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Abstract—In Positron Emission Tomography (PET),
arterial sampling and metabolite correction are prereq-
uisites for the gold-standard measurement of values like
the volume of distribution (VT), often necessary for the
full quantification of radioligand binding. However, the
invasiveness and technical demands of these procedures
limit their application in both research and clinical PET
studies. Machine learning approaches have been explored
to predict VT from PET images, but their integration in
clinical routine is limited by their lack of transparency or
thorough evaluation. Here we propose a Bayesian Neural
Network to estimate the arterial input function (AIF), while
also outputting its prediction uncertainty, 1) directly from
the entire dynamic PET images (NN-AEIF), 2) from an
image-derived input function (IDIF) (NN-IDIF) and, as a
sensitivity measure, 3) from the un-corrected plasma curve
(NN-AIF). All methods, applied on [11C]PBR28 PET data,
were compared to the metabolite-corrected AIF in terms of
VT, and the prediction uncertainty was assessed in terms
of normalised coefficient of variance (nCV). Overall, both
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NN-AEIF and NN-AIF were able to accurately predict VT,
outperforming the other methods, with NN-AEIF showing
the lowest nCV.
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Extraction, Dynamic PET, Machine Learning, Bayesian
Neural Networks

I . I N T R O D U C T I O N

THE Volume of Distribution (VT) estimated with
an Arterial Input Function (AIF) is utilised for

quantification of many Positron Emission Tomography
(PET) tracers, including [11C]-Peripheral Benzodiazepine
Receptor ([11C]-PBR28). This, however, requires the con-
current measurement of the concentrations of unchanged
radioligand in arterial plasma. Although insertion of
an arterial catheter rarely results in clinically relevant
adverse events, it is an invasive and laborious procedure.

Image Derived Input Function (IDIF) represents a
promising alternative to arterial sampling [1]. However,
its applicability in clinical research is hampered by
several factors including the inaccuracy in the estimation
of both shape and amplitude of the Input Function
(IF); moreover IDIF does not allow for radio-metabolites
quantification [2]. The application of Machine Learning
(ML) is expected to improve the accuracy of predicting
the AIF from PET images [3], [4]. While these methods
have shown promising results, the vast majority of these
approaches have been developed for PET tracers that
do not produce radio-metabolites. Furthermore, even if
the developed model shows sufficient prediction accuracy
for unseen data, its applicability in the clinical setting
remains questionable because of a lack of transparency
or thorough evaluation [5]. Bayesian networks offer the
significant advantage of making probabilistic predictions
based on available evidence. Specifically, a Bayesian net-
work would output uncertainty estimates in addition to the
model prediction. For this reason, they have the potential
to overcome the key barrier to the responsible adoption
of Artificial Intelligence (AI) in clinical practice [6].



Here, we propose a Bayesian Neural Network (NN)-
based method for predicting a metabolite corrected AIF,
while allowing for the estimation of uncertainty of the
model’s output.

I I . M E T H O D S

A. Data Acquisition and Processing

Dynamic [11C]-PBR28 PET/Magnetic Resonance
(MR) images from 52 individuals (Age: 55 ± 16 years;
Sex: 27 Male, 25 Female; Genotype: 32 High Affinity
Binders (HABs), 20 Mixed Affinity Binders (MABs);
Clinical population: 12 Healthy Controls, 40 Chronic Pain
patients; Injected Dose: 14.16± 1.3 Millicuries (mCis))
were acquired on a Siemens Biograph mMR whole-
body tomograph for a time-period of 0-90 minutes post-
injection. Data were pooled for multiple protocols (ap-
proved by the Partners Healthcare/Mass General Brigham
Institutional Review Board) and reconstructed as in [7].
All subjects had a radial artery catheter placed during
the scan. Uncorrected plasma curves from blood samples
were interpolated and metabolite-corrected to obtain the
AIF. To further validate the proposed method, IDIF was
calculated by segmenting the arterial carotid siphons
using intensity thresholding of early dynamic PET frames.
Data were split using ten-fold cross-validation, ensur-
ing maximum within-variance and minimum between-
variance in the training and testing sets.

B. Neural Network Design

The method is comprised of three independent NNs:
NN1 seeks to reduce the dimentionality of the input data
(due to computational requirements) and extract the most
relevant features. NN2 aims to extract a non-metabolite
corrected signal from the low-dimensional representation
output by the first network. NN3 metabolite corrects and
reshapes/rescales the non-metabolite corrected signal.

1) NN1 Autoencoder (AE): This network features three
blocks, the downsampling block, the latent layer, and
the upsampling block. The first block comprises three
convolutions; the latent block is flanked on either side
by two convolutions, with a variational latent layer in the
middle. The upsampling block consists of a transposed
convolution and two standard convolutions. Here, two
downsampling and two upsampling blocks here used.
The number of filters doubled or halved at each block
respectively.

The input to the network is the dynamic PET images.
Both the mean and standard deviation of the latent
layer and the final layer are output from the model
and passed onto NN2. Both input and target data were
standardised separately, based on parameters obtained

from the training set. Each time frame was treated as an
independent training example.

