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Abstract  41 

 42 

Networks are a useful mathematical tool for capturing the complexity of the world. In a previous behavioral study, we 43 

showed that human adults (N=23, 16 females) were sensitive to the high-level network structure underlying auditory 44 

sequences, even when presented with incomplete information. Their performance was best explained by a 45 

mathematical model compatible with associative learning principles, based on the integration of the transition 46 

probabilities between adjacent and non-adjacent elements with a memory decay. In the present study, we explored 47 

the neural correlates of this hypothesis via magnetoencephalography (MEG). Participants passively listened to 48 

sequences of tones organized in a sparse community network structure comprising two communities. An early 49 

difference (~150 ms) was observed in the brain responses to tone transitions with similar transition probability but 50 

occurring either within or between communities. This result implies a rapid and automatic encoding of the sequence 51 

structure. Using time-resolved decoding, we estimated the duration and overlap of the representation of each tone. 52 

The decoding performance exhibited exponential decay, resulting in a significant overlap between the representations 53 

of successive tones. Based on this extended decay profile, we estimated a long-horizon associative learning novelty 54 

index for each transition and found a correlation of this measure with the MEG signal. Overall, our study sheds light on 55 

the neural mechanisms underlying human sensitivity to network structures and highlights the potential role of 56 

Hebbian-like mechanisms in supporting learning at various temporal scales. 57 

 58 

 59 

  60 

Significance statement 61 

 62 

We conducted a MEG study in which human adults were passively exposed to sequences of tones organized in a 63 

sparse community network structure. Despite the uniform transition probabilities between tones, participants' brain 64 

activity exhibited sensitivity to the network structure. Notably, a consistent “deviant” response was observed at ~150 65 

ms when the sequence switched between communities. A long-tail exponential decay in tone representation allowed 66 

overlapping representations of successive sequence elements, facilitating long-range associative mechanisms. This 67 

binding mechanism adequately accounted for various scales of sequence learning, bridging the gap between statistical 68 

and network learning approaches. 69 

70 
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Introduction 71 

Understanding the structure of the input sequences we encounter is fundamental for developing a comprehensive 72 

mental model of our environment (Dehaene et al., 2022, 2015). The capacity to detect first-order relationships between 73 

successive events (i.e., transition probabilities) and its limits have been extensively studied in humans at the behavioral 74 

and neural levels (Benjamin et al., 2021, 2023b, 2024; Fló et al., 2022; Henin et al., 2021; Maheu et al., 2019; Saffran et al., 75 

1996) as well as in non-humans animals (Boros et al., 2021; James et al., 2020; Toro and Trobalón, 2005).  Higher-order 76 

statistical relations between elements of a sequence are also detected by human adults and children (Karuza et al., 77 

2019, 2019; Lynn et al., 2020; Mark et al., 2020; Schapiro et al., 2013), but only a limited number of neuroimaging studies 78 

have explored possible neural correlates of this learning (Ren et al., 2022; Schapiro et al., 2016; Stiso et al., 2022). 79 

Therefore, we still do not know if a single mechanism can adequately explain both first order (local transitions) and 80 

network structure learning or if these computations require distinct cognitive and brain processes. 81 

To bridge the gap between local statistical and network-level learning studies, we previously proposed the sparse 82 

community paradigm, which allows to simultaneously characterize these aspects on auditory sequences (Benjamin et 83 

al., 2023a). Building upon the community paradigm introduced by Schapiro et al (2013), we created a network consisting 84 

of two densely but incompletely connected clusters (called communities) of six elements each. Each element is 85 

connected with four other elements, and the two clusters are linked by only two edges (links). A learning sequence is 86 

created by randomly drawing the next tone from the four possibilities, creating a random walk in the network with a 87 

uniform transition probability (TP) between successive tones (Movie 1A). After exposure to such a sequence, 88 

participants were asked to judge their familiarity with various pairs of tones that 1) had or had not been presented 89 

during learning to test local TP learning, and 2) did or did not belong to the same community to test learning of the 90 

higher-level structure (Benjamin et al., 2023a). Interestingly, participants judged new transitions they had never heard 91 

as highly familiar if they were between tones belonging to the same community. This completion effect demonstrated 92 

that they generalized the community structure to missing transitions. Conversely, they judged transitions between 93 

communities to be less familiar than within communities despite the absence of any difference in local transition 94 

probability during learning. This pruning effect translates into a decrease in subjective familiarity with tone pairs that 95 

switch from one community to the other despite similar transition probabilities between tones. Among the various 96 

models proposed in the statistical and network learning literature, an associative learning approach (the free energy 97 

minimization model - FEMM (Lynn et al., 2020)), conceptually related to the successor representation, provided the 98 

