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Abstract
Previously, the authors proved that the presentation complex of a one-relator group
G satisfies a geometric condition called negative immersions if every two-generator,
one-relator subgroup of G is free. Here, we prove that one-relator groups with nega-
tive immersions are coherent, answering a question of Baumslag in this case. Other
strong constraints on the finitely generated subgroups also follow such as, for ex-
ample, the co-Hopf property. The main new theorem strengthens negative immer-
sions to uniform negative immersions, using a rationality theorem proved with linear-
programming techniques.

1 Introduction

Definition 1.1 (Coherence) A group G is said to be coherent if all its finitely gener-
ated subgroups are finitely presentable.

A notorious question of Baumslag [3, p. 76] asks whether every one-relator group
G = F/〈〈w〉〉 is coherent. It is a curious fact that the many known examples of one-
relator groups with pathological propertes — for instance, Baumslag–Solitar groups,
the Baumslag–Gersten group [2], or the recent examples of Gardam–Woodhouse [14]
— all have two generators. Our first theorem resolves Baumslag’s question, as long
as such subgroups are excluded.

Theorem A Let G = F/〈〈w〉〉 be a one-relator group. If every two-generator, one-
relator subgroup of G is free, then G is coherent.
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The case where G has torsion was proved independently by the authors [26] and
Wise [44]. Sapir and Spakulova showed that a generic one-relator group with at least
three generators is coherent [33].

The hypothesis of Theorem A — that every two-generator, one-relator subgroup is
free — appears on its face to be difficult to check. However, the results of [27] imply
that it is equivalent to other, more effective, conditions. The following theorem, which
follows from [27, Theorems 1.3 and 1.5], summarises these equivalences. (The rele-
vant definitions are explained below.) By convention, the relator w is always assumed
to be non-trivial.

Theorem 1.2 ([27]) Let G = F/〈〈w〉〉 be a one-relator group, and let X be the natural
presentation complex. The following conditions are equivalent:

(i) the primitivity rank π(w) > 2;
(ii) X has negative immersions;

(iii) every two-generator subgroup of G is free;
(iv) every two-generator, one-relator subgroup of G is free.

Since it is the briefest to state, if any of these hold we say that X or G has negative
immersions.

Remark 1.3 Puder’s primitivity rank π(w) is a positive integer (or infinite if w is a
basis element) [30]. We will not need its definition here, but we make the following
remarks.

(i) The primitivity rank π(w) can be computed algorithmically: see [27, Lemma
6.4] or [30, Appendix A] for algorithms, and see [9] for extensive computations.

(ii) Puder also showed that a generic word w in a free group of rank r has π(w) = r

[31, Corollary 8.3], so generic one-relator groups with more than two generators
have negative immersions. (A more refined result was later proved by Kapovich
[21].)

(iii) Combining [31, Corollary 8.3] with Theorems A and 1.2 recovers the result of
Sapir–Spakulova that random one-relator groups with at least three generators
are coherent. Instead of [31, Corollary 8.3], one can also appeal to the work
of Arzhantseva–Olshanskii, who proved that a random group with at least 3
generators is 2-free [1].

Condition (ii) of Theorem 1.2 is a geometric condition on the 2-complex X. An
immersion is a combinatorial map of 2-complexes that is locally injective. Roughly,
a 2-complex X has negative immersions if, for any finite, connected 2-complex Y

immersing into X, either

(i) χ(Y ) < 0, or
(ii) Y is homotopic to a graph.

See Definition 3.20 for a precise definition. As usual, χ(Y ) denotes the Euler charac-
teristic of Y . The negative immersions property is motivated by an analogy with the
concept of non-positive immersions, which is defined similarly but with (i) replaced
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by the inequality χ(Y ) ≤ 0. The presentation complex of any torsion-free one-relator
group has non-positive immersions [18, 25].

The proof of Theorem A leads to various other strong constraints on the subgroups
of one-relator groups with negative immersions. The next theorem summarises these.

Theorem B Let G = F/〈〈w〉〉 be a one-relator group with negative immersions.

(i) Every finitely generated, one-ended subgroup H of G is co-Hopfian, i.e. H is not
isomorphic to a proper subgroup of itself. In particular, if G itself is one-ended
then it is co-Hopfian.

(ii) For any integer r , there are only finitely many conjugacy classes of finitely gen-
erated, one-ended subgroups H of G such that the abelianisation of H has
rational rank at most r .

(iii) Every finitely generated non-cyclic subgroup H of G is large in the sense of
Pride, i.e. there is a subgroup H0 of finite index in H that surjects a non-abelian
free group.

In an earlier paper, the authors conjectured that every one-relator group G with
negative immersions is hyperbolic [27, Conjecture 1.9]. Theorem B proves various
consequences of this conjecture. Specifically, item (i) is consistent with Sela’s theo-
rem that one-ended hyperbolic groups are co-Hopfian [35, Theorem 4.4], while item
(ii) is a stronger version of a subgroup rigidity theorem of Gromov [15, 5.3.C’], Rips–
Sela [32, Theorem 7.1] and Delzant [12]. Note, however, that items (ii) and (iii) are
not implied simply by the fact that G is hyperbolic.

Recently, Linton has proved the authors’ conjecture [24, Theorem 8.2], making
use of Theorem B in his proof. Linton’s theorem is especially remarkable in light
of the recent discovery by Italiano–Martelli–Migliorini of higher-dimensional non-
hyperbolic groups of finite type that do not contain Baumslag–Solitar subgroups [22,
Corollary 3].

The main new technical ingredient in the proof of Theorem A is a uniform ver-
sion of negative immersions, which provides a negative upper bound for a normalised
version of the Euler characteristic. Roughly, a 2-complex X has uniform negative im-
mersions if there is ε > 0 such that for any finite, connected 2-complex Y immersing
into X, either

(i)

χ(Y )

#{2−cells ofY } ≤ −ε ,

or
(ii) Y can be simplified by a homotopy. (In the language developed below, Y is re-

ducible.)

The reader is referred to Definition 3.24 for a precise definition.

Remark 1.4 In Wise’s work on the coherence of one-relator groups with torsion [44]
(and also implicitly in the authors’ [26]), a key role is played by a property that Wise
also calls ‘negative immersions’, but that is closer in spirit to (indeed, stronger than)
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the notion of uniform negative immersions used here. See Sect. 3.4 for a comparison
between the notion of (uniform) negative immersions used in this paper and Wise’s
notion.

The main new technical ingredient towards the proof of Theorem A is the fol-
lowing result, which establishes uniform negative immersions for the 2-complexes of
interest to us.

Theorem C Let X be the presentation complex of a one-relator group. If X has neg-
ative immersions then it has uniform negative immersions.

The deduction of Theorem A from Theorem C is similar to [26] and [44], with an
additional lemma (Lemma 3.10) to account for the subtle nature of item (ii) in the
definition.

In the terminology of [40], Theorem C asserts that one-relator presentation com-
plexes with negative immersions have negative irreducible curvature.

Theorem C follows from a rationality theorem, Theorem 4.12, similar to those
that appear in Calegari’s proof of the rationality of stable commutator length in free
groups [7] and in the second author’s work on surface subgroups of graphs of free
groups [39].

The first idea is to expand the category of maps considered from immersions Y �
X to the more general class of face-essential maps f : Y → X. This class of maps
allows branching in the centres of the 2-cells, and thus each 2-cell C of Y comes
with a well-defined degree degC(f ). The degree of the map f is then the sum of
the degrees of the 2-cells of Y , and we adjust the relevant quantities to take it into
account. The role of Euler characteristic is taken by the total curvature

τ(Y ) := deg(f ) + χ(Y(1))

where χ(Y(1)) is the Euler characteristic of the 1-skeleton of Y , and the role of the
number of 2-cells is taken by the degree deg(f ). Note that, when f is an immersion,
these reduce to the usual quantities: τ(Y ) = χ(Y ), while deg(f ) is the number of
2-cells of Y . With these adjustments, the supremum of the quantity

τ(Y )

deg(f )

over all face-essential maps f : Y → X with Y irreducible can be computed as a
solution to a rational linear programming problem; this is the content of Theorem
4.12.

In particular, this supremum is in fact a maximum. The results of [27] then imply
that this maximum is strictly negative, so provides the uniform bound −ε needed to
prove Theorem C.

This proof provides no information about the value of ε, but we make the follow-
ing conjecture. A face-essential map of 2-complexes f : Y → X is called essential if,
for each component of Y , the induced map on 1-skeleta induces an injective homo-
morphism on fundamental groups.
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Conjecture 1.5 Let G = F/〈〈w〉〉 be a one-relator group and let X be the associated
presentation complex. The supremum of the quantity

τ(Y )

deg(f )

across all essential maps f from irreducible 2-complexes Y to X is equal to 2−π(w).

In an earlier version of this paper, we stated a stronger version of Conjecture 1.5
for the supremum across all face-essential maps. The next example shows that this
stronger conjecture is false.

Example 1.6 Let X be the presentation complex of

〈a, b, c, d | a4b2c2d2a3b2c2d2〉
and let Y be the presentation complex of

〈x, y, z | x2yzyxz〉 .

Write w for the relator of X and u for the relator of Y . The homomorphism of free
groups defined by

x, y �→ a , z �→ ab2c2d2

sends u to w and so, after subdividing the 1-skeleton of Y appropriately, defines
a combinatorial map of 2-complexes f : Y → X. Since this morphism sends the
single 2-cell of Y homeomorphically to the single 2-cell of X, f is face essential (see
Definition 2.18) and deg(f ) = 1. Furthermore, the Whitehead graph of Y consists of
two squares glued along an edge, so Y is (visibly) irreducible (see Definition 3.1).

However,

τ(Y )

deg(f )
= deg(f ) + χ(Y(1))

deg(f )
= −1 ,

while a calculation using Puder’s algorithm shows that π(w) = 4 [8]. Thus, f pro-
vides an example of a face-essential map from an irreducible 2-complex Y such that

τ(Y )

deg(f )
> 2 − π(w) .

In particular, the ‘essential’ hypothesis in Conjecture 1.5 cannot be relaxed to ‘face-
essential’.

