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ABSTRACT As the Internet of Things (IoT) industry grows, the risk of network protocol security threats has
also increased. One protocol that has come under scrutiny for its security vulnerabilities is MQTT (Message
Queuing Telemetry Transport), which is widely used. To address this issue, an automated execution program
called fuzz has been developed to verify the security ofMQTT brokers. This program is providedwith various
random and unexpected input data and monitored for different responses, such as acknowledgments, crashes,
failures, or memory leaks. To generate a significant number of realistic MQTT protocols, we have proposed
a Generative Adversarial Networks (GAN)-based protocol fuzzer called SGANFuzz. Our experimental
results show that SGANFuzz has successfully detected 6 vulnerabilities among 7 MQTT implementations,
including 3 CVE bugs. Compared to the state-of-the-art fuzzing tools, SGANFuzz has proven to be the
most efficient fuzzing tool in terms of vulnerability detection and has expanded the feedback coverage by
receiving more unique network responses from MQTT brokers.

INDEX TERMS MQTT, fuzz test, generative adversarial networks, time-series models, transformer,
vulnerability detection.

I. INTRODUCTION
As mobile network access capabilities continue to advance,
the Internet of Things is becoming increasingly prevalent.
To ensure the security and efficiency of communication
between machines, researchers are concentrating on network
layer communication protocols. Message Queuing Telemetry
Transport(MQTT) is one of the well-known industrial
network protocols that can be straightforward to deploy on
various cloud platforms and operating systems [1].
Security concerns surrounding MQTT have been a major

focus for many companies and research institutions. To inves-
tigate its security, we have utilized the fuzz test technique on
theMQTT broker. In this paper, we use the fuzz test technique
to investigate the security of MQTT brokers. Fuzz test is
a testing method proposed by Miller in 1990 [2], which is
developed to discover software weaknesses. It is designed as
an automatically running program that covers random input to
specific applications for possible system feedback detection.
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A wide range of test cases, such as program files, code, and
payload packets, can be used as fuzzing data.

Researchers have developed various applications for
revealing security loopholes in fuzzing network protocols.
There are many generation-based methods for protocol
fuzzing tasks. For example, a fuzzer for the Open Platform
Communications protocol is created by Wang et al. [3],
while Profinet Discovery and Configuration Protocol is the
focus of a fuzzing approach proposed by Zhang et al. [4].
In industrial environments, a vulnerability detector Simatic-
Scan is designed for Siemens SIMATIC Programmable Logic
Controllers(PLC) [5]. Mutation-based fuzzers can also be
utilized in fuzzing applications. AFLNet, an extension of
AFL-class fuzzer, can fuzz specific protocols with additional
network applications support [6], [7].

Although these research studies have contributed sig-
nificantly to fuzz test development, there are still some
limitations to these fuzzers. Many of them are only versatile
for specific protocols, and building a protocol generation
system is difficult because the tool requires knowledge of the
protocol’s grammar and format. Establishing protocol data
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should be time and resource-consuming as it requires manual
understanding and analysis of the protocol. Motivated by
these issues, we design and implement SGANFuzz, a GAN-
based MQTT fuzzer that does not require knowledge of
the protocol grammar and rules. SGANFuzz can generate a
considerable number of formatted and valid MQTT protocol
data by learning syntax fromMQTT training data on its own.
During the evaluation process, we test our fuzzing tool on
7 different open-source MQTT implementations and detect a
total of 6 vulnerabilities, including 3 CVE bugs. Meanwhile,
we demonstrate SGANFuzz’s superior performance in trig-
gering unique network responses compared to other state-of-
the-art fuzzing tools. The source code and data of this study
are available at https://github.com/PeterWeiJust/SGANFuzz.
The main contributions of this paper are as follows.

1. A novel GAN-based fuzzing framework called SGAN-
Fuzz is proposed. We first illustrate the principle of
SeqGAN, then design and implement its framework using
deep learning models like GRU and transformer. After that,
we implement SGANFuzz, which consists of three parts: test
case generation, fuzzing tools, and log system, respectively.

2. During the test case generation process, we have found
that fine-tuning the training parameters of SeqGAN leads to
the best performance convergence. A comparative study is
also conducted on the training performance of SeqGAN and
other sequence generation architectures, such as Seq2Seq and
RankGAN. To evaluate the quality and diversity of generated
data, we use text generation metrics such as BLEU and Self-
BLEU, along with a novel metric called N-Jaccard, which we
have proposed.

3. In all, we discover 6 vulnerabilities in 7 MQTT imple-
mentations, including 3 CVE bugs. SGANFuzz can detect
these bugs more efficiently than other state-of-the-art fuzzing
tools. Experimental results show that SGANFuzz receives the
most unique network response and highest generation data
acceptance rate among other popular protocol-based fuzzing
methods.

II. PRELIMINARY
In this section, we will introduce the MQTT protocol,
including its structure, control packets, and message format.
Additionally, we cover the principle of fuzz test, specifically
protocol fuzzing.

A. MESSAGE QUEUING TELEMETRY TRANSPORT
1) STRUCTURE
MQTT is a lightweight protocol designed for devices with
limited resources. When communicating through MQTT, the
client will establish an authenticated connection with the
broker and then send messages. These messages can be pub-
lished with a specific topic, and brokers will facilitate client
communications while addressing session requirements. The
main structure ofMQTT is shown in table. 1. MQTT protocol
structure includes three parts: Fixed header, Variable header,
and Payload. While the Fixed Header is the required part

TABLE 1. The structure of MQTT protocol.

TABLE 2. MQTT control packets.

of all packets, variable header and payload are optional.
Packets such as PING and PINGRESP do not have a variable
header, while others like CONNACK and PUBACK do not
have a payload. The property field, which contains user
information, is unique toMQTT version 5.x and only appears
in CONNECT packets. Note that in our research, both the
MQTT data collected from cloud systems and data generated
for fuzz test are in version 3.1.1.

2) CONTROL PACKET
There are a total of 14 distinct packets present in MQTT, with
each packet serving a unique communication purpose. The
details surrounding the type, identifier, and intended purpose
of each control packet are showcased in table. 2. These
packets demonstrate a balanced distribution, with four being
transmitted from the server to the client, five provided by
the client, and the remaining packets sent in both directions.
The MQTT protocol also offers three levels of quality of
service(QoS) for message delivery, which include at most
once, at least once(PUBACK), and exactly once(PUBREC,
PUBREL, PUBCOMP).