best fit to participants’ behavior. According to this model, participants did not solely compute adjacent transition 99 

probabilities but a linear sum of transition probabilities at all orders (adjacent, first-order non-adjacent, second-order 100 

non-adjacent and so on), weighted by a decreasing exponential factor. This model explains how both local transitions 101 

and network structures are perceived, and successfully accounts for behavioral results across different network types, 102 

including community, sparse community, ring, and lattice networks (Benjamin et al., 2023a; Lynn et al., 2020), as well as 103 

results concerning local statistical learning. FEMM appears to be a good candidate for a unifying framework of 104 

sequence learning.  105 

 106 

However, a common model is insufficient to postulate a common implementation (Marr, 1982) and there is still no 107 

consensus on how the brain implements these computations. On the one hand, sensitivity to network structure is 108 

often described as a conscious abstraction of the structure involving top-down attention processes with late brain 109 

signatures (Ren et al., 2022) typically in the prefrontal cortex (Stiso et al., 2022). On the other hand, we previously 110 

postulated that low-level associative learning (Benjamin et al., 2023a; see also Endress, 2010; Endress and Johnson, 2021; 111 

Schapiro et al., 2017) was sufficient for both local and higher-order learning. To disentangle those two hypotheses, we 112 

tested here whether passive exposure to a rapid auditory sequence could lead to successful learning of its network 113 

structure. We thus exposed participants to fast sequence of tones following the sparse community design while 114 

recording their brain activity with MEG.   115 
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 116 

Materials and methods 117 

Stimuli and procedure 118 

We generated twelve tones of 50ms duration, logarithmically distributed from 300 to 1800 Hz. For each participant, 119 

the twelve tones were randomly assigned to the twelve nodes of the sparse community network (see Movie 1 for a 120 

complete description of the network structure). The sparse community network comprised two communities (i.e., 121 

clusters) made of six nodes, densely connected to each other but poorly connected to the nodes of the other 122 

community. Crucially, in the sparse community design, some connections between nodes belonging to the same 123 

community are missing. Specifically, for each participant, we randomly removed twelve transitions (6 per community, 124 

one per node). After a training block with this incomplete graph, new transitions were added at a low frequency (4%) 125 

for the following test blocks. We refer to these transitions as New and those presented during training as Familiar. The 126 

New transitions were critically within and between the communities (which we refer to as Within vs Between). New 127 

Within corresponds to the twelve ‘missing’ transitions randomly removed from the network in the training block. To 128 

balance, we randomly selected 12 New Between transitions (one per node) that violated the community clustering 129 

property. As a result, the transition probabilities between tones during the training block were flat: TP = 25%, while 130 

during the test blocks, the Familiar transitions had TP = 23% and a frequency of 18.4/block. The 12 New Within and 12 131 

New Between community transitions had TP = 4% and a frequency of 3.2/block. The New Within and New Between 132 

transitions were randomly drawn for each subject to add variability to the network structure. Movie 1A shows an 133 

example of one structure and the associated sequence used for one participant.  134 

We then performed random walks in the participant’s sparse community graph to derive one 960 items-long training 135 

sequence and six 960 items-long test sequences (one sequence corresponds to one block) with 200ms inter stimulus 136 

interval (ISI) between each tone (Movie 1A). The first block of 960 items comprised only Familiar Within and Familiar 137 

Between transitions (training block, TP = 25% each). For the next six blocks (Test 1-6), we introduced infrequent New 138 

Within and New Between transitions (TP = 4% each). All Familiar transitions, independently of whether they were 139 

Within or Between communities, had the same TPs and appeared with the same frequency (TP = 23% each). However, 140 

the graph structure entails that the participants heard in total fewer between community transitions than within 141 

community transitions (there are 32 Familiar Within and 4 Familiar Between community transitions during training, 142 

completed by 12 New Within and 12 New Between community transitions during test). 143 

 144 

Crucially, the experiment was completely passive, and participants were unaware of the structure of the auditory 145 

sequence. They were only instructed to pay attention to the sequence of tones and to stay still while looking at a 146 

fixation cross displayed at the center of the screen to avoid noise from eye movements. The experiment lasted around 147 

45 minutes, and a small break inside the MEG was possible between each block.  148 

 149 

 150 

Participants 151 

29 healthy adults came to the lab and 23 recordings (16 females,  mean age = 26.58, sd = 6.1) were kept for the 152 

analyses (4 subjects were rejected due to MEG malfunction, 1 due to experimenter error during recording, and 1 scan 153 

was aborted due to subject agitation ). All participants gave written informed consent prior to enrollment and received 154 

