingly technical in nature. While this is a valuable gauge of ability, it is not the only 

measure of success. There are also economic indicators, such as set-up and operating costs, 

and planning or governance concerns, such as compliance with regulations and the ease of 

training others to use a model, that, while beyond the scope of many engineering papers, 

must be considered if there is to be widespread uptake of these methods in government and 

industry. 

There is variation in comparative scope across the literature. Some work takes a 

straightforward approach, comparing a proposed method solely with the actual outcomes it 

attempts to predict [137]. Others run a model both with and without the addition of a 

machine learning technique, demonstrating the benefits of the AI approach [207]. It is not 
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uncommon to find several types of ANNs measured against each other to find which is best 

for a particular application [235], while other papers include an even greater range of 

machine learning methods, such as SVM, RF, and DTs, in their comparisons [149] [268] [286] 

[186]. Ensemble methods, which combine two or more machine learning techniques, have 

also been compared to those using only a single technique [228]. Finally, a pool of several 

machine learning techniques and less complex methods, such as the historical average and 

ARIMA techniques for forecasting, have been applied and assessed for a given application 

[253] [272] [273]. 

It is worth recognising that, in order for comparison to be accurate, the dataset being used 

should be as similar as possible for each model, and of a substantial enough size to be 

representative. The vast majority of papers attempting comparison test each method on an 

identical dataset, which can span significant geographic and temporal ranges. Examples 

include forecasting for entire cities or regions  [140] [273], and accident prediction based on 

years, and even decades, of data  [325] [287]. There are also efforts being made in the 

computer science community to shift towards open-source code, to allow existing models 

to be used by others to validate results and compare performance with newer models. This 

is happening at the same time as a push to make more data open-source, which further 

promotes the benchmarking of new models against existing methods.  

2.2.6.13 Vulnerability 

The vulnerability of infrastructure systems concerns their susceptibility to both deliberate 

attacks and a variety of accidental causes of failure. The latter may include failure due to an 

imbalance in supply and demand, poor network management, or a breakage of physical 

infrastructure from poor maintenance or natural disaster.  

As detailed earlier in this review, numerous papers apply AI to the purpose of security. The 

field of telecommunications has been at the forefront of this research, utilising a range of 
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machine learning tools in the detection of intrusion attacks, network anomalies, and denial-

of-service attacks [125] [395] [402].  

Papers concerned with non-deliberate system failure are often less explicit in their 

discussion of vulnerability. However, it could be reasoned that there are far more variables 

contributing to accidental failure, making the breadth of this research much greater. For 

example, effective demand forecasting and traffic routing, purposes to which AI has been 

extensively applied, both contribute to the crucial balancing of supply and demand. There 

are also specific instances of research focusing on non-deliberate failures. These include the 

use of ontologies for failure identification and mitigation in water networks [115] and 

machine learning techniques for fault diagnosis in high-speed rail [391].  

The fact that supervised machine learning techniques rely heavily on access to 

comprehensive training data is important in the discussion of vulnerability. If a model has 

encountered potential failure scenarios in its training dataset, it will have knowledge of 

these patterns and be better prepared should it face a similar situation during operation. 

This is only possible, however, if there are sufficient examples of previous instances which 

can be included in training data. The question of how to react to rare events, which occur so 

infrequently that their presence in existing data is sparse, is one that is crucial to the 

prevention of potential system failure. Several papers have approached this by teaching a 

model the normal state of a network and setting a boundary beyond which behaviour is 

considered abnormal and flagged [458]. Other techniques have begun to be developed [62], 

although more work in this area would be beneficial, particularly outside of the field of 

telecommunications.  

 

 

2.2.6.14 Action-oriented approach 
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While a number of papers present frameworks [138] [145], and others offer case studies as 

practical examples [151] [197], no papers reviewed in this work include a formal action plan 

for system-wide implementation. It is worth noting, however, that much of the research 

described in this review is conducted in very specific fields or on small scales. Therefore, 

while findings may well be relevant to those creating action plans, they are not typically of 

a large enough scale to warrant the proposal of a plan independently.  

2.2.6.15 Analysis findings 

Infrastructure systems are inherently complex, and so it is promising that elements 

contributing to complexity - uncertainty management, interlinkages, vulnerability, and 

flexibility – are all developed to some extent in the reviewed work. This provides a strong 

foundation upon which researchers can build, to progress the implementation of AI across 

increasingly complex networks in towns and cities. 

It is evident that some of the beneficial characteristics of AI are reflected in the areas in 

which the literature is well developed. Perhaps the best example is reinforcement learning 

which, as a technique designed to learn the optimal strategy from interaction with an 

environment, is inherently very specific to context [133]. It should also be noted that the 

significant majority of literature reviewed sits within the bracket of engineering or computer 

science. It can be argued that this contributes both to the strengths seen in this analysis and 

the areas in which there are gaps. Many of the proposed solutions value a strong 

quantitative performance, demonstrating this over a range of geographic and temporal 

scales, at various degrees of granularity. There have been very effective attempts to 

incorporate numerous quantitative variables in models which outperform traditional 

methods in many measurable ways. While this represents a significant strength, it is in the 

areas where it is more difficult to obtain such neat, measurable results, that the literature is 

less developed. 
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The sections of analysis where performance is more qualitative – stakeholder engagement, 

strategic planning, feasibility, and action-orientated approach – are typically of greater 

concern to those in planning, business, governance, and policymaking. While engineers can 

offer accurate and effective solutions, it requires the co-operation and insight of those in 

other sectors to bring AI from research into large-scale, interconnected projects in the real 

world. In addition to limited consideration of non-engineering sectors during the design 

stage, the technical knowledge required to create and sustain AI-based solutions presents a 

significant barrier to implementation in many areas of industry. It has been noted that 

investment in people, skills, and processes is necessary for the widespread uptake of AI 

[479]. These gaps highlight the importance of collaboration with other disciplines, such as 

economics, planning, and politics, in order to include all of the perspectives necessary to 

design comprehensive solutions and achieve effective implementation of AI.  

 

2.2.7 SUMMARY 

This review investigates the applications of AI across the economic infrastructure sectors of 

energy, water and wastewater, transport, and telecommunications. The main purposes to 

which AI has been applied are system provision, forecasting, routing, monitoring and 

security, and quality assessment and improvement. AI methods are increasing in popularity 

and capability, with deep learning and CNNs examples of recent developments in this field. 

The application of AI to infrastructure is also likely to continue to grow as infrastructure 

systems becoming increasingly instrumented and digitalised, providing data for AI tools.  

Most of the existing research in infrastructure utilises machine learning methods, with other 

branches of AI explored less extensively. It is worth recognising that many applications of 

machine learning employ supervised learning and require access to some degree of 

historical data. The availability of such data may account for differences in research across 

sectors, with machine learning widely applied to forecasting of energy demand, but less so 
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to water or transport demand. Although supervised learning methods dominate, 

unsupervised and reinforcement learning approaches have seen greater utilisation in more 

recent works, and the new field of deep learning has proven effective in instances concerned 

with large volumes of data. 

Sensor networks are beginning to be recognised as a potential architecture for intelligent 

infrastructure systems through the Internet of Things. However, if they are to see 

widespread use, further research in knowledge representation will be needed. Ontologies 

and semantic approaches have been proposed, but rarely incorporated into larger artificially 

intelligent systems. As applied to self-healing systems, this reflects the need for consistent 

data formatting to ensure data can transfer between self-healing processes autonomously. 

With the growing availability of data from instrumented and digitalised infrastructure, if 

such data is appropriately handled, AI methods have the potential to contribute significantly 

to the development of the autonomous and anticipatory networks that a self-healing 

approach seeks to establish.  

AI methods will have a valuable role to play in the burgeoning fields of distributed 

intelligence and the Internet of Things. This review of AI literature highlights the role of AI 

techniques in reasoning from data provided by sensor networks in the absence of human 

operators. This capability is crucial for the development of self-healing networks that can 

proactively detect and address issues or failures within the infrastructure systems. By 

leveraging AI algorithms, these networks can analyse the vast volumes of data generated by 

sensor networks and make informed decisions to optimise performance, improve resilience, 

and minimise disruptions. 

This review acknowledges the existing research gaps, which are the limited incorporation of 

broader infrastructure targets in this body of research, the need for greater stakeholder 

engagement in developing solutions, a poor consideration of feasibility issues when 

developing technical solutions, and the lack of structured action-plans based on finding. 
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Nonetheless, this research provides a foundation for future investigations. It highlights the 

need to incorporate interconnected systems approaches in the problem formulation stage, 

paving the way for further research on self-healing infrastructure systems. 

 

2.2.8 FURTHER WORK 

This work is limited in scope to economic infrastructures. Further work could broaden this 

definition of infrastructure to explore the use of AI in, for example, solid waste, finance, 

agriculture and food networks, or in social infrastructures such as healthcare, education, 

arts and culture. This work also identifies limited research at the intersections of different 

infrastructure sectors, something which could be further explored in future work. 

The criteria identified as having limited coverage in Table 7 would benefit from greater 

consideration in future research. For example, having identified a gap in literature 

regarding action-orientated approaches, future work could seek to bring together the 

findings of research already covered in this review to suggest areas where it can inform 

action plans and guide policy. This could look to bridge the gap between research in this 

field and the governance of infrastructure systems. Similarly, this research recognises that, 

while technical developments in AI have led to significant improvements in the accuracy of 

solutions, there remains a lack of focus on the feasibility of potential interventions. Future 

work may wish to explore the possibilities and limitations of AI in infrastructure systems 

through this lens, perhaps by exploring the financial, technical, and regulatory 

requirements of implementing AI-based techniques in different geographies and 

economies. 
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3 DATA DESCRIPTION AND PREPARATION 

3.1 DATA DESCRIPTION 

3.1.1 STUDY SCALE  
 

The developed case study chosen for this thesis focuses on the issue of leakage 

management. The data provided for this study is at the district metered area (DMA) level. 

The concept of the DMA was introduced in the 1980s in the UK, where the use of DMAs is 

now standard practice for water companies. A DMA is a section of the water distribution 

network that is hydraulically isolated. Sensors are typically installed at the input and 

output of the DMA so that demand in the area can be monitored by the flow through these 

sensors. DMAs can contain both residential properties and commercial buildings, and 

range in size from a dozen properties up to several thousand properties. A diagram 

illustrating how water systems are divided into DMAs is shown in Figure 12.  

 

FIGURE 12: TYPICAL CONFIGURATION OF DMAS IN A WATER DISTRIBUTION SYSTEM. SOURCE: [480]. 

 

3.1.2 LEAKAGE MANAGEMENT 

Breaking the larger, more complex water distribution network down into smaller DMAs 

primarily serves as a tool for improved leakage management, but additional benefits 
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include the potential to isolate districts in order to protect the wider network during 

accidental or malicious contamination events and the ability to introduce a different water 

supply source for a given DMA to better control water quality [481]. While leakage 

management at the DMA level allows for a much more focused response, additional data is 

required if a particular burst is to be attributed to a specific pipe. This may be in the form 

of additional data on pipe properties or further flow or pressure data from targeted 

temporary sensors or from investigations on-site by an exploratory team dispatched by the 

water company (as is current standard practice). This study, therefore, is limited to the 

management of leakage at the DMA level, with the work of identifying the specific leakage 

site left to the teams that the water company would send out to the DMA identified as 

being impacted by leakage. There is potential for improving this method to include burst 

localisation, should sufficient additional data be available. 

Data for the case study presented in section 4 is provided by a large UK water company, 

responsible for the supply and distribution of water to over 5 million households in the UK. 

Some data is made available publicly by the company via an open data collaborative, while 

other data is shared for research purposes under a data sharing agreement. Discussions 

with the data team at the company provide additional insight, based on their knowledge of 

operating practice, that is of use to this study. Data provided includes water flow data, at 

15-minute intervals, for over 2,000 district metered areas (DMAs) managed by the 

company, covering a time period of one year, as well as a repair log covering the same 

DMAs. 

This study uses a water flow dataset of 2,173 DMAs. The DMAs represented in this dataset 

range in size from 13 properties (consisting of 7 ‘household’ properties and 6 ‘non-

household’ properties) to 5,167 properties (consisting of 5004 ‘household’ properties and 

163 ‘non-household’ properties). Figure 13 shows the distribution of DMA property 

numbers for this dataset. This distribution shows a tailing off above 1,500 properties, with 
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very few DMAs containing a total of over 3,000 properties. Analysis of the property types 

finds that, for over 90% of DMAs in this dataset, ‘non-household’ properties make up less 

than 20% of the total properties within the DMA. While a detailed exploration of how the 

property characteristics of a DMA impact leakage is beyond the scope of this study, it is 

worth noting that the ratio of ‘household’ to ‘non-household’ properties in a DMA may 

well affect typical flow patterns within the DMA. The potential implications of this are 

addressed in section 5. However, that so many of the DMAs within the dataset provided 

contain relatively few ‘non-household properties’ suggests that flow behaviour is likely to 

be similar across much of the dataset (albeit varying in magnitude due to the different 

property totals for each DMA), and thus any given method of leakage detection via analysis 

of flow data is likely to perform consistently across much of the dataset.  

 

FIGURE 13: DISTRIBUTION OF TOTAL NUMBERS OF PROPERTIES PER DMA FOR ALL DMAS. 

3.1.3 FLOW AND REPAIR MANAGEMENT  

The flow and repair data were originally provided by the water company in csv format, 

with an example of the flow data shown in Figure 14a. The dataset consists of water net 

flow (in litres/second) for each DMA recorded at a 15-minute interval from April 2016 to 

April 2017 (~ 365 days × 24 hours × 60 minutes/15-minute interval = 35,040 data points). 
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Each data point is given a validity code based on the water company’s assessment of the 

sensors’ records. These codes – ‘V’ for valid, ‘I’ for invalid, or ‘M’ for missing – reflect any 

possible breaks or faults in the sensor readings. Invalid or missing sections represent less 

than 5% of all DMA flow data.  

  

(A) (B) 

FIGURE 14: EXAMPLES OF UNPROCESSED (A) FLOW DATA AND (B) REPAIR DATA 

 

Figure 15a shows a full year of flow data for one exemplar DMA. The magnitude of flow 

remains broadly consistent throughout the year, with some seasonal fluctuations and 

some spikes of large flow rates. Figure 15b shows a standard week of valid flow data from 

the same DMA. The figure shows the typical volatility over a 24-hour period of flow data; 

minimums are seen during the night hours, with peaks occurring during the morning and 

late afternoon that correspond with a large proportion of the population leaving for and 

returning from work/school. This is consistent with patterns seen for many types of 

human-based behavioural or demand-based data. 
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(A) (B) 

FIGURE 15: FLOW DATA FROM DMA 5 FOR (A) A FULL YEAR AND (B) A TYPICAL WEEK. 

 

The provided dataset also contains the repair logs during the one-year period with 

corresponding repair dates for respective DMAs (although the exact timestamps of repairs 

are unknown). An exert from the repair log provided by the water company is shown in 

Figure 14b. In total, the logs contain the dates of over 5,000 recorded repairs across 1,646 

unique DMAs. Although this repair log does not explain each repair’s reasons, it is assumed 

that the entries are mainly due to leakage/burst events (based on discussions and 

additional data provided by the water company). Repairs are typically prompted either by 

customer leakage reports or the identification of unusual flow data by water company 

operators. If a leak is customer-reported and visible at the surface level, it is often repaired 

within a few hours or days. However, leakages that are not evident (those that do not 

result in visible water at surface level in an area where this would be noticed by residents) 

may take several weeks to repair. This delay between the onset of the leakage/burst event 

and the repair date means that a direct comparison of flow and repair logs is insufficient to 

tag the leakage dates in the dataset. Instead, it is necessary to utilise a method that 

identifies ‘abnormal’ flow data representing probable leakages/bursts. The timing of this 

flow can then be compared to recorded repair logs to ensure that the identified bursts are 

within the vicinity of the closest logged repair date (after the burst). In the absence of 
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widespread metering, it is assumed that repair logs are the best alternative for the 

verification of identifying leakage events. This is verified in the pre-processing stage 

through comparison of anomalous flow with recorded repair dates. 

 

3.2 DATA PREPARATION 

As the case study involves historical data from a real-world system, there are several steps 

involved in preparing data for modelling components of the frameworks and ensuring data 

can flow between frameworks. Figure 16 illustrates these steps in a methodological 

framework. While the case study offers examples of specific models or methods for each 

of the self-healing processes, these are not intended to be prescriptive and there is the 

possibility to substitute models/methods based on specific operational needs.   

The pre-processing element of data preparation can thus be separated into pre-processing 

of the dataset for the task of leakage management and pre-processing specific to the 

models chosen for the case study. The former involves data cleaning and completion, as 

well as identifying and formatting leakage data (and non-leakage data) in order to facilitate 

the task of leakage management. These steps are relevant not only to the specific data 

provided for this study but would need to be applied to any dataset intended for the 

proposed frameworks for leakage management. This process is covered in section 3.3.  

The next step of data preparation is pre-processing specific to the models chosen for the 

case study. As an example, in this case study, machine learning models are chosen that 

require a fixed number of inputs, and so data needs to be formatted to ensure consistency 

in input size across flow data training samples. If the self-healing processes are to be 

adapted for real-world implementation, these steps may need to be modified or removed 

depending on what models are chosen by operators. The pre-processing necessary for the 

models chosen for this case study is detailed in section 3.4.2.  
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Once data has been sufficiently prepared, it can be input into the models and methods 

detailed in frameworks for each self-healing process. These frameworks are described in 

detail in chapter four. 

 

FIGURE 16: METHODOLOGICAL FRAMEWORK. 
 

The remainder of this chapter details how the dataset described in section 3.1 is prepared 

to train and test the frameworks for self-healing processes. Section 4.1 covers the 

development of these frameworks and details of their components, and the results of 

testing these frameworks on the dataset are presented in section 4.2. The findings of this 

case study and their implications are then discussed in section 5.3. 

 

3.3 DATA PRE-PROCESSING 

Ideally, the proposed frameworks would be trained on a dataset of confirmed leakages (as 

well as confirmed non-leakage flow) drawn from a complete dataset without any missing 

or invalid water flow data. However, an ideal dataset is unrealistic due to the various 

aberrations and data errors in real time. Hence, it is necessary to complete the available 

water flow data statistically and to select appropriate examples of water flow data to 

represent bursts/leakage events and periods of regular/non-leakage flow. This section 

outlines the pre-processing required to generate the inputs necessary to train the 

proposed frameworks. 
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3.3.1 DATA COMPLETION  

The raw sensor flow data can contain faulty segments labelled as “invalid” or “missing” or 

containing impossible flow values (such as negative flow) in the dataset. As this study 

proposes data-driven frameworks, ensuring the dataset is robust and doesn’t contain any 

invalid/missing data is vital. Hence, before utilising the dataset to develop the frameworks, 

the fault segments of the flow time series are corrected using Kalman smoothing [482], 

thereby ensuring that the frameworks are trained using a statistically robust dataset.  

The need for pre-processing due to the prevalence of missing or erroneous data in water 

flow time series is a recognized issue [483], and several methods have been proposed for 

dealing with this issue, including filling missing data with preceding flow values [484] [485], 

but there is no singular method that is recognized as the standard in this field [486]. In 

order to rectify these issues in the flow data, this study uses Kalman smoothing to replace 

invalid data or complete the missing data [482]. Kalman smoothing is able to capture the 

time-varying behaviour present in dynamic models by updating the estimates based on 

new measurements and predictions. This allows for more accurate completion of missing 

data points, even when the system’s characteristics are evolving (e.g., changes in the 

physical properties of the water pipes due to ageing, corrosion, etc.). Kalman smoothing is 

also able to effectively handle missing data that follows an unpredictable pattern in terms 

of the frequency and length of missing sections (as is the case for the data used in this 

study) [487]. By smoothing the time series, not just completing the missing sections, 

Kalman smoothing reduces the impact of noise and outliers, helping to reveal underlying 

trends in the water flow data and thereby enhancing the data completeness. Thus Kalman 

smoothing is an ideal candidate model for handling missing or invalid time series data 

[488] [489].  