3) USER ACTIONS AND MESSAGE FORMAT
The MQTT protocol uses a publish/subscribe message
pattern that allows for efficient distribution of messages
across multiple applications. To establish a connection with
the MQTT broker, users must first send a CONNECT packet.
Once the broker receives this packet and responds with a
CONNACK packet, the client-server connection is estab-
lished. Messages can be sent to the broker via a PUBLISH
packet, which requires a user-defined topic. The broker
will respond according to the number of QoS identifiers
in the PUBLISH packet. In MQTT, clients connected to a
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FIGURE 1. Message and response format of MQTT.

central broker can either publish messages or subscribe to
topics. A subscriber can receive those published messages by
sending a SUBSCRIBE packet with the topic name. Once
there is no need to receive messages, an UNSUBSCRIBE
packet should be sent by the subscriber for unbinding specific
topics. Clients should only send a DISCONNECT packet if
the connections are closed.

We present an example of the MQTT protocol format in
fig. 1 for facilitating understanding. In this scenario, protocols
consist of concatenated packets, each containing various data
fields. The header and properties of the MQTT protocol vary
from different control packets. The first sequence indicates
a client connecting to the broker, publishing a message, and
then disconnecting using a control packet. The feedback
from the broker contains a CONNACK packet, confirming
a successful connection, and a PUBACK packet, due to the
QoS1 field setting in the CONNECT packet. All control
packet fields are formatted in hexadecimal characters and
concatenated as input sequences for the deep learning model
in the experiment chapter below.

It is of great importance to acknowledge that messages
obtained from cloud systems usually align with the user’s
MQTT actions, which can activate network responses rather
than being dismissed by the network layer. For example,
according to the MQTT protocol specifications, the protocol
payload always begins with a CONNECT packet, not a
PUBLISH or SUBSCRIBE packet. Once a client sends
a DISCONNECT packet to the broker, no further user
action packets will be sent until the next network connec-
tion is established. Therefore, after sufficient training, our
GAN-based model will generate messages that adhere to
the standard order of MQTT packets. This will be reflected
in some of the fuzzing metrics we proposed later in the
experiment section.

B. FUZZ TEST ABOUT NETWORK PROTOCOL
The fuzzing process phase is highly variable and depends
on many factors, such as the applications being tested and
the testing approach of the programmers. There are always
certain basic steps that a network protocol fuzzer should
follow, including the following phases.

1) IDENTIFY TARGET OBJECTIVE
To begin the protocol-based fuzz test, the first step is
to identify the target. This target could be an application
that implements the protocol [8]. For instance, open-source

MQTT implementations like Mosquitto [9], EMQX [10], and
HiveMQ [11] can serve as the target objective. These brokers
act as message intermediaries that facilitate the exchange
of MQTT messages between clients. They can be easily
deployed using scripts on various operating systems.

2) DESIGN FUZZING STRATEGY
Modern fuzzing methods are mainly divided into two
types, mutation-guided and generation-guided [12]. The
generation-guided technique generates input data based on
user-defined rules or knowledge of the target protocol’s
specifications. This approach should be appropriate when
the user is well-versed in the protocol’s syntax. Conversely,
mutation-guided fuzzing involves using test cases from a
previously collected corpus of input data. This method
is effective especially when the target protocol is not
well-understood or the user lacks access to source code.
However, it’s challenging to design a suitable fuzzing strategy
for network protocols since the fuzzer should balance fuzzing
coverage and efficiency.

3) GENERATE AND EXECUTE TEST CASES
This process is closely related to the previous one and
involves automatically generating a high volume of test data
for the fuzzing process. This includes sending the appropriate
data packets to the target objective. Generating numerous
cases is vital for a successful fuzzing process.

4) DISCOVER VULNERABILITY
Fuzz test is a vital technique for detecting vulnerabilities in
a given target. Consequently, a reliable monitoring system
is essential throughout the entire process. The monitoring
system should be designed to capture data packets transmitted
between clients and the broker. Once the target objective
happens to hang or crash after sending particular data packets,
the fuzzer must take note of such behavior and use the
monitoring system to maintain a comprehensive record of the
fuzzing process.

C. TIME-SERIES DEEP LEARNING MODELS
1) RECURRENT NEURAL NETWORK
RNN is a typical time-series network that deals with
sequential data generation or prediction tasks [13], [14], [15],
[16]. Numerous studies have proven its advantages in natural
language generation, such as machine translation and speech
recognition [17]. RNN is also used in future data prediction
scenarios, such as indoor localization track and weather
forecasting [18], [19], [20]. The unfolded base structure of
RNN is displayed in fig. 2. The weight matrices U, V, andW
are depicted in the image, while h represents the hidden state
for every time step. Equations from 1 to 2 offer numerical
definitions of the output o at time t. Notably, each matrix
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FIGURE 2. Unfolded structure of RNN.

FIGURE 3. Unrolled chain of LSTM, using the same block containing
current new observation and internal cell state of previous time-step.

FIGURE 4. Prototype GRU cell architecture.

shares identical parameters at varying time steps.

ht = f (Vht−1 + Uxt ) (1)

ot = f (Wht ) (2)

2) VARIANTS OF RNN
LSTM is one of the RNN variants proposed to deal with
the problem of vanishing gradients [21]. RNNs struggle to
capture relationships between samples over long distances
when processing sequential data. The LSTM handles this
issue by incorporating a forget gate. The forget gate
determines whether the previous ‘‘memory’’ should be kept
or discarded in the next time step. Fig. 3 illustrates the
unrolled chain of the LSTM network, which includes an
additional cell state c compared to the RNN unrolled structure
present in fig. 2.

Rt = σ (URxt +WRst−1) (3)

Zt = σ (UZ xt +WZ st−1) (4)

s̃t = φ(W (Rt ⊙ st−1)+ Uxt ) (5)

GRUout = st = Zt ⊙ st−1 + (1− Zt )⊙ s̃t (6)

Much like LSTM, GRU is a type of RNN that has
been optimized to overcome the issue of vanishing gradient.

