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a clinical microscopy dataset to 
develop a deep learning diagnostic 
test for urinary tract infection
Natasha Liou  1,2, Trina De3,4, Adrian Urbanski  3,4, Catherine Chieng  1, Qingyang Kong1, 
anna L. David  2, Rajvinder Khasriya1,5, Artur Yakimovich  1,3,4,6 ✉ & Harry Horsley1 ✉

Urinary tract infection (UtI) is a common disorder. Its diagnosis can be made by microscopic 
examination of voided urine for markers of infection. This manual technique is technically difficult, 
time-consuming and prone to inter-observer errors. the application of computer vision to this domain 
has been slow due to the lack of a clinical image dataset from UtI patients. We present an open dataset 
containing 300 images and 3,562 manually annotated urinary cells labelled into seven classes of 
clinically significant cell types. It is an enriched dataset acquired from the unstained and untreated urine 
of patients with symptomatic UtI using a simple imaging system. We demonstrate that this dataset 
can be used to train a Patch U-Net, a novel deep learning architecture with a random patch generator 
to recognise urinary cells. Our hope is, with this dataset, UTI diagnosis will be made possible in nearly 
all clinical settings by using a simple imaging system which leverages advanced machine learning 
techniques.

Background & Summary
UTI can often be clinically identified by the presence of lower urinary tract symptoms (LUTS), with the classical 
symptoms being burning or pain on urination and frequency of urination. UTIs are the most common bacterial 
infection in humans with the potential to become a recurrent infection or lead to life-threatening infections and 
sepsis1. Women are not only at increased risk of UTI, but also more likely to develop complicated infections2. 
Not surprisingly, UTIs are associated with a substantial health and economic burden3 and the prevalence of 
antibiotic prescriptions and hospital admissions related to urine infections is on the rise4,5.

Rapid identification of infection and timely administration of antimicrobial treatment can prevent adverse 
complications. Point-of-care testing (POCT), tests which are performed at the bedside at the time and place 
of patient care, is the preferred diagnostic practice6. However, the current routine tests, namely the urine dip-
stick and midstream urine culture, are inadequate to detect UTI7,8. Without an accurate POCT, clinicians are 
ill equipped to diagnose infections, thus contributing to inappropriate antibiotic use and potentially driving 
antimicrobial resistance9.

Urine microscopy and identification of urinary cells from freshly voided urine is an alternative POCT with 
greater sensitivity than both aforementioned methods. The presence of white blood cells (WBC, or pyuria) in 
an unspun, unstained specimen of urine examined shortly after void is particularly predictive of a UTI10,11. The 
presence of epithelial cells (EPC) is also suggestive of infection as urinary epithelial cells are actively involved in 
antibacterial activities12–14.

Urinary microscopy measures and explores the host immune response and, therefore, accurately reflects the 
underlying pathophysiological state of the urinary tract. Use of this test has been shown to improve patient out-
comes15. Pain, storage, and voiding symptoms have been found to be the most reliable predictors of microscopic 
pyuria, and in turn correlate with measures of quality of life. In our experience, treating patients with chronic 
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UTI, we find that peak symptoms coincide with peak cell counts (Fig. 1). Unfortunately, while the benefits of 
urine microscopy have clear clinical benefits, it requires the time and manual labour of an experienced micros-
copist thus limiting its availability as a POCT to highly specialised clinics in well-developed countries11.

Machine learning in biomedical imaging is increasingly used as an adjunct to enhance or automate conven-
tional diagnostics. An image dataset of spun urinary sediment to identify three urinary cell types has been pro-
duced to automate urinalysis and detect a wide range of urinary and kidney diseases from hospitalised patients16. 
Furthermore, nano-resolution microscopy images of urine cells have been applied to detect bladder cancer17. 
However, a clinically relevant and representative dataset of urinary cells obtained from symptomatic patients 
with urine infection does not currently exist. This is due to the wide range and often equivocal nature of cellular 
content in symptomatic patients. While these difficulties might be overcome by processing the urine to produce 
urinary sediment16, or the application of advanced imaging techniques17 or histological stains18, such a model 
could no longer be offered as a POCT as the workflow would require access to specialised equipment found in 
large, centralised laboratories away from the point of patient care. Moreover, such advanced equipment and 
techniques are likely only to be available in well developed countries. There is no open dataset of high-quality 
urinary cells annotated for the analytical task of UTI detection to date.

We have produced an open image dataset of urinary cells which can be used to identify markers of infection 
using machine learning techniques. Our image dataset of voided urine is clinically representative of patients with 
known urine infection. Unlike other cellular image datasets, cell identification techniques such as histological 
staining have not been deployed and therefore no laboratory processing is required. This was purposefully done 
with the ambition of creating an accurate POCT using a simple imaging system which leverages machine learning.