Kalman smoothing is based on the technique of Kalman filtering (KF), a simple dynamic 

Bayesian network that uses observed measurements (assumed to be a combination of 
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state and noise) to provide recursive estimates of the underlying state at each time-step 𝑡 

[490]. The KF process consists of: i) a prediction step, to estimate the underlying state and 

covariance, and ii) an update step, which uses information from the observed 

measurement (at time-step 𝑡) to revise these estimates [491]. Equations (1) and (2) are 

used in KF to represent the observation and the state of time-series data, where 𝑋𝑡 is the 

observed (or measured) value at time-step 𝑡, 𝑦𝑡 represents the underlying state,  𝜃 is a 

tuning parameter, and 𝑣𝑡 and 𝑤𝑡 are noise components that are assumed to be normally 

distributed with a mean of 0 and standard deviations of 𝜙 and 𝜏, respectively. 

𝑋𝑡 = 𝑦𝑡 + 𝑣𝑡(~𝑁(0, 𝜙2)) (1) 

𝑦𝑡 = 𝜃𝑦𝑡−1 + 𝑤𝑡(~𝑁(0, 𝜏2)) (2) 

Kalman smoothing is a post-processing method that estimates the state of time-series data 

before and after a given smoothing window and performs Bayesian-state interpolation of 

the observations. For a given window (𝑡 = 1,2, … , 𝑇), a forward pass of the time series is 

completed with KF, followed by a backward recursive pass. This backward pass allows 

estimates to be refined using information from later observations after the smoothing 

window (𝑡 > 𝑇) [487], [492]. By incorporating both past and future observations, taking 

into account the uncertainty and noise present in the measurements, Kalman smoothing 

ensures that the completed data points are a good representation of the state and trends 

observed in the data, especially in the vicinity of the missing data [487]. 

A preliminary analysis of the initial dataset used in this study shows that ~95% of sections 

of missing or invalid flow data have under 480 datapoints (equivalent to 5 days compared 

to 1 year of total available water flow data), with over 85% of sections containing less than 

96 datapoints (equivalent to 24 hours). The median and mode of the missing or invalid 

sections are observed to be 5 datapoints (equivalent to 75 minutes). Such a small ratio of 

missing/invalid data is not expected to affect the Kalman smoothing process. It should also 

be noted that from the total available flow data only ~10,000 randomly selected groupings 
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representing leakage and non-leakage flow are used to train the frameworks, and so the 

impact of missing or invalid data is further restricted. 

Kalman smoothing is used to replace all the faulty segments in the datasets. Figure 17 

shows a short segment with missing flow data from an exemplar case (a) before and (b) 

after Kalman smoothing. The replaced section of flow, which was missing in this instance, 

smoothly connects the preceding and subsequent data, producing a flow profile that 

follows the expected pattern for this section. The fluctuation from the overall flow curve is 

no more than is seen is the observed adjacent data. Thus, Kalman smoothing can replace 

erroneous sensor data with realistic values based on the available non-erroneous data. 

This allows complete flow data to be provided to the leakage prediction and identification 

models and ensures that the anomaly detection stage of the frameworks target leakage 

rather than erroneous data. This process is repeated for all faulty segments of the dataset 

individually. 

  

(A) (B) 

FIGURE 17: SECTION OF MISSING DATA (A) BEFORE AND (B) AFTER KALMAN SMOOTHING, DMA 586 

3.3.2 OUTLIER LABELLING  

Ideally, flow data during known leakage events would be flagged as such in the dataset 

provided. However, bursts in real networks are rarely so neatly catalogued, with most 

leakage events being identified in the aftermath through customer reporting. Therefore, 
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the best available verification for leakages in the available dataset is assumed to be the 

recorded repair log. However, the repair logs do not correspond to the leakage timestamps 

(rather only contain repair dates), and the actual timestamps of leakages are unknown. 

Hence, it becomes necessary to use post-hoc algorithms such as anomaly/outlier detection 

methods to statistically label the most probable leakage timestamps [493] [494]. In this 

study, leakage events are treated as outliers and are identified using a tree-based 

unsupervised machine learning algorithm: isolation forest [495]. Isolation forest assumes 

that outliers will be rarer than expected datapoints and have different attributes, making 

the outliers easier to isolate. In terms of decision trees, this places outliers closer to the 

root node than the normal data points. The classification threshold, which separates 

outliers from non-outliers, is set by a hyperparameter called contamination fraction [496]. 

In this study, a contamination fraction of 0.005 is selected. This algorithm is used to label 

the flow data for the network, which is comprised of over 2,000 district metered areas 

(DMAs), as outliers and non-outliers, and the outliers are further analysed to validate the 

indication of potential leakages.  

It is important to acknowledge that leakages that occur gradually and remain undetected 

for an extended period may not have a corresponding repair log and might not be 

identified as an outlier, especially if the leakage began before April 2016 (the start of the 

study period). Consequently, the outliers selected to train the frameworks are more likely 

to represent new bursts or leakage events rather than background leakage. If data on 

background leakage were to become available, the framework could be trained using 

relevant examples. However, such data is not accessible for the current study. 

Nevertheless, the analysis of 𝑍 values, as presented in the results section of the case study 

(section 4.2), confirms that the points selected during the data pre-processing stage indeed 

represent genuine outliers. 
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Figure 18 presents the outliers detected in the flow data of the most-repaired DMA. The 

dashed lines in the figure show the dates of repair based on the repair log, while the green 

circles are the outliers flagged by the isolation forest. It can be observed that the isolation 

forest algorithm performs well in identifying both extreme outliers and extended periods 

of unusual flow rates. The detected outliers, particularly extreme ones, correlate well with 

repair dates. While a few repair dates are observed to be away from the outlier data, this 

can be due to the repairs being conducted for reasons other than pipe leakage, such as 

replacing aging infrastructure or capacity upgrades, which are not of interest in this study. 

It is further observed that the algorithm also flags some other unusual flow data points 

that do not appear to be leakages as they aren’t close to the repair dates. Hence, it is 

crucial to identify outlier groups so that only extended periods of irregular flow are flagged 

as outliers hence leakages, while isolated individual outliers are discarded. For this reason, 

leakage groupings labelled LKG are required to be a minimum of 20 outliers in length, 

which represents five hours of water flow. The literature supports this approach, 

suggesting that abnormal flow shorter than a few hours in size is likely not leakage but 

sensor error, firefighting, or an industrial event [493].  
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FIGURE 18: OUTLIER IDENTIFICATION AND REPAIR DATES FOR DMA 586 

 

Identifying accurate leakage data points is essential in developing a reliable tool for 

classifying leakage and non-leakage data. To validate the assumption that the detected 

outliers can act as a reliable proxy for the true leakage events, the timesteps at which the 

outliers are flagged using the algorithm are compared to the repair dates in the repair log. 

Though these timings are not expected to align perfectly due to fluctuations in the time 

taken to respond to suspected leakage, a reasonable time frame is necessary (a time frame 

of 30 days is used here). Furthermore, it should be noted that the repair logs only contain 

the repair dates (rather than exact timestamps); hence time lags are expected. 

Figure 19 shows the time difference between each repair date (assumed to be 23:59:59 hrs 

of each repair date) and the closest outliers before and after the repair dates for DMA 586. 

The DMA has undergone 23 repairs (shown on the y-axis) during the year. As the repair 

logs contain only the date of repair, and not the time, this analysis assumed that each 

repair occurred at 23:59:59 hrs; hence the outliers occurring on the same date as a repair 

are recorded to occur prior to the repair. Based on Figure 19, it is noted that the outliers 

correspond well with documented repairs, with many repairs occurring within two to three 
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days of an outlier, which are likely to represent repairs to customer-reported, surface-

visible bursts. All but six of the recorded repairs in the example shown in Figure 19 took 

place less than six days after a record of outlier flow. This falls well within the repair 

timescale that would be expected for less urgent, non-visible leakage or leakage on land 

requiring permissions for access. Those that fall over ten days from an outlier may 

represent leakage in a rural or low-residential area, which may have gone unnoticed for a 

while, or simply reflect less-urgent leakage that was lower priority during a busy period of 

repairs. No repair to this DMA occurred greater than 17 days after an outlier, which 

suggests that it is reasonable to assume a significant majority of repairs correspond to 

leakage/bursts. These findings confirm that repair data is the best proxy for 

leakages/bursts. 

 

FIGURE 19: TIME DIFFERENCE BETWEEN REPAIRS AND CLOSEST OUTLIERS (HRS) FOR DMA 586  

 

Accurate identification of leakage can allow water companies to react effectively to 

minimise water losses and ensure supply continuation. In this study, the data from 

identified leakage is also used to train leakage prediction models. This can facilitate the 

anticipation of leakage and prioritisation of preventative maintenance.  
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3.4  MODELLING 

3.4.1 INTRODUCTION 

This section details the additional decisions taken to select and prepare the training and 

test datasets for the AI-based models used the in the case study. The models themselves, 

and the frameworks in which these models are components, are described in greater detail 

in section 4. To ensure that the models and frameworks, while able to stand as individual 

processes, can come together to form a comprehensive self-healing approach, inputs and 

outputs are compatible across the suite of frameworks.  

3.4.2 SELECTION OF TRAINING AND TESTING DATASETS 

3.4.2.1 Introduction 

The outlier data provided by the isolation forest algorithm is further processed to ensure it 

is in a suitable format for training the data-driven frameworks. Once the outliers have been 

identified and examined, they must be grouped into leakage/burst (LKG) and non-

leakage/usual-flow (NLKG) groupings to provide training samples for the components of 

the modelling frameworks. The outliers close to each other in time (within a few hours of 

each other) are likely to indicate a single burst rather than multiple distinct bursts and 

hence are grouped together. Single outlier points may indicate sensor error or data quality 

issues. In addition, the literature indicates that short periods of anomalous flow, lasting 

just a few hours, can often be attributed to industrial or firefighting events rather than 

leakage [493]. Hence, a minimum length of outlier grouping is required to ensure that 

outlier groupings selected for training the frameworks are likely represent leakage. For this 

study, a minimum length of five hours of flow data (20 datapoints) with outliers is qualified 

as LKG groupings. Based on this criterion, ~3,500 LKG groupings are identified for all DMAs 

combined, ranging from five hours to ~3.5 days of outliers. 
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As a crucial element of the self-healing process is differentiating between leakage and 

regular flow data, it is necessary to include similar examples of non-leakage groups 

(denoted as NLKG) where the output corresponds to the data labelled as non-outlier. 

However, as the NLKG groups are more prevalent in the dataset than the number of LKG 

groupings, all the NLKG groupings cannot be used to train the proposed framework. This is 

due to the data-driven nature of the models used, and the significant difference in the 

sample sizes of the two groupings can cause considerable bias in tuning the models. Hence, 

random samples of NLKG groupings are obtained from the ~2,000 DMA flow datasets with 

different sampling ratios between the NLKG and LKG groupings. Based on the performance 

of the models (discussed in section 4), a sample size with NLKG samples equivalent to two 

times the number of LKG samples is used for further study.  

3.4.2.2 Anticipatory process 

For the anticipatory framework, as the LKG flow data is expected to be forecasted from the 

final trained framework, preceding flow data is needed to be used as the inputs. To have 

sufficient data for training, this input data needs to be equal to or greater than the LKG 

data in length. Any LKG groupings where the input data does not meet this requirement 

are discarded. The maximum length of input data is set to 672 data points, representing a 

week’s flow data. This is deemed sufficiently long to give a representative sample of flow 

before an outlier. A total of 3,409 LKG groupings are selected with these criteria. As the 

model is ANN-based, it requires a set number of input and output data points. This means 

that the length of LKG groupings and the preceding input data must be the same for all 

examples. The maximum length of LKG data is observed to be 335 points. Hence all inputs 

need to have 672 data points, and the outputs need to be 335 in length. This consistency is 

obtained by zero-padding, where zeros are added before the flow data for inputs and after 

the flow data for outputs (i.e., LKG data). This process prepares the leakage dataset. An 

example of LKG grouping is provided in Figure 20a. An example of NLKG grouping is shown 
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in Figure 20b. While the input data for both examples exhibit very similar behaviour, the 

LKG grouping has a significantly higher peak of output flow.  The output flow for the NLKG 

grouping, in contrast, shows no noticeable difference in behaviour relative to the 

corresponding input data. 

 

  

(A) (B) 

FIGURE 20: EXAMPLES OF GROUPINGS FOR (A) LKG DATA: DMA 586 OUTLIER 1, (B) RANDOMLY 

SELECTED NLKG DATA: DMA 586 GROUP 1 

 

Variance checks are performed for both LKG and NLKG groupings, and any LKG group with 

a coefficient of variation (COV) below 0.1 or greater than 10 for the input section of data is 

discarded. Furthermore, for NLKG groupings, both the input and the output section of the 

flow data is required to have a COV between 0.1 and 10. This is done to ensure that the 

selected non-outlier information is error-free and doesn’t contain any non-detected peaks 

or portions of unbalanced flow (any unexpected/unlabelled malfunctioning). In total, 

~10,000 LKG and NLKG groupings are used as the final dataset, with 672 points of input 

and 335 points of output for each grouping. This dataset is then used to train and test a 

hybrid forecasting model for leakage prediction. 
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3.4.2.3 Detection process 

The detection framework, which is variational autoencoder (VAE) and SVM-based, uses the 

same initial selection of LKG and NLKG groupings. Figure 21 shows the distribution in the 

length of the LKG groupings. It is observed that outliers have a large range of lengths, 

though shorter outliers of five to ten hours are far more common. Indeed, over 80% of 

outlier groupings contain less than 12 hours, or 48 points, of flow data, and over 90% of 

outlier groupings contain less than 24 hours, or 96 points, of flow data. 

 

FIGURE 21: LENGTH (IN HOURS AND NUMBER OF DATA POINTS) OF LKG GROUPINGS 

 

As for the RNN-based framework for leakage prediction, the VAE requires all input 

sequences to have the same length. Hence, LKG groupings are again padded with zeros 

(after the flow data) to make them up to the length of the largest grouping. However, in 

order to limit the impact of the zero-padding on the training of the VAE, a maximum limit 

of LKG grouping length is set. Various cut-offs are tested, and 96 datapoints, corresponding 

to 24 hours of flow data, is chosen for this study. It is evident from Figure 21 that over 90% 

of LKG groupings contain less than 24 hours of data, and hence this cut-off achieves the 

compromise of retaining a representative sample of LKG groupings while restricting the 
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impact of zero-padding on the training of the VAE. Around 3,500 potential LKG groupings 

are thus identified. 

As in the above section, to ensure that the input data does not contain any erroneous data 

points, variance checks are performed on the NLKG groupings. These checks lead to a final 

dataset of 3,336 LKG groupings and 6,818 NLKG groupings. This results in a total of ~10,000 

flow times series LKG and NLKG groupings for training the proposed detection framework. 

Figure 22 shows an example of an (a) LKG and (b) NLKG grouping, for input into the VAE. It 

can be observed that the LKG example has significantly more variability (with flow values 

ranging from below 10 l/s to over 80 l/s), while the NLKG example exhibits much less 

fluctuation (remaining below 10 l/s throughout the 24-hour period). The peak flow of the 

LKG example is also over eight times greater than the peak flow of the NLKG example. This 

contrast in flow behaviour is common between LKG and NLKG groupings, with LKG 

groupings typically having higher maximum flow values and greater variability in flow 

values. 

  

(A) (B) 

FIGURE 22: EXAMPLES OF (A) LKG AND (B) NLKG GROUPINGS FOR TRAINING THE PROPOSED 

FRAMEWORK 
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3.4.2.4 Restoration process 

As the restoration process uses the outputs of the anticipatory and detection processes in 

order to produce a prioritised schedule of repairs, very little additional data pre-processing 

is required. Outputs of the two processes are given a code to indicate whether they are 

forecasted leakage or detected leakage, as the two are combined for the scheduling stage.  

3.4.3 MODEL SELECTION 

Selection of the AI models is done based on a thorough review of literature in the relevant 

fields, as well as a review of AI methods for cross-cutting purposes (e.g. forecasting). 

Literature is therefore not limited to the water sector but considers time series modelling 

for a variety of failure events. The type of available data is also considered, to ensure that 

methods are selected that are appropriate to the quality and quantity of the dataset 

provided. Once model families are identified, different variations of modelling approach 

are explored (for example, coupled and un-coupled approaches are explored where 

appropriate). Finally, the details of each model are refined through tuning and 

hyperparameter optimisation. Section 4 presents the architecture of chosen models in 

detail. 
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4 CASE STUDY: A SELF-HEALING APPROACH TO 

LEAKAGE MANAGEMENT 

4.1  FRAMEWORKS 

This section describes the development and training of frameworks for the anticipatory, 

detection, and restoration processes for this case study of leakage management as a self-

healing system. Frameworks for each process are explained individually but with wider 

system integration in mind. Each process is trained using the same dataset described 

above and outputs of the anticipatory and detection processes are used as inputs for the 

restoration process, illustrating how the frameworks act in combination to deliver 

comprehensive leakage management at a system level. 

4.1.1 ANTICIPATORY PROCESS 

4.1.1.1 Background 

A critical domain in the field of leakage management is the forecasting or prediction of 

leakage. Unlike leakage detection, which is concerned with the identification of bursts 

from flow data after they have occurred, leakage prediction/forecasting aims to anticipate 

anomalous flow before it occurs, thereby enabling early warning of potential leakage 

within a given forecasting period. This allows preventative maintenance to be scheduled, 

which can act to repair pipes before any water is lost as leakage. While the field of leakage 

detection has observed several dedicated studies, leakage prediction/forecasting has 

received significantly less attention from the research community due to its complexity. 

Leakage forecasting at a regional level has been conducted over various time periods 

ranging from weeks to a year. For example, Birek et al. [497] utilize an evolving fuzzy 

algorithm on historical leakage levels and repair data across nine regions consisting of 

aggregated DMA areas to forecast the future rates of monthly leakage. Studies on leakage 
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forecasting at the individual pipe level have analysed pipe properties, such as diameter, 

age, and material, as well as other factors, including soil type, ground movement, and 

traffic loading, to assess their impact on leakage likelihood [498] [499] [500].  

In recent years, the forecasting of water flow data at a DMA level has gained attention 

[501] [502]. Typically, these studies have primarily focused on predicting regular water 

demand rather than specifically addressing leakage prediction [53] [503]. Water demand 

forecasting aims to estimate expected water usage, and thus it mainly focuses on 

forecasting typical non-leakage flow. On the other hand, leakage prediction requires 

forecasting anomalous flow, which can indicate potential leakage incidents [504]. While 

water demand forecasting is valuable for resource planning, leakage prediction can 

significantly improve asset repair strategies and enhance system efficiency by reducing 

water loss [505]. 

However, there have been some studies that attempt to detect leakage by forecasting 

expected non-leakage flow levels using Bayesian forecasting methods [501] [504]. These 

studies compare the forecasted flow levels with incoming flow data, and a significant 

difference is considered indicative of leakage [501] [504]. It has been suggested that 

machine learning techniques, particularly artificial neural networks ANNs, have the 

potential to outperform baseline methods in forecasting flow data at the DMA level [502]. 

Recent research has indicated that LSTM-based neural networks offer superior 

performance in demand forecasting, surpassing other time series forecasting models in 

predicting typical short-term water demand in a single DMA case study [503]. Recent work 

on the forecasting of time series climate data suggests that using an information theory 

based loss function [506] can improve performance over the traditional loss functions seen 

to date in water demand forecasting [503].  

Hybrid forecasting methods, which combine various forecasting techniques with error 

(residual) forecasting modelling, have shown high levels of accuracy and the ability to 
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forecast time series with different characteristics [507]. Applying these methods to the 

water sector has clear benefits, and some studies have already applied hybrid methods to 

typical water demand forecasting [508] [53]. The effectiveness of residual forecasting in 

improving time series forecasting of water demand has been demonstrated at both 

regional [509] and DMA levels [510], with the KF being the preferred method for residual 

forecasting in these studies. However, it should be noted that these studies have focused 

solely on demand forecasting and do not address the forecasting of leakage flow [509] 

[510]. Furthermore, the LSTM-based forecasting method [503] and the residual forecasting 

approach with KF [510] have so far been applied only at the scale of a single DMA and have 

not been combined or applied to large datasets, such as the thousands of DMAs managed 

by each water company [503] [510]. Therefore, there is a need to explore the potential of 

combining these methods and applying them to a large dataset to harness their benefits 

on a broader scale (such as the thousands of DMAs managed by each water company).  