90€ as compensation. This experiment was approved by the national ethical committee (CPP Ile-de-France III).  155 

 156 
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MEG recordings and preprocessing 157 

Participants performed the tasks while sitting inside an electromagnetically shielded room. The magnetic component 158 

of their brain activity was recorded with a 306-channel, whole-head MEG by Elekta Neuromag® (Helsinki, Finland). The 159 

MEG helmet is composed of 102 triplets, each comprising one magnetometer and two orthogonal planar 160 

gradiometers. Brain signal was acquired at a sampling rate of 1000 Hz with a hardware high-pass filter at 0.03Hz. The 161 

data were then resampled at 250Hz to reduce computational load. Eye movements were monitored with vertical and 162 

horizontal EOGs and heartbeats with ECGs. Subjects’ head position inside the helmet was measured for realignment at 163 

the beginning of each run with an isotrack Polhemus Inc. system from the location of four coils placed over the frontal 164 

and mastoids. 165 

MEG signal was then preprocessed using MNE python pipeline with classical steps following recommendations from 166 

(Jas et al., 2018; Niso et al., 2018). We first applied Maxfilter algorithm to remove ambient noise, and signal was band-167 

pass filtered ([0.1-30] Hz). Eye movements and heartbeats were identified and removed using PCA components’ 168 

correlation with EOG and ECG measures.  169 

To decode if a transition was within or between community, data was epoched from 100 ms before to 300ms after 170 

tone onset. To determine how sustained was the neural representation of each tone across time, we segmented the 171 

data in 2.6 seconds long epochs, from 100 ms before to 2500 ms after tone onset. Bad data, channels, and epochs 172 

were detected and removed with autoreject toolbox (Jas et al., 2017). 173 

 174 

Within vs Between Decoding analysis  175 

To examine whether the brain encoded the community structure, we trained a logistic regression decoder to predict 176 

whether the transition that just occurred stayed Within a community (Familiar Within and New Within) or switched 177 

Between communities (Familiar Between and New Between). The decoder was trained on the short epochs ([-0.1, 0.3]) 178 

slightly smoothed using a sliding window (± 20ms) to enhance the signal-to-noise ratio. We used 3 folds cross-179 

validation process: the decoder was trained on 2/3 of the data and tested on the remaining third of the trials. The 180 

procedure was repeated three times, corresponding to the 3 cross-validation folds. Each transition had the same 181 

frequency but Within transitions were more numerous than Between transitions, resulting in a larger total number of 182 

epochs for Within condition. We thus used the area under the ROC curve as a metric of success (ROC AUC) since it is 183 

not sensitive to such imbalance. This analysis was conducted for each time-point of the epochs (fig 1). We also 184 

computed the decoding performance when the decoder was trained at time t and tested at time t’, to reveal the 185 

generalization across time (GAT) of the decoder, and thus the stability of the mental representation (fig 1). By design, 186 

the diagonal of the GAT matrix corresponds to the previously described time-by-time decoding performance.  187 

To assess robustness, we replicated the decoding accuracy with a different metric, we performed a decoding analysis 188 

on the whole epoch at the subject level for training and testing. This decoder simultaneously used all time points 189 

across all recording channels, providing a single accuracy value for the entire epoch. Unlike time-by-time decoding, this 190 

approach can exploit the temporal dynamic of the signal to differentiate conditions. 191 

For the previous analysis, we pulled together the data from Familiar and New transitions. In a further analysis, we 192 

investigated whether the success of decoding the community remained possible when analyzing Familiar and New 193 

transitions separately. Therefore, we replicated the previous decoding analysis but limited it to Familiar transitions 194 

only, which had identical high local transition probabilities of 23% (Familiar Within Vs Familiar Between), or to New 195 

transitions only (New Within Vs New Between), which had a low transition probability of 4%. Note, however, that in 196 

this last case, the number of epochs was small, resulting in a low signal to noise ratio. 197 

 198 
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Statistical Analysis 199 

Statistical significance in the Generalization Across Time (GAT) matrix was assessed using a temporal-temporal cluster-200 

based permutation (MNE python (Gramfort et al., 2013)) for times between 0 and 300ms. For the time-by-time decoder, 201 

we performed a temporal cluster permutation test in [0, 300]ms time window. Note that these two statistical tests are 202 

not independent as the time-by-time decoding corresponds to the diagonal of the GAT Matrix. The whole epoch 203 

decoding gives a single decoding value per subject, we thus performed a one-way t-test across subjects to test 204 

whether the decoding performance was significantly above-chance. 205 

 206 

Long-horizon associative learning estimation and linear regression 207 

To assess the duration of the representation of a sequence item in the brain signals, we used epochs containing 10 208 