Methods
Ethics. Written informed consent was obtained from all participants in accordance with Good Clinical 
Practice guidance and participants agreed to the open publication of data. Ethics was approved by Health 
Research Authority (HRA) and Health and Care Research Wales (HCRW) under “A prospective observational 
cohort study of the pathophysiology of urinary tract infection”, IRAS 295252, protocol number 143470, and REC 
reference 22/WA/0069.

Clinical samples. 300 urine samples were randomly obtained from patients with symptomatic UTI from 
the Whittington Health NHS Trust in London, UK. LUTS data was collected using a validated 39-question in 
inventory grouped into pain, urgency, voiding, and stress symptoms and assessed in binary yes or no response 
(Supplementary File 1). Frequency of urination and incontinence during the day and night was also assessed.

Data acquisition. Urine samples were collected as natural voids and processed on-site within one hour to 
limit cellular degradation. Brightfield microscopic examination (Olympus BX41F microscope frame, U-5RE 
quintuple nosepiece, U-LS30 LED illuminator, U-AC Abbe condenser) was performed using a x20 objective 
(Olympus PLCN20x Plan C N Achromat 20x/0.4). A disposable haemocytometer (C Chip™) was used for 

Fig. 1 WBC count and composite LUTS trajectory on treatment. WBC count (solid line) as measured by urine 
microscopy correlates with a composite score of LUTS (dashed line) over the course of antimicrobial treatment. 
By the final clinical attendances, WBC count drops within a physiological WBC range as marked by the pale 
dashed grey lines.
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enumeration of red blood cells (RBC), white blood cells (WBC), epithelial cells (EPC), and the presence of all 
other relevant cellular content per 1 µl of urine by two experienced microscopists.

Images were acquired using the aforementioned brightfield microscope using a 0.5X C-mount adapter cou-
pled to a digital scientific colour camera (Infinity 3S-1UR, Teledyne Lumenera). Images were taken in 16-bit 
colour in 1392 × 1040 TIFF format using Micromanager software19. Daily Kohler illumination and global white 
balance was performed to ensure consistency in image acquisition. An enriched dataset approach was taken to 
maximise urinary cellular content in the acquired images. Such data curation was also necessary to attenuate 
object sparsity.

Dataset annotation. 300 images were acquired and manually annotated to produce 3,562 objects by first 
identifying cells of interest as a binary semantic segmentation task. Individual pixels were dichotomously labelled 
as either informative objects, foreground, or non-informative background. Non-informative background was 
further constrained by including unidentifiable cells, such as debris or grossly out of focus particles. Binary anno-
tation was initially performed using ilastik20, an open source software using a Random Forest classifier for pixel 
classification, then manually refined at the pixel level to ensure accurate segmentation. This produced a binary 
mask in 1392 × 1040 TIFF format with values [0,1] for each corresponding raw colour image.

All 3,562 objects, or cells of interest, were subsequently labelled manually by two expert microscopists into 
one of seven clinically significant multi-class categories: rods, RBC/WBC, yeast, miscellaneous, single EPC, 
small EPC sheet, and large EPC sheet (Table 1). This produced a multi-class mask in 1392 × 1040 TIFF format 
with integral values between [0,7].

These classes were chosen due to their clinical significance. Coliform bacteria are frequently implicated in 
UTI pathogenesis and are rod-shaped with each cell unit measuring 0.25–1.0 μm in width and 2.0 μm in length. 
These bacteria can elongate up to 15μm to produce a filamentous morphology, a phenomenon often associated 
with bacterial pathogenicity in the urinary tract21,22. Yeast (most commonly of the Candida species) are also seen 
in urine, and may represent a commensal organism or infectious pathogen23. Their size is dependent on their 
mitotic state, and in certain states may be confused with erythrocytes. RBC and WBC, haematuria and pyuria 
respectively, are cellular indicators of infection24,25. EPC are often seen as individual cells or sheets of cells. A 
powerful mechanism to rapidly reduce bacterial load is to shed the superficial bladder epithelium invaded and 
colonised by bacteria12. The presence of large EPC sheets may therefore indicate more widespread infection 
hence more extreme cellular exfoliation. Work is ongoing to further subtype the aforementioned classes (e.g. 
distinct WBC populations such as macrophages and lymphocytes) and annotate new classes (e.g. cocci, another 
bacterial morphology).

Data preprocessing. First, the image was rescaled according to the scale factor either 0.2, 0.3, 0.5 or 1, and 
thereby, if applicable, decreasing its resolution. This allowed the model to analyse a larger area while keeping the 
patch size uniform, an important strategy in the case of sparse data. Then, 256 × 256 patches were cut from a 
random region in the image. Finally, all values within the patch were rescaled to fall within the range of [−1, 1] 
by performing the following operations: divide by 255, the highest potential value, then multiply by 2, and finally 
subtract 1. In the case of training data, random vertical and horizontal flips were performed to increase the vari-
ation in the data and encourage model generalisation.