Although there is clearly significant potential in this area, there has not yet been a study 

that uses real sensor data and sophisticated data-driven machine-learning and deep-

learning techniques to forecast, at any geographic level, the anomalous flow that indicates 

a burst. By forecasting anomalous flow, rather than contrasting a forecast of expected flow 

with incoming data, earlier warning can be provided for leakage, facilitating faster repair. 

An accurate forecast of leakage flow can also provide an estimate of expected water loss, 

which can inform the prioritisation of repair jobs. This places leakage forecasting within a 

bigger system of self-healing leakage management, which considers the processes of 

anticipation, detection, and repair [505].  

4.1.1.2 Framework conceptualisation 

As state-space models like KF are widely based on the assumption of stationary time-

series, this assumption is validated in this study using an augmented Dickey-Fuller unit 

hypothesis test [511]. The test has the null hypothesis that the time series is non-stationary 
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and has a unit root. For the flow data in this study, p-values are observed to be well below 

the significance level of 0,05, and the null hypothesis is rejected. This indicates that the 

flow data can be deemed stationary for state-space and other time-series modelling 

techniques.  

Stationary time series typically consist of a combination of two components – trend and 

seasonal – and remaining noise [487]. Neural network-based models can have difficulty 

modelling seasonality directly from time-series data [512], and so additive time series 

decomposition is used to break down the time-series data into their trend and seasonal 

components, prior to input into the forecasting element of the framework [513]. 

Forecasting leakage allows more rapid leakage management than forecasting regular flow 

data and comparing this with incoming flow data to find leakage. The latter uses 

forecasting to facilitate leakage detection, while the former is a more proactive approach 

that seeks to anticipate leakage. Hybrid forecasting, using LSTM-based forecasting with an 

information theory based loss function and KF for residual forecasting, represents a 

combination of best-performing recent practice in the area of time series forecasting, with 

established accuracy in the area of water demand forecasting [503] [506] [507] [509] [510].  

Figure 23 shows how incoming flow data is processed through the proposed framework 

and final estimates of flow are forecasted. 
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FIGURE 23: PROPOSED LSTM-RNN- AND KF-BASED FRAMEWORK FOR FLOW FORECASTING. 

 

4.1.1.3 Training of the framework 

The general procedure for training the proposed LSTM-RNN and KF-based framework is 

outlined here, then explored in greater detail in the following subsections. Having 

identified suitable examples of LKG/NLKG flow, a total of ~10,000 flow data series are 

prepared for training the proposed framework. Next, a time-series decomposition is 

conducted for each of the 10,000 selected flow data series to obtain its trend and seasonal 

components. These are then used as inputs to train an LSTM-RNN, which forecasts the 

mean flow data. The forecasted mean flow data is used to compute the residuals between 

the predictions and recorded flow values. The residuals are then further used to train a 

boosting KF that can use residuals in real-time to forecast the future residuals and further 

improve the predictions. Finally, the forecasted residuals are added to the mean forecast 
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from the LSTM-RNN to obtain the final predictions. Hence, the two principal components 

of the trained framework are: 

1) LSTM-RNN, which is trained to forecast the expected flow for 𝑡 + 𝑛 points using 

𝑡 − 𝑚 recorded flow. 

2) KF, which provides real-time estimates of residuals and hence shapes the expected 

predictions of LSTM-RNN closer towards to true flow. 

 

A. LSTM-RNN 

Effective forecasting of flow data can allow leakage to be anticipated, facilitating a more 

efficient approach to leakage management and system maintenance. In this study, the 

ANN-based model is used to forecast the mean flow for a future period of time. It is well 

known that a stationary time-series typically consists of two general components: i) trend 

and ii) seasonal [487]. The trend component represents the general pattern of the time-

series data over the entire time duration. In contrast, the seasonal component refers to 

the cyclic repetition of a pattern within a specific time period. Neural networks can 

potentially struggle to model seasonality directly from time-series data [512]. Hence, to 

address this issue, additive time series decomposition is used to break down the input data 

of both LKG and NLKG groupings into trend and seasonal components, as well as the 

remaining noise [513]. In this case, the trend represents the general pattern of flow data 

over the input time window, while the seasonal component reflects the fluctuations in 

flow during 24 hours. Using the time-series decomposition of Equation (3), the input flow 

time series 𝑦𝑡 is decomposed into trend, seasonal, and noise components, where 𝑇𝑡 and 𝑆𝑡 

are the trend and seasonal components at timestep 𝑡, and 휀 is the noise in the data which 

is assumed to be normally distributed with a mean of 0 and a standard deviation of 𝛿. 

𝑦𝑡 = 𝑇𝑡 + 𝑆𝑡 + 휀(~𝑁(0, 𝛿2)) (3) 
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In this study, the decomposed trend and seasonal components are used as inputs to train 

an LSTM-RNN, which outputs the forecast of the NLKG/LKG flow of the groupings. RNNs 

are a class of ANN developed for modelling time-series data [514]. RNNs allow the outputs 

of a neural network layer at time-step 𝑡 − 1 to be used as inputs for the same neural 

network layer for the following time-step 𝑡. This forms a directed graph and allows the 

transfer of ‘memory’ between adjacent time steps so that the output of the neural 

network layer at a given time step is dependent on prior elements within the time series.  

Although RNNs can handle dependencies between individual steps in a time series, they 

suffer from issues with long-term dependencies and vanishing gradients [515]. As a result, 

RNNs struggle to learn if asked to use outputs from previous time steps (time lags) as 

inputs for estimating the current time step. Selecting an LSTM architecture for the RNN can 

solve these challenges. Each LSTM layer contains a set of recurrently connected blocks, 

with one or more recurrently-connected memory cells and three multiplicative gates 

regulating information flow [516]. The structure of an LSTM cell is presented in Figure 24. A 

cell state transfers relative information down the sequence chain and between LSTM 

blocks - the “memory” of the network. In each LSTM cell, a forget gate passes on 

information from previous outputs and the current input at time-step 𝑡 and decides what 

data to keep in the cell state. An input gate decides how the current input should be used 

to update the cell state and modify the memory, and an output gate uses the input and the 

memory of the cell to decide the output for the current time step. Thus LSTM cells act as 

information processing units and provide a route for ‘memory’ to pass beyond adjacent 

cells, enabling the RNN to bridge long time lags steps [517], [518]. Hence in this study, 

LSTM-RNNs are used to develop the flow forecasting model. 
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FIGURE 24: LSTM CELL STRUCTURE, WHERE 𝒄 REPRESENTS THE CELL STATE, 𝒉 REPRESENTS THE HIDDEN 

STATE AND 𝒙 REPRESENTS THE INPUT. 

 

The LKG and NLKG groupings are split into train and test sets such that 80% of both 

groupings are used in training and 20% of both groups are used for testing the LSTM-RNN. 

LSTM-RNNs of various configurations and hyperparameters are developed and trained. In 

particular, index of agreement (𝐼𝐴) [508] [509], described in Equation (4), is used as the 

loss function for training and testing the LSTM-RNN, where 𝑂 is the recorded output data 

and 𝑃 is the RNN predicted data, and 𝑛 and 𝑖 represent the total number of forecasted 

timesteps and the timestep of interest, respectively. A valuable tool for the comparison of 

model performance, 𝐼𝐴 gives a single bounded metric for pattern characterisation and 

comparison, yet also incorporates information on the magnitude of deviations into this 

metric and has therefore been widely applied to the assessment of model-produced 

estimates of time-series data [521].  

𝐼𝐴 = 1 −
∑𝑖=1

𝑛 (𝑂𝑖 − 𝑃𝑖)2

∑𝑖=1
𝑛 (∣ 𝑃𝑖 − Ō ∣  + ∣ 𝑂𝑖 − Ō ∣)2

 (4) 

 

The train set is used to develop the LSTM-RNN with several configurations and 

hyperparameters. The number of layers in the LSTM-RNN, the number of nodes in each 
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layer, and the activation function are subject to tuning, with the 𝐼𝐴 of each configuration 

recorded for comparison. The training is conducted with 10% cross-validation. After 

hyperparameter tuning, the best-performing final LSTM-RNN architecture in terms of 𝐼𝐴 is 

shown in Figure 25. In particular, the LSTM-RNN network is trained using stochastic 

gradient descent [522] with Adam optimizer [523] and 𝐼𝐴 [508] [509] as the loss function. 

Since the values of 𝐼𝐴 range from 0 to 1, with 1 being the best match and 0 the worst 

match, the loss function is used negatively to allow gradient descent rather than ascent. 

 

FIGURE 25: ARCHITECTURE OF THE TRAINED LSTM-RNN. 

 

B. Kalman Filter 

Since the LSTM-RNN is a pre-trained model, it cannot adjust to the fluctuations in real-

time; hence, to further improve the predictions, a boosting concept [524] is utilised to 

model the early residuals observed between the LSTM-RNN-based flow forecast and real-

time sensor recording of corresponding flow data. The early residuals are then used to 

estimate the future residuals for the uncertain time of the output length. Thus, modelling 

of residuals can improve overall forecast accuracy by providing an estimate of the error 

expected from the LSTM-RNN due to any real-time fluctuations. This study uses KF as the 

boosting model for forecasting the residuals in real-time [525]. The KF is a Bayesian 

method for sequentially estimating the states of a dynamic system where the state 
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evolution and measurement models are linear and Gaussian [526]. The recursive nature of 

KF enables it to model continuously changing systems. KF also does not need to hold much 

memory and thus can be run very quickly, making it ideal for real-time applications [527]. 

In the residual forecasting model, the KF algorithm first uses Kalman smoothing to 

estimate the state of the observed residuals and then forecasts residuals for a pre-defined 

forecast period. Forecasting recursively uses the observation and state equations [528]. 

Given an initial estimate at time 𝑡, the KF first performs a prediction step, estimating the 

state at time 𝑡 + 1, as well as the uncertainty of this prediction. Once the observed value 

at 𝑡 + 1 is received, a correction step is performed. A calculation for Kalman gain adjusts 

the weights given to the incoming observations and current-state estimate. The prediction 

and uncertainty estimates are then updated based on this new information, and the cycle 

repeats for the next time step [491]. This continues for known observations at time-steps 

𝑡 = 1,2, … , 𝑇.  Having provided the KF with sufficient known observations to tune 

parameters such as co-variance estimate and Kalman gain, the KF can be used to forecast a 

defined period of future time-steps (𝑡 > 𝑇) where observations are unknown. This process 

is repeated in real-time for complete predictions. As more recorded values are received, 

the KF model can update residual predictions to reflect this new information. The final flow 

forecast from the proposed framework is based on the addition of mean forecast from 

LSTM-RNN and residuals from KF.  

4.1.2 DETECTION PROCESS 

4.1.2.1 Introduction 

In the field of leakage management of water flow distribution networks, leakage detection 

is a critical research subject [529], [530], [531], [532], [533]. Sensor data can be fed into 

leakage detection models that seek to identify bursts by monitoring changes in the flow 

profile over a set window of time. Traditionally, the most common methods for identifying 

leaks utilise minimum night flow (MNF) [534]. This technique recognizes that water usage 
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during night-time is less variable than in the daytime. Hence, the average nightly minimum 

over a specified window is used as a baseline for comparison with new flow data, with a 

significant variation (relative to a pre-defined threshold) indicating a leak [535] [493]. 

However, these techniques are not highly reliable as MNF methodologies have to deal with 

several uncertainties. Accurate use of MNF relies upon having sufficient knowledge to 

estimate several parameters, including active night users, leakage exponent (which varies 

with system pressure), and the hour-to-day factor [536]. Reliable estimation of these 

parameters typically requires both pressure and flow data. The selection of the best time 

window for the computation of MNF requires additional considerations and analysis. It has 

been shown that minimum error does not correspond with the selected night flow window 

but with the hour in which average demand applies [534]. While it is often the 

responsibility of trained operators to identify leakage from MNF, a significant proportion of 

leaks are reported to water companies by their customers [493]. 

Recent work has sought to improve upon traditional techniques, with new models using 

machine-learning methods to improve the accuracy and reliability of leakage detection [16] 

[17] [539]. Some of the machine-learning and deep-learning techniques utilised by these 

studies include ANNs [540] [532] [529] [541], SVMs [542] [543] [544],KFs [545] [546], and 

wavelet analysis [529]. With sufficient quality and quantity of training data, these methods 

have demonstrated strong performance in leakage identification [540]. Many of these 

models are trained using examples of standard flow data and flow during leakage bursts. 

The burst examples are typically obtained by matching the timestamps of abnormal flow 

patterns to pipe repair records or reports of visible leakage from consumers to water 

companies. Alternatively, the data can be simulated through a hydrant flush event that 

mimics a leakage burst [497]. Some studies do not use data from real water distribution 

networks and instead extract pressure data from simulation software-based network 

models [498].  
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Autoencoders (AE) are a relatively novel deep-learning technique that draws upon the 

concept of dimensionality reduction using ANNs with bottleneck shapes at the central 

layers of the ANN [548].VAEs are a type of AE that relies on Bayesian concepts and forces 

the bottleneck layers to possess a regularised standard normal space [547]. This reduces 

the dimensions of input data in such a way that the inputs similar to each other in terms of 

their characteristics lead to similarities in the outputs of the bottleneck layers [547]. 

Hence, within the setting of water leakage detection, it can be understood that with 

sufficient training of a VAE using leakage and non-leakage flow datasets, VAEs can be 

capable of differentiating between the flow classified as leakage or non-leakage. VAEs have 

demonstrated their potential in the detection of extreme events in numerous engineering 

contexts [549], including earthquake early-warning systems [550], detection of cyber-

attacks [551], and structural health monitoring of infrastructure such as dams [552]. 

Various types of AE, including VAEs, have begun to be considered a tool for leakage 

detection in both water and oil/gas pipelines, where they have shown initial promise [106], 

[553]. However, studies using AE for leakage detection have relied on test-bed setups, 

where water flow behaviour can be strictly controlled. These setups vary in scale, from 

representing a single component [554] or a handful of pipes [555], to a broader 

distribution network more comparable in scale to a small DMA [106]. Some setups model 

only regular flow [555], while others simulate leakage events [106], [554]. Such setups 

allow for cutting-edge sensor technology to be used, and so all work to date has used 

hydroacoustic measurements from acoustic sensors [106], [554], [555] rather than 

traditional water flow measurements. While this can provide more accurate sensing, 

acoustic sensing is a less explored method of monitoring behaviour in water pipes. The 

technology has undergone limited deployment, and most DMAs are not subjected to 

acoustic monitoring. In developed nations with well-established water distribution 

systems, the cost of installing improved sensing technology across the entire existing 

network is high – one supplier for North West England spent £30 million installing 100,000 
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acoustic loggers across its network [556] – and water companies report large numbers of 

their acoustic loggers not working due to failed batteries, incorrect attachment, 

communication failure, etc. [557]. Unlike previous studies using test-bed setups and new 

sensor technologies, this study uses real-world DMA flow data. This is significant as it seeks 

to verify that an existing and widespread method of sensing is able to provide sufficient 

data for highly accurate leakage detection in real DMAs. This could yield the environmental 

and economic benefits of reduced water loss (and the associated energy and resource 

savings) without requiring the cost of widespread deployment of new sensing 

technologies. Hence, the proposed framework can provide a greater level of resilience in 

existing and aged water infrastructure systems where the uptake of new sensing 

technologies is likely to be gradual. 

4.1.2.2 Framework conceptualisation 

In complex infrastructure systems, a vast number of individual components are often 

difficult to access (e.g. buried infrastructure). Hence, directly detecting failure via 

inspection can be prohibitively expensive and, to some extent, relies on 

noticeable/surface-level defects within the system. This can be costly to the resilience of 

both the system and the societies it serves and result in unsustainable and non-climate-

friendly wastages, as well as monetary losses. Therefore, instead of directly observing 

failure in water infrastructure systems, operators rely on the data, often in the form of 

time-series data, from a sensor network to try and identify failure events. In such cases, 

data-driven- and machine learning-based models can offer a robust solution to the 

problem of failure detection [530] [531] [537].  

An issue with time-series data can be the curse of high dimensionality [558] and the 

difficulty of developing damage detection cut-offs. This makes it hard to distinguish 

between essential information and noise within the data. To address this, many machine 

learning algorithms require some feature engineering, which is the application of domain 
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knowledge to identify and select a subset of case-sensitive features from a dataset (e.g. 

mean, variance) to be used as input to these algorithms. AE neural network structures 

have effectively reduced dimensionality without requiring explicit feature engineering. 

Specifically, VAEs can produce smooth and regulated LVs that act as statistical surrogates 

for the input data by reducing the dimensions and capturing the key characteristics. Hence 

training and exploring the LV space of VAEs can provide high-dimensional insights within a 

low-dimensional space where the distance between the LVs indicates the 

similarity/dissimilarity within the characteristics of the input data. This offers an approach 

to identify any anomalies/failures (such as pipe bursts) in a lower-dimensional surrogate 

space rather than the original complex and high-dimensional space of the inputs (especially 

water flow in water infrastructure systems). 

Within this setting, this study proposes a framework for leakage identification based on 

statistical surrogacy. Rather than directly classifying high-dimensional water flow time-

series data into LKG or NLKG categories, the framework instead reduces the dimensions of 

the flow data using a domain-informed VAE to minimise the impact of redundant features 

and isolate the key components of different classes through surrogate LVs. Classification 

can then be performed on the surrogate LVs, which are trained to capture the distinction 

between the LKG and NLKG flow groupings through a domain-informed loss function. 

While other methods, including principal component analysis, can perform dimensionality 

reduction, a VAE is chosen for in this case as VAEs have proved to be effective on natural 

data [559] and in cases of extreme events [550], with leakage representing an extreme 

case of flow behaviour. Furthermore, due to the Bayesian nature of the VAE, the flexibility 

of altering the loss function provides an efficient solution to include the physics of the 

problem in the training process.  

The proposed framework is illustrated in Figure 26. Sensors record the net flow of water 

for a given DMA at a discrete time interval (every 15 minutes in this case). The proposed 
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framework uses a pre-specified length of the water flow record (the preceding 24 hours, 

i.e. 96 points, in this case) and classifies them into LKG or NLKG flow in real time using end-

to-end pre-trained models of VAE and SVM. The framework starts by converting the 

preceding flow data into two surrogate mean LVs (i.e. 𝜇𝐿𝑉1
and 𝜇𝐿𝑉2

) using a pre-trained 

VAE encoder. The LVs are trained to be sufficient and efficient to contain information 

about the required characteristics of the water flow. The obtained 𝜇𝐿𝑉1
and 𝜇𝐿𝑉2

 are then 

used as inputs for a pre-trained SVM, which compares these against the pre-obtained 

mapping of LVs to compute the probability of the flow data being classified as LKG (‘burst’) 

or NLKG (‘usual’) flow (i.e. 𝑃(LKG) = 𝑃(LKG|𝜇𝐿𝑉1
and 𝜇𝐿𝑉2

)  and 𝑃(NLKG) =

𝑃(NLKG|𝜇𝐿𝑉1
and 𝜇𝐿𝑉2

)). Then 𝑃(LKG) is compared against 𝑃(NLKG), and based on the 

greater value, the final classification decision is proposed (i.e. LKG/burst or NLKG/usual 

flow). Thus, this framework enables rapid monitoring of the water systems and flags 

possible leakages without human intervention. This information can then be used to 

inform the targeted repair strategies that minimise water loss in the network and curtail 

inconvenience to the public.  

 

FIGURE 26: THE PROPOSED VAE AND SVM-BASED FRAMEWORK. 
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4.1.2.3 Training of the framework 

The general procedure for training the proposed VAE-SVM is outlined here, with the details 

explained in the following sub-sections. As discussed in section 3.3, the ~10,000 LKG and 

NLKG flow groupings from over 2,000 DMAs are carefully processed and selected to train 

the proposed framework. The flow time series groupings are randomly split into train and 

test datasets, and the train data is used to train a VAE. The VAE aims to reduce the 

dimensionality of 96×1 flow time-series data into two sufficient and efficient surrogate 

LVs. The LVs map the flow time series onto a regularised two-dimensional variable space 

such that the LVs of LKG and NLKG groupings are maximally separated. The relative 

position of the LVs is based on the similarity/dissimilarity of the time-series groupings, 

which can be easily used to deduce the type of flow grouping. Hence, the VAE is trained to 

project the time series to a two-LV space. Then, an SVM classifier is used to create a 

decision boundary between the LVs of LKG and NLKG flow groupings to classify the LV. 