tones (2.5s). We trained a 12-class decoder (for the 12 tones) with balanced accuracy to decode the identity of the first 209 

tone of the epoch throughout the whole epoch. To ensure that we were decoding the sustained activity related to the 210 

first tone and not a subsequent repetition of the same tone, we removed from the analysis all epochs in which the first 211 

tone was repeated during the test window (~ 65 % of the epochs were removed, fig 3A). We averaged the above 212 

chance decoding performance over the time-windows (250ms), which corresponded to the interval between two 213 

consecutive items, to estimate the amount of superposition of the representations of the different elements of the 214 

sequence. We then estimated the long-horizon associative learning strength of the association for each pair (Â), which 215 

corresponds to the sum of the transition probability matrix between the tones at all orders (At), weighted by the 216 

overlap between item representations (fig 3B).  217 

We later used the associated novelty index, defined as the negative log of this association strength, as a regressor for 218 

the MEG signal during the short epochs corresponding to the different transition types (fig 3D). We performed spatio-219 

temporal cluster analysis on the beta value associated with this linear regression to extract electrodes and times 220 

where this long-horizon associative learning estimation might significantly explain the difference in activity across 221 

conditions. We also computed the average association strength of each type of transition (fig 3C).  222 

 223 

Results 224 

 225 

Our experiment aimed to identify the neural correlates of community structure encoding and evaluate if this learning 226 

stems from a low-level associative process or corresponds to a late and explicit discovery (Ren et al., 2022; Stiso et al., 227 

2022). To assess the encoding of the community structure, we first decoded Within vs Between transition type to 228 

characterize the temporal dynamics of the representation of each tone in the sequence in order to assess the 229 

possibility of overlapping representations that might allow long-distance associations. Based on this measured overlap, 230 

we could estimate the long-horizon associative familiarity for each transition. Finally, to determine whether this long-231 

horizon associative learning model was indeed a plausible hypothesis, we ran a linear regression between the 232 

predicted familiarity and our data.  233 

 234 

Decoding Within Vs Between community transitions 235 

We first tested whether participants’ mental model of the sequence encoded the community structure despite 236 

uniform transition probabilities. We thus trained and tested decoders on all tone epochs ending in a Within transition 237 

vs all tone epochs ending in a Between transition on all pairs (Familiar and New). We obtained a significant cluster 238 
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(p<0.05) in the GAT matrix accuracy. Temporal cluster analysis on the Time-by-Time decoding accuracy revealed a 239 

significant cluster between 90 and 250ms (p<0.001), peaking at 160ms. Finally, the epoch-based decoding was 240 

significantly above chance (p<0.01) (see fig 1 Within vs. Between).  241 

We then restricted this analysis to the Familiar transitions (Familiar Within vs. Familiar Between, which corresponds to 242 

92% of the epochs). Since Familiar Within and Familiar Between transitions have the same transition probabilities 243 

(0.23), a significant difference would then be due to a higher-order representation of the community structure. Here 244 

again, a significant cluster (p<0.01) was found in the GAT matrix. A temporal cluster between 80 and 280ms was found 245 

in the time-by-time decoding (p<0.001) with a peak at 150ms. Epoch-based decoding was also significantly above 246 

chance (p<0.001).  247 

Symmetrically, we restricted the analysis to New transitions only (New Within vs. New Between, which corresponds to 248 

8% of the epochs). By design, both New Within and New Between transitions had transition probabilities of 4% so 249 

learning only local transition probabilities would predict equal unfamiliarity with both types of transition. In line with 250 

the previous results, we found a significant temporal-temporal cluster in the generalization matrix (p<0.05), and a 251 

significant temporal cluster in the time-by-time decoding (p<0.05, significant time = [130, 170] ms, peaking at 160ms). 252 

Epoch based decoding was also significant (p<0.05). Due to the much smaller number of epochs, the results were 253 

noisier.  254 

We also computed the ERF on the gradiometers for the Familiar Within vs Familiar Between and New Within vs New 255 

Between contrasts on the [100-200]ms time-window to confirm the presence of the effect found with the decoding 256 

approach. The outcomes were qualitatively comparable: a significant effect around 150 ms for the Familiar Within vs. 257 

Familiar Between contrast (cluster-based permutations p<0.001), and a trend effect for the New Within vs. New 258 

Between contrast (cluster-based permutations p=0.075). In both cases, the topography of the difference was 259 

compatible with an auditory response. 260 

 261 

We performed a series of control analyses to eliminate putative low-level confounds, such as decoding success based 262 

on the identity of the current tone, the previous tone, or the pair of tones. To control for tone identity decoding, we 263 

ran the decoding analysis but restricted it to one of the four nodes at the border of a community (i.e., connected to a 264 

node of the other community, darker nodes in fig 2). Depending on the previous tone, these epochs could be either 265 