FIGURE 5. The structure of multi-head attention.

However, while the LSTM has a cell state, the GRU has a
distinct internal structure that eliminates it and modifies the
number of gates present [22]. From fig. 4, we find that there
are only two gates inside a GRU unit: the update gate and
the reset gate. Equations from 3 to 6 perform the definitions
in GRU units. These gates determine what information to
retain and what to include, as well as how much previous
information to discard. Due to its reduced number of tensor
operations, the GRU is quicker to train than the LSTM.

D. TRANSFORMER
In recent years, the Transformer has become the most
successful deep learning architecture either in the field of
natural language processing or computer vision, owing to
its remarkable success. Unlike the recurrent neural network,
the Transformer leans heavily on attention mechanisms. The
multi-head attention, which is depicted in fig. 5, is the core of
the Transformer model.

Attention(Q,K ,V ) = softmax(
QKT
√
dk

)V (7)

The multi-head attention technique employs weight matri-
ces for Q, K , and V . As illustrated in the accompanying
image, these matrices undergo processing via several linear
layers before undergoing matrix operations in the Scaled
Dot-Product Attention component, as shown in equation 7.
Input scaling is implemented using the value of dk , repre-
senting the dimension of K . Multi-head attention consists
of several attention layers that can run in parallel. It will
concatenate these attention outputs together and apply linear
layers to get the final multi-head attention output.

III. METHODOLOGY
In this part, we introduce the deep-learning models we used
in our fuzzing experiment. Besides, we propose SGANFuzz,
a deep learning-based method for fuzzing MQTT implemen-
tations with the objective of vulnerability detection.
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FIGURE 6. The RNN-based free-running training process.

A. GENERATIVE MODEL FOR SEQUENCE
The standard way of training a time-series model is
using maximum likelihood estimation(MLE). First, an input
sequence S= (S1,S2,. . .,ST ) is transformed by an embedding
layer into a layer of hidden states. Next, using the equation 8,
a GRU generator G produces a probabilistic output y at time
t by incorporating a softmax layer after the GRU gate output
st , which is defined in equation 6.

p(yt |S1, S2, . . . , St ) = softmax(st ) (8)

Fig. 6 showcases the training process of an RNN-based
model, where the sequence y = (y1,y2,. . . ,yT ) is generated
through auto-regression. Before mapping the input sequence
into an embedding vector, a start flag BOS is appended at
the beginning of the sequence. The expected output is the
shifted original input sequence appended by an end flag EOS.
The anticipated output is the original input sequence shifted
by one and supplemented with an end flag EOS. Therefore,
the GRU network estimates the probability of St at time step
t − 1 based on previous hidden states and current input St−1.
During free-running, the RNN utilizes its previous output
Ŝt−1 as its input at the next time step t [23]. The loss of
the sequence is calculated using the log-likelihood method
in equation 9. In this scenario, The training process of MLE
involves minimizing the negative log-likelihood, and the
generator will update its weights through back-propagation
through time(BPTT) at every time step using chain rules [23].

L = −
T∑
t=1

logp(yt = St |S1, S2, . . . , St−1) (9)

To address the problem of gradient vanishing in RNN
architecture, we will incorporate its enhanced versions,
namely LSTM and GRU, into the generator training process.
These variants offer the benefit of long-term memory
design, allowing them to proficiently capture long sequence

FIGURE 7. The encoder part of transformer architecture, applied for
sequence classification.

feature information and generate superior, extensive texts.
Furthermore, we adopt the teaching force during MLE
generator training, which utilizes ground truth data as input
instead of model output from a previous time step [24].
This method promotes increased stability and accelerated
convergence while training recurrent neural networks.

B. DISCRIMINATIVE MODEL FOR SEQUENCE
A large number of machine learning models could be
utilized for sequence classification. Traditional methods like
logistic regression(LR) and support vector machine(SVM)
have been proposed for binary classification [25], [26] tasks.
In the last few years, deep learning-based classification
methods have gradually replaced traditional ones because
of their excellent performance. Models like CNN, RCNN,
and LSTM, have shown impressive accuracy in classifying
sequence data [27], [28]. The Transformer, an encoder-
decoder architecture based on a self-attentionmechanism, has
become the cornerstone of many large language models like
BERT and GPT-3 [29], [30]. In contrast to the generative
models discussed earlier, the discriminator takes the entire
sequence as an input vector and predicts the probability
that the sequence is real. We present an input sequence
x1,x2,. . .,xT as below.

X1:T = x1 ⊕ x2 ⊕ . . .⊕ xT−1 ⊕ xT (10)

The concatenation operator, denoted by ⊕ in equation 10,
creates a vector incorporating the entire input sequence.
In contrast to the generator, the output layer of the
discriminator employs a sigmoid activation function. This
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enables the discriminator to provide the probability that an
input sequence is real or synthetic. The objective function for
optimizing the discriminative model is cross-entropy loss.

ŷ = TX1:T (11)

L(y, ŷ) = −ylogŷ− (1− y)log(1− ŷ) (12)

The framework of the transformer encoder is shown
in fig. 7. The encoder mainly contains embedding layers,
self-attention blocks, and linear feedforward layers. Unlike
RNN, the self-attention mechanism in the transformer does
not involve time steps. Therefore, in addition to regular
embedding, the transformer introduces position embedding
to enrich the position information of the sequence [31]. The
internal structure of the Multi-Head Attention layer is the
same as we have illustrated before. Layer normalization
normalizes each of the inputs in the batch independently
across all features, resolving the small batch sizes issue in
batch normalization [32]. Equations from 11 to 12 provide
numerical definitions of the transformer encoder’s output
and loss function. Encoder model T will produce an output
label ŷ when fed with input sequence X1:T . L indicates
the cross-entropy loss between ground truth label y and the
predicted one ŷ.

C. CALIBRATE GAN FOR SEQUENCE DATA GENERATION
GAN is a deep learning framework proposed for generating
highly realistic data. The vanilla structure of GAN consists
of a generator and a discriminator [33]. The generator,
denoted as G, is designed to capture the key features of
the input data and generate samples that closely resemble
the original data distribution. The goal is to fool the
discriminator D into thinking that the generated samples are
real rather than synthetic [34]. Meanwhile, the discriminator
will try to identify whether its input comes from raw or
synthetic data. Both of them are trained simultaneously
during the adversarial training process until the generation
loss converges. Optimized GANs, like DCGAN and WGAN,
are proposed for enhancing unsupervised learning represen-
tations. Conditional GANwas proposed for image translation
[35] and TAC-GAN was proven effective in the multimodal
task of synthesizing images from text descriptions [36].