Once trained, the framework can map unlabelled flow time-series groupings onto the LV 

space and then probabilistically classify groupings as LKG or NLKG based on their position 

relative to the decision boundary. The framework’s two principal components, VAE and 

SVM, are described in the following sections.  

A. Variational autoencoder (VAE) 

VAEs are from the family of Bayesian neural networks, and their premise is based on AE 

neural networks [547]. AEs are a type of neural network used for the dimensionality 

reduction of vectorial data and are often used to find efficient data representations [548]. 

AEs consist of a neural network-based encoder trained with a neural network-based 

decoder. The encoder reduces the dimensionality of vectorial input data to produce LVs, a 

lower-dimensional embedding that seeks to capture the defining characteristics of the 

input data. The choice of LV dimensions is made based on the trade-off between the 
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reconstruction power and explainability/visualisation of the LVs. Hence, this study uses a 

two-dimensional LV space to provide sufficient reconstruction power while ensuring the 

results are interpretable and explainable. The decoder then uses the LV space to 

reconstruct the input data effectively with minimal loss. While a standard AE maps the 

input data onto a deterministic LV space, in a VAE [547], the input data is instead mapped 

onto a probabilistic LV space with a pre-defined probability distribution. The LV space is 

compelled to possess smooth and continuous representations. 

Consequently, points in closer proximity in the latent space led to similar reconstructions 

using the decoder. This is done using a neural network-based encoder (recognition model) 

trained with a neural network-based decoder (generative model) that can use the LV space 

to reconstruct the observations. This means that the encoder describes a probability 

distribution for each latent attribute from which values are randomly sampled to be fed 

into the decoder that is expected to accurately reconstruct the input. The LVs space is 

constructed using Bayes’ rule given by Equation (5), where 𝑿 represents the input vector 

(in this case 96×1 flow groupings). 

𝑝(𝐿𝑉𝑠|𝑿) =  
𝑝(𝑿|𝐿𝑉𝑠)𝑝(𝐿𝑉𝑠)

𝑝(𝑿)
 (5) 

Traditionally, the VAEs are trained using a loss function consisting of two terms: i) 

reconstruction loss (denoted as Recon loss) and ii) the Kullback–Leibler (KL) divergence 

loss (denoted as 𝐾𝐿𝐿𝑉) [560] [561]. Recon loss is the average of the mean squared error 

across the input and output (reconstructed input) vectors and measures how accurately 

the network reconstructs the original data (expressed in Equation (6) where 𝑛 is the total 

number of input sequences, 𝑖 is the sequence of interest, and 𝑿 and �̂� are the true and 

reconstructed vectors of time-series data respectively). On the other hand, 𝐾𝐿𝐿𝑉 measures 

how closely the LVs match the target probability distribution (typically standard normal 

distribution as expressed in Equation (7) where 𝑛 is the total number of input sequences, 𝑖 

is the sequence of interest, and 𝝁 and 𝝈 are the mean and standard deviation vectors of 
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the LVs, respectively). KL divergence is a directed distance measure that determines the 

deviation of one probability distribution compared to the other. Therefore, the higher the 

KL divergence, the higher the deviation between the two distributions. In other words, 

Recon loss makes sure that the LVs are sufficient and efficient representations of the input 

data 𝑿 while 𝐾𝐿𝐿𝑉 forces the LVs to possess a smooth and regularised target distribution 

space.  

Recon loss =  
1

𝑛
∑(𝑿𝑖 − �̂�𝒊)

2
𝑛

𝑖

 (6) 

𝐾𝐿𝐿𝑉 =  
1

𝑛
∑

1

2
[− ∑(ln 𝝈𝑖

2 + 1) + ∑ 𝝈𝒊
𝟐

𝑖

+ ∑ 𝝁𝑖
2 

𝑖𝑖

]

𝑛

𝑖

 (7) 

 

The conventional VAE loss terms penalise large differences between the inputs and 

reconstructed outputs (Recon loss) and encourage regularisation of the LV space (𝐾𝐿𝐿𝑉). 

However, in this study, the loss function is improved through an understanding of the 

physical problem that the proposed framework attempts to solve. The analyses discussed 

in section 3.3 establish that the leakages are associated with periods of anomalous flow 

(detected as outliers). Thus, to properly detect any leakages/bursts, it can be understood 

that the LKG and NLKG groupings should possess different characteristics. While the 

differences in characteristics can be challenging to identify in the original time-series 

domain, exaggerated differences in LV space (which is a sufficient and efficient 

representation of the original flow) can significantly improve the detection process. It is 

therefore important that the VAE is able to accurately capture the distinction between LKG 

and NLKG groupings in the LV space.  

As a remedial measure, this study uses an additional ‘domain-informed’ loss term that 

drives the separation between the LVs of the two classes (i.e. LKG and NLKG). This is done 

mainly by computing the KL divergence (𝐾𝐿𝑠𝑒𝑝) between the multivariate normal 
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distributions of the LVs corresponding to the two classes (i.e. LKG and NLKG) as given in 

Equation (8) where 𝝁𝟏 and 𝝁𝟐 and Σ1 and Σ2 are mean vectors and covariance matrices 

corresponding to the two classes of LVs and 𝑛 represents the number of groups [562] 

[563]. As can be understood from 𝐾𝐿𝑠𝑒𝑝, larger values of this term signify higher 

separation between the multivariate LV distributions of the two classes while lower values 

represent a higher degree of overlap. Hence, unlike 𝐾𝐿𝐿𝑉 where the goal is minimising the 

difference between the LV space and target distribution (hence lower values are better), 

the objective of the 𝐾𝐿𝑠𝑒𝑝 loss is having higher values representing better separation and 

distinction between the two classes of LVs (corresponding to LKG and NLKG). Therefore, 

𝐾𝐿𝑠𝑒𝑝 is added to the total loss of the VAE in an inverse manner as shown in Equation (9).  

𝐾𝐿𝑠𝑒𝑝 =  
1

2
[(𝝁𝟐 − 𝝁𝟏)𝑇 Σ2

−1 + tr(Σ2
−1 Σ1) −  ln

det|Σ1|

det|Σ2|
− 𝑛] (8) 

Total Loss = Recon loss +  𝐾𝐿𝐿𝑉 + 
1

𝐾𝐿𝑠𝑒𝑝 
 (9) 

 

The overall loss function used to train the VAE penalises three items: i) improper 

reconstruction of the input sequence, ii) unregularised LV space, and iii) inseparable LVs 

across the two classes. This helps the VAE training process create distinct groupings in the 

LV space for the two classes, thereby improving confidence in LKG/NLKG classification. 

Alternative methods, including computing the distance between class centroids, calculating 

class overlap probability, and finding the margins of SVM classifiers, were also explored 

during the internal training trials of domain-informed VAE. Based on the performance and 

consistency of implementation, 𝐾𝐿𝑠𝑒𝑝 loss is the final selection. 𝐾𝐿𝑠𝑒𝑝 is also compatible 

with the 𝐾𝐿𝐿𝑉 loss that is inherent to the VAEs. Hence, the purpose of the VAE in this study 

is to produce an LV mapping that shows the separation between the LVs of different types 

of flow time-series groupings (LKG and NLKG), by capturing the different characteristics of 
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these data groupings via dimensionality reduction. In addition, LVs must be efficient and 

sufficient to reconstruct input data. 

For training the VAE in this study, the LKG and NLKG groupings are standardised and split 

into train and test sets such that 80% of both groupings are used in training (with 10% 

cross-validation), and 20% of both groupings are used for testing the VAE. Various 

configurations of VAEs were trained through grid search and hyperparameter tuning 

approaches [47] [48], to select the best-performing VAE architecture. Performance here is 

measured by 𝐼𝐴 of reconstructed data, classification accuracy of the SVM on the LV 

distribution, and visual clarity of the LV distribution. The hyperparameter variations 

consisted of different: numbers of layers, number of neurons, activation functions, 

optimisation algorithms, batch sizes, epochs, and dropout rates. Further detail on some 

elements of the hyperparameter tuning is provided in Appendix A. Trials were also 

conducted exploring the benefits of a three-dimensional LV space rather than a two-

dimensional space. See Appendix B for a selection of examples. Ultimately, it was decided 

that a two-dimensional space offered comparable or improved accuracy while maintaining 

better visual clarity. The final optimised VAE is presented in Figure 27. The proposed VAE 

consists of nine layers in each of the encoder and decoder (including the input and output 

layers) with a total of 1,244 neurons and a bottleneck to produce two independent, 

normally distributed LVs. The activation function for each layer is hyperbolic tangent (tanh) 

except for the output layer of the decoder, which is linear [566]. The train set is shuffled 

into mini batches of 128 and used to train the VAE in 500 epochs using the adaptive 

moment estimation (Adam) [523] optimiser and early stopping [567] regularisation. 
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FIGURE 27: THE SELECTED ARCHITECTURE OF VAE (NUMBER OF NEURONS OF EACH LAYER IS DISPLAYED 

IN THE CELLS). 

 

B. Support vector machine (SVM) 

SVM is a supervised machine learning algorithm that can be applied to both regression and 

classification problems [568]. Since this study aims to train a model capable of accurately 

detecting the separation between the two classes of LVs, a binary SVM is deemed 

sufficient. The binary SVM is a linear classifier that, given training data and corresponding 

class labels, finds an optimal boundary in the feature space to maximise the separation 

between two classes. This boundary is called the optimal hyperplane [569]. SVM classifiers 

identify the points closest to the hyperplane as support vectors. The support vectors 

influence the position and orientation of the optimal hyperplane. By maximising the 

thickness of the hyperplane (thereby distance between the support vectors), SVM allows 

the feature space to be divided into regions that represent the known classes. A 

hyperplane can be described by Equation (10). The optimal hyperplane given in Equation 

(10) is obtained through the optimisation of Equation (11). Real data often contains 

outliers, and thus is rarely linearly separable, so a soft margin SVM adds slack variables and 

regularisation to deal with noisy data [570]. Once the SVM has been trained and the 

hyperplane is obtained, new unlabelled data can be probabilistically classified by mapping 

into the feature space and noting position relative to the hyperplane. 
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𝒘 ∙ 𝑽 + 𝑏 = 0 (10) 

where 𝒘 is the weight vector, 𝑏 is the bias, and 𝑽 is the input data. 

min
𝒘,𝑏

1

2
‖𝒘‖2 + 𝐶 ∑ ζ𝑖

𝑛

𝑖

 (11) 

Subject to 𝑘𝒊(𝒘 ∙ 𝑽𝑖 + 𝑏) ≥ 1 − ζ𝑖, with ζ𝑖  ≥ 0, for all 1 ≤ 𝑖 ≤ 𝑛. Where 𝑛 is the total 

number of input samples, ‖. ‖ is the matrix norm, and 𝐶 > 0 is the regularisation constant. 

ζ is the slack variable, with ζ𝑖 = 0 for regular points and ζ𝑖 > 0 for outlier points. 𝑘 is a 

variable such that negative classes have 𝑘 =  −1 and positive classes have 𝑘 =  1. 

In this study, an SVM is used after the trained VAE encoder maps the flow grouping data 

into the LV space in order to utilise the trained hyperplane to probabilistically separate the 

LVs of the LKG and NLKG classes. First, the training of the SVM hyperplane is conducted 

using the LVs of the training dataset along with their associated LKG/NLKG class labels. Of 

over the 8,000 samples in the training dataset, 383 points are selected as support vectors 

by the SVM, which are used to maximise the margin of the classifier and thereby classify 

the LV data. Once the proposed framework is provided with unlabelled 96×1 water flow 

data, it maps the flow onto the two-dimensional LV space using the pre-trained VAE 

encoder. Finally, the pre-trained SVM uses the mapped LVs to determine the probability of 

the input flow data being classified as LKG and NLKG. 

4.1.3 RESTORATION PROCESS 

4.1.3.1 Background 

The task of repair scheduling is addressed in numerous infrastructure sectors and civil 

engineering contexts, including construction, buildings, rail and road networks [571]. 

Research on scheduling in water systems has been less extensive, but this field is growing 

and several interesting approaches have emerged [572]. 
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A significant focus of research on repair scheduling in water distribution systems has been 

the restoration of pipe networks following natural disasters such as earthquakes [101] 

[573] [574] [575]. As data on such events is understandably limited and leakage and repair 

efforts are not always well-documented, most studies demonstrate their methods on 

simulated data produced via techniques such as hydraulic analysis [79] [80] [81]. 

Approaches to repair scheduling can be described as either single-objective or multi-

objective methods. In water systems, the objectives chosen might include minimising 

indicators such as water loss, repair cost, repair time, and disruption of service, and 

maximising indicators such as system resilience and overall asset health [572] [100] [574]. 

Analysis of factors influencing repair sequencing shows, in a disaster situation, that the 

significance of factors can vary in different scenarios [575]. However, in such time-sensitive 

situations, there is a need to balance the longer run time of complex multi-objective 

models with the need for rapid outputs [576]. In disaster response scenarios, approaches 

vary from a dynamic cost-benefit method [81] to prioritisation of restoring water supplies 

to emergency facilities such as hospitals and fire stations [95]. 

Research on day-to-day repair scheduling in water distribution systems has been less 

extensive [572]. The limited studies in this field take care to emphasise the importance of 

an optimised repair strategy for improved life cycle management, while considering budget 

constraints at a network level [577] [578] [579] [580] [581]. A variety of approaches are 

taken, including a prioritisation algorithm based on rank aggregation [579], a risk-based 

economic life cycle cost analysis approach [578], and a genetic algorithm for repair 

scheduling as a multi-objective problem [577] [582] [581]. It is additionally recognised that 

repair strategies that include multiple interconnected infrastructure systems could further 

optimise resources [583] [584]. In water systems, an example of this would be the 

replacement or upgrading of water distribution pipes and sewage pipes in a coordinated 

repair, so that the surface pavement is only replaced on a single occasion [572]. In the 
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context of pipe leakage, however, it is important to consider the trade-offs of water loss, 

cost, and disruption, and large leaks may need to be prioritised even if coordinated repair 

with other systems is not possible.  

Genetic algorithm-based approaches are perhaps the most widely used method for multi-

objective repair optimisation in water systems [584] [100] [577] [582] [581]. Genetic 

algorithms are inspired by Darwin’s theory of evolution and are used to solve complicated 

problems with a large number of variables and possible outcomes or solutions. 

Combinations of different solutions are passed through the algorithm to find the best 

solutions, with worse solutions replaced by the ‘offspring’ of better solutions [585]. 

Genetic algorithms demonstrate robust search abilities, making them well-suited for the 

complexity of large-scale optimisation problems such as pipe repair scheduling [577]. 

A new and exciting approach to repair optimisation is offered in reinforcement learning 

[586] [587] and deep reinforcement learning [588] [589]. Reinforcement learning can 

adapt and learn from feedback to make more efficient decisions over time. By leveraging 

rewards and penalties, reinforcement learning methods can optimise repair schedules 

based on real-time conditions, reducing downtime and maximising resource utilisation. 

Furthermore, reinforcement learning can handle complex and dynamic repair scenarios, 

considering multiple factors and dependencies to generate optimal schedules that improve 

overall efficiency [590]. Reinforcement learning can be combined with deep learning 

methods to overcome some of the limitations of traditional reinforcement learning in high-

dimensional and complex stochastic domains [588]. In water distribution systems, one 

study combines a graph convolutional network with deep reinforcement learning to 

determine the optimal repair sequence for a testbed network in a post-earthquake 

scenario, with this method able to achieve a resilient system recovery in very reasonable 

computational time [573]. 
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The literature explored here presents several promising approaches for repair optimisation 

in the field of water distribution systems, and there exists significant potential for further 

exploration of sophisticated repair optimisation methods based on new and evolving 

methods such as deep reinforcement learning. The restoration process can therefore be 

developed to include cutting-edge methods to the same extent as the anticipatory and 

detection processes presented in this study and should not be an afterthought.  

However, this study is limited by the lack of available data at the individual component 

level. As additional information (pipe properties and network layout, repair equipment and 

crew availability etc.) is not available to this study, and the goal of this case study is to 

demonstrate comprehensive self-healing on historical (and not simulated) data, a simpler 

method of repair prioritisation is chosen in this instance. The benefit of incorporating a 

simpler method for this process is that it demonstrates the flexibility of the self-healing 

framework. Many water companies may not have the resources or training necessary to 

implement the latest in machine learning methods, but the self-healing framework can be 

applied to any level of modelling maturity. This demonstrates that companies do not need 

to wait until they are able to apply advanced modelling techniques to benefit from a self-

healing approach. Therefore, a simple single-criterion approach is used in this study to 

prioritise the leakage forecasted and identified by the anticipatory and detection 

processes. This approach prioritises tackling the most severe leakages in the system, giving 

equal weight to forecasted and detected leakages. 

4.1.3.2 Framework conceptualisation 

As this study does not have access to detailed data at the pipe component level, a 

framework is developed that instead can generate a prioritised list of leakage at the DMA 

level for a given moment in time. It is expected that the list would be updated in real-time 

as new leakage is both forecast and identified, as forecasted leakage become detected 

leakages, and as repairs are carried out. From this list, a prioritised list of DMAs is obtained 
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that gives repair exploration crews an order in which to visit DMAs that will target the 

most those with the most severe leakage (either forecasted or identified). The framework 

is presented in Figure 28. 

This framework assumes that the prioritisation is done under typical operating procedures, 

rather than for a disaster response scenario. Hence, the system is assumed to be 

operational at all times and there is no additional consideration given to the supply of 

critical infrastructure such as hospitals.  

A single-criterion method based on 𝑍 values is selected due to the limited data on DMA 

and pipe characteristics. This method prioritises leakage that is most severe relative to the 

usual flow data in the DMA. This relatively straightforward single-criterion method is also 

chosen as it demonstrates the flexibility of the overall self-healing framework. Each 

process must be designed with the data flows of the other processes (and the 

infrastructure system) in mind, but the methods used for a given process can be at any 

level of sophistication. Methods for each process can therefore be substituted out for 

more advanced methods should such methods be better suited to the available data, but 

the transition to more sophisticated methods can be done gradually and in a way that does 

not require an upfront overhaul of operating practices. As operators are trained in relevant 

skills, it may become more appropriate to include more complex methods for a given 

process.  
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FIGURE 28: THE PROPOSED LEAKAGE RESPONSE PRIORITISATION FRAMEWORK. 

 

4.1.3.3 Applying the framework 

A straightforward method combining outputs of both the anticipatory and detection 

processes is used to assess the priority of potential leakage.  

A random date within the year of provided flow data is selected to demonstrate how 

previous and incoming data might be combined to create a prioritised list of inspection or 

repair jobs. The detected leakage corresponding to the preceding week is then extracted 

from the outputs of the detection process. It is assumed both that no outstanding leakage 

jobs exist prior to this and that none of the detected leakage from this preceding week 

have been addressed. In this case, the time of 00:00am of the 12th September 2016 is 

selected as the point from which detected and forecasted leakages are combined. All 

potential leakages detected in the preceding week (5th to 11th September) are extracted, 

with any entries that share the same DMA ID as another entry for the same period flagged 

as repetitions. This is as numerous leakage issues within the same DMA may represent 

either the same leakage event or perhaps be indicative of wider problems in the set-up of 

the DMA (for example, leakages occurring in an adjoining pipe once a pipe has been 

replaced due to underlying issues with flow or pressure). Flagging DMAs that show repeat 
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instances of potential leakage thus brings to the attention of investigators or repair crews 

the possibility of these underlying issues in the DMA, and these teams can further 

investigate if necessary. Furthermore, in the absence of any additional data on DMA 

locations relative to each other, flagging repeated DMA IDs allows repair crews to optimise 

their time by attending multiple leakages (if indeed repeated leakage alerts are found to 

indicate separate events) within the DMA as part of the same trip. The forecasted leakages 

from the 12th of September through to the 18th of September are then extracted and 

combined with the detected leakages. If a DMA appears in the forecasted dataset after it is 

already present in the detected dataset, or appears multiple times in the forecasted 

dataset, it is again flagged as a repeated DMA ID.  