Familiar Within, Familiar Between, New Within, or New Between. Thus, decoding within vs between community 266 

transitions on those epochs cannot be driven by the tone identity. The same was done for epochs where the transition 267 

began with one of these four nodes (i.e., epochs where the previous node of the sequence was one of the nodes at the 268 

border of communities) to control for decoding the identity of the previous tone. We also controlled for the pair 269 

forming the transition (previous and current tone identity simultaneously): in a similar manner to the current tone 270 

control, we restricted the analysis to nodes at the borders of communities and also cross-validated the decoding on 271 

the previous tone identity. To do so, we trained and tested our decoder on different previous nodes (training on three 272 

previous nodes per community and testing on the three others, see batches in fig 2). This strategy was also used for 273 

the Familiar Within Vs Familiar Between Generalization Across Time matrix (GAT) decoder. By experimental design, 274 

New Within vs. New Between decoders were already balanced for current and previous tones (each node is attached 275 

to one transition of each type). Thus, we only controlled for the pair by using the cross-validation of the previous node 276 

with the same batches described above. Overall, the control analyses qualitatively and quantitatively confirmed 277 

previous results. Only the New Within vs. New Between control for pair (i.e. controlling both previous and current tone 278 

identity simultaneously) analysis did not reach significance, probably due to the small number of epochs in this 279 

analysis (only 8% of the data was used in this last control). 280 

 281 
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Within vs Between community transitions decoding could also rely on a habituation effect. Indeed, if the sequence 282 

remains within a community, a particular sound might be repeated multiple times within a short span, causing 283 

habituation. However, if the sequence shifts from one community to another, the same sound is less likely to be 284 

repeated in a short time, thus preventing habituation. Therefore, this differential habituation effect could drive the 285 

Within vs. Between decoder. To rule out this alternative hypothesis, we restricted the analysis to the first appearance 286 

of each tone after a community change. Thus, close repetitions of tones of the same community are avoided in the 287 

data used for this decoder. Despite a decrease in the number of epochs, the decoding accuracy of those controls was 288 

still significant for all conditions. All generalization matrices are shown in fig 2. 289 

 290 

Long-horizon associative learning estimation 291 

We tested here the hypothesis that long-horizon associative learning (associative learning over several consecutive 292 

and non-consecutive items) can support the encoding of network structure. This concept builds on Hebbs' principle of 293 

strengthening the link between co-occurring events. Nonetheless, instead of focusing solely on learning adjacent pairs, 294 

we proposed a broader approach that allows connections to be established over longer distances. In our experiment, 295 

this long-horizon associative learning implies that the mental representation of each tone is sustained for a sufficient 296 

duration to allow several tones to overlap (Endress, 2010) and thus enable associations through more successive tones. 297 

According to this model, it is predicted that the representation of each tone should decrease following an exponential 298 

profile. To test this hypothesis, we quantified the overlap between the representations of item n and item n+i. In fact, 299 

this provides a good estimator of the weight of the non-adjacent transition probability of order i.  300 

To estimate the overlap between brain representations of different items of the sequence, we determined how long 301 

the representation of each item was seen in brain activity. To do so, we split the data into 10-items long sequences 302 

(i.e. 2.5 seconds) with no repetition of the first tone in the sequence. We train a 12-class decoder on each time-point 303 

to predict the identity of the first tone. Decoding performance is shown in fig 3. We averaged the above chance 304 

decoding performance over the time-windows corresponding to the interval between two consecutive items. We 305 

observed an exponential-like decrease in performance that reached 0 after ~ 8 sequence items (fig 3A). It shows that 306 

the overlap enabling associative learning might thus include long-horizon dependencies of up to 8 items.  307 

We estimated the long-horizon associative learning strength of each pair of tones. To do so, we computed the sum of 308 

the different transitional probability orders weighted by the overlap between item representations as estimated from 309 

the decoding performances (fig 3B). This gave us a 12x12 symmetrical matrix of learning familiarity for each pair (fig 310 

3C). Finally, we averaged this measure of Familiarity for each condition type (fig 3C) and obtained a result that is 311 

consistent with the pruning effect (difference between Familiar Within vs Familiar Between transitions) and the 312 

completion effect (difference between New Within and New Between transitions) as discussed in (Benjamin et al., 313 
2023a). 314 