1) SeqGAN ARCHITECTURE
While GAN has achieved great success in image processing
fields, generating text presents challenges due to its discrete
output, making gradient updates difficult. SeqGAN is an
improved architecture that combines deep learning strategy
with reinforcement learning methods for sequence data
generation [37]. Real data is gathered from an open device
for training, while the generator produces fake data from
randomly initialized vectors. After that, the discriminator
classifies the combined real and fake data. During adversarial
training, the generator creates a batch of samples and the
discriminator calculates a numerical reward for each of them
based on Monte Carlo Search [38]. The generator will then

update its policy gradient [39] until the generated sentence
reaches the user-defined length. The generator should be a
time-series deep model as the sequence is generated step by
step. The discriminator should accurately classify input data
as real or synthetic.We take theMQTT protocol in fig. 1 as an
example of sequence generation. To begin, we initialize the
sequence with a BOS tag. The sequence is then converted into
a vector and fed to the pre-trained generator. Fig. 8 illustrates
the next character prediction process. The generator will
predict the next character and append it at the end of the
sequence. The updated sequence will then serve as the input
of the generator at next time step. We repeat this process until
the sequence reaches its maximum length. Finally, we append
an EOS tag to indicate the end of the sequence.

Algorithm 1 SeqGAN for Fuzzing MQTT Protocol
Input: Pre-Generator G1, weights α; Generator G2, weights

β; Discriminator D, weights γ ; Sequence data P =
X1:T ; GAN training epochs E ; Generator training gstep,
Discriminator training dstep

1: Pre-train α via P, using MLE method
2: β ← α

3: Generate samples N using Gα

4: Pre-train γ via N , able to minimizing cross-entropy loss
5: for i = 1 to E do
6: for gstep do
7: Generate Y1:T = (y1, y2, . . . , yT ) using Gα ,

sequence generation process is shown in fig. 8
8: for i = 1 to T do
9: Compute Q(a = yt ; s = Y1:T−1) by Eq. 15
10: end for
11: Refresh G2 parameters using policy gradients by

Eq. 17
12: end for
13: for dstep do
14: Generate batch sequence using Gα and combine

these negative samples with positive data P
15: TrainDγ using above data for p epochs using Eq. 16
16: end for
17: β ← α

18: end for
19: Generate batch of payload sequence Sb using trained

SeqGAN model sgan
Output: Numbers of payload sequence Sb

2) TRAINING PROCESS
We have leveraged sequence generation architecture to
design an optimized model capable of producing realistic
MQTT protocol data. In order to guarantee the reliability
and effectiveness of SeqGAN training, we have adopted a
pre-training approach prior to the adversarial training loop.
This accelerates the convergence of the generator and the
discriminator since their weights are not initialized randomly.
The detailed steps involved in SeqGAN training for MQTT
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FIGURE 8. Generate the next character of MQTT sequence data by SeqGAN, using monte carlo search for actions
estimation and policy gradient for weights update.

data can be found in algorithm 1. The pre-training process
has been described in the sequence generation section.

J (α) =
∑
y1

Gα(y1|s0) ∗ Q
Gα

Dγ
(s0|y1) (13)

During the adversarial training process, we first use
a pre-trained generator for sequence generation and then
compute its reward by discriminator Dγ in Eq. 13.

QGα

Dγ
(s = Y1:T−1, a = yT ) = Dγ (Y1:T ) (14)

The function QGα

Dγ
(s, a) calculates the rewards earned by

following policy Gα for taking action a in state s. Then,
we use equation 14 to estimate the probability of whether the
discriminator input is real data or not, by evaluatingDγ (Y1:T ).

QGα

Dγ
(s = Y1:T−1, a = yT ) =



1
N

N∑
n=1

Dγ (Y n1:T ),

Y n1:T ∈ MC(Y1:t ;N ), t < T

Dγ (Y1:t ), t = T

(15)

The discriminator only provides a reward considering a
finished sequence. Since it is of great importance for us to
care about the long-term reward, we should take the future
outcome into consideration. We use N-times Monte Carlo
SearchMCGα (Y1:t ;N ) to sample unknown tokens at last T−t
position. When the generator aims at generating a sequence
Y1:T , it will sample the t-length sequence using Gα and
sample Yt+1:T sequence based on both Gα and current state.
For a batch size data set N, we iteratively define the reward
calculation starting from state s = Y1:t to sequence end in
Eq. 15. The loss function is determined as follows.

min
γ
−EY∼pdata[logDγ (Y )]− EY∼Gα [log(1− Dγ (Y ))]

(16)

Once the GeneratorG2 is trained for gstep times, we update
its parameters α by calculating gradients of the objective
function outlined in Eq. 13. This step is essential because,
after the generator has undergone gstep training sessions, the

FIGURE 9. SGANFuzz architecture.

discriminator requires re-training to remain aligned with the
generator. The gradient update function is shown in Eq. 17,
where lr denotes the learning rate. This parameter is utilized
in various algorithms like RMSprop, SGD, and Adam.

θ ← θ + lr∇αJ (α) (17)

D. DESCRIPTION OF SGANFuzz ARCHITECTURE
Fig. 9 illustrates the overall architecture of SGANFuzz.
The fuzzer mainly contains three parts. They are test case
generation, fuzzing tool, and log system, respectively.

1) TEST CASE GENERATION
During this part, we first collect MQTT sequence data
from industrial cloud systems using a specific software
application, Wireshark. By connecting to the MQTT broker,
the software can trace the control packets that are exchanged
between clients and servers. After running Wireshark for
days, a significant number of messages with the format in
fig. 1 are gathered. It is worth noting that these payloads
typically follow the user’s actions, which can trigger various
network responses instead of being rejected by the broker.
For instance, a DISCONNECT packet will always appear at
the end of the message sequence, and a PUBLISH packet will
only occur before a CONNECT packet is dispatched from the
client.