In this simple analysis, a single parameter is selected as a metric for leakage priority. As 

discussed in the above background section, more complex, multi-criteria methods can be 

applied, and the possibilities increase with additional data. In this study, no data is 

available for the repair capabilities of the water company managing the DMAs. Hence, a 

simple single-criterion method is selected to demonstrate how this restoration process can 

be integrated into the wider self-healing process even if data is relatively limited. As 

covered more in section 5.3.2, this restoration process acts as a separate block which, 

provided it is set up to accept input data of the same type as the output data of other 

processes, can be substituted for methods of various complexity.  

The parameter selected for leakage priority in this study is the 𝑍 values for the detected 

and forecasted leakages. 𝑍 values require a period of flow preceding the leakage in order 

to contrast flow behaviour during the leakage with ‘regular’ flow behaviour. The process 

for calculating the 𝑍 value of a given leakage grouping is given in Equation (12). In this 

equation, 𝑝𝑒𝑎𝑘𝑡𝑎𝑟 represents the largest flow of the LKG section (the subscript tar here 

represents the targeted flow section - this is the recorded flow for the detected leakages 

and the mean forecasted flow for the forecasted leakages) and 𝑚𝑒𝑑𝑝𝑟𝑒 and 𝜎𝑝𝑟𝑒 are the 
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median value and standard deviation of the preceding flow data respectively. The 𝑍 value 

thus compares the magnitude of the peak of the targeted flow sequence to the average 

magnitude and variability of the preceding flow data, as illustrated in Figure 29, thereby 

indicating the magnitude of the outlier. 𝑍 values can therefore be said to give an insight 

into the severity of the leakage.  

 

FIGURE 29: THE STATISTICS REQUIRED TO CALCULATE THE 𝒁 VALUE OF A LKG GROUPING. 

 

𝑍 =
∣ (𝑝𝑒𝑎𝑘𝑡𝑎𝑟 −  𝑚𝑒𝑑𝑖𝑎𝑛𝑝𝑟𝑒) ∣

𝜎𝑝𝑟𝑒
 

(12) 

 

 

The reason that 𝑍 values are used rather than just peak flow values is that the variation in 

the diameter of pipes and the size of DMAs means that typical flow magnitude varies 

significantly between DMAs. Using only peak values does not account for the typical flow 

magnitude within a given DMA, so a high peak magnitude in a LKG grouping could 

represent either a large leak in a DMA which usually has low to moderate flow or a small 

leak in a DMA which usually has high flow rates.  
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The 𝑍 values for each of the LKG events in the dataset of detected leakages from 5th to 11th 

September are calculated. As these events have occurred in the ‘past’, relative to 12th 

September, the prioritised repair list is created by sorting them by their 𝑍 values. 

The forecasted LKG groupings for 12th to 18th September represent incoming ‘live’ events. 

As these would be added to the repair priority list in real-time, based on a live forecast, 

this dataset is first sorted by the date and time at which the forecast indicates a leakage 

event. 𝑍 values are then calculated for these forecasted LKG groupings. These can then be 

added to the existing list of leakages to represent how this would be updated to include 

incoming leakage forecasts. The 𝑍 value of an incoming forecasted LKG grouping is used to 

determine its position on the prioritised repair list.  

 

4.2  RESULTS 

This section presents the results of the frameworks when trained and tested on the 

dataset of over 2,000 DMAs (this dataset is described in section 4.1). The data used in 

training and testing each framework is subject to the pre-processing described in section 

3.3. 

4.2.1 ANTICIPATORY PROCESS 

4.2.1.1 Introduction 

This section presents the results of the trained framework for the anticipatory process on 

the flow time-series data. The following sections discuss the results of the mean flow 

forecasting and residual forecasting components separately, and then the results of the 

combined forecasting process are explored.  
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4.2.1.2 Mean flow forecasting 

Figure 30 illustrates the outcome of time-series decomposition on exemplar input data. 

The trend component shows the overall pattern of change in flow across a week, while the 

seasonal component captures the daily flow pattern. This typical pattern, with twice-daily 

peaks and a significant drop overnight, reflects typical water consumption over 24 hours 

and is seen in most input data. The trend component is more variable across LKG/NLKG 

input groupings, as this is affected by factors such as which (and when) days of the week 

appear in the input data and if and how leakage is reflected in the input data. In order to 

ensure all relevant patterns are considered, these two components are separately input 

into the RNN. 

   

(A) (B) (C) 

FIGURE 30: DMA 586 OUTLIER 1 (A) INPUT DATA, (B) TREND COMPONENT, (C) SEASONAL 

COMPONENT. 

 

The trained RNN uses the flow data's trend and seasonal components as inputs and 

predicts the flow for the future 335-time-steps (i.e. LKG/NLKG data for 335 15-minute 

intervals). 𝐼𝐴 values are calculated for each grouping to assess how well these predictions 

align with the observed LKG/NLKG data. 𝐼𝐴, described earlier in Equation (4), gives a single 

bounded metric for pattern characterisation and comparison yet also incorporates 

information on the magnitude of deviations. 𝐼𝐴 is therefore a valuable tool for the 

comparison of model performance and has been widely applied to the assessment of time-

series models [46]. The left part of Figure 31 presents the distribution of 𝐼𝐴 values for all 
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the groupings. Overall, this 𝐼𝐴 profile indicates good performance by the RNN, with 

predicted values and observed flow in good agreement. The vast majority of groupings 

have an 𝐼𝐴 value over 0.5, with a first peak between 0.5 and 0.6 and a second, more 

prominent peak between 0.8 and 0.9. The reason for these peaks may be differences in the 

‘type’ of grouping, so factors that vary between groupings are further investigated.  

Due to different magnitudes of outliers, LKG groupings vary significantly in length and 

volatility (volatility describing the magnitude of LKG flow compared to the magnitude and 

variance of preceding input flow). Hence, it is necessary to ensure that the RNN predictions 

are not biased towards LKG groupings with little volatility compared to groupings with 

significant volatility. Hence in this study, a standardised measure of volatility (i.e. the 

difference in the magnitude of the LKG flow compared to the magnitude and variance of 

preceding flow) is computed for each LKG grouping. This measure is 𝑍 value, which is 

introduced earlier in Equation (12). The 𝑍 value thus compares the size of the output peak 

to the size and variability of the preceding input data. As can be observed from Figure 20 

(in sections 3.3), the peak of NLKG flow is not as high as the peak of LKG flow when 

compared to the median of the preceding input flow. Also, peak flows can vary significantly 

based on the burst level within the LKG groupings. Therefore, computing the 𝑍 values and 

comparing them against the corresponding 𝐼𝐴 values allows the detection of any 

unintended bias in the model. 

Furthermore, since the LKG/NLKG parts of the groupings vary in length and are zero-

padded (as described in section 3.3), it is essential to check any potential bias in the LSTM-

RNN predictions concerning the non-zero padded length of the output data. The right side 

of Figure 31 shows the 𝐼𝐴 values for all the ~10,000 samples compared to the output 

data's 𝑍 values and non-zero padded length.  The colour of each dot represents the 𝑍 value 

of each grouping. It is observed that 25% of the selected LKG groupings have a 𝑍 value 

greater than 5, with a low probability (less than 0.00001) of randomly having 𝑍 > 5, and the 
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median 𝑍 value of LKG groupings is 2.1, with a probability of 𝑍 > 2.1 being less than 0.035. 

This confirms that the pre-processing method has captured genuine outliers in the dataset. 

Furthermore, the additional criteria for LKG group selection ensures the capture of flow 

patterns typical of leakage, characterised by a significant spike in flow data that surpasses 

the fluctuations in preceding data. 

As the most extended LKG group is 335 data points in length, many groupings possess this 

length without any zero padding (especially NLKG data). While higher values of 𝐼𝐴 are 

observed across the different LKG group lengths, the concentration of higher 𝑍 values in 

the top left of the plot suggests that the proposed model performs particularly well on 

leakages with large flow magnitudes and shorter LKG lengths. This may indicate that the 

preceding flow data for such LKG groups follow a more identifiable pattern captured by the 

LSTM-RNN. While this is an interesting hypothesis, it is beyond the scope of this research 

to statistically investigate this. Conversely, the lowest 𝐼𝐴 scores are seen in LKG groups 

with common 𝑍 values, suggesting that the LSTM-RNN struggles to forecast accurately if 

the peak values are small and the variability in the preceding flow is high.  

 

FIGURE 31: 𝑰𝑨 VALUES, 𝒁 VALUES, AND OUTPUT LENGTHS (WITHOUT ZERO PADDING) OF ALL GROUPINGS. 
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To check the patterns of the LSTM-RNN predictions against the recorded output flow, 

Figure 32 shows four quantile cases from the test data (20% of the dataset). Each of these 

cases represent a period of anomalous flow data flagged as LKG, rather than a period of 

regular, non-anomalous flow. While there are some fluctuations, the LSTM-RNN forecasts 

largely follow the overall pattern of the recorded flow data in both magnitude and 

direction of change (increase/decrease). In some areas, the flow forecast fluctuates more 

than the recorded data. In most cases, as seen in the examples shown for the 50th, 75th, 

and 99th 𝐼𝐴 percentiles in Figure 32, this fluctuation tends to be distributed relatively 

evenly above and below the flow profile of the recorded outlier, suggesting that the overall 

pattern of flow is well captured. All four examples in Figure 32 see a higher forecast value 

for the first forecast flow datapoint than the recorded flow value. In terms of leakage 

management, that the LSTM-RNN is more inclined to an initial overestimate than an 

underestimate means that leakage is less likely to be missed by the model. However, 

particularly at the higher 𝐼𝐴 percentiles, the overestimation and underestimation in the 

prediction across the entire forecast window seem well balanced. Therefore, the model 

could be expanded to offer an accurate prediction of the quantity of water loss via leakage. 

It is observed that even at 25th percentile, the 𝐼𝐴 value exceeds 0.5, with 𝐼𝐴 rising to over 

0.7 at the 50th percentile. Forecast accuracy, and thus 𝐼𝐴 values, can be expected to 

improve with the addition of residual forecasting using the KF. 
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(A) (B) 

  

(C) (D) 

FIGURE 32: EXAMPLES OF TRUE VS LSTM-RNN PREDICTED FLOW FOR: (A) 25TH PERCENTILE: DMA 

1672 OUTLIER 3 (𝑰𝑨 =0. 5362), (B) 50TH PERCENTILE: DMA 1999 OUTLIER 2 (𝑰𝑨 =0.7098),  (C) 

75TH PERCENTILE : DMA 189 OUTLIER 4 (𝑰𝑨 =0.8307),  (D) 99TH PERCENTILE : DMA 1085 OUTLIER 2 

(𝑰𝑨 =0.9554). 

 

4.2.1.3 Residual forecasting 

As the LSTM-RNN model is trained to estimate the mean flow using the known trend and 

stationary components of the preceding flow, the weights of the LSTM-RNN network are 

pretrained. They are expected to perform the flow forecasting with known causality. 

However, to improve the proposed framework's real-time performance, the residuals 
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obtained in real-time are further used to develop the state-space model using KF to 

appropriately forecast the future residuals. Using the pre-trained LSTM-RNN, the flow 

forecast is obtained from current time 𝑡 to 𝑛 time-steps ahead to 𝑡 + 𝑛 time, and then as 

the true values of flow are observed in real-time for time-steps 𝑡 to 𝑡 + 𝑘, where 𝑘 < 𝑛, KF 

is used to model the residuals by finding the difference between the LSTM-RNN forecast 

and the recorded flow. Due to the recursive nature of KF estimates, this process is 

expected to provide the framework with real-time deviations of the data and improve the 

accuracy of the hybrid forecasting system. The results of KF-based forecasting of the LSTM-

RNN residuals are presented for an exemplar DMA in Figure 33. This example chooses a 

prediction window of six hours (24 data points). 

As the observed values are considered to be the sum of the underlying state plus noise, KF 

is performed on known residuals (time-steps ≤ t) before forecasting so that the prediction 

can be based on the estimated state rather than the observed values. KF is then used to 

obtain a forecast for n time-steps ahead. As more data points for the flow are recorded, 

the residuals are computed, and the updated model is used to forecast the residuals for a 

future time window. Figure 33 shows the estimated states for 𝑡 = (a) 24, (b) 48, and (c) 60 

and KF forecast for 𝑛  = 24 during a period of LKG flow, demonstrating how the KF is used 

to provide a forecast of residuals with a real-time rolling time window. It can be observed 

that forecasting power is improved as more residuals are provided to the model. The KF 

demonstrates strong performance in both state estimation of known residual data and 

forecasting the unknown residual data. The state estimation step smooths the observed 

data, with the estimated states showing less volatility than the observed residual values. 

Similarly, while the forecast can predict changes in the overall trend of the residual data, 

many peaks in the observed residual data appear less extreme in the forecasted data. 

Although huge spikes in residual data may be underestimated in the forecast, the KF 

effectively captures the overall pattern of residuals. Therefore, adding residual forecasting 



 

185 
 

to mean flow forecasting will allow real-time updates to forecasting and improve the 

accuracy of the final combined prediction. 

 

   

(A) (B) (C) 

FIGURE 33: RESIDUAL PLOTS FOR 24 STEPS AHEAD, DMA 1316 OUTLIER 1 WITH: (A) 24, (B) 48, AND 

(C) 60 INPUTS. 

 

4.2.1.4 Final flow forecasting 

Finally, the results of the LSTM-RNN and KF predictions are combined to obtain a final flow 

forecast. This is presented for an example case of LKG from the test set in Figure 34. Note 

that the x-axis is split to provide greater detail for the forecasted section of flow. In this 

example, 60 residuals are provided for a forecast window of 24 residuals. It can be 

observed that the combined forecast appears to match the recorded outlier well. The 

forecast anticipates the fluctuations in flow for the outlier period, during which the daily 

water consumption pattern is much less precise than for the input data. The forecast also 

matches the peak of the outlier well in both magnitude and time, though both peaks and 

dips can be overestimated in the prediction.  

Captured in this example is both an elevated daytime and night-time flow, relative to the 

input data. The prediction also captures the significant drop in flow from day to night, 

despite the leakage. This drop corresponds to the overnight period often used to calculate 
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MNF in other leakage identification studies. The forecast captures both the reduction in 

water usage from day to night and the elevated night-time flow level indicative of leakage 

in studies using MNF. In shorter outlier groupings where the night-time period is not 

represented within the outlier grouping, extending the forecast beyond the outlier period 

may be beneficial to verify whether the predicted minimum remains elevated compared to 

overnight periods in the input data, which would be expected during leakage. As this 

prediction shows strong agreement with the recorded data throughout the outlier period, 

not just the overnight section, and the increased MNF is accurately anticipated by the 

forecast, it is shown that this method, unlike many traditional leakage identification 

methods, does not necessitate a full overnight period of flow data to identify leakage. 

Instead, anomalous flow behaviour can be accurately determined and anticipated during 

daytime hours. This allows for more rapid flagging of leakage and thus can facilitate more 

timely and less disruptive repairs. For the LKG group shown in Figure 34, the LSTM-RNN 

mean flow forecast has an 𝐼𝐴 of 0.8466. When combined with the residual forecast, 

however, the 𝐼𝐴 for this group rises to 0.9240. This improvement demonstrates the value 

of this hybrid modelling method.  

 

 

FIGURE 34: FORECAST FOR DMA 1316 OUTLIER 1 (𝑰𝑨 = 0.9240). 
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4.2.2 DETECTION PROCESS 

4.2.2.1 Introduction 

This section presents the results of the trained framework on the train and test datasets of 

the flow time-series. The following sections discuss the LVs obtained from the VAE and the 

accuracy of the SVM classifier. 

4.2.2.2 VAE 

The dataset utilised in this study contains leakages detected through outliers, which can 

differ significantly in magnitude. Since such different outliers are used to train the VAE 

(hence the LVs), it is important to assess the nature of the LVs with respect to the 

magnitude of outliers. Again, 𝑍 values are computed for each of the LKG and NLKG 

groupings using Equation (12). The 𝑍 values compare the magnitude of the peak of the 

recorded flow sequence to the average magnitude and variability of the preceding flow 

data. The comparison of the 𝑍 values against the corresponding LVs for each grouping 

provides insights into the LVs. The means of the LVs (𝜇𝐿𝑉1
 and 𝜇𝐿𝑉2

) are presented in Figure 

35, with each point colour-coded as either LKG or NLKG along a colour gradient set by the 

corresponding 𝑍 values. 
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FIGURE 35: MEAN LVS (𝝁𝑳𝑽𝟏
 AND 𝝁𝑳𝑽𝟐

) OF THE TRAINED VAE. 

 

Figure 35 shows clear groupings of 𝜇𝐿𝑉1
 and 𝜇𝐿𝑉2

 for LKG and NLKG data. There are minimal 

overlap in the probability density functions (PDF) distributions of the two groupings for 

both mean LVs, with a distinct and dense cluster of NLKG LVs and a largely separate, 

though more spread, cluster of LKG LVs. The difference in the spread of the clusters can be 

accredited to the fact that the LKG groupings are generally uniform (Figure 22a, in section 

3.4) and obviously fluctuate less dramatically than the outliers NLKG groupings (Figure 22b, 

also section 3.4). Hence the corresponding mean LVs are narrowly spread for the NLKG 

groupings. A significant majority of NLKG data leads to 𝜇𝐿𝑉1
 between 0 and 1, and 𝜇𝐿𝑉2  

between 0.5 and 1.5. The PDF kernels for the mean LVs of NLKG show sharp spikes in these 

ranges, indicating a dense concentration. As mentioned earlier, this narrow variance in the 

LV space suggests minimal variation in the characteristics of the initial time-series data of 

the NLKG groupings. The dimensionality reduction leads to similar features in the input 

data. The 𝑍 values are represented in the red and blue colour gradients for the LKG 

groupings and NLKG groupings respectively. The mean LVs for the LKG groupings show no 
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great difference between those with high 𝑍 values, indicating higher volatility in the 

outliers, and those with low 𝑍 values. The NLKG groupings lead to low 𝑍 values, as 

expected for non-outlier data, and are shown in the dense groups of pale blue points. A 

few exceptions are observed for the NLKG groupings with particularly high 𝑍 values, 

indicating greater volatility in the original time series than the majority of NLKG groupings. 

Analysis of these NLKG groupings with high 𝑍 values shows that the flow time-series data 

for these groupings is typically very low in magnitude, which can be due to differences in 

DMA size and pipe diameter, as well as supply issues. Such low flow values are thus more 

likely to produce high 𝑍 values as even minor fluctuations are more significant in lower 

flow values. Detecting leakage in lower volume pipes can therefore present more of a 

challenge than detecting leakage in higher volume pipes, although the water loss is 

expected to be much less for leaks in lower volume pipes. 

The 𝜇𝐿𝑉1
 and 𝜇𝐿𝑉2

 corresponding to LKG data have a greater spread, with PDF curves 

showing lower peaks and higher variances. This can be due to the higher variability in the 

characteristics of the input time-series of the LKG groupings. The spread does not differ 

significantly across corresponding 𝑍 values. This suggests that the volatility of LKG 

groupings (relative to preceding non-leakage flow) is not the only characteristic influencing 

the dimensionality reduction process. Hence, the training of VAEs leads to surrogate LVs 

that may capture other behaviours of the LKG time-series (e.g. the sustained value of 

peaks etc.). However, such analysis is out of the scope of this study. 

The reconstruction power of the VAE is assessed using 𝐼𝐴 [519], [520]. It is worth noting 

that the primary goal of the proposed framework is to train surrogate LVs that allow for 

accurate classification of LKG and NLKG flow groupings through SVM, and therefore an 

accurate reconstruction of the input groupings is not the main goal of the study and only 

serves to improve confidence in the surrogate LVs. Hence, 𝐼𝐴 of the ~10,000 flow 

groupings provide an additional indicator of the strength of model performance.  
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Figure 36 shows the 𝐼𝐴 distributions for both the (a)LKG and (b)NLKG groupings. The 𝐼𝐴 

values of both LKG and NLKG groupings follow similar distributions, with an 𝐼𝐴 > 0.5 in 

most cases for both train and test groupings. The median 𝐼𝐴 value for LKG groupings is 

0.67, while the median 𝐼𝐴 value for NLKG groupings is 0.59. This indicates that the VAE is 

able to handle the higher variability of LKG groupings well. Regardless of LKG/NLKG 

classification, the train and test datasets follow almost identical 𝐼𝐴 distributions, with 

lower quartiles of 0.51 and 0.52 respectively, and both have a median of 0.61 and an upper 

quartile of 0.73. With less than 25% of the dataset having an 𝐼𝐴 value below 0.5, the VAE is 

verified as having sufficient reconstruction power. The LVs are, therefore, successful in 

providing sufficient information for reconstructing time-series data and showing the 

separation between LKG and NLKG classes. Given that, in this study, dimensionality is 

reduced from 96 points to a two-dimensional LV space, it is impressive that the VAE can 

produce LVs that sufficiently achieve both of these aims in only a two-dimensional LV 

space. 