Conjecture 1.5 has precursors in the literature. The following conjecture of Heuer
posits a surprising relationship between stable commutator length and Puder’s primi-
tivity rank [19, Conjecture 6.3.2]. (The same conjecture was made independently by
Hanany and Puder [17, Conjecture 1.14].)
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Conjecture 1.7 (Heuer’s conjecture) If w is a non-trivial element of the commutator
subgroup of a free group F then

2 scl(w) ≥ π(w) − 1 .

Conjecture 1.5 implies Heuer’s conjecture, and indeed Theorem 1.2, together with
Calegari’s rationality theorem for stable commutator length [7], unconditionally im-
plies a consequence of Heuer’s conjecture.

Corollary D If w is an element of the commutator subgroup of a free group F and
π(w) > 2 then

2 scl(w) > 1 .

For context, Duncan–Howie proved that scl(w) ≥ 1/2 for any non-trivial element
of [F,F ] [13]. The statement of Corollary D was noted by Heuer and Löh [20, Ques-
tion 1.3(4)], but we will give a complete proof in §3.5 below. The proof of Corollary
D and the deduction of Corollary 1.7 from Conjecture 1.5 both use Proposition 3.28,
which summarises an argument of Calegari [5, Lemma 2.7].

The paper is structured as follows. Section 2 is devoted to setting up the frame-
work in which we describe 2-complexes and maps between them. It is convenient to
work with pre-complexes, which describe pieces that can be glued together to form
complexes. Section 3 describes the notion of irreducible complexes that plays a cru-
cial role in our definitions, and enables us to define (uniform) negative immersions.
In Sect. 4, we set up the linear system needed to prove the rationality theorem, from
which Theorem C follows. The brief Sect. 5 explains why one-relator groups with
torsion also have uniform negative immersions. Finally, theorems about the subgroup
structure of the fundamental groups of 2-complexes with uniform negative immer-
sions are proved in Sect. 6, and Theorems A and B follow immediately.

2 Preliminaries

In this section, we give some foundational definitions in order to fix notation.

2.1 Graphs and pre-graphs

Graphs are our fundamental objects of study. A subgraph is always a closed subspace
in any of the standard combinatorial frameworks, but it is also convenient to discuss
open sub-objects of graphs. We therefore work with the slightly more general notion
of pre-graphs.

Definition 2.1 (Pre-graph) A pre-graph is a tuple

G = (VG,EG, ιG, τG) = (V ,E, ι, τ )

where:
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(i) V and E are sets (the vertices and edges of G, respectively);
(ii) Eι

G = Eι and Eτ
G = Eτ are subsets of E; and

(iii) ι : Eι → V and τ : Eτ → V are maps.

The subscripts will be suppressed only when there is no danger of confusion. A mor-
phism f from a pre-graph G to a pre-graph H consists of maps f : VG → VH and f :
EG → EH such that f (Eι

G) ⊆ Eι
H and f (Eτ

G) ⊆ Eτ
H , and such that ιH ◦ f = f ◦ ιG

and τH ◦ f = f ◦ τG.

The boundary of a pre-graph G is defined to be

∂G = E \ Eι ∩ Eτ .

Definition 2.2 (Graph) An (oriented) graph is a pre-graph with empty boundary.

The reader is referred to the classic paper of Stallings [36] for the standard theory
of the topology of graphs. Stallings phrases his arguments in terms of Serre graphs,
which differ slightly from the model of graphs we adopt here, but his arguments are
easily adapted to our context and we leave the details to the reader. Stallings does not
use pre-graphs, but again the theory is easy to adapt.

Definition 2.3 (Immersion) A morphism f : G → H of pre-graphs is an immersion
if, for all edges e and e′ of G, if α(e) = α(e′) for some α ∈ {ιG, τG} and f (e) = f (e′),
then e = e′. An immersion f : G → H of pre-graphs is closed if f (∂G) ⊆ ∂H .

The standard fiber product construction for graphs (see [36, 1.3]) also makes sense
for pre-graphs.

Definition 2.4 Consider a pair of morphisms of pre-graphs

fi : Gi → H

where i = 1,2. The fiber product G1 ×H G2 has vertex (respectively edge) set defined
to be the subset of VG1 × VG2 (respectively, EG1 × EG2 ) on which f1 and f2 agree.
The attaching maps are then defined in the natural way wherever they make sense.

This definition coincides with the standard definition whenever G1, G2 and H

are graphs. It enjoys various well-known properties, which are left as easy exercises:
it is a pullback in the category of pre-graphs, the pullback of an immersion is an
immersion, etc.

2.2 Complexes and pre-complexes

Our graphs will often be the 1-skeleta of 2-dimensional complexes, which can be
formalised as immersions from disjoint unions of circles to graphs, where the circles
correspond to the boundaries of the 2-cells (which we will always call faces). As
in the case of graphs, we will sometimes want to discuss open sub-objects, and we
therefore introduce pre-complexes. In this case, slightly more general pre-graphs can
arise as the boundaries of faces.
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Fig. 1 A pre-complex
(G,S,w): G is a theta graph
with two half-edges sticking off,
and S is the union of two open
arcs and one cycle. The map w

is a closed immersion, since it
maps ∂S to ∂G

Definition 2.5 A connected finite pre-graph is a pre-cycle if every vertex has exactly
two incident edges. A pre-cycle is a cycle if it has empty boundary, and is an open
arc otherwise.

We can now define a pre-complex using immersions of pre-cycles.

Definition 2.6 A (2-dimensional) pre-complex X is a tuple

(GX,SX,wX)

where

GX = (VX,EX, ιX, τX)

is a pre-graph, SX is a union of pre-cycles, and wX : SX � GX is a closed immersion.
The pre-graph GX is the 1-skeleton of X, SX is the collection of (pre-)faces of X and
wX is the attaching map. For brevity, we will suppress the subscript when there is no
danger of confusion.

A pre-complex X is a (2-dimensional) complex if the 1-skeleton GX is a graph.
Note that, in this case, every component of SX is a cycle.

See Figure 1 for an example of a pre-complex.
Graphs and complexes have natural topological realisations, which we denote here

with bold letters: the realisation of a graph G is a topological space denoted by G and
the realisation of a complex X is a topological space denoted by X. In both cases, a
morphism f functorially induces a continuous map of realisations f .

2.3 Asterisks and regular neighbourhoods

It is often fruitful to study graphs and 2-complexes via the local structure of vertices.
Pre-complexes provide a convenient framework for this.

Definition 2.7 An asterisk is a pre-graph with one vertex, such that E = Eι 
 Eτ .
If the 1-skeleton of a pre-complex X is an asterisk then X is called an asterisk pre-
complex.

Every vertex of a pre-graph or pre-complex now has a regular neighbourhood,
based on an asterisk.

Definition 2.8 Let G be a pre-graph and v be a vertex of G. The regular neighbour-
hood of v is an asterisk NG(v), with vertex set {v} and edge set ι−1(v) 
 τ−1(v).
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(Note that the disjoint union here is important: an edge e with ι(e) = τ(e) = v de-
fines two edges in NG(v).) The attaching maps are the unique maps ι−1(v) → {v}
and τ−1(v) → {v}

Now let X = (G,S,w) be a pre-complex and v be a vertex of X. The regular
neighbourhood N = NX(v) of v is a pre-complex with 1-skeleton GN = NG(v), i.e.
the regular neighbourhood of v in the 1-skeleton G. The faces of NX(v) are pulled
back from X, so SN = S ×G GN , and the attaching map wN is the pullback of w, i.e.
the natural projection SN → GN .

The regular neighbourhood of a vertex v carries the same information as the link or
Whitehead graph of the vertex. Indeed, any asterisk pre-complex defines a Whitehead
graph.

Definition 2.9 Let X = (G,S,w) be an asterisk pre-complex with unique vertex v.
The corresponding Whitehead graph has vertex-set equal to the edges of X and edge-
set equal to w−1(v). Each u ∈ w−1(v) is incident at exactly two edges ε+(v) and
ε−(v) of S, and the attaching maps of the Whitehead graph adjoin u to w(ε+(v)) and
w(ε−(v)).

For v a vertex of a complex X, the Whitehead graph of the regular neighbourhood
N(v) coincides with the Whitehead graph Wh(v) of [39]. This in turn generalises
the graph used by Whitehead in his solution to the orbit problem for automorphism
groups of free groups [38]. See also [10, 28] for related recent uses of Whitehead
graphs.

Edges of pre-complexes also have regular neighbourhoods.

Definition 2.10 Let X = (G,S,w) be a pre-complex and e be an edge of X. The
regular neighbourhood of e is a pre-complex N = NX(e) with 1-skeleton GN equal
to the pre-graph that has no vertices and a single edge {e}. The faces SN of NX(e)

consists of the pre-image w−1(e), and the attaching map w is the restriction of w to
SN .

Remark 2.11 A morphism of pre-complexes or pre-graphs induces morphisms on reg-
ular neighbourhoods: f∗ : N(x) → N(f (x)), for x a vertex or edge of the domain.

2.4 Various kinds of maps

Using regular neighbourhoods, we can define the various kinds of maps that will play
a role in the argument.

Definition 2.12 A morphism of pre-complexes f : X → Y is a branched map if the
induced map

f∗ : NX(e) → NX(f (e))

is injective for every edge e of X. If the induced map

f∗ : NX(v) → NX(f (v))

is injective for every vertex v of X then f is a branched immersion.
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Note that the realisation of a branched map of complexes f : X → Y is locally
injective everywhere except possibly at the centres of the faces and the vertices, and
a branched immersion is locally injective everywhere except possibly at the centres
of the faces.

The number of times that a morphism f winds a face around its image is an
important quantity, called the degree.

Definition 2.13 Let f : X → Y be a morphism of 2-complexes. Since f : SX → SY

is a local immersion it is a covering map; in particular, for every path-component
C ⊆ SX , the restriction f : C → SY has a well-defined degree degC(f ) ∈ N. The
sum

deg(f ) :=
∑

C∈π0(SX)

degC(f )

is the degree of f . If f is a branched immersion and degC(f ) = 1 for every compo-
nent C then f is called an immersion.