2) NN2 Signal Extractor: This network consists of
two blocks, the downsampling block and the fully con-
nected block. The downsampling block follows the same
structure as in NN1. The fully connected block consists
solely of one fully connected layer. All time frames
were used simultaneously, where the same convolutions
are applied independently on each time frame before
global average pooling and flattening. After flattening
the clinical features were concatenated with the flattened
output. Here, four downsampling blocks and eight fully
connected blocks were used. The number of filters
doubled and the number of units halved at each block
respectively.

3) NN3 Metabolite Correction and Reshaping: This
network contains solely fully connected layers. If the
network is to metabolite-correct a signal (e.g. from AIF
or IDIF), it takes that signal as input together with
the clinical/demographic features (age, sex, genotype,
injected dose, clinical population). If the network is
instead to correct a signal obtained with NN2, both the
mean and the standard deviation of the uncorrected signal
are input to NN3, in addition to the latent layer from NN2.

C. Evaluation

The model was sampled 32 times resulting in multiple
realisations of the estimated signal. Then, VT ∈ Rr×s×b

were computed via the Logan graphical method, where
r is the number of Region Of Interests (ROIs) (r = 69),
s is the number of subjects (s = 5) and b is the number
of model samples (b = 32). For both AIF and IDIF,
b = 1. For the NN-based methods, VT were computed
for each model realisation and then used to calculate
the mean VT and its standard deviation. Moreover, the
Normalised Coefficient of Variance (nCV) was defined
as nCV = std(Pred VT)/True VT with nCV ∈ Rr×s,
where VT is computed from the measured AIF. For each
candidate signal, correlation analyses were performed on
the VT values (computed for all the ROIs and for all
the subjects in the test-set) to the ones obtained with the
ground truth signal (TRUE-AIF, see Section II-A). To
measure the accuracy of the prediction, the angle between
the regression- and the identity-line was also computed,
defined as θ = 45 − arctan(m) ∗ 180/π, with m being
the slope of the regression-line. Furthermore, nCVs were
averaged across ROIs for each subject of the test-set and
compared via a paired t-test for each of the three NN-
based methods.

Candidate Signals:
• IDIF - generated as in Section II-A.



Fig. 1. Predicted VT ∈ Rr×s in the test-set subjects, with r = 69 and
s = 5 estimated with the four candidate signals, correlated to the True VT

(obtained with TRUE-AIF). Please note that for the NN-based methods, the
displayed VTs was averaged over all realisations.

• NN-IDIF - metabolite-corrected IF obtained from
IDIF input to NN3.

• NN-AIF - metabolite-corrected AIF obtained from
(uncorrected) arterial plasma input to NN3.

• NN-AEIF - metabolite-corrected IF obtained from
dynamic PET images input to NN1,2,3.

I I I . R E S U LT S

Fig. 1 reports the correlation analyses between the
predicted VT values (obtained by the four candidate
methods) and the true VT values. For all methods,
predicted VT values positively correlate with true VT

values, with NN-AIF and IDIF showing the highest and
the lowest Pearson correlation coefficient (ρ), as well as
the smallest and largest angular distance to the identity
line, respectively: ρ = 0.97 & θ ≈ 4◦ vs ρ = 0.35 & θ ≈
36◦. Overall, NN-AEIF outperformed NN-IDIF in terms
of Pearson correlation coefficient and angular distance:
ρ = 0.93 & θ ≈ 4◦ vs ρ = 0.81 & θ ≈ 10◦. With
regard to the variance analysis, NN-AEIF outperforms
both NN-AIF and NN-IDIF, showing the lowest nCV,
while NN-AIF and NN-IDIF do not differ in terms of
nCV values (p> 0.05).

I V. D I S C U S S I O N A N D C O N C L U S I O N

This work presents an innovative Bayesian NN-based
approach for estimating the AIF from dynamic PET
images and clinical variables. This approach shares
similarities with previous methods developed for PET
tracers that do not produce radio-metabolites, such as
[18F]fluorodeoxyglucose (FDG). In this study, additional

efforts were devoted to address [11C]-PBR28 radio-
metabolite correction. One of the main advantages of
the proposed method is that it provides a measure
of confidence in the generated signal for unseen data.
Additionally, the method’s modular design allows each
part to be used independently. For example, in this work,
metabolite correction was applied to a signal generated
by a more traditional method (IDIF).

The four candidate signals were compared to the
gold standard TRUE-AIF, obtained from arterial blood
sampling and metabolite correction. Overall, NN-AEIF
demonstrated comparable performance in terms of corre-
lation and bias to NN-AIF, with the lowest variance of the
estimated VT, as measured by the nCV. This improved
performance can potentially be explained by the larger
amount of input data and the consequently more complex
model with additional parameters. Interestingly, the NN-
IDIF method was able to improve on the traditional IDIF
approach, as evidenced by a higher correlation coefficient
and a lower angular distance from the identity line.

The proposed approach has some limitations, including
the small training size, which hindered the assessment of
the prediction accuracy within subsets of clinical popula-
tions in the test-set (i.e., patients vs healthy controls). In
the future, the accuracy of the model could be improved
through the inclusion of an attention layer either before
or after the latent layer of the AE, validated through the
use of an ablation study. As well as the replacement
of the fully connected layers with a transformer based
approach.
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