  

(A) (B) 

FIGURE 36: THE 𝑰𝑨 DISTRIBUTIONS OF (A) LKG AND (B) NLKG GROUPINGS FOR BOTH TRAIN AND TEST 

SETS. 
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4.2.2.3 SVM 

A radial basis kernel-based SVM binary classifier is trained on the mean LVs (𝜇𝐿𝑉1
 and 𝜇𝐿𝑉2

) 

obtained from the VAE using the training dataset. The SVM is trained to classify the mean 

LVs into LKG and NLKG accurately. Hence the LVs are the inputs to the SVM classifier, and 

the associated LKG/NLKG labels are the targets. The hyperplane and associated margins (ε) 

of the trained SVM are shown in the LV space in Figure 37. It can be observed that the 

hyperplane seeks to create the largest possible separation between the two classes of LKG 

and NLKG, with the margins largely covering the area of overlap between the two classes. 

Beyond these margins, only a few points are incorrectly classified. 

 

FIGURE 37: SVM HYPERPLANE AND MARGINS (Ε) SHOWN IN LATENT VARIABLE SPACE. 

 

The performance of the trained SVM is then tested on the test dataset. This dataset 

consists of 𝜇𝐿𝑉1
 and 𝜇𝐿𝑉2

 and their associated LKG/NLKG labels corresponding to the flow 

time-series in the test dataset (2,031 examples with two-thirds of NLKG and one-third of 

LKG data). The confusion matrix  [591] and receiver operating characteristic (ROC) curve 

[592] of the classification results are presented in Figure 38a and Figure 38b respectively. It 

can be observed from Figure 38a that the SVM leads to an overall accuracy of 98.2% on the 
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test set for classifying the LVs into LKG and NLKG classes. Furthermore, the SVM’s precision 

(which is the fraction of LKG predictions in the LKG class) and the recall of the SVM (which 

is the fraction of all LKG LV inputs that are correctly predicted as LKG) are 98.3% and 95.9% 

respectively. An F1 score, which combines precision and recall into a single metric by 

calculating their harmonic mean, of 97.1% is achieved using the trained SVM.  

  

(A) (B) 

FIGURE 38: THE SVM (A) CONFUSION MATRIX (FOR THE 2031 POINTS IN THE TEST DATASET) AND (B) 

ROC CURVE FOR THE SVM CLASSIFIER, WITH 𝑨𝑼𝑪 = 𝟎. 𝟗𝟗𝟔. 

 

The ROC represents a probability curve that provides a measure of how well a model can 

separate two classes. The area under the curve (𝐴𝑈𝐶) indicates classification accuracy and 

can range from a minimum of zero to a maximum of one. Figure 38b shows the ROC-𝐴𝑈𝐶 

curve for the trained SVM classifier. It can be observed that the SVM classifier leads to a 

high 𝐴𝑈𝐶 value of 0.996, thereby indicating excellent classification power. Furthermore, 

the strong performance on the test dataset demonstrates that the SVM could be used to 

accurately classify any new, unlabelled time-series groupings as either LKG or NLKG, based 

on the mapping of the corresponding LVs onto the LV space. 
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4.2.2.4 Comparison with MNF index 

To assess the performance of the proposed framework against a traditional leakage 

detection method, a simplified MNF analysis is conducted. While there is insufficient data 

available to carry out a comprehensive MNF analysis, there is precedence for using a 

simplified MNF metric based solely on flow data [493]. A simple MNF index finds the ratio 

of MNF for a given night to the mean or median of night flow over a preceding windowed 

period. High index values are more likely to represent abnormal flow events, which include 

leakage. The size of the window period varies in the literature from three days to six 

months [536] [593] [594] [595] [596], though it is generally agreed that a larger window 

can give a better representation of typical night flow behaviour for a given DMA. This study 

selects a window of seven days, as this covers a full week of flow data (including the 

weekend) yet is short enough that sufficient data is available for almost all groupings. Of 

the over 10,000 groupings in the combined train and test datasets, only 73 do not have a 

week of preceding flow data available. The nighttime hours used to calculate MNF also 

vary in literature, beginning as early as 12am and ending as late as 5am [593]. This study 

uses the hours of 2am to 4am, which are selected in existing studies [55]. To find the MNF 

index, the median value of flow during these hours (night flow, NF) over the window 

period is found. The median is chosen over the mean to limit the effects of any erroneous 

data, as MNF is sensitive to fluctuations or anomalies. For the night of interest, a significant 

deviation from this value during the same hours can be taken to indicate possible leakage 

under MNF analysis. This deviation is found using Equation (13), where 𝑑 is the 24-hour 

day of interest and 𝑖 is the size of the window period in days. 

MNF index =
median(NF𝑑)

median(NF𝑑−1 , NF𝑑−2 , … , NF𝑑−𝑖)
 (13) 
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For purposes of comparison, this study defines an MNF index of 1.1 or greater, which 

represents >10% deviation from the median preceding NF, as indicative of potential 

leakage. This aligns with MNF index values seen in literature [493], but this threshold could 

be adjusted if necessary. 

To assess the accuracy of this MNF index for leakage identification on the dataset used for 

this study, the train and test datasets are combined so that all ~10,000 LKG and NLKG 

groupings can be analysed. The 73 groupings that occur within the first week of the flow 

dataset, and thus do not have a week of preceding flow data available, are excluded. The 

confusion matrix of the classification results of the MNF index analysis is presented in 

Figure 39. 

 

FIGURE 39: THE MNF CONFUSION MATRIX (FOR THE 10,150 POINTS IN THE COMBINED TRAIN AND 

TEST DATASETS). 

 

Of the 10,000+ groupings, the MNF analysis accurately classifies 70.7%. While not an 

insignificant result, this does fail to match the accuracy of the proposed VAE-SVM 

framework on this dataset. The MNF analysis misclassifies a significant portion of LKG 

groups as NLKG (over 20% of the total groupings). An additional benefit of the framework 

over the MNF index is that the framework does not require a specific period of overnight 
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flow. This allows the framework to identify possible leakage at any time of day, allowing for 

a more rapid identification.  

4.2.3 RESTORATION PROCESS 

4.2.3.1 Introduction 

Based on discussion with a large UK water company, the present method for repairing 

leakages is far from optimal. Water companies recognise customer reported leakage, often 

termed ‘visible’ leakage, as both a greater priority and as easier to precisely locate than 

leakage identified based on data from the sensor network. Leakage identified through data 

analysis is dealt with through a series of steps. The first step often involves the sending of 

an exploratory team to the relevant DMA, with the aim of identifying the likely location of 

the leak within the DMA. This team feeds information back to the company, who then 

schedule a repair team based on the information provided by the exploratory team. The 

actual repair of the leaking component often involves road closures to enable a pit to be 

dug for access. Depending on the accuracy with which the exploratory team are able to 

locate the leak, the pit may need to be expanded or multiple pits dug to find the exact site 

of the leak. At present there is no recommendation for how leakage should be prioritised 

in England and Wales, although water loss is the metric used to measure leakage 

performance [71]. 

As this study does not have access to data at the component level, the restoration process 

is limited to the DMA level. As such, the results of this study provide a prioritised schedule 

that can be considered as a recommended list for the exploratory teams, rather than the 

repair crews themselves. However, as addressed in the review of work in this area, there 

exist several methods that could be applied to these results that can go beyond the DMA 

level to find the most likely pipes causing the leakage, in the event of access to additional 

data at the pipe level. 
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4.2.3.2 Prioritisation of leakage response 

Table 8 shows the top 15 entries in the combined leakage detection and leakage 

forecasting output database, taken at the point of 00:00am of the 12th September 2016. 

The detected entries, shown in orange, cover the week leading up to this date and time, 

while the forecasted entries, indicated by purple, cover the upcoming week. The 𝑍 values 

are calculated for the forecasted groups using the mean flow forecast only, as residual 

forecasting is not available until after the outlier start point. As shown in the results of the 

anticipatory process, the fluctuation of forecasts tends to be distributed relatively evenly 

above and below the flow profile of the recorded outlier, indicating that 𝑍 values for 

forecasted leakages should not significantly overestimate or underestimate the actual 

leakage. 
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TABLE 8: COMBINED DETECTED (ORANGE) LEAKAGE EVENTS (5TH TO 11TH SEPTEMBER) AND PREDICTED 

(PURPLE) LEAKAGE EVENTS (12TH TO 18TH SEPTEMBER), SORTED BY 𝒁 VALUE – TOP 15 EVENTS. 

DMA Outlier Start Outlier End Z Value DMA Repeat 

1814 10/09/2016 03:00 10/09/2016 13:15 100.8195563 No 

1719 14/09/2016 14:15 14/09/2016 20:15 41.47342 Yes 

1167 09/09/2016 05:00 09/09/2016 14:15 39.16277964 Yes 

547 17/09/2016 23:45 18/09/2016 09:15 38.96721 No 

1378 14/09/2016 06:45 14/09/2016 15:00 36.30383 Yes 

1719 17/09/2016 11:00 17/09/2016 17:45 30.37194 Yes 

1719 13/09/2016 10:00 13/09/2016 20:00 29.01111 Yes 

516 18/09/2016 23:45 19/09/2016 08:00 23.09285 No 

1378 13/09/2016 06:00 13/09/2016 17:15 20.931 Yes 

755 12/09/2016 13:45 12/09/2016 19:00 19.46047 No 

790 13/09/2016 08:15 13/09/2016 13:00 19.20192 No 

1167 11/09/2016 01:30 11/09/2016 06:45 19.11405242 Yes 

1378 15/09/2016 06:00 15/09/2016 16:30 18.40204 Yes 

1798 13/09/2016 06:45 13/09/2016 13:45 18.28456 No 

1343 07/09/2016 13:15 07/09/2016 18:30 16.9443104 No 

 

Interestingly, of the top 15 entries, only four are provided by outputs of the detection 

process, with the remaining 11 coming from the prediction modelling. The top entry, with 
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a 𝑍 value over double that of the following entry, however, is a detected leakage. This 

indicates that both the detection and forecasted data are integral to effective leakage 

management, and that many of the most severe bursts can be anticipated and, with 

sufficient resources, potentially averted. It also shows that 𝑍 values for forecasted data fall 

within the range seen in detected data, so the two outputs can be combined into a single 

database that does not neglect either component in favour of the other.  

Within the top 15 entries, there are three DMA IDs that appear multiple times. This may be 

indicative of a single leakage event being flagged multiple times if it has not been repaired. 

This may be the case for DMA 1167, for example, which appears three times as a detected 

leakage entry, as there is no logged repair for the dates between these entries. For the 

forecasted events, repeated entries should be treated with care here, as in reality each 

forecast would be updated as time passes into the period in question and the entry would, 

should potential leakage be detected, be replaced with a detected entry. If this triggers a 

repair event, it would likely have resolved the leakage issue and mean that leakage flow is 

unlikely to be forecast, so the repeated forecasted entries would be averted. This could 

explain why there is a greater proportion of forecasted entries in Table 8, but this may not 

be the case in a live system. Entries of repeated DMA IDs in forecasted data, therefore, can 

perhaps be thought of as a stronger warning that leakage is expected in a given DMA, as 

multiple occurrences are less likely to be other anomalies, and so these could perhaps be 

given even greater priority in repair scheduling or monitored more closely to see if 

leakages are indeed later detected. This would be up to the discretion of the operator and 

is currently beyond the scope of this study. 

Based on the entries in Table 8, and taking the severity of leakage as the single criterion for 

repair priority, a list of DMAs is presented in Table 9. This list represents the DMAs that 

should be attended by exploratory crews (with a view to repairing the leak) and the order 

in which they should be prioritised.  Also included in Table 9 is the total number of 
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properties in each of the DMAs. Without knowledge of additional pipe properties, further 

localisation of the suspected leakage is beyond the scope of this study. However, it can be 

assumed that the localisation of leakage that is not visible at surface level will take longer 

in DMAs with a greater number of components, which correspond strongly to the number 

of properties served. Based on the limited data available on the characteristics of DMAs, it 

can be expected that, from Table 9,  a leak in DMA 1719 (which serves 60 properties) will 

be located more rapidly than a leak in DMA 1167 (which serves close to 800 properties).  

Precise location data is not available for each DMA in this study, but this could be an 

additional criteria that operators may wish to consider, as time taken by repair crews to 

drive between locations is a factor in optimising repair scheduling. There are other factors, 

including type of properties served, land access, and the quantity of repair equipment and 

crews available, that should be considered by water companies if using these results to 

develop a repair schedule. Additional constraints for inclusion or continued inclusion in the 

repair schedule may be added based on budget constraints.  
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TABLE 9: .PRIORITISED LIST OF DMAS FOR LEAKAGE EXPLORATION TEAMS, WITH CORRESPONDING 

PROPERTY NUMBERS FOR EACH DMA. 

DMA Total no. of properties 

1814 413 

1719 60 

1167 789 

547 474 

1378 71 

516 164 

755 147 

790 86 

1798 104 

1343 231 
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5 DISCUSSION 

5.1 INVESTIGATION PROCESS 

The design and execution of this research was far from linear. The self-healing approach, as 

applied to infrastructure systems, is still evolving and findings its feet in academic research 

and even more so in industry. Underlying terminology and concepts are inconsistent across 

infrastructure sectors, and largely absent from many. With this in mind, the process of 

conducting this investigation was highly iterative. While self-healing represents the core of 

this study, exploration of AI as a supporting field was found to be highly significant and 

offers its own unique insights into cross-sectoral approaches to AI in infrastructure 

systems. At each stage of the research process, the implication of findings for earlier stages 

of the process were considered and frameworks and methods were updated appropriately. 

The research process is presented in Figure 40. 

 

FIGURE 40: DIAGRAM OF THE RESEARCH PROCESS. 
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5.2 IMPLEMENTATION OF SELF-HEALING IN INFRASTRUCTURE 

SYSTEMS 

5.2.1 SELF-HEALING FRAMEWORK FOR INFRASTRUCTURE SYSTEMS 

Exploration of the concepts found in the limited literature on self-healing in 

infrastructure systems has informed the development of an updated self-healing 

framework for the management of infrastructure systems, illustrated in Figure 41. This 

framework seeks to maintain the generality of the initial self-healing framework 

presented in section 1.1, while adding additional descriptions to capture the key aims of 

each process. The adapted state and the processes connected to this state are added 

and developed, to recognise the complexity and diversity of the restoration of critical 

infrastructure systems. 

 

FIGURE 41: A SELF-HEALING FRAMEWORK FOR INFRASTRUCTURE SYSTEMS. 

 

While the initial theory of self-healing software systems proposes three states [13] – 

normal, damaged, and broken – it was quickly identified that, in infrastructure systems, a 
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case can be made for a fourth ‘adapted’ state. This is due to the wide range of restoration 

approaches that can be applied to infrastructure systems. There are many factors that go 

into decisions regarding the repair of infrastructure assets, including the urgency of the 

repair and the accessibility of the damaged component. It can be the case that, in order to 

achieve acceptable service, a temporary or alternative solution is adopted. This may or 

may not include the repair of the damaged component but can be considered a restorative 

action in the system if it results in acceptable service being restored. The transition from 

the adapted to the normal state can happen via one of two pathways. One pathway is the 

‘back to normal’ pathway, which sees the damaged system eventually restored to its 

original state, but with some temporary support in place to provide a degree of 

operationality in the meantime. One example of this would be the use of mobile drone-

mounted base stations to restore wireless network access in post-disaster scenarios [597]. 

This is an adapted and, in this case, a temporary solution that restores the functionality of 

the wireless network but the system is not (yet) returned to the pre-damaged set-up. Once 

time and resources are available to repair the damaged network, the mobile base stations 

can be removed and the system is ‘back to normal’.  

Adapted states may not necessarily be the result of a disaster scenario or be temporary. 

Indeed, they may represent an improved state. The ‘new normal’ pathway indicates that 

the adapted solution has been adopted as a permanent solution. This may be due to 

budget limitations or an inability to restore the original infrastructure system setup, or it 

may be due to the adapted state being better in terms of performance, feasibility, or cost. 

An example of this is rainwater harvesting as a solution to unreliable water supplies. While 

rainwater harvesting can present a temporary emergency solution when water supplies 

are disrupted by disasters (including earthquakes and droughts), it is also recognised as a 

long-term option for decentralised water supply in areas with unreliable access to a 

centralised system [598]. Rainwater harvesting can also cut emissions from water supply 
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and distribution systems and mitigate flood risk. Implementing rainwater harvesting 

systems in communities that receive sufficient rainfall can mitigate the impacts of poor or 

unreliable water supplies, and adopting this solution on a permanent basis makes these 

communities more resilient to disruptions to their water supplies [599].  

Adapted solutions may also incorporate new technology that was not available during 

construction of the initial system. For example, it may be economically unfeasible to 

upgrade assets such as buried pipelines while they are still in service. However, should 

breakage or leakage occur that requires replacement components, and thus a costly 

excavation, it can be prudent to take the opportunity to replace assets with more up-to-

date components, such as including new sensing technology or using more advanced 

materials. In this case, the adapted state would eventually, once rolled out across enough 

of the network, become the new normal state. 

The updated framework also includes defined cycles, which represent a route for 

maintaining or restoring the normal state. The anticipatory cycle seeks to keep the system 

at a healthy state without any degradation, and thus requires the system to have self-

awareness through detection and to make proactive interventions such as preventative 

maintenance. The early-warning cycle represents the transition to a degraded state and 

subsequent restoration to normal, without crossing a defined failure threshold. Again, this 

requires the system to be aware of its present state. This cycle also requires the system to 

trigger actions that return the system to a normal state which, given that some 

degradation has occurred, may require some degree of human intervention. Finally, the 

recovery cycle sees the system go from normal to broken and then back again, restoring 

service provision after a failure threshold has been crossed. Here, reactive interventions 

are necessary, which often require additional information on repair equipment and 

personnel for effective implementation. While all three cycles require a foundation of 

system self-awareness through detection, they often vary in the types of action necessary 
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to maintain or restore a healthy, normal state. Examples of actions in the anticipatory cycle 

include preventative maintenance and operational control processes, while actions 

undertaken as part of the early-warning cycle may include provision of additional capacity 

or demand reduction strategies such as hosepipe bans in water systems. Finally, the 

recovery cycle may require the repair of broken components in the infrastructure system, 

or the rerouting of flows around a broken component. It should be noted that the early-

warning cycle and recovery cycle may share some common actions, depending on the 

failure threshold defined for a given system.  

There are a variety of reactive action types that can help to restore operationality in 

infrastructure systems. Based on exploration of the relevant literature, it is found that 

these can be broken down into four main categories; 

• Repair. The process of repair involves fixing broken components or installing new 

components in place of broken ones on a like-for-like basis. If improved versions of 

the component are available (newer materials etc.), these may be used in the 

repair in place of the existing component specifications. An example of repair is 

addressing leakage in water pipes by installing new pipes in place of the leaking 

pipes. 

• Replace. Replacement finds an alternative method for providing the same service. 

Replacement is different from repair in that the replacement is substantially 

different from the original method of service provision. Replacements can be 

temporary solutions, such as the use of a replacement bus service for tube or rail 

routes that are out of service.  

• Reroute. Rerouting involves redirecting the flows within the system around failed 

components so that as many customers can access services as possible. If a system 

has sufficient redundancies, effective rerouting may allow service to be restored to 

a normal level. Telecommunications systems provide many examples of rerouting, 
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with traffic redirected to ensure that data can still reach its intended destination 

even if certain network segments or nodes fail. 

• Reorientate. A relatively new term in the context of resilience of infrastructure 

systems, reorientation considers that the original purpose or service of a system 

may no longer be valid or sufficient under changing circumstances or disruptive 

events. Reorientation acknowledges that, in the face of unexpected challenges, an 

infrastructure system may need to adapt and evolve to fulfil different or additional 

functions to effectively serve the needs of its users or stakeholders. An example of 

reorientation is the decentralisation of energy infrastructure via household-level 

solar panels. 