After data collection, we will apply SeqGAN architecture
to train a GAN-based deep learning model capable of
generating protocols. Our training approach will follow
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the algorithm 1, using the MQTT data we have collected.
We will continue the training process until the training loss
converges to a relatively small floating-point number. Given
the difficulty in training GAN-based models, we will need to
fine-tune the model multiple times. In the experiment section
below, we will provide detailed information regarding how
we intend to adjust the parameters during the fine-tuning
process. Our ultimate aim is to generate realistic but fake
MQTT protocol sequences.

In the testing phase of the MQTT protocol, a generator is
utilized to produce test cases in the form of MQTT protocol
messages. The generator has been expertly calibrated to gen-
erate various formal MQTT protocol sequences effortlessly.
While most of the generated messages conform to the MQTT
protocol specifications, the broker may consider certain
messages informal communication protocols. The generated
message adheres to a similar structure as the example protocol
illustrated in fig. 1, initiating with a CONNECT packet and
incorporating message delivery actions such as PUBLISH
and SUBSCRIBE.

2) FUZZING TOOL
We have designed and implemented a software application
that can execute test cases in addition to the protocol gen-
eration component. Before starting this application, we will
deploy an MQTT service. Various popular MQTT imple-
mentations will be tested as brokers providing port 1883 for
listening. After the deployment, a local client will establish a
socket connection between the broker and itself. The client
will then send protocol messages to the central broker as
test cases. By listening to the port of the MQTT broker, the
client can observe the network response from the broker and
understand its current status.

All communication messages between clients and brokers
will be tracked during the fuzzing process. Clients will
monitor the status of brokers by recording corresponding
responses after sendingMQTT packets to them. The example
response in fig. 1 shows that a broker returns a CONNACK
confirmation and a PUBACK packet to a client. These byte
data will be concatenated into a string representing a series of
responses to this client request.

3) LOG SYSTEM
We have developed a comprehensive log system not only to
track all communication between clients and brokers but also
to check the status of the MQTT service. During the fuzz
test process, clients may send requests that deviate from the
protocol specifications due to a range of fuzzing strategies.
However, these malformed requests will be rejected by the
client and won’t pass the network layer. We will determine
the percentage of test messages that pass or fail the syntax
check and use this data as one of the performance indicators
to evaluate the effectiveness of the fuzz test systems.

Meanwhile, the clients may occasionally send harmful
requests to the broker, which can result in unexpected
service disruptions. To combat this, we have implemented a

cutting-edge log system that can pinpoint the source of any
issues that may arise, such as connection timeouts or denial of
service. In extreme cases, the servermay even crash as a result
of unreasonable requests, such as trying to subscribe to a topic
with no name or publishing a specific topic with nomessages.
Some of these exceptions are included in CVE, a program
that identifies and defines publicly disclosed cybersecurity
vulnerabilities. Furthermore, numerous protocol fuzzers have
been created to detect CVE bugs.

It is worth noting that some of the responses may appear
redundant. For example, a PUBACKpacket that is technically
distinct by mutating some values in its packet fields, may not
contain novel information. To tackle this problem, we have
created a response parser that can extract every field from
a response message. SGANFuzz will identify any response
with a distinct number or name of fields as a unique response
and duly log it into the system.

IV. EXPERIMENTS
In this section, we implement the test case generation,
fuzzing tool, and log system described in the previous
part. We will present the performance comparison between
popular fuzzing methods and evaluate our SGANFuzz for
vulnerability detection.

A. DATA COLLECTION AND ENVIRONMENT BUILDING
1) DATA COLLECTION
To capture MQTT packets in the industrial cloud system,
we employ the Wireshark software. It produces a file of byte-
string data, representing each protocol sequence payload. The
initial protocol messages are in byte-string format, which
we convert into hexadecimal bytes data for processing. After
that, we use the decode function in Python to convert these
bytes of data to strings. In section II, we have chosen a
message data sample from the dataset displayed in fig. 1.
Overall, we have gathered around 30,000 MQTT sequence
protocol data samples, which can be used in the forthcoming
experiment section.

We first divide the initial data into a training set and
a test set, using a ratio of 5:1. Then, to prepare the
protocol data for input into the neural network, we establish
a consistent sequence length. To facilitate training on
MQTT data, we insert a BOS tag at the beginning of the
sequence and an EOS tag at the end. After that, we append
PAD tags to sequences that fell short of the expected
length to ensure uniform sequence length. We utilize one-
hot encoding to transform all protocol data into vectors,
enabling us to commence with the training process at
last.

2) FUZZING ENVIRONMENT BUILDING
Before executing the fuzz test, we set up the software
environment and deploy the MQTT server locally. The next
step is to generate a batch of MQTT sequence data and send
it to MQTT brokers.

VOLUME 12, 2024 27217



Z. Wei et al.: SGANFuzz: A Deep Learning-Based MQTT Fuzzing Method Using GANs

TABLE 3. MQTT brokers for testing.

TABLE 4. SeqGAN pre-training parameters setting.

a: SOFTWARE ENVIRONMENT
Our SGANFuzz is constructed using Python 3.8, and our two
designed brokers operate on Windows 10, with a RAM of
16GB. To accommodate certain MQTT implementations that
require a Linux environment, we establish a virtual computer
with the CentOS 7 operating system. The virtual machine
contains 8 GB of RAM and 4 processor cores, which we
believe should be sufficient for our testing.

b: TARGET BROKERS
MQTT implementations for vulnerability detection tests
are outlined in table. 3. We conduct fuzzing on each
broker, employing approximately 20000MQTT protocol data
generated by the innovative SeqGAN system. Among all
these implementations, we use the commit ID from Github
as its hrotti version since it lacks an official version. During
the fuzzing process, our program listens to the MQTT port
and sends synthetic data SeqGAN generates to the server.

B. TRAINING SeqGAN FOR MQTT DATA GENERATION
Fig. 10 shows the experimental results of trainingMQTT data
using the SeqGAN algorithm. As outlined in algorithm 1,
the algorithm utilizes three variables, gstep, dstep and p,
during the training phase. The loss metric measures the
negative log-likelihood value of the generator during the
generation process. The dashed lines in the picture divide the
process into pre-training and adversarial training stages. Our
content generation system employs a GRU neural network
as the generator and a transformer encoder model as the
discriminator. Teaching force strategy will be adopted to
pre-train the generator. The specific parameters used in the
SeqGAN training process can be found in table. 4.