Remark 2.14 In [26], immersions were defined in the more general context of
orbicomplexes, which allow cone points in the centres of 2-cells. In this paper, we
only consider genuine 2-complexes, and the notion of immersions from [26] spe-
cialises exactly to the definition given in Definition 2.13.

Note that a morphism f is an immersion if and only if its realisation f is locally
injective. Sometimes we need to be able to modify the 1-skeleton of a 2-complex
without changing the faces. The next kind of map makes this possible.

Definition 2.15 A morphism of finite pre-complexes f : Y → X is called a face-
embedding if the map of pre-graphs f : SY → SX is injective, and a face-equivalence
if it is a bijection.

Remark 2.16 If f : X → Y is a face-embedding of complexes then the restriction of
f to the interiors of the two-cells of X is a homeomorphism onto its image, whence
the term. Furthermore, if f : X → Y and g : Y → Z are essential face embeddings,
then the composition g ◦ f : X → Z is an essential face embedding.

Stallings famously popularised the folding operation for graphs [36]. In [26, 27],
we made use of a folding operation on morphisms of 2-complexes that produces
immersions. Here we will make use of a very natural folding operation on morphisms
of 2-complexes that produces branched immersions.

Definition 2.17 Let f : Y → X be a morphism of pre-complexes. As in [36, §3.3],
the induced map of 1-skeleta f : GY → GX factors as

GY
f0→ GȲ

f1→ GX

where f0 is a π1-surjective finite composition of folds and f1 is an immersion. The
map of faces f : SY → SX factors through the fiber product GȲ ×GX

SX by the



Uniform negative immersions and the coherence of one-relator groups

universal property; set SȲ equal to its image, and let wȲ : SȲ → GȲ be the natural
projection. The data (GȲ , SȲ ,wȲ ) define a pre-complex Ȳ and f factors as

Y
f0→ Ȳ

f1→ X

where f0 is a π1-surjection and f1 is a branched immersion. The pre-complex Ȳ is
called the folded representative of Y , and the map f1 is called the folded represen-
tative of f . The folded representative is characterised by its universal property: if f

factors through a branched immersion Z → X then the folded representative f1 also
factors uniquely through Z → X.

This enables us to define the last kind of map that we will need.

Definition 2.18 A morphism of finite pre-complexes f : Y → X is called face essen-
tial if the map to the folded representative f0 : Y → Ȳ is a face-equivalence. If X and
Y are both complexes, this is equivalent to requiring that deg(f ) = deg(f1). If, in ad-
dition, the restriction of f to each connected component of Y induces a π1-injective
map on 1-skeleta, then f is said to be essential.

Intuitively, a face-essential map is a map such that folding doesn’t identify any
faces.

Remark 2.19 If Y → X is a face-essential morphism of finite complexes and Ȳ is the
folded representative of Y then χ(Ȳ ) ≥ χ(Y ), with equality if and only GY → GȲ is
a homotopy equivalence.

We will be interested in local ways of certifying that a morphism f is face-
essential. This turns out to be easier to do in a two-step process, encapsulated by
the notion of a face immersion.

Definition 2.20 A face immersion for a map f : Y → X is a factorisation

Y
f0→ Z

f1→ X

where f0 is a face-equivalence and f1 is a branched immersion.

For brevity of notation, we will often abuse notation and use the map f to denote
a face immersion for f . A face immersion certifies that f is face-essential, because
of the following lemma.

Lemma 2.21 Let f : Y → X be a morphism of finite 2-complexes. There is a face
immersion for f if and only if f is face-essential.

Proof If f is face essential then the factorisation through the folded representative Ȳ

defines a face immersion. Conversely, the existence of a face immersion implies that
f factors as

Y → Ȳ → Z → X
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by the universal property of the folded representative. Since SY → SȲ is surjective
and the bijection SY → SZ factors through it, it is also bijective, so Y → Ȳ is a face
equivalence and hence according to Definition 2.18 f is face essential. �

2.5 Gluing pre-complexes

One advantage of working with pre-complexes is that they can be conveniently glued
to create complexes.

Definition 2.22 Let f : X → Y be a branched map of pre-complexes. Suppose that
e1, e2 are edges of GX such that f (e1) = f (e2). Since f is a branched map, it induces
injective maps

f∗ : w−1
X (e1) → w−1

Y (f (e1))

and

f∗ : w−1
X (e2) → w−1

Y (f (e2)) .

The edges e1 and e2 of X are said to be gluable (along f ) if

(i) e1 /∈ Eι
X and e2 /∈ Eτ

X , and
(ii) f∗(w−1

X (e1)) = f∗(w−1
X (e2)).

In this case, f induces a well-defined bijection w−1
X (e1) → w−1

X (e2).
We can now define a new pre-complex X′ from X by identifying e1 and e2 to a

common edge e. Set ι(e) = ι(e2) (if it exists) and τ(e) = τ(e1) (if it exists). Each edge
w−1

X (e1) corresponds to a unique edge ε2 ∈ w−1
X (e2) under the above bijection, and in

X′ these two edges are identified to a common edge ε ∈ w−1
X′ (e), with ι(ε) = ι(ε2) (if

it exists) and τ(ε) = τ(ε1) (if it exists). Finally, note that f descends to a well-defined
branched map f : X′ → Y .

The resulting pre-complex X′ is said to be constructed from X by gluing e1 and
e2 (along f ).

Gluing can be used to reassemble a complex from the regular neighbourhoods of
its vertices.

Remark 2.23 Let X be a finite complex, and let N be the disjoint union of the regular
neighbourhoods of the vertices of X. Then N is naturally equipped with a branched
immersion N → X, and X can be reconstructed from N by gluing the edges in pairs.

3 Irreducible complexes

The properties of non-positive immersions, negative immersions and uniform neg-
ative immersions have a common theme. Given an immersion of finite 2-complexes
Y → X, if the Euler characteristic χ(Y ) is not negative enough, then Y can be simpli-
fied. The exact sense in which Y can be simplified is of crucial importance to the def-
inition of uniform negative immersions. In the next subsection we define irreducible
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Fig. 2 The central diagram illustrates the complex X from Example 3.7: the 1-skeleton is a barbell graph,
and the single face is attached along the illustrated immersed curve. It admits two different unfoldings,
whose realisations are tori

complexes, and with these definitions in hand we can give the correct definitions of
non-positive, negative and uniformly negative immersions.

3.1 Unfolding

We are interested in ways that a finite 2-dimensional complex X might be homotopic
to a point. The next definition summarises various ways in which X either is a point
or can be simplified.

Definition 3.1 (Visibly reducible and irreducible pre-complexes) A finite pre-
complex X is visibly reducible if any one of the following four conditions hold:

(i) some component of X is a point;
(ii) the 1-skeleton G has a vertex of valence 1;

(iii) X has a free face — that is, an edge e of the 1-skeleton G with #w−1(e) = 1;
(iv) a vertex v of X separates its regular neighbourhood NX(v), so NX(v) \ {v} is

disconnected.

A fifth kind of reduction also plays an important role:

(v) a vertex v of X has an incident edge e such that the union v ∪ e separates the
regular neighbourhood NX(v).

If none of conditions (i)-(v) hold then X is called visibly irreducible. If condition (v)
holds but none of conditions (i)-(iv) hold, then X is called unfold-able.1 See Fig. 2
for a concrete example of an unfold-able 2-complex.

If neither of conditions (i) or (ii) hold then the 1-skeleton of X is a core graph.
Recall that a graph is called core if every vertex is in the image of an immersed cycle.
Henceforth, we will always implicitly assume that the 1-skeleton of any 2-complex
we consider is a core graph.

The conditions of Definition 3.1 can also be phrased naturally in terms of White-
head graphs: see for instance [39, Lemma 2.10] for a similar list of conditions. Recall
from [36] that a morphism of graphs f : G → H is a fold if it identifies just a single
pair of edges e1, e2, incident at a common vertex.

1The hyphen is to resolve an ambiguity: we mean that such a pre-complex can be unfolded, not that it
cannot be folded.
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Definition 3.2 A fold of graphs is called essential if it is injective on fundamental
groups. A morphism of graphs f : G → H is called an essential equivalence if it is a
composition of essential folds, or equivalently, it is an isomorphism on fundamental
groups. A face-essential morphism of complexes f : Y → X is called an essential
equivalence if the map of 1-skeleta f : GY → GX is an essential equivalence of
graphs. In this case, we also say that Y is an essential unfolding of X.

Note that, if f : Y → X is an essential equivalence of complexes, then the realisa-
tion f is a homotopy equivalence.

The next lemma, which is a restatement of [39, Lemma 2.8] in the terminology of
this paper, explains the relationship between Definition 3.1(v) and (un)folding.

Lemma 3.3 If a finite complex X is unfold-able then there is a finite complex X′ and
an essential fold f : X′ → X.

Unfolding preserves the number of edges of the faces while increasing the number
of vertices and edges of the 1-skeleton, so it is not hard to see that Lemma 3.3 can only
be applied finitely many times before producing a complex which is either visibly
reducible or visibly irreducible. The next lemma is a restatement of [39, Lemma
2.11] in the terminology of this paper.

Lemma 3.4 For any finite complex X, there is a finite complex X′ and an essential
equivalence f : X′ → X such that X′ is either visibly reducible or visibly irreducible.

We say that X unfolds to X′. To summarise, unfold-able complexes may be either
reducible or irreducible, but their status can be determined by unfolding.

Definition 3.5 (Reducibility and irreducibility) If a finite 2-complex X unfolds to a
visibly reducible complex X′ (with the 1-skeleton still a core graph) then X is said
to be reducible. Likewise, if X unfolds to a visibly irreducible complex X′ then X is
said to be irreducible.

Note that an irreducible 2-complex is not required to be connected.

Remark 3.6 The terminology ‘irreducible’ has been used in several papers related to
this one, such as [25–27, 39]. Although the usage was always similar to its definition
given here, it was not always identical, so the reader is advised to check the definition
in the cited paper when a result is quoted.

It is not immediately obvious that a complex X cannot be both reducible and
irreducible, since X may admit many different unfoldings. Indeed, a 2-complex may
have several unfoldings, as the next example illustrates.