5.2.2 SELF-HEALING FRAMEWORK APPLIED TO WATER SYSTEMS 

During the literature review of self-healing in the water sector specifically, as well as in the 

development of the water sector-based case study presented in section 4, it was noted 

that the existing research in this sector does not always align with the cycles presented in 

Figure 41. This may be due, to some extent, to the lack of self-healing approaches in the 

water sector and the siloed nature of much of the existing work on the management of 

water infrastructure. The developed self-healing framework is thus adjusted to better 

reflect how self-healing might be approached in applications in the water sector, with a 

framework that aligns specifically to the developed case study presented in Figure 42. The 

individual flows and states remain identical across both imaginings of the framework, but 

each version groups together different flows within the system, with Figure 41 giving three 

cycles and Figure 42 giving three slightly different processes – anticipatory, detection, and 

restoration. These align with the processes presented in the case study. This modified 

framework is not intended to replace the more generic framework of Figure 41 but instead 

to show how processes within Figure 41 better align with existing research in the water 

sector and leakage management specifically. As this version is informed not only by the 
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literature in the water sector but by the pipe leakage case study of section 4, it could be 

considered an application of the generic self-healing framework to the specific task of 

leakage management. It may be that this version of the framework aligns with other 

sectors or purposes, but this would have to be verified on a case by case basis. It should be 

noted that leakage management, as described in the case study, represents an example of 

‘repair’ as a reactive action. It may be that alternative types of reactive actions – replace, 

reroute, reorientate – are better suited to the original cycles shown in Figure 41, or to a 

different perspective on the self-healing processes altogether.  

 

FIGURE 42: THE SELF-HEALING FRAMEWORK AS APPLIED TO THE CASE STUDY OF LEAKAGE 

MANAGEMENT. 

 

5.2.3 CONSIDERATIONS FOR IMPLEMENTATION IN THE WATER SECTOR 

5.2.3.1 From siloed to systems-based solutions 

As introduced in section 2, perhaps the greatest barrier to implementation of a self-healing 

based approach in the water sector is the current status-quo of a fragmented and siloed 

approach to water network management. In England, where the case study selected for 
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this research is located, water supply is vertically integrated with sewage services and has 

been fully privatised since the 1980s. This means that privately operated water companies 

are responsible for water management in different regions of England. While other 

network industries (e.g. electricity, telecoms) have been subject to ‘vertical unbundling’ 

with the goal of driving competition, water remains vertically integrated. This means that, 

in a given area, one company is responsible for getting water from ‘source to tap’. Both 

vertical integration and vertical unbundling have their limitations in terms of developing a 

true systems-based approach to network management. Vertical integration should allow 

for better data transfer and management between sections of water management 

services, with the same company responsible for water supply, distribution, and 

wastewater management. The division of responsibility across regions, however, can 

prevent the emergence of a common best practice or shared knowledge and expertise. It is 

only if water companies communicate effectively, both in terms of expertise and data, can 

a shift towards systemic approaches occur successfully. In the last few years, the call for 

better communication between water companies has grown louder [600]. It is recognised 

that, with data at the heart of modern water system management, it is only through 

sharing data and insights generated from it that water companies can accelerate the 

transition from their current, siloed approaches, to improved systems-based methods. 

Sharing of information offers numerous benefits, including greater training data for new 

models and the ability to learn from trials of new technologies and methods by other 

companies to improve implementation.  

5.2.3.2 Data management 

At the level of individual water companies, there must also be efforts to improve the 

fragmented approaches to data management. An explicit information architecture should 

be established in order to facilitate effective data sharing, in combination with a reliable 

and often-updated asset database. A first step for many companies may be establishing an 
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up-to-date asset database, which is itself challenging given the aging state of the UK’s 

water infrastructure. These formalised data structures are crucial in enabling existing 

techniques to come together into a wider system, as data formatting and completeness 

may vary between teams managing different sections of the water network. A more 

systemic approach to data management would see the standardisation of data collection 

and recording, but the development of and transition to an approach would take time. 

Therefore, incorporating flexibility into methods through a pre-processing stage will assist 

in the integration of different datasets. There may be a need to retrain staff or bring on 

new hires in order to develop or update these data systems and ensure all relevant staff 

are able to use them effectively. New models that can support a self-healing-based 

approach should be provided with access to relevant data so that they can be developed 

with the data format in mind. Integrating data such as pipe locations and properties with 

data on available repair equipment and crew availability could allow for the combination of 

many existing methods that could currently be considered decision support tools into a 

greater self-healing framework that would instead produce a self-managing or assisted-

healing system.  

5.2.3.3 New technologies 

New technologies are coming to the market in the water sector that offer new potential in 

areas such as burst detection and pipe repair. As a network with many underground assets 

and a significant amount of aged infrastructure, the water sector faces more barriers than 

many other infrastructure sectors when it comes to the implementation of a fully self-

healing approach. One field that may bridge the final gap between an assisted-healing or 

self-managing system (with a human-in-the-loop responsible for digging up and 

repairing/replacing a pipe) and a true self-healing system (with the pipe able to be repaired 

by the technology itself) is in-pipe robotics [601]. Although still in the research and 

development stage, this technology should be monitored and supported by water 
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companies. While the existing setup of water systems may not allow for the repair of pipes 

without human involvement, a self-managing system would take all but the most physical 

tasks out of the hands of the operator and make them the responsibility of the system. 

This has the potential to significantly improve the efficiency of operations by optimising 

complex problems such as leakage detection and multi-objective repair scheduling.   

5.2.4 LIMITATIONS 

The main limitation of the self-healing framework proposed in this research is that the 

application of this framework may look very different across sectors and purposes. The 

ways in which the individual transitions between states are grouped may change 

depending on the specific application. The framework is designed to allow this flexibility, 

but there is a degree of research and application-specific expertise necessary to effectively 

align the framework to a given application if successful implementation for an existing 

system is the goal. Aligning the framework in such a way that existing techniques can be 

substituted into processes or cycles gives the best possible chance of the framework being 

adopted successfully in a real-world system.  

This research presents a general framework for self-healing in infrastructure systems, but 

the framework is demonstrated on a single case study, which focuses on the specific 

application of the framework to leakage management. The framework is not validated on 

other types of infrastructure system, which may present different or unexpected 

challenges.  

5.2.5 FURTHER WORK 

Future research should seek to develop the framework further across a range of different 

infrastructure systems. These systems may follow same processes as the case study in 

section 4 (see Figure 42), may follow the cycles shown in Figure 41, or may require the 

defining of entirely new processes within the self-healing framework.  
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Different reactive actions and their impact on the restoration process should be 

considered. For example, rerouting as a reactive action may require the framework to be 

implemented with different structures or processes than repair or replacement. Case 

studies should be selected and developed that consider a range of reactive actions, as well 

as examples of an adapted state.  

Additional case studies should be developed and tested to explore systems in different 

infrastructure sectors such as energy, transport, and telecommunications. Interconnected 

systems and systems that sit at the overlap between sectors should be given particular 

consideration. Figure 43 shows the data flows in a leakage management system. As 

systems with greater levels of interconnectivity are considered, the complexity of data 

flows and associated data management will only grow. Future work must consider the 

challenges of data integration and standardisation to a greater degree. This should include 

consideration of how different data streams can be integrated into a self-healing approach 

when data is stored in different locations, in different formats, and has different data 

security requirements. 

 

FIGURE 43: INFORMATION FLOWS IN LEAKAGE MANAGEMENT SYSTEM. 
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It is important that future work look at how the framework can be applied in practice for 

different types of failure – e.g. different hazards such as earthquakes or cyberattacks. It is 

necessary to consider how the framework would work for a system facing multiple 

hazards. It may be that failure thresholds are defined in terms of service provision, which is 

independent of the failure cause, but that reactive actions must be defined in terms of 

hazard-specific actions. It may instead be necessary to consider different failure thresholds 

based on different hazards. The chosen approach may depend on the type and availability 

of data from the system.  

Finally, the application of the framework to systems with low levels of data sophistication 

should be considered in future work. Regions with limited economic means, or 

geographically isolated areas with decentralised systems, may have much less available 

data. As the framework does not prescribe specific methods, it is hoped that it would still 

prove to be relevant and effective for such systems. However, whether AI remains an 

appropriate enabler is less clear. Future work could look at the effectiveness of AI 

approaches (in comparison with alternatives such as expert-informed rules-based 

methods) in enabling self-healing in systems with low data availability and/or poor data 

quality.  

 

5.3 CASE STUDY 

5.3.1 INTRODUCTION 

The case study presented in chapter four offers insight into how machine learning could 

deliver some of the processes necessary for a self-healing approach to managing failures in 

a real-world infrastructure system. It also helps to illustrate some of the challenges and 

limitations of implementing such an approach.  
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The following sections discusses the various insights from the results of the case study, 

consider the feasibility of implementing the proposed methods in an operational capacity, 

detail limitations of this case study, and suggest areas for future research. This discussion 

goes beyond the specifics of the leakage management case study to consider the rapidly 

evolving AI landscape and how this may impact the way consumers, and the public in 

general, interact with AI technologies in the context of infrastructure systems. 

5.3.2 THE FUTURE OF AI IN INFRASTRUCTURE SYSTEMS 

The machine learning-based methods demonstrated in this study illustrate the value of 

machine learning as an enabler of self-healing. The underlying principles of self-healing 

include that a system is able to ‘know’ its own state and anticipate deviation from a 

healthy state. These dovetail well with the abilities of machine learning tools. If built into 

an appropriate architecture that includes pre-processing of data if necessary (as it was in 

this case), machine learning methods show huge potential in delivering the insights 

necessary for self-healing.  

Machine learning methods, to reach this potential, need to be designed to consider the 

specific application to which they are applied. While ‘off the shelf’ models may be 

sufficient for some applications, the complexity of critical infrastructure systems 

necessitates a more tailored approach. The detection framework proposed in this study, 

for example. includes training of a domain-informed VAE that utilises a novel loss function 

developed with the domain-specific knowledge that leakage and non-leakage flow possess 

different characteristics, as seen in Figure 22. Thus, the use of machine learning methods 

for self-healing in water networks should be seen not just as another application of AI but 

instead as an opportunity to integrate knowledge of the water sector into machine 

learning tools to tailor these techniques to achieve the best performance for the specific 

application.  
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However, machine learning alone is insufficient to significantly transition from DSS to true 

self-healing. The former are designed to aid human operators, while the latter are 

designed to make decisions in complex systems without the need for human operators. 

The key difference is therefore who or what makes the decisions in the system in standard 

operational conditions. The line between these two becomes blurry when the operational 

reality is that, for many systems, a human operator remains involved to varying degrees 

across various system components. And indeed, some degree of human oversight is very 

valuable in critical infrastructure systems, as human override capacity builds system 

resilience and reassures users [40]. While self-healing systems evolve, and while many 

infrastructure systems remain reliant on human operators to carry out restoration 

processes, this close similarity in DSS and self-healing is likely to remain. For this reason, 

future research and development into self-healing infrastructure systems, particularly 

those without self-healing terminology in their standard operational lexicon, should look to 

existing work on DSS for insight into the progress made thus far. To see a shift from DSS to 

self-healing, there needs to be a greater trust in AI-based systems, which can only be 

developed through demonstrating effective and reliable performance results. 

The AI subfield of robotics, which is often underpinned by machine learning methods, may 

offer a solution to the final hurdle that is presently keeping leakage management at an 

assisted-healing or self-managing level rather than true self-healing. The potential of in-

pipe robotics is discussed in section 5.2.3.3.  

Initially, it was expected that a self-healing system would represent a closed unit, with 

overarching methods underpinning the entire system.  However, in the initial review of the 

concept of self-healing systems, it became apparent that there were several underlying 

processes that made up the larger self-healing system, these being represented by the 

anticipatory, detection, and restoration processes in this case study. It was also evident 

that much of the existing research in relation to the management of systems in the water 
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section could be aligned with at least one of these processes, but very few considered all 

three of the processes necessary to constitute a full self-healing system. It was also 

apparent that, as long as inputs and outputs follow a consistent data format, outputs from 

each process could flow into another as an input. This is a particularly positive insight as 

this means that many of the existing methods found in literature on the topics of flow 

forecasting, leakage detection, and repair prioritisation can, with sufficient pre-processing 

and post-processing of data, be adapted to fit into a broader self-healing framework. This 

is also hugely significant for implementation of the framework, as water companies will be 

able to switch out any of the proposed methods for alternatives that they are currently 

using if they so desire. This would potentially allow for a more staggered transition; first 

the existing methods used by a company are integrated into a self-healing framework and 

then new or improved methods are substituted in for the older ones. For example, MNF 

could be used as the method for leakage detection if that is appropriate level of maturity 

for a particular operator. This could allow for a more gradual building of both skills and 

trust in the proposed approach, before more complex methods are introduced. The 

transition to more sophisticated methods can be done in a gradual manner, without the 

need for a complete overhaul of initial operating practices. As operators are trained in 

relevant skills and more advanced computing capabilities are established, the company 

may then be in a position to substitute more complex methods into a given process of the 

self-healing framework. 

The AI landscape is rapidly evolving. Not only are companies and operators changing how 

they utilise AI, but the relationship between the public and AI has been transformed with 

the created and rollout of AI foundation models including ChatGPT, DALL-E etc. [602]. The 

public is more aware than ever of the potential of AI (natural language processing and 

machine learning in particular) and are seeing examples of how AI-based tools can impact 

their daily lives and change longstanding behaviours. This opens up many new 
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opportunities to integrate AI into public-facing elements of infrastructure systems, which 

may help to shift the relationship between suppliers and consumers from a one-way flow 

of supply to a two-way collaborative approach [603]. An example of this applying machine 

learning methods to smart meter data to identify patterns in consumer behaviour at the 

household level and using natural language generation to deliver tailored advice on how to 

reduce consumption. This has begun to be explored to a limited extent in an energy 

context [604], but as the water sector begins their smart meter rollout it is likely they will 

learn from AI interventions deployed in other sectors. As a sector where consumers have 

typically been very detached from their suppliers – consumers cannot choose who supplies 

their water and before smart metering often paid based on number of people in a 

household rather than based on actual usage – the potential of these methods to prompt 

people to interact with their supply and consider their consumption may bring huge 

transformation in how the public both perceive and interact with their water supply. 

5.3.2 FEASIBILITY AND IMPLEMENTATION 

5.3.3.1 Introduction 

Discussed in this section are some of the issues that, based on the literature in this field 

and conversations with industry professionals, may need to be given further consideration 

if the proposed case study methods and frameworks are to be successfully implemented in 

real-world water distribution systems. This is not intended to be an exhaustive list, but to 

address some of the most significant potential feasibility concerns and barriers to 

implementation. 

5.3.3.2 Data considerations 

As the proposed framework is developed using historical data with some restrictions, there 

are associated uncertainties such as how representative the data is of current demand 

behaviours and whether assumptions regarding repairs are true to life. If the proposed 
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system was to be adopted for commercial use, there are several hyperparameters that can 

be edited by those with expert knowledge who work for the interested water company (as 

ideal values may vary between regions/water companies). These include the minimum 

required length of outlier period to be classified as potential leakage and the minimum 

required length of flow data preceding an outlier. It can also be assumed that, if adapted 

for commercial use, there would be additional data available that could improve the 

accuracy and efficiency of the proposed system. For example, having more detailed 

information for each entry in the repair log would provide a far more reliable basis upon 

which to compare outliers with known leakage. There may well be additional pre-

processing associated with this, such as filtering out of any non-leakage related repairs. In 

the long term, after the system has been operational for a substantial period of time, it 

may no longer be necessary to use historical repair records as there may be a sufficient 

number of confirmed leakages while the system is connected live network. This would 

improve the accuracy of leakage detection and forecasting by ensuring that the training 

sample contains only true leakages. It would also simplify the pre-processing stage.  

5.3.3.3 Time-series frequency 

In order to operate most effectively, the proposed system assumes access to near real-

time updates from flow sensors (every 15 minutes in this instance). This is particularly true 

of the forecasting process, which updates using residual forecasting at each timestep.  

Successful implementation would see the system provided with this regularity of update. 

How this would work is down to the technical capabilities of a given water company and 

their approach data collection and collation. If any data needs to be withheld from the 

system, for example for consumer privacy reasons, this could further complicate the near 

real-time link, as this data would either have to be removed being the data is sent to the 

system or stored separately from the shared data. A better understanding of the existing 

data architecture of a given water company would therefore be necessary in order to 
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facilitate the smooth implementation of the proposed system. There may also be some 

changes necessary to the pre-processing stage of the proposed system, depending on both 

the specific data formatting choices of the water company and their existing sensor setup.  

5.3.3.4 Technical feasibility 

The feasibility of solutions is concerned with any potential barriers to effective 

implementation. One key consideration is whether the current technology available to 

water companies is sufficient to provide the necessary data to the proposed framework. 

While novel sensor technologies may offer some improvements in accuracy or precision, 

not only does their rollout take significant time and require significant investment but 

there is a need to build up a database of historical data from these new technologies in 

order to ensure a representative sample is available to train models. The frameworks 

proposed in this case study are demonstrated on a dataset of flow time series data. While 

they could be easily adapted to work with other time series data, the benefits of using a 

sensor type that currently offers widespread coverage across a network are huge. The 

proposed methods can be implemented immediately, as sufficient training data is already 

available, and across the entire network, rather than just in the limited areas where new 

sensor technologies are deployed.  

Whether a solution is feasible also depends on the required computing power and the cost 

of implementation. Cost here can include necessary upgrades to computing power or data 

storage capacity, as well as the costs of training individuals in how to use the required 

software. There may also be costs associated with converting existing databases into the 

required format. These factors should be explored if the proposed solutions are to be 

commercialised. Hyperparameter tuning is one element of the proposed methods that can 

require some time investment upfront, but this should allow the models to run more 

efficiently once operational.  
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5.3.3.5 Operating culture and pressures 

However, factors that impact feasibility extend beyond the issues stated above to include 

workplace culture and operating priorities. There may be training needed in how to 

implement and interpret the proposed methods, and operators may well need to see 

results to be convinced of their efficacy. This is particularly true for the forecasting element 

of the proposed approach, as this is a less well-established field and likely one that has 

been unexploited by water companies before now. It may be that operators do not feel 

equal weight should be given to forecasted and detected leakages, with priority instead 

given to the latter. If forecasting proves very effective in reducing overall leakage, this 

could build confidence in this method. However, there may be limited resources available 

and water companies may wish to prioritise leakage that has already occurred as is 

presently impacting customers. It is only by giving the forecasting component a chance in 

an operational setting that it’s true value can be known, and so it is hoped that, if the 

method is adopted in industry, water companies would be willing to at least trial a period 

of factoring forecasted leakage into repair prioritisation. 

There must also be thought given to the weight of political pressures on operating 

priorities. In the water sector, significant public attention is garnered by short-term crisis 

incidents. Examples of such incidents include the discharge of sewage into public beaches 

during periods of heavy rainfall, and the introduction of hosepipe bans during extended 

periods of low rainfall. These issues understandably provoke a public response, with 

increased pressure on water companies and growing public distrust. These pressures can 

result in the shifting of investments or resources to address the issue that is drawing 

negative attention to the sector at the time. This may limit the ability of water companies 

to invest in implementing the proposed method, or it may result in greater resources 

available for the purpose of leakage management. Ofwat has committed to driving down 
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leakage in the water sector in England and Wales, and so it is hoped that this will remain a 

priority even if other challenges are present in the sector.  

5.3.4 LIMITATIONS  

5.3.4.1 Introduction 

The case study detailed in section 4 is intended to demonstrate the how, using AI methods, 

a self-healing approach might be applied to a real infrastructure system. With 

implementation and real-world feasibility, particularly from a technical perspective, in 

mind, it was decided that this case study should use data from a real-world system (albeit 

historical data). However, this choice and other necessary decisions regarding the scope 

and scale of the work introduce several limitations to the case study, the most significant 

of which are discussed in this section.  

5.3.4.2 Data 

Access to detailed data is a limitation of this study. While data for over 2,000 DMAs is 

provided, representing a very large area, the data is at the DMA level, and thus the 

proposed framework can only identify leakage at the DMA level. If this was to be extended 

to include localisation of leakage to an area within a DMA, or even at pipe level, additional 

details would be required. These could include pipe properties, land use, and soil 

properties. For the greatest accuracy in localisation of leakage, the ability to deploy 

additional sensors would also be beneficial.  