We find that the stability of SeqGAN heavily relies on
the fine-tuning of specific parameters. More specifically,
adjusting gstep, dstep, and p parameters has a noticeable

effect on training loss and convergence. In fig. 10(a), both the
generator and the discriminator take one step in every epoch,
with the discriminator trained only once during the generation
phase. As seen in fig. 10(b) and fig. 10(c), the loss curve in
fig. (10a) oscillates obviously and decreases slowly. This is
because the discriminator cannot get fully trained and will
provide a misleading signal gradually. When dstep is set with
5 or p is set with 10, the discriminator will be trained more
stable even though the negative log-likelihood loss remains
high. Interestingly, as shown in fig. 10(d) and fig. 10(e),
increasing the number of generation steps helps to alleviate
the instability in training.

Based on the results shown in fig. 10(d), adjusting the
parameters to set gsteps at 10, dsteps at 5, and p at 1 resulted
in SeqGAN exhibiting improved performance as indicated by
its lower loss value. This can be attributed to the fact that
the transformer model utilized by SeqGAN is more intricate
and efficient than standard time-series models, thus requiring
a higher number of steps to generate high-quality samples
capable of deceiving the discriminator. These findings are
further supported by the loss outcomes displayed in fig. 10(e),
where the generator takes 20 steps for fake data generation
before the discriminator is trained for only 1 step and 1 epoch.
Given these conditions, SeqGAN can learn stably and achieve
superior performance.

Please note that setting a high value for the gstep variable
is not recommended. As depicted in fig. 10(f), SeqGAN faces
the problem of over-fitting when gstep is set to 50. Although
its loss decreases quickly and stably in the initial 30 epochs
of adversarial training, it rises after 40 epochs of adversarial
training. As a result, during the fine-tuning process, we must
let the generator and the discriminator adapt to each other’s
learning pace.

Aside from SeqGAN, we also explore RankGAN, which
employs a discriminator that ranks rather than labels [40].
Meanwhile, Seq2Seq is another widely-used framework used
to generate sequence data, particularly in natural language
generation and speech processing. A comparative study has
been conducted to evaluate the quality and diversity of
generated data.

C. COMPARATIVE STUDY ON DEEP LEARNING METHODS
During our deep learning analysis, we utilize multiple
sequence generation models, including SeqGAN. Tomeasure
the quality of the generated data, we employ standard natural
language processing metrics such as BLEU and Self-BLEU,
frequently used in machine translation tasks. Additionally,
we introduce a novel metric called N-Jaccard to assess the
diversity of generated MQTT data. The significance of this
lies in the correlation between varied data and diverse fuzzing
outcomes.

1) N-Jaccard
We propose a new metric for measuring the similarity of two
text sets. Inspired by the Jaccard index, we determine the
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FIGURE 10. The converge performance of negative log-likelihood applying different training skills. The vertical dashed lines in the middle indicate
the start of adversarial training.

TABLE 5. Performance of different models in MQTT protocol generation task, evaluated on test MQTT data.

similarity by calculating the ratio of the number of words
that appear in both sets to the total number of words across
both sets. This approach is known as the N-Jaccard similarity,
represented by equation 18. The equation uses S1 and S2 to
represent the two text sets and Gn to refer to the union set of
n-grams found in both sets.

scoren =

∑
g∈Gn min{Cn(g, S1),Cn(g, S2)}∑
g∈Gn max{Cn(g, S1),Cn(g, S2)}

(18)

The equation involves calculating the similarity between
two sets based on the frequency of n-grams, with scoren being
the resulting score. A low N-Jaccard score indicates that the
generated text differs markedly from the actual texts in terms
of distribution, suggesting a lack of diversity or quality in the
generated sequence. It is worth noting that a higher N-Jaccard
score is preferable, as it indicates better results.

2) BLEU AND Self-BLEU
. In natural language generation tasks, BLEU is often the
metric of choice when evaluating the quality of generated
sequence data. Original BLEU is designed for machine

translation tasks [41] and calculates the average similarity
score between the candidate data and a reference set of all
sequences in the test set. In contrast to BLEU, Self-BLEU
measures the diversity between generated and reference
sequences. During the Self-BLEU calculation process, each
generated sequence is given a BLEU score by comparing it
to other generated sequences. The average of these scores
provides the Self-BLEUmetric, where a lower value indicates
greater diversity [42].

Results of generating MQTT data using various
approaches are displayed in table. 5. Our approach involves
using n-gram values ranging from 2 to 5, with the MQTT test
data as our reference, which we refer to as Real data. After
we use different training techniques to generate sequence data
batches, we compare them to the Real data. From the table,
we know that with an increasing number of n, the diversity
and similarity metrics of all methods show a downward
trend. Moreover, based on the N-Jaccard metric, SeqGAN
outperforms the other methods. RankGAN also gets high
BLEU scores compared to other methods. All four methods
show comparable Self-BLEU scores, but SeqGAN’s value is
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FIGURE 11. Comparison of unique response number detection in different fuzzing methods. Dashed lines represent unique response, while solid
lines indicate total response.

TABLE 6. Fuzzing methods acceptance rate.

slightly lower, indicating that it produces data with greater
diversity.

D. RESPONSE FEEDBACK
We build the log system to monitor the number of approved
fuzzing data and the feedback response status provided by
the broker. To determine the efficiency of the protocols
generated that bypass the protocol format check and are sent
to the broker, we have introduced a metric called acceptance
rate. In this test, fuzzers with a higher acceptance rate are
considered more skilled than those with a lower rate. To test
the acceptance rate produced by MQTT, we use the modified
edition(2.0.14) of Mosquitto. We also carry out tests on the
EMQX and HiveMQ scenarios to assess this measure.