Example 3.7 Let X be a 2-complex defined as follows. The 1-skeleton of X is a ‘spec-
tacles’ or ‘bar-bell’ graph, with two vertices u1 and u2, and edges a1, a2, b, where
each ai is a loop starting and ending at ui , and b joins u1 to u2. The single face C
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of X is attached along the loop labelled by the commutator of a1 and ba2b
−1. Now

X admits two different unfoldings, each with realisation homeomorphic to the torus:
one is obtained by dividing u1 into two vertices, the other is obtained by dividing u2
into two vertices.

Many further examples of this type can be constructed by taking any cellular de-
composition X′ of a surface and performing an essential fold to obtain a complex X;
such an X can always be unfolded in two ways.

Nevertheless, a famous lemma of Whitehead [38] implies that (ir)reducibility is
equivalent to various group-theoretic properties of the conjugacy classes in the free
group F = π1(G) represented by the components of S. Combined with the material
of this section, Whitehead’s lemma (see, for instance, [39, Lemma 2.10] for a suitable
statement), gives the following proposition.

Proposition 3.8 Let X be a finite connected complex. Let F be the fundamental group
of the 1-skeleton GX , and let {w1, . . . ,wn} be a finite set of representatives for the
conjugacy classes of F determined by the components of S. The complex X is re-
ducible if and only if one of the following three conditions hold:

(i) F is trivial and n = 0;
(ii) F is infinite cyclic, n ≤ 1 and, if n = 1, F = 〈w1〉;

(iii) there is a non-trivial free splitting F = A ∗ B such that, for each i, wi is conju-
gate into either A or B .

Since the conditions of Proposition 3.8 are group-theoretic and are not altered by
homotopy-equivalences of the 1-skeleta (once we have ensured that they are core
graphs), it follows that every finite complex is either reducible or irreducible.

3.2 Irreducible cores

Since this notion of irreducibility is slightly stronger than those used in [25, 27],
we will need some lemmas that enable us to improve unfold-able complexes to irre-
ducible ones, under suitable hypotheses on the fundamental group.

Definition 3.9 A group 	 is freely decomposable if 	 splits as a non-trivial free prod-
uct 	 = A ∗ B . Otherwise 	 is said to be freely indecomposable.

A 2-complex X can be replaced by a visibly irreducible one, as long as the funda-
mental group is complicated enough.

Lemma 3.10 Let X be a finite, connected 2-complex, and suppose that π1(X) is nei-
ther freely decomposable nor free. Then there is a visibly irreducible 2-complex X′
and an essential face-embedding X′ → X, which is also an isomorphism on funda-
mental groups.

Proof The proof proceeds by induction on the number of faces of X. By Lemma 3.4,
there is an essential equivalence X′ → X such that X′ is either visibly reducible or



L. Louder, H. Wilton

visibly irreducible. If X′ is visibly irreducible the result is immediate; otherwise, X′
is visibly reducible. Since π1(X) ∼= π1(X

′) is non-trivial, X′ is not a point, and we
may assume that the 1-skeleton of X′ is a core graph.

If X′ has a free face, collapsing it exhibits a sub-complex X′′ ⊆ X′ which is a
deformation retract of X′ with fewer faces. Note also that the inclusion of X′′ into X′
is an essential face-embedding. Therefore, the result holds for X′′, and hence for X′,
by the inductive hypothesis.

Finally, suppose that X′ has a locally separating vertex v. Since π1(X
′) is freely

indecomposable and not infinite cyclic, v must be separating, and cutting X′ along v

realises X′ as a wedge

X′ = X1 ∨ X2 .

Note that the inclusion maps Xi ↪→ X′ are essential. Since every free splitting of
π1(X

′) is trivial, X2 is simply connected, without loss of generality. Since the 1-
skeleton of X′ is a core graph, X2 is not a tree, and must therefore include at least
one face. Hence X1 has fewer faces than X, and so the lemma holds for X1 by the
inductive hypothesis. Since X1 → X′ is an isomorphism on fundamental groups, the
result also holds for X, which completes the proof. �

As in Example 3.7, the complex X′ furnished by Lemma 3.10 may not be unique.
However, we can make it unique by folding.

Definition 3.11 Let X be finite, connected 2-complex with π1(X) neither freely de-
composable nor free. Let f : X′ → X be provided by Lemma 3.10, and let X̂ → X

be the immersion provided by folding f . Then X̂ is called an irreducible core for X.

Remark 3.12 Since X′ → X is essential, X′ is an essential unfolding of X̂. In particu-
lar, since X′ is visibly irreducible, it follows that X̂ is irreducible. Also, since X′ → X

is a π1-isomorphism and factors through the π1-surjection X′ → X̂, the immersion
X̂ → X is a π1-isomorphism.

We can also characterise irreducible cores group-theoretically. Let X = (GX,SX,

wX) be a compact, connected 2-complex. The fundamental group of the 1-skeleton
GX is a finitely generated free group F . The images of the circles SX under the
attaching map wX define a collection of conjugacy classes of cyclic subgroups
{〈w1〉, . . . , 〈wn〉} of F . Grushko’s theorem implies the existence of a maximal split-
ting

F = F1 ∗ · · · ∗ Fk ,

such that each wi is conjugate into some Fj . (If we combine the Fj that do not contain
any of the wi into a common free factor H , then this gives the relative Grushko
decomposition of the pair (F, {〈wi〉}).) If 	j is the quotient of Fj by the conjugates
of the wi contained in Fj , then this gives a natural free-product decomposition

	 = 	1 ∗ · · · ∗ 	k
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of 	 = π1(X). If 	 is neither freely decomposable nor free, then exactly one of these
factors – without loss of generality, 	1 – must be non-trivial. Now, X̂ can be defined
as follows: the 1-skeleton is the Stallings core of the subgroup F1 of F = π1(GX),
and the faces correspond to those wi that are conjugate into F1.

We shall see that irreducible cores enjoy a universal property. Before we prove
that, we need to notice that unfolds can be pulled back along branched immersions.

Lemma 3.13 Let Y → X be a branched immersion, and suppose that X′ → X is an
essential fold. Then there is an essential unfolding Y ′ → Y such that the composition
Y ′ → X factors through X′ → X.

Proof Such an unfolding of X means that there is an edge e with endpoints u and v

such that e and v together separate the regular neighbourhood NX(v), so it can be
written as a union

NX(v) = N1 ∪e∪v N2 .

Let v1, . . . , vn be the pre-images of v in Y and let ei be the pre-images of e incident
at vi , if it exists. For each i, NY (vi) embeds in NX(v), and so either NY (vi) maps
into one of N1 or N2, or NY (vi) is separated by ei ∪ vi . The unfolding Y ′ is now
constructed by unfolding each of these separating ei in turn. �

Using this, we can now prove the claimed universal property for irreducible cores.

Lemma 3.14 Let Y → X be a branched immersion of finite, connected 2-complexes
that is non-trivial on fundamental groups. Suppose that Y is irreducible and that
π1(X) is neither freely decomposable nor free, and let X̂ → X be an irreducible core
of X. Then the morphism Y → X factors through the map X̂ → X.

Proof Recall that the irreducible core X̂ is constructed by folding an inductively con-
structed morphism X′ → X. The lemma is proved by arguing that there is an essential
unfolding Y ′ → Y that lifts to X′.

Consider the inductive construction of X′ from Lemma 3.10, which is a finite
sequence of unfoldings and inclusions of sub-complexes. Lemma 3.13 handles the
case of unfoldings. It remains to deal with the two cases of the argument that pass to
subcomplexes of an unfolding X′ of X.

In the first case, X′ has a face C that is a free face, and X′′ ⊆ X′ is the subcomplex
obtained by collapsing that free face. Since Y ′ → X′ is a branched immersion, if
any face D of Y ′ maps to C then D is also a free face, so Y ′ is visibly reducible,
contradicting the hypothesis that Y is irreducible. Therefore C is not in the image of
Y ′, and so the map Y ′ → X′ restricts to X′′.

In the second case, X′ has a locally separating vertex and splits as a wedge X1 ∨X2
with X2 simply connected. Since Y ′ → X′ is a branched immersion and no vertex of
Y ′ is locally separating, it follows that the image of Y is contained entirely inside
either X1 or X2, and since Y ′ → X′ is non-trivial on fundamental groups, it must
be X1, as required. This completes the proof that Y unfolds to some Y ′ such that
Y ′ → X lifts to X′.
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To complete the proof, we fold Y ′ to construct a 2-complex Ŷ . Since X̂ → X and
Y → X are branched immersions, there is a well-defined fibre-product 2-complex
Y ×X X̂, with 1-skeleton equal to the fibre product of graphs GY ×GX

GX̂ and faces
given by pulling back the faces of Y and X̂. The universal property of the fibre product
now provides a canonical map Y ′ → Y ×X X̂, and Ŷ is the result of folding this map.
By construction, the natural map Ŷ → X factors through X̂.

Finally, since the identity map on Y is the folded representative of the map Y ′ →
Y , the universal property of folded representatives provides a canonical morphism
Y → Ŷ , and since Ŷ → X factors through X̂, the result follows. �

Remark 3.15 The universal property of Lemma 3.14 implies in the usual way that
irreducible cores are unique up to canonical isomorphism. We may therefore speak
of the irreducible core of a finite, connected 2-complex X, as long as π1(X) is neither
freely decomposable nor free.

Remark 3.16 The irreducible core of a connected 2-complex X can also be char-
acterised group-theoretically. Let F be the fundamental group of the 1-skeleton,
and let 〈w1〉, . . . , 〈wn〉 be the cyclic subgroups of F defined (up to conjugacy) by
the faces of X. The pair (F, {〈w1〉, . . . , 〈wm〉}) has a relative Grushko decompo-
sition F = F1 ∗ · · · ∗ Fn. Each wi is conjugate into a unique Fj(i) and so, af-
ter conjugating the wi , the pair (F, {〈wi〉}) decomposes as a free product of pairs
(Fk, {〈wi〉 | j (i) = k}). If π1(X) is neither freely decomposable nor free, then there
is a unique index k such that Fk/〈〈wi | j (i) = k〉〉 is neither freely decomposable nor
free. The 1-skeleton of the irreducible core X̂ is given by the core graph associated
to the subgroup Fk of F , and the 2-cells are given by the set {wi | j (i) = k}.