There were further limitations in what could be inferred from the available repair logs, 

which gave only the DMA and date of repair. For better matching of outliers and repairs, it 

would be helpful to have the specific time of each repair. The repair logs did not give any 

reasons for an entry, and so while it is assumed that each entry corresponded to the repair 

of a burst, this may not have been the case. Due to customer data protection regulations, 

there was also no information on whether repairs are the result of consumers reporting 
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visible leakage or the water company detecting bursts themselves. This information could 

inform what is set as a reasonable lag between outlier and repair. Additionally, if the study 

was to be expanded to explore leakage at the pipe level, repair data would also need to 

include details of the individual pipes/components repaired.  

The data provided for this study was historical data, from April 1st 2016 to the same date in 

2017. This means that models were training on flow data that represents typical demand 

behaviour during this time. These records predate the COVID-19 pandemic, which saw a 

widespread shift from in-office working to at-home working during lockdowns and left a 

legacy of normalised hybrid-working patterns. This is likely to have impacted water 

demand behaviours, and it would be expected that new patterns could be seen in typical 

daily water use. If more recent data is made available, it would be valuable to assess the 

differences between new and old datasets and to retrain the models on newer data. 

5.3.4.3 Sensors 

The methods proposed in this study assume a single type of sensor data, in this case flow 

data. While methods could be fairly easily adapted for different types of time series data, 

combining data from multiple sensor types into a single model would require further 

adaptation still. While water companies are overseeing the rollout of new sensor 

technologies such as acoustic loggers, it will be a long time before this extends to include 

all legacy infrastructure. During this transitional stage, with new technologies covering a 

limited area of the water network, there is a case for developing the methods used in this 

study to incorporate multiple sensor types with different extents of coverage.  

The type of sensor (flow) also limited selection of methods for this study. While flow 

sensors are widespread across the existing water network, ensuring the proposed methods 

can be implemented without the cost of widespread upgrades to the sensing network, flow 

data can be less precise than other methods, such as acoustic loggers, when it comes to 

detecting leakages. Flow data also cannot offer obvious insight into how far a burst has 
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occurred from the sensor, while the vibrations detected by acoustic loggers can change 

(depending on pipe properties) with distance from a burst. Pressure data may also have 

provided additional insight, but was not available for this study. Of the data provided, 

some flow data was incomplete, so techniques were needed for dealing with missing data.  

5.3.4.4 Background Leakage 

Existing methods in the field of leakage management often identify leakage by detecting a 

deviation from the ‘normal’ state. These methods therefore target new bursts, as opposed 

to background leakage. As data is not available for target or installation flow rates, this 

study is also limited to the identification of new bursts, neglecting background leakage. 

That is not to say that this study does not potentially capture some degree of background 

leakage in its leakage detection, as isolation forest may pick up outliers that are a result of 

slowly increasing flow rather than just sharp rises, but it is not the intent of this study to 

explicitly target background leakage. Indeed, any leakage that had begun before the start 

of the historical data used in this study and gone undetected is unlikely to be picked up by 

the methods used in this study. The methods to forecast leakage may be able to be 

adapted to incorporate background leakage, but would need additional data such as pipe 

parameters and significant repair data.  

5.3.4.5 Geography 

This study uses a case study of over 2,000 DMAs in a particular region of the UK, which are 

managed by a single water company. While the use of DMAs as a way of breaking down 

the water network into sections for leakage management is the standard across the UK, 

and has begun to spread to other countries, there are many places which use different 

methods. In areas with decentralised water management, there may be no established 

methods for dividing up the water network at a regional or national level. The ways in 

which subsections of a decentralised water network are managed are likely to vary 

significantly, as is the quantity, if any, and type of sensors used. Therefore, differences in 
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sensor types, regulations, and water management may limit the applications of this study 

to countries with a sufficient level of coverage.  

Even within the UK, it should not be assumed that water demand behaviour is 

homogenous. There are many factors that have the potential to influence water use 

patterns, including property information and population demographics. What is typical 

demand behaviour in the study area may well be different from other parts of the UK. If 

these methods were to be applied to another area of the UK, the models should be 

retrained on historical data provided by the relevant water company responsible for that 

area, so that the training samples are representative.  

Finally, demand behaviour within the study area may not necessarily be homogenous. 

While it may be sufficient to assume that DMAs exhibit similar enough flow characteristics 

that frameworks can be trained on data from numerous DMAs, there may be specific cases 

of DMAs with atypical characteristics. Should unusual results be present for a particular 

DMA, it could be worth looking at variables such as the property type (‘household’/’non-

household’) ratio to see if this offers a possible explanation for differences.  

5.3.5 FURTHER WORK 

The restoration process of this case study uses a simple methodology and further work 

might want to develop this part of the study to present a more sophisticated framework 

for the restoration process. The chosen methods would likely depend on access to data 

regarding the pipe network and repair assets, but genetic algorithms and reinforcement 

learning methods show good potential in this field [577] [573].  

The restoration component of this case study could also be expanded to include 

consideration of interdependencies with other infrastructure networks. For example, 

excavation to expose and repair a leaking pipe often causes road closures. If data from 
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transport networks could be accessed and incorporated into the model, multi-objective 

repair scheduling could include minimising road closures or road user disruption.  

This case study focuses on leakage management at the DMA level, based on the available 

data. However, provided more asset data is made available, the study could be extended 

to include a leakage localisation component within the DMA. This would further guide 

exploratory crews to the areas or pipe locations most likely to be responsible for the 

detected or forecasted leakage. Graph neural networks offer a lot of potential as a method 

for localisation in a network [605]. If data at the asset level is known, the study could also 

be extended to include a preventative maintenance database, which would dovetail with 

the anticipatory process to develop a targeted preventative maintenance strategy for pipe 

replacement based on future leakage probability.  

Finally, the characteristics of DMAs could be further analysed to explore the impact of 

variables such as ratio of ‘household’ to ‘non-household’ properties and building type 

(percentage of flats etc.) on water usage. Water companies keep some data on property 

usage, but many other variables can be found in publicly available datasets. Gaining a 

greater understanding of water usage based on DMA characteristics could facilitate even 

more accurate forecasting of flow and detection of leakage. There are additional benefits 

to this exploration, which could include identifying targeted strategies for demand 

reduction.  
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6 CONCLUSIONS 

6.1 SUMMARY 

The management of infrastructure systems must shift from a siloed approach to a system-

based approach in order to address the challenges of complexity. This research develops a 

self-healing framework for infrastructure system management, explores how AI techniques 

can facilitate such an approach in infrastructure, and demonstrates how a self-healing 

framework can be applied to the specific case study of leakage management in a water 

distribution system. This study presents the key considerations needed for infrastructure 

system operators to implement a self-healing approach, while the case study develops AI 

models to deliver self-healing processes that are of particular value to water supply and 

distribution companies and their contractors. 

 

6.2 CONTRIBUTIONS 

6.2.1 KNOWLEDGE  

The concept of self-healing systems [13] is adapted and extended for application to 

infrastructure systems. The first contribution to knowledge is the framework for self-

healing in infrastructure systems, which allows both new and existing techniques for 

infrastructure management to be mapped onto a system-based approach. This presents a 

flexible and simple tool to consider whether an infrastructure system is managed in such a 

way that each process of the self-healing framework is adequately addressed and whether 

data is able to flow between processes. Researchers might use this framework to consider 

which process their research is addressing, and how their solution might be adapted to 

complement or enable the other elements of the framework. Infrastructure system 

operators could use this framework to consider whether their management and data 
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handling processes sufficiently address the whole infrastructure system at a system level. 

They may also wish to map their existing management approaches onto the framework 

and consider factors such as modelling sophistication or levels of resilience for each 

process, in order to identify areas of focus for future strategy planning. 

This work goes beyond the conceptualisation of a self-healing framework to consider the 

types of method that may enable effective implementation of the framework in 

infrastructure systems. AI is identified as having significant potential in the realisation of 

self-healing infrastructure systems, and the use of specific AI methods within infrastructure 

is explored from a cross-cutting perspective.  

Machine learning methods are integrated into a case study that demonstrates the 

potential of such methods for a specific use case. By presenting the potential of AI for self-

healing infrastructure systems through increasingly specific stages, and considering the 

cross-sectoral purposes, this research contributes a funnel through which infrastructure 

operators can appreciate and understand the application of AI to their own systems. 

Traditionally, research that applies AI to infrastructure systems is focused very much on a 

technical level, and the emphasis can be on understanding and applying a very specific AI 

method. This means that operators are presented with a case for implementing the 

proposed method, rather than a case for making upgrades to their system and workforce 

to capitalise on the many benefits that increased digitalisation can provide for a whole 

suite of AI tools. This study aims to make the case for the latter, by showing the potential 

of AI across and within infrastructure sectors, for a variety of purposes, and finally for a 

specific case study.  

This research develops novel code which sees machine learning techniques utilised on 

time-series data. This code is specific to the case study in that it is designed for the purpose 

of leakage management processes and is set-up for the format of the case study dataset, 

but there are also elements of the code that are applicable to wider use cases. For 
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example, other time-series data could be forecast or classified using the developed 

models. The context of alternative use cases should always be considered in order to 

ensure best implementation, and suitable adjustment may need to be made. 

Another major contribution is the application of the self-healing framework to a case study 

of leakage management at the DMA level for a water distribution system in England. This 

case study allows specific methods for each of the self-healing processes to be 

investigated, with strong performance demonstrated on the large historical dataset. The 

framework of methods produced for this case study represents a mixed methods strategy 

to solve the practical problem of leakage in a water distribution system. This problem is a 

significant concern for water companies in the UK and the sector’s economic regulator 

Ofwat [606]. 

The use of real historical data for this case study shows the need to consider data 

formatting and data flows at the system level, which is addressed in this study by a 

comprehensive pre-processing stage. The flow sensor data used in the case study 

represents a common and widespread type of data in water distribution system 

monitoring, so it is hoped that the case study is relevant to other water companies 

operating in the UK and other areas with district-based water management. However, 

differences in data management and in system setup and monitoring could mean that the 

leakage management framework presented in the case study would require some degree 

of adaptation for other areas/companies.  

By considering a combination of both cutting-edge machine learning tools and more 

straightforward methods, the selected case study also presents a realistic approach to the 

upgrading of infrastructure system management, recognising that not all systems will be at 

a sufficient level of data maturity or have the operator skillset to implement the latest AI 

techniques for each process within the self-healing framework.  
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The case study presented in this research also makes several contributions specifically to 

the field of leakage management. The successful application of machine learning methods 

for a systems-based approach to leakage management is of value to water companies 

looking to improve their current leakage management strategies. Firstly, the framework 

demonstrates an ability to accurately forecast anomalous flow at the DMA level, rather 

than just the forecasting of usual (non-anomalous) flow. This offers a new anticipatory 

capacity to leakage management. Secondly, the detection process presents several 

contributions. The application of VAEs to flow data from a real water distribution system is 

novel, with less-widespread acoustic data provided by test-bed setups used in other 

studies applying AEs to leakage [554] [106]. This is significant when considering the 

operational feasibility of the proposed methods, because flow data is much more readily 

available in UK water distribution systems. That the VAE is able to capture the important 

characteristics of the flow data in the LVs suggests that dimensionality reduction of flow 

data is a valuable method for leakage detection. The use of a domain-informed loss term 

within the VAE loss function also represents a significant methodological contribution, and 

demonstrates the importance of considering application-specific factors in the 

development of machine learning models.  

6.2.2 POLICY 

This research has several implications for policy. The first is making the case for improved 

standards for the collection, storage, management, and sharing of data within and across 

infrastructure systems, and between academia and industry. Availability of data underpins 

the ability to develop models such as those applied to the case study of leakage 

management in this study. The value of demonstrating proposed techniques on historical 

or real-time data from real-world systems is significant and only then can the necessary 

pre-processing be developed in order to facilitate real-world implementation of the 

methods.  
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Furthermore, the limitations placed on consumer datasets must balance the need for 

privacy with the potential benefits to model development. For example, access to data on 

customer leakage reports would have offered a more precise insight into the relationship 

between anomalous flow and leakage in the case study presented in this research. 

Mechanisms should therefore by developed to facilitate the safe sharing of relevant 

information between customers, operators, and researchers.  

Beyond access, this study highlights the need to consider the formatting and management 

of data if truly systemic self-healing is to be achieved. While real-world sensor data is 

always likely to need some degree of pre-processing due to sensor errors and noise, the 

flow of data between the processes of the self-healing framework requires a consistent 

approach to data formatting across all operational processes. This is demonstrated in the 

case study presented in this study but is true for all infrastructure systems that are working 

towards systemic management approaches. At the operator level, this requires a 

standardised approach to data collection, data input, and database management, 

particularly when dealing with various data streams (e.g. flow data and repair data). 

However, at a regional or national level, this can require the standardisation of data within 

or even across infrastructure sectors in order to ensure that entire systems and their 

interdependencies can be modelled. This supports the need for initiatives such as the 

information management framework to support the UK’s national digital twin programme 

[607] and the UK government’s national data strategy [608].  

While this section has discussed various implications related to input data policy and 

management, it is also essential to consider the sharing of insights generated from AI-

based and systemic methods. The versatility of AI methods in infrastructure systems 

highlights the significant advantages of sharing insights across different sectors. 

Establishing expert working groups, organising industry workshops and conferences, and 

promoting multidisciplinary collaboration through academic journals or conferences can 
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facilitate this knowledge exchange. Traditional research has often been confined to specific 

domains, hindering progress towards fully self-healing systems and the achievement of 

net-zero goals. By fostering knowledge and insight sharing across sectors, infrastructure 

operators can learn from each other's experiences and mistakes, expediting the transition 

to more advanced, self-healing systems and promoting sustainable practices aligned with 

net-zero objectives.  

The findings of this work have significant policy implications for fostering digitalisation and 

enhancing workforce skills in the context of intelligent infrastructure systems. By 

highlighting the potential of AI for self-healing infrastructure systems and exploring the 

application of specific AI methods, this research provides a comprehensive perspective on 

the benefits of digitalisation. This goes beyond the technical aspects of the methods 

proposed to explore the value of infrastructure operators upgrading their systems and 

workforce to fully leverage the advantages of increased digitalisation. However, 

recognising that different sectors and systems are presently at different levels of maturity 

in digitalisation, data management, and data science capabilities, this study presents a 

flexible approach that allows individual processes to be substituted for more sophisticated 

methods when operators are at the required level. By demonstrating both advanced and 

simple data-driven models within a flexible self-healing framework, this research facilitates 

a gradual and feasible transition towards advanced AI-based methods while encouraging 

policymakers to prioritise investments in digital infrastructure and workforce development, 

recognising the transformative power of digital technologies in optimising infrastructure 

system management and improving overall efficiency and resilience. 

Finally, the results of the case study have implications for policy from a water sector 

perspective. Currently, leakage detection represents the bulk of industry approaches to 

leakage management [606]. This study supports the need for a shift towards a whole-

system approach to leakage management, demonstrating the value of a proactive element 



 

231 
 

[73]. Policy in this area should consider not only the leakage detection capabilities of water 

companies but also their ability to anticipate leakage and their prioritisation methods for 

repair scheduling.  

 

6.3 CLOSING THOUGHTS 

As our society continues to expand and urbanise, the complexity of our infrastructure 

systems is growing at an unprecedented pace. Urban populations are swelling, energy 

demands are surging, transportation networks are becoming increasingly intricate, and 

water systems designed a century ago are tasked with meeting the demand of millions. 

The traditional methods of managing these infrastructure systems are proving inadequate 

in handling the sheer scale and complexity of the challenges they face. 

Industry is beginning to recognise the value not just of investing in innovation but in 

mainstreaming digital technologies to modernise infrastructure systems. The tradition ‘find 

and fix’ method of tackling problems in infrastructure is being left behind in favour of a 

proactive approach that puts emphasis on predicting and preventing failures before they 

arise [609]. During this transition to a more intelligent and autonomous approach to 

infrastructure systems management, it is also accepted that new solutions, if they are to 

be implemented for current systems, should reflect the existing operational environment 

in their design [610]. By bridging the gap between theoretical advancements and practical 

implementation within the current operational context, this work aims to contribute not 

only to the academic understanding of the subject but also to provide real-world tools and 

strategies that can drive the transformation of our infrastructure systems into adaptive, 

resilient, and self-healing networks, ensuring a sustainable future.   
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APPENDIX A 

Below is a section of code that describes some elements (number of layers, number and 

distribution of nodes, random seed) of hyperparameter tuning for the VAE. Not shown 

here is the hyperparameter tuning involved in selecting minibatch size and activation 

function. With the different configurations and seed values, over 1,000 versions of the 

model were run. The final selection was based on the IA value, SVM accuracy, and visual 

clarity of the latent variable distribution. 

% This model is top be run on several computers at once, iteration values 
have been individually set for each machine 
for iter = 1:n 

% Select no of layers between five and twelve 
layers = randi([5 12]); 
% Set minimum number of nodes (prior to sampling layer) between 10 and 40 
Min_node = randi([10 40]); 
% Set maximum number of nodes (after input layer) between 50 and 90 
Max_node = randi([50 90]); 
% Take difference between max and min nodes and find the step difference 
in node values between layers (round to integer) 
n = Max_node-Min_node; 
step = round(n/(layers-3)); 
% Create Node value matrix 
Nodes = zeros(layers,1); 
% Input layer has node value equal to input size 
Nodes(1) = inputsize; 
% Populate Node value matrix 
for tt = 1:(layers-2) 
Nodes(tt+1) = Max_node - ((tt-1)*step); 
end 
% Note the final layer has four nodes for the sampling layer 
Nodes(end) = 4; 
nb = flip(Nodes); 
Nodes_NN = vertcat(Nodes,2,nb); 
 
% Build VAE nets 
[E_net, D_net, Nodes] = NN_funct(layers,Nodes_NN); 
nodes 

 

% For each configuration, run 20 different random seed values 
for k = 1:20 
    k 
    seed = randi(1000); 
 . . . 
% VAE and SVM code have been removed to focus on the hyperparameter 
components 
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% For each seed and configuration, loss values, SVM accuracy, and IA 
values are stored 
Datatable((iter-1)*20+k,1) = array2table(seed); 
Datatable((iter-1)*20+k,2) = array2table(height(Nodes_NN)); 
Datatable((iter-1)*20+k,3) = nodes; 
Datatable((iter-1)*20+k,4) = array2table(IAmean(1,(iter-1)*20+k)); 
Datatable((iter-1)*20+k,5) = array2table(IAmedian(1,(iter-1)*20+k)); 
Datatable((iter-1)*20+k,6) = array2table(IAstd(1,(iter-1)*20+k)); 
Datatable((iter-1)*20+k,7) = array2table(marginSVM(1,(iter-1)*20+k)); 
Datatable((iter-1)*20+k,8) = array2table(accuracySVM(1,(iter-1)*20+k)); 
Datatable((iter-1)*20+k,9) = array2table(epochsrun(1,(iter-1)*20+k)); 
Datatable((iter-1)*20+k,10) = array2table(lossvec(1)); 
Datatable((iter-1)*20+k,11) = array2table(lossvec(2)); 
Datatable((iter-1)*20+k,12) = array2table(lossvec(3)); 
 
end 
end 
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APPENDIX B 

This research used a two-dimensional LV distribution based on the trade-off of accuracy 

and interpretability (through visualisation). However, higher dimensional distributions 

were explored in the trial phase of developing the VAE model. The results for the selected 

VAE configuration with a sampling layer modified for 3LVs are presented in Figure 44 

below. For this case, a classification accuracy of 97.6% was achieved by the SVM (very close 

to the proposed 2 LVs; 98.2%). The index of agreement results are also observed to be very 

similar for both cases (though this is not the primary aim of this study, as the purpose is to 

classify the LVs rather than reconstruct the flow data). Furthermore, it is noted that 

interpretability of the LV space is impacted by the additional dimension. Employing more 

than two LVs in this context introduces intricacies that could prove challenging to explain 

to both users and the wider research community. Given the innovative nature of this 

approach, maintaining simplicity in presenting LVs is preferred to effectively showcase the 

method's utility and principles.  
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FIGURE 44: VAE RESULTS FOR 3 LVS IN 4 ANGLES 