Table. 6 displays the acceptance rates of SGANFuzz
and several protocol-based fuzzers, including FUME [43],
SeqFuzzer [44], and GANFuzz [45]. The results demonstrate
that SGANFuzz has the highest acceptance rate, generating
more than 80% illegal communication protocols in all
test brokers. It appears that most of the MQTT protocols
generated align with the users’ actions, adhering to the
appropriate packet sequence. Nevertheless, a portion of
these protocols are rejected due to malformed sequence
data. This is due to the GAN-based model introducing
some degree of randomness to the sequence data generation
process, causing unexpected tokens to be included. FUME,
on the other hand, has a relatively lower acceptance rate,
with around half of the generated protocols being rejected
during transmission. This should be reasonable because
grammar-based fuzz methods generate compliant protocols,
while FUME sometimes mutates protocols with unexpected
changes. Our proposed model shows a higher acceptance rate
than GANFuzz, outperforming it by 15%, 16.6%, and 13.8%
in all test brokers. This is expected since GANFuzz uses

the vanilla version of SeqGAN, which performs worse on
sequence generation tasks than our model. Also, SGANFuzz
has proved superior to SeqFuzzer in all three testing
scenarios.

1) UNIQUE NETWORK RESPONSE
The uniqueness of a network response is determined by the
values found in its control packet fields. If the response has
distinct field names or numbers, it will be logged as a unique
response. Throughout the fuzzing process, we monitor the
broker’s status by keeping track of the number of unique
network responses. Fig. 11 illustrates the detection of unique
responses, with dashed lines indicating distinct and solid lines
representing all network responses, including redundancies.
The iteration number denotes the quantity of fuzzing data
generated by tested fuzzing tools.

2) MOSQUITTO DISCOVERY
Among all the fuzzing tools, SGANFuzz stands out for
detecting the highest number of responses. The number
of responses detected in Mosquitto broker is present in
fig. 11(a). In this test, during 20000 fuzzing iterations,
SGANFuzz detects approximately 16000 responses, with
the number consistently increasing. While GANFuzz and
SeqFuzzer also identify a noteworthy number of responses,
they are not as many as SGANFuzz. FUME has the least
number of responses among all the fuzzers. These tools
rank in the same order when it comes to unique response
detection. SGANFuzz detects over 600 unique responses,
while GANFuzz and SeqFuzzer detect roughly 300 each.
However, the rate of detecting unique responses is slower than
overall response detection. Fuzzers like FUME even have
difficulty detecting unique responses after 20000 fuzzing
iterations.

3) EMQX DISCOVERY
The information in fig. 11(b) indicates that response detec-
tion ranking remains consistent between the EMQX and
Mosquitto scenarios. Among the tools evaluated, SGANFuzz
proves to be the most successful in identifying the greatest
number of both overall and distinct responses. In contrast,
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TABLE 7. Vulnerabilities found in fuzzing test.

GANFuzz and SeqFuzzer, achieve a relatively small number
of response detection, with less than 100 unique responses
identified compared to SGANFuzz’s roughly 500.

4) HiveMQ DISCOVERY
Finally, fig. 11(c) plots the number of responses detected
by these fuzzers in HiveMQ broker. The results reveal that
SGANFuzz detects a lower number of unique responses,
compared to Mosquitto and EMQX scenarios. However, the
performance gap between the other fuzzers is not so obvious
that most of them discover around 100 unique responses.
It’s worth mentioning that SGANFuzz demonstrates its
ability to generalize as it performs the best in all test
brokers.

Through analysis of three different scenarios, it has been
determined that SGANFuzz outperforms other methods with
respect to response detection. Additionally, when evaluating
the acceptance rate of test suites, it can be concluded that
the test cases produced by SGANFuzz are more realistic
than those generated by alternative methods. FUME, one
of the three fuzzes examined, mutates existing MQTT
corpus based on specific rules, but may create malformed
protocols if certain fields, such as protocol version and packet
suffix, are altered. In contrast, learning-based methods like
SeqFuzzer are good at generating sequences that closely
align with the protocol specification due to their auto-
regression architectures. But this maybe constrained in
their ability to produce diverse request sequences, which
ultimately restricts the number of unique responses they
can identify. GAN-based fuzzer, however, can generate
sequences that are both high quality and diverse, provided
that the generator has been sufficiently trained. The generator
is presented with the entire sequence data and generates
one token at each timestep, utilizing global information to
focus on the current token generation. SGANFuzz has made
significant strides when compared to ordinary GANFuzz,
primarily due to its effective model architecture selection
and training strategy, which enables it to produce realistic
protocols.

E. VULNERABILITY FINDINGS
We discover 6 vulnerabilities amongMQTT implementations
in table. 3 during our fuzzing test. All vulnerabilities we find
here cause the immediate termination of the MQTT broker,
and some of them lead to the denial of service.We listed these
bugs in the table. 7 below.

TABLE 8. Time to find vulnerabilities. Numbers in the table mean the
time of fuzzing iteration.

1) MOSQUITTO
We find 3 vulnerabilities when fuzzing Mosquitto clients
using SGANFuzz, which are indexed from 0 to 2. The first
vulnerability is found in version 2.0.2 when an authenticated
client connected with MQTT v5 sends a crafted CONNACK
message to the broker. It has been reported to Eclipse and
assigned to CVE-2021-28166. The second bug is reported
when fuzzing mosquitto 1.6.2. An MQTT client connected to
the broker sets a will delay interval longer than the session
expiry interval. It has been assigned to CVE-2019-11778.
Another Mosquitto vulnerability is related to topic length that
the server crashes when the client tries to send a PUBLISH
packet with zero topic length. Likewise, this vulnerability is
assigned to CVE-2021-34432.

2) HROTTI
In the hrotti scenario, we uncover 3 vulnerabilities not
associated with CVE. Like Mosquitto, the fourth and fifth
vulnerabilities are activated by transmitting a specially
crafted control packet. In particular, index 3 highlights a
vulnerability that results in the hrotti broker crashing when
a client tries to unsubscribe a topic with zero length.

Furthermore, we evaluate the discovery speed of these six
vulnerabilities across different fuzzing engines. Our analysis
encompasses SGANFuzz, BooFuzz, AFLNet, FUME, and
SeqFuzzer. The time taken to identify each vulnerability
is shown in table. 8. Among these fuzzing methods,
BooFuzz employs a generation-based approach to generate
test cases from a given input corpus, whereas AFLNet is a
mutation-based MQTT fuzzer. FUME is implemented with
both mutation and generation techniques. SeqFuzzer is an
industrial protocol fuzzer based on the seq2seq generation
framework.