The results of this section guarantee that X has an irreducible core if it is neither
freely decomposable nor free. However, the converse is not true: X may be irre-
ducible, and yet π1(X) may be trivial, free, freely indecomposable etc. For instance,
the complex associated to the presentation

〈a, b | baba−2, abab−2〉
of the trivial group is irreducible.

3.3 Curvature conditions

With the definitions of irreducibility in hand, we can now define non-positive and
negative immersions. These definitions are inspired by Wise [41, 44], and similar
definitions have played a role in several recent papers about one-relator groups, such
as [18, 25, 27]. They are also naturally related to the work of Martínez-Pedroza and
Wise on sectional curvature for 2-complexes [29, 42, 43].

It turns out that Wise’s original definitions are too strong to prove Theorem A.
Here we will give slightly less restrictive definitions, using the notion of irreducible
complexes from the last section. See Sect. 3.4 below for a comparison between our
definitions and Wise’s. As usual, χ(X) denotes the Euler characteristic of a com-
plex X.



Uniform negative immersions and the coherence of one-relator groups

Definition 3.17 A finite 2-complex X has non-positive immersions if, for every im-
mersion of finite complexes Y � X, either

(i) χ(Y ) ≤ 0, or
(ii) Y is reducible.

The non-positive immersions property for presentation complexes of one-relator
groups was proved in [18] and [25].

The next definition is motivated by the observation that, if f : Y → X is an im-
mersion, then deg(f ) is equal to the number of faces of Y , and can be thought of as
a useful adaptation of Euler characteristic to the setting of branched maps.

Definition 3.18 Let f : Y → X be a branched map of 2-complexes, and let G be the
1-skeleton of Y . The quantity

τ(f ) := deg(f ) + χ(G)

is called the total curvature of f . We will usually abuse notation and write τ(Y ) for
τ(f ), since τ(f ) = χ(Y ) when f is an immersion.

Indeed, the techniques of both papers [18, 25] prove something slightly stronger
than non-positive immersions: the map can be taken to be a branched immersion, and
the complex Y is only required to not be visibly reducible. For instance, [25, Theorem
1.2] can be stated as follows, after accounting for small differences in terminology.

Theorem 3.19 Let X be the presentation complex of a torsion-free one-relator group.
If Y is a finite complex and Y → X is a branched immersion then either

(i) τ(Y ) ≤ 0, or
(ii) Y has a free face, and in particular is visibly reducible.

The definition of negative immersions is a natural adaptation of Definition 3.17.
Again, this definition assumes a slightly stronger notion of irreducibility than was
used in [27].

Definition 3.20 A finite 2-complex X has negative immersions if, for every immer-
sion of finite complexes Y → X, either

(i) χ(Y ) < 0, or
(ii) Y is reducible.

The property of negative immersions for one-relator groups was characterised in
[27], in which Theorem 1.2 was proved.

Remark 3.21 In [27, Definition 1.1], a 2-complex X is defined to have negative im-
mersions if, for every immersion of finite complexes Y → X, either χ(Y ) < 0 or Y

Nielsen reduces to a graph. To say that Y Nielsen reduces to a graph means that there
is a homotopy equivalence of 1-skeleta Y(1) � Z(1) so that the 2-complex Z obtained
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by attaching the 2-cells of Y to Z(1) in the natural way is the result of wedging discs
to a graph.

Let us briefly explain why Definition 3.20 agrees with [27, Definition 1.1]. To this
end, let Y → X be an immersion of finite 2-complexes, and assume that χ(Y ) ≥ 0.
If X satisfies [27, Definition 1.1] then Y Nielsen reduces to a graph, and then Y is
reducible by Proposition 3.8.

To prove the converse, assume that X satisfies Definition 3.20, and proceed by
induction on the number of 2-cells of Y . Since χ(Y ) ≥ 0, Y is reducible by assump-
tion, and Proposition 3.8 applies. Items (i) and (ii) of the proposition correspond to
the base cases of the induction where Y is a point, a circle or a disc. If item (iii) of
Proposition 3.8 applies, then Y unfolds to a 2-complex Y ′ with a locally separating
vertex v. Cutting along v yields a (possibly disconnected) new 2-complex Y ′

1, which
folds to a 2-complex Y1 immersing into Y with χ(Y1) = χ(Y ) + 1. Repeating this
process n times leads to a sequence of immersed 2-complexes

Yn → Yn−1 → ·· · → Y1 → Y

with χ(Yn) = χ(Y ) + n ≥ n, each with the same number of 2-cells as Y . Note that,
for each n, Y is Nielsen equivalent to the result of wedging Yn to a graph.

For large enough n, Yn must have a free face. Indeed, let m be the number of 2-
cells of Y and let l be their total edge length. Then, unless Yn has a free face, it has at
most l/2 edges and hence, since every vertex has valence at least 2, it has at most l/2
vertices, so χ(Yn) ≤ l/2 + m. Therefore, Yn must have a free face for n > l/2 + m,
as claimed. Collapsing a free face in such a Yn produces a new 2-complex Y ′ with
χ(Y ′) ≥ 0 and with fewer 2-cells than Y . Now Y ′ Nielsen reduces to a graph by
induction, and hence so does Y , as required.

Theorem 1.2 gives a useful statement, but the following more precise statement is
an immediate consequence of [27, Lemma 6.11], after noticing that the proof of that
result works equally well if immersions are replaced by branched immersions and χ

is replaced by τ .

Theorem 3.22 Let X be the presentation complex of a torsion-free one-relator group
G = F/〈〈w〉〉 with negative immersions. If Y is a finite complex and f : Y → X is a
branched immersion then either

(i) τ(Y ) < 0, or
(ii) Y is reducible.

Below, we will need the following improvement of this statement to the context of
face-essential maps,

Corollary 3.23 Let X be the presentation complex of a torsion-free one-relator group
G = F/〈〈w〉〉 with negative immersions. If Y is a finite complex and f : Y → X is a
face-essential map then either

(i) τ(Y ) < 0, or
(ii) Y is reducible.
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Proof Consider the folded representative

Y → Ȳ → X

so Ȳ → X is a branched immersion. Since Y → X is face essential,

τ(Y ) ≤ τ(Ȳ ) ,

because degf is equal to the degree of its folded representative, with equality if and
only if Y → Ȳ is an essential equivalence. Suppose now that τ(Y ) = 0, so τ(Ȳ ) ≥ 0.
There are two cases to consider: either τ(Ȳ ) = 0 or τ(Ȳ ) > 0.

In the first case, τ(Ȳ ) = 0 so Y → Ȳ is an essential equivalence. Theorem 3.22
then implies that Ȳ is reducible. Since reducibility is equivalent to the group-theoretic
criteria of Proposition 3.8, it follows that Y is also reducible, because Y → Ȳ is an
essential equivalence.

In the second case, τ(Ȳ ) > 0 so, by Theorem 3.19, Ȳ has a free face, whence Y

also has a free face, and so is visibly reducible. �

Finally, we are ready to give a definition of uniform negative immersions.

Definition 3.24 A finite 2-complex X has uniform negative immersions if there is
ε > 0 so that, for every immersion of finite complexes Y � X, either

(i)

χ(Y )

#{2−cells ofY } ≤ −ε ,

or
(ii) Y is reducible.

Theorem C asserts that presentation complexes of one-relator groups with negative
immersions also have uniform negative immersions.

3.4 Wise’s notion of negative immersions

We finish this section by contrasting Definition 3.24 with the following definition of
Wise.

Definition 3.25 A finite 2-complex X has negative immersions in the sense of Wise if
there is ε > 0 so that, for every immersion of finite complexes Y � X, either

(i)

χ(Y )

#{2−cells ofY } ≤ −ε ,

or
(ii) Y has a free face.
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In [44], Wise proves that every one-relator group with torsion G is coherent by
showing that a presentation complex for (some finite-index subgroup of) G satisfies
Definition 3.25, and then proving that this in turn implies coherence. The independent
proof given in [26] can also be viewed this way.

Clearly, negative immersions in the sense of Wise implies our notions of negative
immersions and uniform negative immersions. The following example shows that this
implication is not reversible [44].

Example 3.26 Let X be the 2-complex associated to the presentation G = F/〈〈w〉〉,
where F is the free group 〈a, b, c〉 and

w := ab2c2ab2c2b2c2 .

By setting a′ = ab2c2, this presentation can be seen to be Nielsen equivalent2 to

〈a′, b, c | (a′)2b2c2〉 ,

the standard presentation of the fundamental group of the surface of Euler character-
istic −1. In particular, G is 2-free and so X has negative immersions by Theorem 1.2,
and indeed uniform negative immersions by Theorem C.

We now define a compact 2-complex Y and an immersion to X. The 1-skeleton of
Y is a rose with two petals labelled α and β , and immerses into X via the assignment

f : α �→ a , β �→ b2c2 ,

while a single face is attached along the word u(α,β) = αβαβ2. Since f (u(α,β)) =
w(a,b, c), the immersion of 1-skeleta extends to an immersion Y � X. Clearly
χ(Y ) = 0, but since both α and β appear at least twice in u, Y has no free face.
Therefore, Y does not have negative immersions in the sense of Wise.

The immersion Y � X does not contradict our definitions of (uniform) negative
immersions (Definitions 3.20 and 3.24), since u is a primitive element of the free
group 〈α,β〉, and so the complex Y is reducible by Proposition 3.8.

Example 3.26 shows that one cannot prove Theorem A by showing that all such
complexes satisfy Definition 3.25. It also illustrates another important difference be-
tween the definitions: since the standard presentation complex for the surface of Euler
characteristic −1 does have negative immersions in the sense of Definition 3.25, that
notion is not invariant under Nielsen equivalence, whereas Definitions 3.20 and 3.24
are, by Remark 3.16.

3.5 Stable commutator length

Commutator length and its stabilisation provide natural quantifications of the com-
plexity of an element of a commutator subgroup. See Calegari’s monograph for a
comprehensive treatment of stable commutator length [6].

