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Abstract—Motion correction is imperative to the reduc-
tion of blurring and artefacts inherent in PET; due to the
relatively long acquisition time, and the temporal difference
in the attenuation map acquisition. Registration literature
contains many examples of spatial regularisers, however
there are few temporal regularisers. Motion models can
act as such a temporal regulariser, as well as allowing
for the interpolation of unseen motion correction results.
In our previous work, we applied a motion modelling
approach to high TOF resolution non-attenuation corrected
data; where the data was corrected to the space of the
attenuation map. However, this approach was challenging,
especially when low contrast lung tumours are present.
This work seeks to extend previous work, by incorporating
an approach suggested by Y. Lu et al. (JNM 2018), to
perform an initial MLACF reconstruction for the motion
estimation. In this work, we combine these two approaches,
with several improvements, including; µ-map alignment,
as well as, fitting the motion model on low noise low
temporal/gate resolution data, and applying it to high
noise high temporal/gate resolution data. To test this,

Manuscript received November 19, 2022.
This research was supported by GE Healthcare, the NIHR UCLH

Biomedical Research Centre and the UCL EPSRC Centre for Doctoral
Training in Intelligent, Integrated Imaging in Healthcare (i4health)
grant (EP/L016478/1).

The software used was partly produced by the Computational Col-
laborative Project on Synergistic Biomedical Imaging, CCP SyneRBI,
UK EPSRC grant (EP/T026693/1).

Jamie R. McClelland is supported by a Cancer Research UK
Centres Network Accelerator Award grant (A21993) to the ART-NET
consortium and a CRUK Multi-disciplinary grant (CRC 521).

Alexander C. Whitehead was with the Institute of Nuclear
Medicine, University College London, London, UK and the Cen-
tre for Medical Image Computing, University College Lon-
don, London, UK. He is now with the Department of Com-
puter Science, University College London, London, UK (contact:
alexander.whitehead.18@ucl.ac.uk).

Kuan-Hao Su and Scott D. Wollenweber are with Molecular Imaging
and Computed Tomography Engineering, GE Healthcare, Waukesha,
USA

Jamie R. McClelland and Kris Thielemans are with the Centre for
Medical Image Computing, University College London, London, UK

Kris Thielemans is with the Institute of Nuclear Medicine, University
College London, London, UK.

XCAT volumes are constructed, and TOF data simulated.
Evaluation compares the results of the proposed method
against, where the motion model was fit on data gated
more finely, where the motion model was fit on noiseless
data, and finally non-motion corrected examples. Results
indicate that the incorporation of MLACF, and fitting of
the motion model on low noise low temporal/gate resolution
data, improves contrast and quantification, while allowing
for a relatively fast execution time.

I . I N T RO D U C T I O N

MOTION Models parameterise Deformation Vector
Fields (DVFs) in terms of a Surrogate Signal

(SS). They could be considered as an addition to a
standard spatially regularised Motion Correction (MC)
technique, as they impose a degree of temporal or gate-
wise regularisation. In addition, they also allow obtaining
DVFs for time points/gates, not used to fit the model
(as long as a relevant SS exists [1]). Motion Models
(MMs) have seen attention, particularly in CT [2], but
also MR [3], [4], however less so in clinical PET/CT.

In our previous work [5]–[7], the possibility of incor-
porating MMs, in a MC framework, for Non-Attenuation
Corrected (NAC) Time-of-Flight (TOF) PET, where the
reference was set to the position of a breath hold Attenu-
ation Map (Mu-Map), was investigated. Our preliminary
experiments indicated that the combination of both the
MM and TOF, allowed for an Attenuation Corrected (AC)
reconstruction with MC, without introducing artefacts,
while increasing resolution and quantification accuracy
(for simulations with high TOF resolution and count
levels). This work seeks to extend the method further,
using more realistic simulation and count levels, from ex-
isting clinical scanners. Firstly, by incorporating MLACF
, which provides volumes with greater contrast than NAC,
without introducing bias due to misalignment with a
fixed Mu-Map [8]. Secondly, low noise low temporal/gate
resolution data is used to fit the MM, while high noise
high temporal/gate resolution data is used for the output;
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this potentially allows for reduced misregistration, as well
as improving computation time. Thirdly, a diffeomorphic
velocity field parameterised registration was used ,which
provided DVFs free from folding.