 315 

 316 

Long-horizon associative learning accounts for epoch variability  317 

To test the neural predictions of long-horizon associative learning, we correlated brain signals with the estimated 318 

associative learning strength of each transition (fig 3D). We performed a linear regression between the brain signal 319 

after each tone and the novelty effect produced by each transition. Unlike most studies of sequence learning, where 320 

the novelty is calculated solely from local transition probabilities, we computed it here as the negative log of the long-321 

horizon associative learning strength. This calculation takes into account several orders of adjacent and non-adjacent 322 

transition probabilities whose weights have been computed based on the overlap of brain representations estimated 323 

by our tone decoder (fig 3 A-D). A spatio-temporal cluster permutation test revealed a significant cluster (fig 3E) in the 324 
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magnetometers (right centro-occipital, time = [150 ; 290]  ms, pval < 0.01) that was replicated in the gradiometers 325 

(right centro-occipital, time = [140 ; 300] ms, pval < 0.05).  326 

Furthermore, the observed clusters were still significant when the negative log of the adjacent transition probabilities 327 

was introduced as a supplementary regressor  (ps < 0.05 for both magnetometers and gradiometers clusters). 328 

However, if the high correlation between the TP matrix and the long horizon-associative model makes it hard to 329 

directly disentangle those two models solely based on this regression analysis, it does nicely complement the decoding 330 

analyses. 331 

 332 

 333 

Discussion 334 

 335 

In this study, our aim was to determine whether local statistical learning and structure learning in sequences are 336 

governed by the same cognitive process or by distinct processes. Learning local statistics is often described as an 337 

associative process, while network learning is usually seen as an abstract map representation. Previous studies 338 

exploring network learning have used explicit paradigms, revealing late brain signatures consistent with top-down or 339 

frontal activity (Ren et al., 2022; Stiso et al., 2022). However, based on a modeling approach, we proposed in our 340 

previous behavioral study that low-level associative learning strategies might support both local and high-order 341 

statistical scales (Benjamin et al., 2023a). Thus, this hypothesis predicts that learning sequence structure does not 342 

require an explicit representation and may instead rely on automatic and rapid (~150ms) mismatch responses, similar 343 

to those observed after the violation of local transition probabilities. 344 

 345 

Network learning results from a low-level bottom-up computations 346 

To test these predictions, we presented participants with a passive learning task using rapid auditory sequences. We 347 

showed that the structure properties of the sequence were rapidly decodable from the participants’ brain recordings 348 

(~[100-250] ms after tone onset). The timing of this response, as early as 150ms after the information became 349 

available, aligns with the rapid deviant responses (MMN in EEG) observed in learning based on violation of transitional 350 

probabilities (Maheu et al., 2019; Todorovic and de Lange, 2012). Since the transition probabilities between tones were 351 

uniform and the walk within the network was random, prediction could not be based on high-level top-down 352 

expectation. This early and automatic response (150 ms after the transition) challenges the notion of abstract and 353 

explicit calculations as prerequisites for learning such structures. In addition, our analyses revealed a similar effect 354 

when the decoding analysis was restricted to new transitions (New Within Vs New Between) and to familiar transitions 355 

(Familiar Within Vs Familiar Between), suggesting an automatic generalization of the community structure beyond 356 

sensory evidence. This result provides a neural underpinning for the behavioral observations we previously reported, 357 

indicating that participants accurately assess the familiarity of transitions based on their congruence with network 358 

structure, even when these transitions were not encountered during training. 359 

 360 

Long-horizon associative learning as a plausible implementation for FEMM 361 

In our previous study, we hypothesized that the FEMM could effectively explain adult behavioral performance. This 362 

model aggregates the different orders of statistical regularities (adjacent and non-adjacent) into a single quantity. In 363 

this study, we showed that this model can be readily implemented through a simple associative learning mechanism 364 

JN
eurosci

 Acce
pted M

an
uscr

ipt



relying on Hebb's principle (Benjamin et al., 2023a; Hebb, 1949). In the context of structure learning, this principle would 365 

imply a sustained mental representation of each tone for a sufficient duration to enable the overlapping of several 366 

elements despite the temporal distance. We thus predicted the representation of each tone to exhibit an exponential 367 

decay profile. A rapid decay of tone information would limit associations to short distances, while a slower decay 368 

would facilitate the formation of long-horizon dependencies and, therefore, the extraction of the underlying structure. 369 

Thus, this exponential decay acts as a balance between local relevance and generalization.  370 

To test this idea, we estimated the duration of the representation of each tone, performing a decoding analysis of tone 371 

identity. The identity of a tone was decodable during the presentation of the subsequent eight tones, with a decoding 372 

performance exponentially decaying over subsequent tones. This profile provided an estimation of the number of 373 

elements simultaneously represented at a given time. Consequently, it allowed us to quantitatively assess the strength 374 

of each tone pair in the heard sequence (fig 3C). We found that these weights accurately accounted for the results of 375 

the Within vs. Between decoders, encompassing both Familiar and New transitions (Fig. 4D). Moreover, this estimated 376 

strength significantly correlated with neural activity, aligning with the timing of the automatic deviant response 377 