2Recall that two presentations are Nielsen equivalent if one is taken to the other by applying a free-group
automorphism to the generators.
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Definition 3.27 The commutator length of an element g of the commutator subgroup
of a group G is

cl(g) = min{n ∈N | g =
n∏

i=1

[xi, yi] , xi, yi ∈ G} ,

the minimal n such that g is a product of n commutators. The stable commutator
length is defined to be

scl(g) = inf
n∈N

cl(gn)

n
.

The purpose of this section is to prove Corollary D, and also to explain why Con-
jecture 1.5 implies Conjecture 1.7. Both follow from the next proposition, which is
due to Calegari [5, Lemma 2.7]. Nevertheless, in order to clarify how the argument
works in the setting of this paper, we give the proof here.

A 2-complex is called a surface if its realisation is homeomorphic to a closed,
2-dimensional surface.

Proposition 3.28 (Calegari) Let X be the presentation complex of a one-relator group
F/〈〈w〉〉 and suppose that w ∈ [F,F ]. There is an essential branched map from an
orientable surface f : �̂ → X such that

τ(�̂)

deg(f )
= 1 − 2 scl(w) .

Proof As above, the data of X consists of a map w : S � G, where G is the 1-
skeleton and w is the attaching map of the unique face. An admissible surface is a
commutative diagram of continuous maps of topological spaces

∂� �

S G
w

such that � is a compact surface without spherical components, ∂� → � is the
natural inclusion of the boundary and ∂� → S is an orientation-preserving covering
map. Calegari showed that

scl(w) ≤ − χ(�)

2 deg(∂�)
, (1)

where deg(∂�) denotes the degree of the covering map ∂� → S, for any admissible
surface [6, Proposition 2.10]. If equality is realised, so

scl(w) = − χ(�)

2 deg(∂�)
, (2)
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then � is said to be extremal. Calegari’s rationality theorem [7] (see also the account
in [6, Theorem 4.24]) asserts that an extremal surface � exists whenever w ∈ [F,F ].

A lemma of Culler [11] (which is also implicit in the proof of Calegari’s theorem)
implies that � has a spine �0 such that the map � → G factors as the composition of
a deformation retraction � → �0 with a morphism of graphs �0 → G. Let �̂ be the
closed surface obtained by gluing discs to the boundary components of �. Then �̂
naturally has the structure of a 2-complex �̂ with 1-skeleton �0, and the map � → G
extends to a morphism of 2-complexes f : �̂ → X.

The extremality equation (2) can be rearranged to give the required relationship
between total curvature and stable commutator length. Indeed, because the 1-skeleton
of �̂ is a deformation retract of �,

τ(f ) = deg(f ) + χ(�) = deg(f )(1 − 2 scl(w))

which gives the required equation.
It now remains to show that f is essential. This follows from a lemma of Calegari

[5, Lemma 2.7], which in turn relies on the subgroup separability of free groups,
proved by Marshall Hall Jr [23]. For completeness, we outline the proof.

Suppose that f is not π1-injective on some connected component of the 1-
skeleton. Then there is a homotopically essential closed curve γ on � such that f ◦γ

is homotopically trivial in G. Since π1(�) is subgroup separable there is, for some
finite d , a d-sheeted covering space �1 → � such that, after a homotopy, γ lifts to a
simple closed curve γ1 on �1. Let �2 be the result of surgery on �1 along γ1; that is,
�2 is constructed by cutting �1 along γ1 and gluing in two discs along the resulting
boundary components. Since γ1 maps to a null-homotopic curve in G, f extends to
a map �2 → G that makes �2 into an admissible surface. We now calculate:

− χ(�2)

2 deg(∂�2)
= − χ(�1) + 2

2 deg(∂�1)

< − χ(�1)

2 deg(∂�1)

= − dχ(�)

2d deg(∂�)

= scl(w)

contradicting (1). Hence, f is π1-injective on each connected component.
Now suppose that f is not face-essential. Then the map from �̂ to its folded

representative is not injective on faces, so there are distinct points x, y ∈ ∂� with the
same image in �0, the folded representative of the spine. Fix any path α in � from
x to y. The image of α in �0 is a loop and so, since the map � → �0 is surjective
on fundamental groups, we may concatenate α with a loop in � so that its image
in �0, and hence in G, is null-homotopic. That is to say, we may choose α so that
f ◦ α is a null-homotopic loop. Next, as above, modify α by a homotopy and pass to
a d-sheeted cover �1 → � so that α lifts to an embedded arc α1.

Let �2 be constructed by attaching an interval β1 to ∂�1 at the endpoints of α1
and thickening it to a 1-handle. The map f extends over this 1-handle and, after a ho-
motopy to ensure that ∂�2 → S is a covering map, this makes �2 into an admissible
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surface. Note that χ(�2) = χ(�1)−1 and deg(∂�2) = deg(∂�1). The concatenation
of α1 and β1 defines an embedded loop γ2 in �2 such that f ◦ γ2 is null-homotopic
so, as in the proof of π1-injectivity, we may perform surgery on γ2 to obtain a new
admissible surface �3. As before, we calculate:

− χ(�3)

2 deg(∂�3)
= − χ(�2) + 2

2 deg(∂�2)

= − χ(�1) + 1

2 deg(∂�1)

< − χ(�1)

2 deg(∂�1)

= − dχ(�)

2d deg(∂�)

= scl(w)

which, again, contradicts (1). Hence, f is face-essential as claimed. �

Corollary D now follows quickly from Corollary 3.23 and Proposition 3.28.

Proof of Corollary D By Theorem 1.2, the hypothesis that π(w) > 2 is equivalent
to the statement that X has negative immersions. Consider the face-essential map
�̂ → X provided by Proposition 3.28. Since �̂ is a closed surface each condition
of Definition 3.1 can be easily checked, and we see that �̂ is (visibly) irreducible.
Combining Corollary 3.23 and Proposition 3.28 then gives

1 − 2 scl(w) = τ(�̂)

deg(f )
< 0

as required. �

The proposition also immediately implies that Heuer’s conjecture follows from
our Conjecture 1.5.

Corollary 3.29 Conjecture 1.5 implies Conjecture 1.7.

Proof Let w ∈ [F,F ] be non-trivial and let X be the presentation complex of the
associated one-relator group F/〈〈w〉〉. Applying Conjecture 1.5 to the essential map
f : �̂ → X provided by Proposition 3.28 gives

1 − 2 scl(w) = τ(�̂)

deg(f )
≤ 2 − π(w)

which rearranges to give 2 scl(w) ≥ π(w) − 1, as required. �
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Fig. 3 An example of a vertex piece

4 A linear system

The principal extra ingredient in the proof of Theorem C is Theorem 4.12, a ratio-
nality theorem in the spirit of the main results of [7] and [39]. Fix a finite 2-complex
X. The idea is to encode face immersions from visibly irreducible complexes to X as
the integral points of a system of linear equations and inequations.

4.1 Vertex and edge pieces

Consider a face-essential morphism f : Y → X with Y visibly irreducible, and a face
immersion

Y
f0→ Z

f1→ X

for f . The variables of the linear system count the combinatorial types of the vertices
of Z and their preimages in Y . These are encoded as maps between (disjoint unions
of) asterisk pre-complexes.

Definition 4.1 A vertex piece P over a 2-complex X is a face immersion

Y(P ) → Z(P ) → X

where Y(P ) is visibly irreducible and Z(P ) is an asterisk pre-complex. (In particular,
Y(P ) is a disjoint union of asterisk pre-complexes.) Vertex pieces are considered up
to the natural notion of isomorphism: if there are isomorphisms of pre-complexes
Y(P ) → Y(Q) and Z(P ) → Z(Q) commuting with the maps Y(•) → Z(•) → X

then P and Q are isomorphic.

See Figure 3 for an example of a vertex piece.
For a 2-complex X, the set P = P(X) of isomorphism types of vertex pieces over

vertices of X indexes the variables of our linear system. It is of crucial importance
that there are only finitely many variables.

Lemma 4.2 If X is a finite complex then P is finite.
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Proof Every regular neighbourhood N(v) is finite. Since Z(P ) → NX(v) is a
branched immersion from an asterisk pre-complex it is injective, so there are only
finitely many possible combinatorial types for Z(P ) and the map to NX(v). Since
Y(P ) → Z(P ) is a face-equivalence, the cardinality of SY(P ) is also bounded. Fi-
nally, since Y(P ) is visibly irreducible, each edge and vertex of Y(P ) has at least
two pre-images in SY(P ), so the cardinality of GZ(P) is also bounded. So there are
at most boundedly many different possible isomorphism types for Y(P ), and hence
also only boundedly many possible maps Y(P ) → Z(P ). �

The vertex pieces will define the variables of our linear system. Edge pieces will
give the defining equations. An edge pre-complex is a pre-complex whose underlying
pre-graph consists of a single edge and no vertices.

Definition 4.3 An edge piece R over an edge e of a 2-complex X consists of a face
immersion

Y(R) → Z(R) → X

where Z(R) is an edge pre-complex. Again, edge pieces are considered up to the
natural notion of isomorphism.

Let E = E(X) denote the set of isomorphism types of edge pieces over edges of X.

4.2 Weight vectors

Fix a finite 2-complex X. Again, consider a face immersion

Y
f0→ Z

f1→ X

for a face-essential morphism f : Y → X with Y visibly irreducible. Although this
face immersion is our actual object of study, we will often abuse notation and just
denote it by f , or even Y .

Definition 4.4 Each vertex v of Z defines an induced vertex-piece P ≡ PY (v) over
f1(v) as follows:

(i) Z(P ) := NZ(v);
(ii) Y(P ) := ∐

f0(u)=v NY (u).

The morphisms Y(P ) → Z(P ) → X are the natural induced morphisms. Each edge
e of Z defines an induced edge-piece RY (e) in a similar manner.

We translate face immersions into linear algebra by counting the number of times
that each vertex-piece appears. This count naturally lives in the following vector
space.
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Definition 4.5 The space of weight vectors R[P] is the real vector space of formal
linear sums

v =
∑

P∈P
vP P

of vertex-pieces P ∈ P ; the elements of this vector space are called weight vectors.
We will also talk about the additive subgroups Q[P] and Z[P] consisting of rational
and integral points respectively.