A method incorporating MMs for dynamic PET/CT,
was proposed in [9]. Additionally, a method incorporating
MLACF for PET/CT, was proposed in [10]. The work
presented here, differentiates itself, not only by the ways
mentioned above, but also by using a 2D SS (rather than
a 1D SS). Thus allowing more general parametrisation
of the motion (here in terms of both displacement and
velocity). Additionally, the group-wise method, presented
here, makes use of an iterative MC algorithm, rather than
relying only on a pair-wise method.

I I . M E T H O D S

A. XCAT Volume Generation

XCAT [11] was used to generate 480 volumes over a
240 s period, using respiratory traces, derived from 2D
CINE-MR patient data. The maximum displacement of
Anterior Posterior (AP) and Superior Inferior (SI) motion,
was set to 1.2 cm and 2.0 cm respectively. Activity con-
centrations were derived from a static 18F-FDG patient
scan. The Field of View included the base of the lungs,
diaphragm, and the top of the liver, with a 20mm diameter
spherical lesion placed into the base of the right lung
(within the maximum displacement due to Respiratory
Motion of the diaphragm).

B. PET Acquisition Simulation

PET acquisitions were simulated (and reconstructed),
using STIR [12], [13] through SIRF [14], to forward
project data using the geometry of a GE Discovery 710.
Attenuation was included using the relevant Mu-Maps
generated by XCAT. Pseudo-randoms and scatter were
added.

Noise was simulated, such that data matched an acqui-
sition over 240 s, emulating a standard single bed position
acquisition. The count rate was selected to match that of
research scans.

A respiratory SS was generated using Principal Compo-
nent Analysis (PCA) [15]. The value of this signal, and
its gradient, was used for gating. For MM estimation,
data were initially pseudo-phase gated; the data was
displacement and gradient gated into four bins, where each
bin was a quadrant centred on the maximum or minimum
of the displacement or gradient. For the purpose of the
MM fitting, SS values were determined for the post-gated
data by taking an average of the SS values in each bin.

C. MLACF Image Reconstruction

Data were reconstructed using MLACF, with seven
full iterations and 24 subsets for the activity update, and
nine iterations for the attenuation update [8]. MLACF
was initialised using one iteration of MLEM, where the
breath hold CT was used for AC. Between iterations, the
activity volume and Attenuation Correction Factors (ACF)
sinogram were normalised (scaled to the same magnitude
as an equivalent volume/sinogram filled with ones), and
a small value was added to each voxel. A quadratic prior
was included in the reconstruction, to promote smoothness
of the ACF sinogram.

D. Registration

Before being registered, each volume underwent pre-
processing, including; replication of end-slices, smoothing,
and standardisation. This pre-processing was only applied
to intermediate data, and was not used for the final output
of the method.

Group-wise registration was used, where after an initial
pair-wise registration step, a new reference volume was
resampled. Registration to the new reference volume,
followed by another resample, continued for a set number
of iterations. NiftyReg [16] was used to perform reg-
istrations, using a diffeomorphic velocity field B-spline
parameterisation. Control Point Grid spacing of the B-
spline coefficients, Bending Energy regularisation term
weight, and number of iterations were tuned using a grid
search.

Between each iteration, the resampled volume was
registered to the position of the Mu-Map. The DVFs for
both the group-wise registration, and Mu-Map registration
were composed together to form one final DVF.

E. Motion Model Estimation

MMs were fit as a direct Respiratory Correspondence
Model on the Control Point Grids (CPGs), and the SS. A
weighted Linear Regression was used, where the weight-
ing was taken based on the number of counts in each
gate. Once a MM was fit, new DVFs were generated for
each gate. MM fitting occurred between iterations.

F. MC Image Reconstruction with AC

Data were re-gated, using the value of SS, and its gradi-
ent, to gate data into 30 respiratory bins (10 displacement
and 3 gradient bins).