Patch U-Net architecture. Generally, we followed the architectures described here26,27. There were, how-
ever, a few notable changes. Firstly, we added instance normalisation layers28. Secondly, we made the size of a 
network scalable by specifying the number of channels produced by the initial convolutional layer.

Similarly to the architecture proposed by Ronneberger and colleagues26, our network consisted of an encoder 
(contracting) and decoder (expansive) path. A critical component of the network was the convolutional block29, 
which consisted of repeated applications of 3 × 3 convolutions, each followed by batch normalisation30 and 
rectified linear unit (ReLU)29. The contracting path consisted of 5 convolutional blocks, each followed by an 
instance normalisation layer and a 2 × 2 max pooling operation29 with stride 2 for downsampling. After each 
downsampling step, we doubled the number of feature channels.

Folder Files Objects Count Pixel Values

img 300 Raw data 0-65535

bin_mask 300 Background/Foreground 0/1

mult_mask 300 Background/Class 0

Rod 1697 1

RBC/WBC 1056 2

Yeast 41 3

Miscellaneous 550 4

Single EPC 182 5

Small EPC sheet 26 6

Large EPC sheet 10 7

Total 3562

Table 1. Data structure.
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Every step in the expansive path consisted of an upsampling of the feature map followed by a 2 × 2 convolu-
tion which halved the number of feature channels, followed by a convolutional block and instance normalisation 
layer.

Loss functions. The loss function was computed by a pixel-wise sigmoid over the final feature map with the 
combined binary cross entropy31 and Dice coefficient loss function32,33.

The sigmoid function34 is defined as:

σ =
+ −x
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,
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and casts the prediction values into (0,1) range. Let’s define Y as ground truth, �Y  as model prediction, and N as 
the number of pixels. The cross-entropy penalises31 the deviation from the ground truth at each position using:
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where �D Y Y( , )  is defined in Eq. (1). The final loss function is defined as:

� � �L Y Y BCE Y Y DL Y Y( , ) ( , ) ( , ) (4)α β= . + .

It is calculated across the batch to make it more stable. In our experiments, we set α = β = 1.

Batch generation. To prepare batches of training data for the Patch U-Net, full-scale images were dynam-
ically pre-processed into patches of 256 × 256 pixels during the training. Training of the Patch U-Net was per-
formed on mini-batches of such patches. Given the sparsity of the objects in the images, a procedure evaluating 
emptiness of the image was devised. As a result, for each mini-batch, patches were generated using the following 
procedure:

 1) Choose a random value as

−h U H{0, 1}~

where H is the height of the images

 2) Choose a random value as

−w U W{0, 1}~

where W is the width of the images and U represents a Discrete Uniform Distribution35

 3) Get patches from the image X as follows:

″ ≡ + ∆ + ∆ ∆ = ∆X X h h h w w w h w[ , : , ] ,

 4) Get batches of patches as above as follows:
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where BS is the batch size and X i bw,″  is the binary mask corresponding to the ith image patch in the batch B.

Metrics. To evaluate model performance during training we employed the Sørensen–Dice coefficient32,33 
which measures the ratio between the area of overlap and the total number of pixels classified as foreground in 
both images and is described by Eq. (1):
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where Y� is the segmentation mask returned by the model, and Y is the ground truth.

training evaluation. During training, the performance on both train and validation sets was calculated 
mini-batch wise where b,h,w respectively correspond to the index of the sample in a mini-batch and the position 
of a pixel in the sample respectively. Y and Y� are as defined previously.
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Such an approach allowed us to address the sparse patches, i.e. patches where only a few pixels were marked 
as foreground. Such patches could contribute unrealistically high performance, should the metric be calculated 
in a sample-wise manner. In contrast, our approach allowed us to alleviate such circumstances, ensuring better 
training performance.