There is a map that associates to the face immersion

Y
f0→ Z

f1→ X

from a visibly irreducible complex Y a weight vector:

v(Y ) :=
∑

y∈VZ

PY (y) ,

recalling that VZ is the set of vertices of the 1-skeleton of Z. Clearly, v(Y ) has non-
negative integral coordinates, and, in fact, the possible weight vectors are exactly the
points with non-negative integral coordinates that satisfy a certain system of linear
equations, called the gluing equations. These gluing equations make use of boundary
maps, which associate to each vertex piece the induced edge-pieces of the incident
vertices. Let R[E] be the real vector space of formal linear sums of edge pieces.

Definition 4.6 Recall from Definition 4.4 that, for any vertex piece

Y(P ) → Z(P ) → X

and any edge e of Z(P ), there is an induced edge piece RY(P )(e).
The boundary map ∂ι : R[P] →R[E] is defined by extending

∂ι(P ) :=
∑

e∈Eι
Z(P )

RY(P )(e)

linearly. Similarly, the assignment

∂τ(P ) :=
∑

e∈Eτ
Z(P )

RY(P )(e)

extends linearly to define the boundary map ∂τ : R[P] → R[E]. We then set

∂ := ∂ι − ∂τ .

A vector v ∈R[P] is said to satisfy the gluing equations if ∂(v) = 0.
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The domain of the optimisation problem of interest to us is the cone of non-
negative vectors that satisfy the gluing equations. To this end, set

R≥0[P] :=
{

∑

P∈P
vP P

∣∣∣∣∣vP ≥ 0 for all P

}
.

We are interested in the cone

C(R) := ker ∂ ∩R≥0[P] ,
and also in the sets of integer points C(Z) := C(R) ∩ Z[P] and of rational points
C(Q) := C(R) ∩ Q[P]. The key fact here is that the map to weight vectors surjects
the integer points of C(R). It is also finite-to-one, although we will not make use of
that here.

Proposition 4.7 Let X be a finite 2-complex. If Y is a finite, visibly irreducible com-
plex, Z is also a complex and

Y → Z → X

is a face immersion then v(Y ) ∈ C(Z). Conversely, if v ∈ C(Z) then there is a face
immersion from a finite visibly irreducible complex

Y → Z → X

such that v = v(Y ).

Proof Consider an edge piece R ∈ E over X. The R-coefficient of ∂ι(v(Y )) counts
the number of vertices z of Z for which there is an edge e with ι(e) = z such the
induced edge piece RY (e) is isomorphic to R. Since Z is a complex, such vertices
z are in bijection with such edges e, and so this coordinate is equal to the number
of edges e of Z such that RY (e) is isomorphic to R: notice that the latter quantity
does not mention ι. Similarly, the R-coefficient of ∂τ(v(Y )) also counts the number
of such edges e, and so ∂ι(v(Y )) = ∂τ(v(Y )). Therefore, v(Y ) ∈ C(Z) as claimed.

To prove surjectivity, consider an integral weight vector v ∈ C(Z), and define the
pre-complexes

Z′ :=
∐

P∈P

vP∐

iP =1

Z(P )

and

Y ′ :=
∐

P∈P

vP∐

iP =1

Y(P ) ,

noting that these come naturally equipped with maps to define a face immersion

Y ′ → Z′ → X

Furthermore, Y ′ is visibly irreducible by construction.
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The gluing equations imply that for each edge piece R there is a bijection be-
tween the set of edges e ∈ Eι

Z′ such that RY ′(e) = R and the set of e ∈ Eτ
Z′ such

that RY ′(e) = R. Therefore, we may choose a bijection F : Eι
Z′ → Eτ

Z′ such that
RY ′(F (e)) = RY ′(e). Inductively applying the gluing construction from Definition
2.22, Z′ can be glued up to a complex Z equipped with a branched immersion Z → X

and a branched map Y ′ → Z.
It remains to explain how to glue up Y ′ to create complex Y . For an edge e of Z,

let P(ι(e)) denote the piece used to construct the vertex ι(e) of Z, and let P(τ(e))

the piece used to construct the vertex τ(e) of Z. The pre-complexes Y(P (ι(ε))) and
Y(P (τ(ε))) each naturally induce partitions of w−1

Z (e), and by construction, these
two partitions are equal. Therefore, there is a bijection G : Eι

Y ′ → Eτ
Y ′ that respects

the map Y ′ → Z. Again, inductively applying the gluing construction from Definition
2.22, Y ′ can be glued up to a complex Y equipped with face-equivalence Y → Z. By
construction, Y is visibly irreducible. �

4.3 Degree and curvature

The final ingredient is to notice that, given a face-essential map f : Y → X, the total
curvature and the degree are both realised by linear functions on C(R).

Definition 4.8 Let lX(C) denote the number of vertices in each component C of SX .
Recall that a vertex-piece P ∈ P consists of a face immersion

Y(P ) → Z(P ) → X .

In particular, each vertex x of SY(P ) is sent to some component Cx of SX . The degree
map deg : R[P] → R is now given by linearly extending the assignment

deg(P ) :=
∑

x∈VSY(P )

1

lX(Cx)
.

The point of this definition is to extend the definition of the degree of a face-
essential map.

Lemma 4.9 If

Y → Z → X

is a face immersion for a face-essential map f : Y → X, then

deg(v(Y )) = deg(f ) .

Proof For any component C of SY , lY (C) = degC(f )lX(f (C)). Therefore,

deg(f ) =
∑

[C]∈π0(SY )

degC(f )
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=
∑

[C]∈π0(SY )

lY (C)

lX(f (C))

=
∑

[C]∈π0(SY )

∑

x∈VC

1

lX(f (C))

=
∑

x∈VSY

1

lX(Cx)

=
∑

P∈P

∑

PY (y)=P

deg(P )

= deg(v(Y ))

as required. �

A similar observation applies to the total curvature.

Definition 4.10 For a vertex-piece P ∈P , set

τ(P ) := deg(P ) + #VY(P ) − #EY(P )/2

and extend this to a linear function τ : R[P] →R.

Again, this extends the total curvature to a linear function on C(R).

Lemma 4.11 If

Y → Z → X

is a face immersion for a face-essential map f : Y → X, then τ(v(Y )) = τ(Y ).

Proof By definition, τ(Y ) = deg(f ) + χ(GY ), so it suffices to prove that

χ(GY ) =
∑

v∈VZ

(#VY(P (v)) − #EY(P (v))/2) .

Since VY(P (v)) bijects with the set of vertices of Y that map to v ∈ Z,

∑

v∈VZ

#VY(P (v)) = #VY .

Likewise, EY(P (v)) bijects with the set of edges of Y incident at a vertex mapping to
v, so

∑

v∈VZ

#EY(P (v)) = 2#EY .
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Therefore,
∑

v∈VZ

(#VY(P (v)) − #EY(P (v))/2) = #VY − #EY = χ(GY )

as required. �

The following rationality theorem now follows by standard optimisation tech-
niques.

Theorem 4.12 Let X be a finite 2-complex. There is a finite, visibly irreducible com-
plex Ymax and a face-essential map fmax : Ymax → X such that

τ(Ymax)

deg(fmax)
≥ τ(Y )

deg(f )

for all face-essential maps f : Y → X with Y finite and visibly irreducible.

Proof Consider the rational polyhedron

� := C(R) ∩ {deg(v) = 1} .

Every coordinate vector in R[P] has positive degree, and so

R≥0[P] ∩ {deg(v) = 1}
is a simplex. Hence, � is compact.

By the simplex algorithm, the linear map τ is maximised at some vertex vmax of �.
Since � is rationally defined, vmax ∈ C(Q), and so has some multiple umax ∈ C(Z).
By Proposition 4.7, umax = v(Ymax) for some face immersion

Ymax → Zmax → X ,

with Ymax finite and visibly irreducible. In particular, by Lemma 2.21, the morphism
fmax : Ymax → X is face-essential.

For any face-essential map f : Y → X, the factorisation through the folded repre-
sentative defines a face immersion

Y → Ȳ → X

by Lemma 2.21, so v(Y )/deg(f ) ∈ � and

τ(Ymax)

deg(fmax)
= τ(vmax) ≥ τ(Y )

deg(f )

as required. �

Combined with Corollary 3.23, we can complete the proof of Theorem C.
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Proof of Theorem C Let fmax : Ymax → X be the face-essential map provided by The-
orem 4.12, and set

ε := − τ(Ymax)

deg(fmax)
.

Since X has negative immersions and Ymax is visibly irreducible, Corollary 3.23 ap-
plies to show that τ(Ymax) < 0, whence ε > 0 as required.

Suppose now that Y0 is a finite, irreducible complex and that f0 : Y0 → X is an
immersion; in particular, τ(Y0) = χ(Y0) and deg(f ) is the number of faces of Y0.
By Lemma 3.4, Y0 unfolds to a finite, visibly irreducible 2-complex Y → Y0, and the
composition

f : Y → Y0
f0→ X

is face-essential. Therefore,

−ε ≥ τ(Y )

deg(f )

= τ(Y0)

deg(f0)

= χ(Y0)

#{2−cells ofY }
as required. �

5 The case with torsion

We shall see that Theorem C leads to strong constraints on the subgroup structure of
one-relator groups with negative immersions. As stated, it only applies to one-relator
groups without torsion. Baumslag’s coherence conjecture was proved in the case with
torsion independently by the authors [26] and Wise [44]. The purpose of this section
is to note that one-relator groups with torsion also fit into the framework of this paper.

The presentation complex of a one-relator group with torsion also has uniform
negative immersions, after passing to a finite-sheeted covering space.3

Theorem 5.1 Consider a one-relator group with torsion G = F/〈〈un〉〉, where n > 1.
There is a torsion-free subgroup G0 of finite index in G that is the fundamental group
of a finite 2-complex X0 with uniform negative immersions.