Data were re-reconstructed with AC, deforming the Mu-
Maps, using the inverse of the DVFs determined using
the MM. OSEM was used, with two full iterations and
24 subsets (as in clinical practice) [17]. MC was then



Fig. 1. First row contains, AC MC reconstructions (plus SSIM to the ground truth), and the second row contains, the results of applying the
final MM on the original XCAT volumes, with the ground truth XCAT data (for both activity and attenuation), for; a MM fit on four and
30 gate binned data applied to 30 gate binned data, a MM fit on noiseless four and 30 gate binned data applied to 30 gate binned data, and
ungated data AC with a static Mu-Map at end inhalation and all Mu-Maps summed. Colour map ranges are consistent for all images in each
row.

applied, using DVFs determined using the MM. Volumes
were post-filtered using a Gaussian smoothing, with a
FWHM of 6.4mm in the transverse plane, and a normal
Z-filter (as in clinical practice).

G. Evaluation

In addition to the reconstructions performed above, MC
was also applied to data in the same way, but using high
noise, high temporal/gate resolution, or noiseless data, for
the MM fitting. Furthermore, data were also reconstructed
without MC, using either the end inhalation Mu-Map, or
a sum of all Mu-Maps (to emulate an Averaged CINE-
CT (AV-CCT)). For the present evaluation, the volumes
without MC were registered to the position of the end
inhalation Mu-Map. Additionally, DVFs generated by
each method were also applied to the original XCAT
volumes, for visual analysis.

Comparisons used included: A visual analysis, SSIM to
the ground truth [18], a profile over the lesion, and SUVmax

and SUVpeak (defined following EANM guidelines [19]).

I I I . R E S U LT S

A visual comparison of the reconstructed images
(see Fig. 1), shows that the high noise high temporal/gate
resolution method performs quite poorly, most probably
due to the high level of noise apparent in the volumes.
Conversely, the low noise low temporal/gate resolution
data method appears to be able to MC the data without
being too adversely affected by the noise level.

The peak of the profile (see Fig. 2) for the four gate
MM results is comparable to the noiseless results. In
contrast, the 30 gate MM method fails on the noisy data.
For all other MC methods, the peak is greater than without
MC.

SUV (and SSIM) results confirm the above (see TA-
BLE I).

Fig. 2. A profile through the lesion, in the SI direction, summed
over a window in the AP and Lateral Medial directions, with median
smoothing, for; the ground truth XCAT data, a MM fit on four and
30 gate binned data applied to 30 gate binned data, a MM fit on
noiseless four and 30 gate binned data applied to 30 gate binned data,
and ungated data AC with a static Mu-Map at end inhalation and all
Mu-Maps summed.

TABLE I
C O M PA R I S O N O F S U V M A X A N D S U V P E A K , F O R ; T H E

G R O U N D T R U T H X C AT D ATA , A M M F I T O N F O U R A N D 30
G AT E B I N N E D D ATA A P P L I E D T O 30 G AT E B I N N E D D ATA , A
M M F I T O N N O I S E L E S S F O U R A N D 30 G AT E B I N N E D D ATA
A P P L I E D T O 30 G AT E B I N N E D D ATA , A N D U N G AT E D D ATA
AC W I T H A S TAT I C M U - M A P AT E N D I N H A L AT I O N A N D

A L L M U - M A P S S U M M E D .

SUV Max Peak
Ground Truth 8.76 7.96

Four Gate MM 8.04 6.18
30 Gate MM 1.77 1.32

Four Gate Noiseless MM 8.05 6.24
30 Gate Noiseless MM 7.96 5.99

Ungated, Static CT 6.61 5.08
Ungated, AV-CCT 5.65 4.44



I V. D I S C U S S I O N A N D C O N C L U S I O N S

Results show that using a low number of gates for MM
fitting, has minimal impact at low noise, while improving
MC when there is a high level of noise in the gates. In
addition, the execution time using a reduced number of
gates is lower.

In the future, work will focus on evaluating the method
on patient data.
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