(Maheu et al., 2019; Todorovic and de Lange, 2012). This result provides compelling evidence for the rapid encoding of 378 

structure through bottom-up processes compatible with associative learning strategies.   379 

However, it is worth noting that an alternative implementation of the same metric is theoretically possible. Simple 380 

pairwise association learning, in combination with a transitivity property, would also predict similar learning. In fact, if 381 

participants solely learn pairs (e.g., A-C and C-D), transitivity of this learning can strengthen the A-D pair, even if not 382 

explicitly presented. Considering this transitivity with similar exponentially decreasing weights would be 383 

mathematically equivalent to our model while not strictly requiring a sequential presentation of the structure. 384 

Although, we cannot definitively rule out this alternative implementation of the same metric, our findings suggest that 385 

sequential presentation is crucial to have an overlap between successive items representations, enabeling Hebbian 386 

associative learning., It is also important to acknowledge that associative learning might not be the sole mechanism 387 

contributing to network structure learning, particularly in cases where explicit detection is required from participants. 388 

Abstract representations of hippocampal maps (Constantinescu et al., 2016) or frontal maps (Stiso et al., 2022) might also 389 

play a role in such tasks (Garvert et al., 2017; Schapiro et al., 2017, 2016). Intracranial recordings conducted during local 390 

statistical learning paradigms have revealed that multiple brain regions, including cortical areas and hippocampus, can 391 

simultaneously represent the same structure while carrying different information (Henin et al., 2021).  392 

 393 

 394 

Difference between implicit passive listening and explicit structure learning 395 

Thus, converging results provide evidence that associative learning supports the perception of the community 396 

structure in the present experiment. Long-horizon associative learning strength significantly accounted for the 397 

variance in brain signals (fig 3E). Moreover, the pruning and completion effects found with decoders (fig 1) can easily 398 

be explained by the same mechanism (see fig 3D). However, it is worth noting that the results from our previous 399 

behavioral study do not entirely align with the current ones. Specifically, in the present experiment, the representation 400 

of tones exhibited a more rapid decrease (exponential decrease factor 0.52) as compared to its estimation in our 401 

previous behavioral study (factor 0.058, about ten times lower). This discrepancy suggests that participants in the 402 

current experiment might be less inclined to generalize the underlying structure.  403 

Several factors might explain this difference. Firstly, the generalization factor estimation in the MEG experiment may 404 

be noisier due to the small number of participants (23 vs. several hundred in the behavioral study). Since the trade-off 405 

between generalization and accuracy may vary among individuals (Lynn et al., 2020), on one side group level estimation 406 

with 23 subjects is limited and on the other side at the individual level, it is difficult to measure this trade-off due to 407 

the data variability. A larger sample size with multiple sessions per subject would be necessary to obtain a reliable 408 

JN
eurosci

 Acce
pted M

an
uscr

ipt



estimation of the generalization factor at the individual level. Secondly, it is possible that associative learning 409 

represents the implicit component of this task (Andringa and Rebuschat, 2015), followed subsequently by an explicit 410 

decision-making process involving higher level prefrontal regions. This second step might facilitate the abstraction of 411 

the structure by labeling each community as distinct (Koechlin et al., 2003; Koechlin and Jubault, 2006). This dual process 412 

could explain why explicit behavioral tasks (Benjamin et al., 2023a; Lynn et al., 2020) exhibit a better generalization 413 

factor compared to our implicit MEG task. The same explanation may account for the late signatures of top-down 414 

activity reported by (Ren et al., 2022) who used a slow and explicit task. To further explore this hypothesis, a direct 415 

comparison of passive and active learning of such networks while monitoring the representations in the auditory 416 

cortex, the hippocampus, and the lateral prefrontal cortex would be necessary. 417 

 418 

 419 

Conclusion 420 

The aim of the present study was to uncover the neural mechanism underlying network learning. We proposed the 421 

sparse community paradigm as a way of combining local statistical learning and network learning in a single sequence. 422 

Previous behavioral studies have shown that a mathematical model (FEMM) accurately captures human learning. 423 

Here, we add that the behavioral pattern described by the FEMM is compatible with certain associative learning 424 

principles. Indeed, thanks to time-by-time decoding of the brain state associated with a tone, we observed an 425 

exponential decay in the tone representation across 8 elements. Using this estimate of mental representations’ 426 

dynamics, we estimated the strength of each network transition. This estimate significantly correlated with our data. 427 