Proof By [26, Theorem 2.2], there is a torsion-free subgroup G0 of G that is the
fundamental group of a complex X0. As in the proof of [26, Theorem 2.2], X0 can
be obtained from the presentation complex X of G by passing to a finite-sheeted

3Alternatively, one might work with a presentation orbi-complex, which itself has uniform negative im-
mersions for maps from complexes.
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cover and collapsing duplicate faces. By [26, Corollary 3.1], any immersion Y � X0
satisfies

χ(Y ) + (n − 1)#{2−cells ofY } ≤ 0

as long as Y is finite and irreducible. Rearranging, we obtain that

χ(Y )

#{2−cells ofY } ≤ 1 − n < 0 ,

so X0 has uniform negative immersions as claimed. �

6 Uniform negative immersions and subgroups

In this section we complete the proof of Theorems A and B, by proving these proper-
ties for the fundamental group of any complex X with uniform negative immersions.
Our strategy is similar to the proof of coherence for one-relator groups with torsion
[26, 44]. There is, however, a small extra technicality, because we need to deal with
irreducible 2-complexes, rather than non-visibly-reducible 2-complexes; this extra
technicality is resolved by Lemmas 3.10 and 3.14.

Let G be a one-relator group with negative immersions, let X be its standard pre-
sentation complex, and let H be a finitely generated subgroup of G. The next lemma
is the key consequence of uniform negative immersions that we will make use of.
Two immersions of 2-complexes Y1 → X and Y2 → X are isomorphic if there is an
isomorphism of 2-complexes Y1 → Y2 such that the obvious diagram commutes.

Lemma 6.1 Let X be a finite 2-complex with uniform negative immersions. For any
integer r , there are only finitely many isomorphism classes of immersions Y → X

such that Y is finite, connected, irreducible, and b1(Y ) ≤ r (where b1(Y ) denotes the
first Betti number of Y ).

Proof Consider such an immersion Y � X. Rearranging the defining inequality of
uniform negative immersions, we have that

#{2−cells ofY } ≤ −χ(Y )

ε
.

But

χ(Y ) ≥ 1 − b1(Y ) ≥ 1 − r

since Y is a 2-complex, so #{2−cells ofY } ≤ (r − 1)/ε. Thus, there is a uniform
bound on the number of faces of Y . Because Y is irreducible, every vertex or edge of
Y is incident at a face. Since Y � X is an immersion, there is a bound on the number
of faces at which each vertex and edge of Y are incident, so the bound on the number
of faces implies bounds on the numbers of vertices and edges. Therefore, there are
only finitely many possible combinatorial types for Y , and also for immersions Y �
X. �
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Note that Lemma 6.1 fails for 2-complexes with non-positive immersions. For
instance, the torus has infinitely many non-isomorphic finite-sheeted covering spaces,
all with fundamental groups generated by 2 elements.

Now consider a finitely generated subgroup H of G = π1(X). By Grushko’s the-
orem, we may assume that H is freely indecomposable. The next lemma is very
similar to [26, Lemma 4.2]; however, the reader should beware that the definition of
irreducible complex used here is more restrictive than the definition in [26].

Lemma 6.2 Let X be a 2-complex, G = π1(X), and H ≤ G a finitely generated, non-
cyclic, freely indecomposable subgroup. After replacing H by a conjugate, there is a
sequence of π1-surjective immersions of compact, connected 2-complexes

Y0 � Y1 � Y2 � · · · � Yi � · · ·X
with the following properties:

(i) each Yi is irreducible;
(ii) H = lim−→π1Yi .

Because of the stronger notion of irreducibility used in this paper, the proof of
Lemma 6.2 requires one extra ingredient: the irreducible core of Lemma 3.10. With
this in hand, the proof of Lemma 6.2 is very similar to the proof of [26, Lemma 4.3].

Proof of Lemma 6.2 [26, Lemma 4.3] (see also Remark 2.14) provides a sequence of
π1-surjective immersions of 2–complexes

Zi → Zi+1
fi+1→ X

such that H = lim−→π1Zi . It remains to improve this to make the terms irreducible.
Since H is non-cyclic, no Zi has cyclic fundamental group. By Scott’s lemma

(proved with extra hypotheses as [34, Lemma 2.2], proved as [37, Theorem 2.1]),
since H is freely indecomposable, after throwing away finitely many terms from the
sequence we may assume that each π1(Zi) is freely indecomposable.

Applying Lemmas 3.10 and 3.14 inductively constructs a second sequence

Y0 Y1 Y2 · · · Yi · · ·

Z0 Z1 Z2 · · · Zi · · · X

where each Yi is the irreducible core Ẑi of Zi . Now choose a basepoint in Y0, if
necessary moving the basepoints of the Zi — this may involve conjugating H . The
result now follows. �

The next theorem, which is an easy consequence of Lemmas 6.1 and 6.2, will
imply Theorem A. Its proof is an elaboration of the arguments of [26] or [44].
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Theorem 6.3 Let X be a finite 2-complex with uniform negative immersions, and let
G = π1(X). For any finitely generated, non-cyclic, freely indecomposable subgroup
H of G, there is an immersion from a finite, irreducible 2-complex Y to X such that
π1(Y ) ∼= H and Y � X induces the inclusion of H into G up to conjugacy.

Proof After possibly conjugating H , Lemma 6.2 provides a sequence of π1-surjective
immersions of compact, connected, irreducible complexes

Y0 � Y1 � Y2 � · · · � Yi � · · ·X
such that H = lim−→π1Yi . Since the maps Yi → Yi+1 are surjective on fundamental
groups, there is a uniform bound

b1(Y0) ≥ b1(Yi)

on the first Betti numbers. Therefore, by Lemma 6.1, infinitely many of the immer-
sions Yi � X are isomorphic, so passing to a subsequence we may assume that they
are all equal to a fixed immersion Y � X. By [42, Lemma 6.3], each immersion
Yi � Yi+1 is an isomorphism. In particular, since H = lim−→π1(Yi), every Y → X

represents H , as required. �

Coherence is an immediate consequence.

Corollary 6.4 If X is a finite 2-complex with uniformly negative immersions then
π1(X) is coherent.

Proof Let H be a finitely generated subgroup of G. By Grushko’s theorem, H can be
written as a free product

H = F ∗ H1 . . . ∗ Hn

where F is free and each Hi is freely indecomposable. Each factor Hi is finitely
presented by Theorem 6.3, so the result follows. �

Theorem A now follows quickly.

Proof of Theorem A The theorem follows by combining Theorems 1.2 and C with
Corollary 6.4. �

Likewise, the conclusions of Theorem B also hold for all complexes with uniform
negative immersions.

Theorem 6.5 Let X be a finite 2-complex with uniform negative immersions, and let
G = π1(X).

(i) Every finitely generated one-ended subgroup H of G is co-Hopfian, i.e. H is not
isomorphic to a proper subgroup of itself. In particular, G itself is co-Hopfian.
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(ii) For any integer r , there are only finitely many conjugacy classes of finitely gener-
ated one-ended subgroups H of G such that the abelianisation of H has rational
rank at most r .

(iii) Every finitely generated non-cyclic subgroup H of G is large in the sense of
Pride, i.e. there is a subgroup H0 of finite index in H that surjects a non-abelian
free group.

Proof Let H be a non-cyclic, finitely generated subgroup of G.
To prove item (i), assume that H is freely indecomposable, so is realised up to

conjugacy by an immersion Y = Y0 � X, by Theorem 6.3. Given any injective ho-
momorphism H → H , applying Theorem 6.3 inductively gives rise to a sequence of
immersions of finite, connected, irreducible complexes

. . . � Yi � . . . � Y1 � Y0 � X ,

where π1(Yi) ∼= H for all i. By Lemma 6.1, there are finitely many isomorphism
classes of complexes Yi so, passing to a subsequence, we may assume that Yi =
Y for some fixed Y and all n. Since Y is compact, every immersion Y � Y is an
isomorphism [42, Lemma 6.3], so the homomorphism H → H is also surjective, as
required.

Item (ii) is an immediate consequence of Theorem 6.3 and Lemma 6.1.
Finally, to prove item (iii), start by assuming that H is freely indecomposable.

By Theorem 6.3, up to conjugacy, the inclusion of H into G is induced by an im-
mersion Y � X, where Y is a finite, connected, irreducible 2-complex. By negative
immersions, χ(Y ) ≤ −1. A choice of maximal tree in the 1-skeleton of Y leads to a
presentation for H with m generators and n relators, where χ(Y ) = 1 −m+n, so the
deficiency of this presentation is

m − n = 1 − χ(Y ) ≥ 2 .

Therefore, by the Baumslag–Pride theorem [4], H is large, as required. For general
H , consider the Grushko decomposition

H = F ∗ H1 ∗ · · · ∗ Hk

where F is free and each Hi is non-cyclic and freely indecomposable. Since the
factors Hi are all large, it follows that H is large unless H is cyclic. �

Theorem B follows immediately from Theorems C and 6.5.
We close by noting that Lemma 6.1 above can be made somewhat effective.

Proposition 6.6 Let X be the presentation complex of a one-relator group G =
F/〈〈w〉〉 with negative immersions. There is an algorithm that takes w as input and
outputs a constant C = C(w) such that every one-ended subgroup generated H of G

with abelianisation of rational rank at most r is represented by an immersion Y � X

with at most C(r − 1) 2-cells.
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Proof Theorem C asserts that X has uniform negative immersions, meaning that there
is an ε > 0 such that

χ(Y )

#{2−cells ofY } ≤ −ε ,

for every irreducible Y immersing into X. The constant ε is an extremal value of
the linear-programming problem used in the proof of Theorem 4.12. This linear-
programming problem is explicitly defined in terms of X, so ε can be computed from
the data of X. The proof of Lemma 6.1 now shows that the number of 2-cells of Y is
at most (r − 1)/ε, so we may take C = 1/ε. �

Note that Proposition 6.6 does not immediately imply that there is an algorithm
to compute presentations for finitely generated subgroups of one-relator groups. In
[16], a coherent group in which there is an algorithm to compute a finite presentation
for a given finitely generated subgroup is called effectively coherent. The following
question remains open.

Question 6.7 Are one-relator groups with negative immersions effectively coherent?
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