We have found that when dealing with crafted packets,
mutation-based fuzzers are more efficient in identifying
vulnerabilities than generation-based ones. AFLNet dis-
covers the Mosquitto crafted packet bug only 23 fuzzing
iterations, while hrotti bugs are identified even faster (12 and
5 iterations). The reason for this is that modifying a control
packet that matches the content of raw packet data from the
input corpus is relatively easy. This makes mutation-based
fuzzing method effective in detecting crafted packets vul-
nerabilities. However, generation-based approaches tend to
generate hundreds of valid packets with similar contents.
Generation-based approaches show their advantages in
handling topic-length vulnerabilities since they can quickly
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generate PUBLISH orUNSUBSCRIBE packets. On the other
hand, mutation-based approaches must successfully mutate
the ‘‘topic length’’ field to zero without corrupting other
contents. A shift in perspective reveals that learning-based
models excel at pinpointing vulnerabilities resulting from
specific modifications to protocol specifications. This is due
to their familiarity with the syntax and structure of complete
protocol sequences, increasing the likelihood of generating
the token ’0’ at the topic length field through randomization.
On the other hand, non-learning-based models like AFLNet
and BooFuzz often encounter difficulties in identifying such
scenarios. It can be time-consuming for them to change the
length of the topic field, and the rules for generating the topic
field usually do not permit it to be left empty. FUME detects
the fourth hrotti bug in only 25 iterations, whereas AFLNet
cannot detect this. SGANFuzz effectively detect both types
of vulnerabilities and even triggers the second vulnerability,
which other methods find challenging to detect. SGANFuzz
takes 3120 fuzzing iterations to find the second bug, much
faster than FUME, which takes 8345 iterations. Compared to
SeqFuzzer, SGANFuzz can find more vulnerabilities due to
the advantages of SeqGAN. It can generate MQTT data with
greater diversity, as shown in table. 5. This diversity helps
SGANFuzz change the information in different fields, such
as will delay interval and topic length, without compromising
the quality of the generated data.

V. RELATED WORK AND DISCUSSION
Fuzzing has been a popular technology for discovering
software vulnerabilities for many years. Miller, the pioneer
of the fuzz test, conducted his research on fuzzing the
UNIX program in 1990 [2]. Since then, fuzzing has been
significantly improved, and many applications of fuzzing
network protocol have been built up. Model-based fuzzing is
a well-known type of method for protocol fuzzing research.
It covers the knowledge of grammar and structure of the
(system under test) SUT’s inputs and leverages a trained
model for test case generation. Applications like Peach [4]
and SPIKE [46] describe the protocol specification as XML
files and templates, respectively, for test case generation.
Aitel introduces a block-based approach that splits a protocol
into several blocks and fuzzes the target by removing factors
in this protocol [47]. FUME is aMarkovmodelMQTT fuzzer
that can generate realistic but fake data [43] by following
the syntax and rules of MQTT protocol. However, these
fuzzing methods require manual effort to extract the protocol
grammar from network traces and reconstruct fuzzing data
according to the protocol specification. Mutation-based
methods, like AFL-type fuzzers, are almost the most popular
class of fuzzing frameworks. The fundamental component is
a coverage-based grey box fuzzer(CGF), which instruments
the fuzz target by injecting some instructions into the source
code at compile time. Whenever a new path is reached in the
code, the instrumented target will inform AFL during fuzzing
time.

Deep learning technology has been applied in fuzz tests
to automate the reconstruction engineering process. For
instance, Nichols’ et al. GANFuzz framework leveragesGAN
structure to fuzz Modbus-TCP protocol [48], while Chock-
alingam’s deep learning-based fuzzer detects abnormalities
in the CAN protocol [49]. Additionally, Zhao’s SeqFuzzer
utilizes a seq2seq framework to fuzz the EtherCAT Ethernet
protocol [44]. These methods employ the RNN architecture
for protocol data generation, making them user-friendly as
they do not require knowledge of the protocol specification or
the test broker. However, optimal results can be challenging
to achieve due to the heavy reliance on input corpus data and
the model training strategy, despite the time and labor-saving
benefits of these fuzzers.

SGANFuzz has many advantages over other protocol
fuzzers. Firstly, it uses an optimized SeqGAN framework
that outperforms the GAN framework used in GANFuzz for
sequence data generation. Its fuzzing data is highly diverse,
making it more effective at identifying unique feedback
from the broker than other deep learning-based methods.
Secondly, SGANFuzz features a response feedback system
that previous protocol-based fuzzing tools lacked. This
system enables the investigation of the status of the broker
and the monitoring of feedback coverage. Additionally,
SGANFuzz can also be used for fuzz tests on other real-world
network protocols, provided sufficient sequence data is
available for training.

However, the disadvantages of SGANFuzz cannot be
ignored. As a black-box fuzzer, SGANFuzz has no access to
the source code of MQTT brokers, which means it can only
estimate the feedback coverage. In contrast to SGANFuzz,
grey-box fuzzers like AFLs can monitor their source code
coverage directly using instrumentation. Compared to other
deep learning-based fuzzing frameworks, the SeqGAN archi-
tecture in SGANFuzz is also challenging to fine-tune, often
requiring a significant amount of time to achieve optimal
loss convergence. Also, SGANFuzz performs poorly when
generating long sequence data. This problem can be solved
by dividing the MQTT sequence into several subsequences
according to the control packets, generating them separately,
and finally concatenating them.

VI. CONCLUSION
To enhance the efficiency of fuzz testing, we have devel-
oped SGANFuzz, a deep learning-based framework that
can independently generate MQTT protocols with great
accuracy. With SeqGAN, a powerful sequence generation
model, SGANFuzz can be expertly trained on MQTT data
to optimize the efficiency of fuzzing testing. Throughout
rigorous testing, we have uncovered a total of 7 vulnerabilities
in 7 open-source MQTT implementations, including 3 CVE
bugs. The experimental results of discovery speed indicate
that SGANFuzz surpasses other state-of-the-art fuzzers by
detecting MQTT vulnerabilities with more precision and
speed. Also, SGANFuzz is proven to be more powerful
than existing methods of MQTT fuzz testing thanks to its
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capability to identify a more significant number of unique
network responses.
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