The present study provides novel insights into the mechanism underlying network learning and highlights the 428 

importance of brain dynamics in the understanding of sequence learning. Further investigations in different 429 

experimental conditions (explicit vs implicit), over different tone and ISI durations, with different populations (non-430 

human primates), and during early development are necessary to better characterize this learning ability. 431 

 432 

 433 

 434 

 435 

 436 

  437 
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 516 

Figure captions 517 

 518 

 519 

Movie 1: Design and procedure. A) Example of a sparse community network for one participant. All community networks are similar in terms of 520 
properties, but New Within and New Between transitions are randomly drawn for each participant. Purple lines correspond to Familiar Within-521 
community transitions, red lines to Familiar Between community transitions, and blue and pink lines correspond respectively to New Within and 522 
New Between transitions. We can derive a sequence by performing a random walk into this network (click to see video of the design). Here we 523 
display an example of a test sequence derived from this structure. B) Experimental procedure. First, participants passively listened to a sequence 524 
from a sparse community network, in which each TP between tones was 25%  (Training). Then they were presented with six 960-items test blocks 525 
obtained from the community structure graph comprising New Within and Between community transitions with low transition probabilities of 4% 526 
(light blue and pink colors on the graph). C) Table summarizing the local and community properties for the transitions for each condition. Each 527 
single Familiar transition is, on average, presented 18.4 times/block (20 in the Training sequence) and, therefore, has a probability of 23% to be 528 
observed (25% in the training sequence) irrespectively of staying within or switching between communities. New transitions have a probability of 529 
4% in the test blocks, which implies that each single New Transition is heard 3.2 times/block on average.  530 

 531 

 532 

 533 

Figure 1 : Within vs. Between community decoders on the MEG signal. Top Panel: Decoders with all Within community epochs (Familiar & New) 534 
vs. all Between communities epochs (Familiar & New) transitions. A) Generalization Across Time (GAT) matrix with significant cluster delineated in 535 
black. B) Time-by-time decoding. The shaded area indicates a significant temporal cluster. C. Individual performances based on whole epoch 536 
decoding: Mean Decoding accuracy across subjects (green bar, one dot per subject, the black line represents standard error). Those three analyses 537 
have been replicated with Familiar only transitions (middle panel) and New only transitions (bottom panel). Community structure was encoded in 538 
each case despite the flat local transition probability. Stars represent significance of the statistical tests (* p<0.05, ** p<0.01, ***p<0.001).  539 

 540 

 541 

 542 

Figure 2 : Control analyses for the results presented in figure 2. For each decoder, we controlled for the current tone, the previous tone and the 543 
pair (both current and previous tone simultaneously). We also controlled for habituation due to temporal proximity between tones. All the 544 
analyses qualitatively and quantitatively confirmed previous results except the New Within vs. New Between control analysis that did not reach 545 
significance, probably because of the small number of epochs. 546 

 547 

 548 
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 549 

Figure 3: Associative learning estimation and fit on MEG data. A) Top: Decoding performance of the first item of the sequence across time (2.5s 550 
window). Shaded colors indicate the Stimulus Onset Asynchrony (SOA) between each tone of the sequence. The dotted line shows the chance 551 
level. Bottom: Decoding performance averaged over the duration of each tone and the following Inter Stimulus Interval (ISI). Error bars present 552 
the standard error across subjects. It takes ~8 items for the decoder of the first tone to converge to chance level. B) Matrix of exact transition 553 
probabilities (A) associated with the graph underlying the sequence. Familiar transitions are associated with 23% transition probabilities and New 554 
with 4% (movie 1). Impossible transitions have a null transition probability. C) Estimation of the long-horizon associative learning strength for 555 
each transition. Based on the decoder (panel A), we estimated the overlap between non adjacent elements of the sequence (average decoder 556 
accuracy during SOA of item n+i). We then computed the associative learning strength (Â matrix)  for each pair of elements as the sum of the 557 
different transitional probability orders (At), weighted by the overlap between item representations. D) Average of the long-horizon associative 558 
learning strength per condition. Pruning (Familiar Within > Familiar Between) and completion (New Within > New Between) effects are consistent 559 
with behavioral results (Benjamin et al., 2023a)) and with the decoding performance obtained in fig 1. E) Regression coefficient for the estimated 560 
long horizon associative novelty  561 
(-log(Â)) for each MEG sensor. Significant time-windows are shown in shaded areas and significant sensors are indicated on the t-map 562 
topographies by the white dots. These were obtained with a spatio-temporal cluster-based permutation analysis. The red line below the sensors 563 
value represents the time course of the average regression value on the sensors of the significant cluster. 564 

 565 
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