testing evaluation. For the final evaluation, we opted to emulate the real-world inference, and thus the 
metrics were computed image-wise. Since our model was patch-based, each image was split into patches prior to 
inputting into the model. To avoid potential issues at the edges of each patch, inference was performed on over-
lapping patches. Next, predictions were combined into a final mask by means of taking maximum from overlap-
ping regions. The following metrics described in Eqs. (7)–(13) were used for evaluation.
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where h w Y Y, , , � have the same definition as in Eq. (6) and i is the image index in the test set. This was reported 
as the Dice coefficient32,33 in Table 2.
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where h,w,Y,i have the same definition as in Eq. (7) and ′Y�  is the model prediction after binarizing to {0,1} based 
on a threshold, here 0.5. This was reported as IoU36 in Table 2.
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where ′�Yh w Y i, , , ,  have the same definition as in Eq. (8) and Y⊥ is defined as the ground truth, wherein the 
binary encoding convention has been inverted, such that the logical values of 0 and 1 are interchanged. This was 
reported as Precision37 in Table 2.
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where ′Yh w Y i, , , , �  have the same definition as in Eq. (9) and Y�′⊥ is defined as the model prediction, wherein 
the binary encoding convention has been inverted, such that the logical values of 0 and 1 are interchanged. This 
was reported as Recall37 in Table 2.
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This was the True Positive Rate (TPR) and was used in the final metric AUC in Eq. (13).
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where � �′ ′⊥ ⊥Y Y Yh w i, , , , ,  have the same definitions as in Eqs. (8–10). This was the False Positive Rate (FPR) 
and was used in the final metric AUC in Eq. (13).

Fold resolution of 
images during training

Dice coefficient on test 
set at full resolution IoU Precision Recall AUC

0.2 0.541 0.278 0.431 0.799 0.970

0.3 0.877 0.452 0.890 0.920 0.989

0.5 0.864 0.426 0.959 0.773 0.965

1 0.875 0.435 0.938 0.817 0.974

Table 2. Patch U-Net performance on binary segmentation. Model training was performed at different image 
resolutions with model performance reported as Dice coefficient32,33, IoU36, Precision37, Recall37, and AUC38,39 
on the test set at full image resolution.
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Employing an alternative threshold, such as 0.75 as opposed to the conventional 0.5, to discretize the variable 
�Y  to get �Y ′ and consequently �′⊥Y  results in disparate TPR and FPR values across distinct threshold levels. The 
Receiver Operating Characteristic (ROC) curve38,39 is defined as the graphical representation formed by plotting 
TPR on the y-axis against FPR on the x-axis across various thresholds. In this instance, these thresholds are 
specifically delineated by all unique values within the interval [0,1] observed in �Y  prior to the binarization pro-
cess. This depiction offers a comprehensive visualisation of the nuanced trade-offs between these two perfor-
mance metrics.

AUC Area under ROC TPR vs FPR( ) (13)= .

AUC was our final metric for evaluating model performance and was reported as AUC38,39 in Table 2.

Model implementation. Optimiser. To optimise the model’s parameters, we employed the Adam opti-
miser40 with an initial learning rate of 0.001. Then, we decreased the learning rate according to an exponential 
schedule with a decay rate of 0.95 every 50 epochs.

Regularisation. To prevent overfitting, we employed the following regularisation technique: L2 weight decay41. 
L2 weight decay with a coefficient of 0.0001 was used to penalise large weights and encourage the model to arrive 
at sparse solutions.

Training procedure. Our training process consisted of 750 epochs for each experiment giving the model suffi-
cient time to converge, each epoch containing 1000 random samples. We used a batch size of 50, and the model’s 
parameters were updated with mini-batch gradient descent.

Hardware and software setup. The model was built in Python 3.10.8. TensorFlow, a library developed to solve 
deep learning problems, was incorporated to increase model scalability, speed, and accuracy. Keras was used as 
a Python interface to TensorFlow. The following libraries and their required versions used in our network were 
as follows: keras 2.6.0, keras-preprocessing 1.1.2, numpy 1.19.5, tensorboard 2.6.0, tensorflow 2.6.0, scikit-image 
0.18.1, tqdm, scipy, seaborn, and scikit-learn. Experiments were conducted on the following machines: MacBook 
Pro Apple with M1 Max Chip with 10-core CPU and 32-core GPU, HPC Hemera at HZDR on a Nvidia Tesla 
A100 GPU 40GB, HPC at ZIH TU Dresden on a NVIDIA A100-SXM4 Tensor Core-GPU.

Data Records
Data storage. The dataset is publicly available at the Rodare data repository42. Images were captured at the 
clinic and anonymised using an allocated study number. Images were stored on-site in secure UCL storage. All 
patient data and manual microscopy reports were entered on an encrypted database on a secure server in com-
pliance with General Data Protection Regulation. This clinical database is NHS approved and procured, and 
regularly backed up.

Data structure. The dataset is organised into three root folders: image, binary mask, and multi-class mask 
(Table 1). Each folder has 300 files in TIFF format and labelled incrementally.

Demographics and symptomatology. The image dataset was obtained from urine samples of patients 
with symptomatic UTI. 300 patients (mean 42 ± 15 years, 95.1% female) were recruited. Patients reported a total 
of 3 LUTS (IQR 1–6 symptoms), with pain being the predominant symptom (median pain score 2, IQR 0–3), fol-
lowed by storage, voiding, and stress (Fig. 2). Most samples contained WBC (median 6, IQR 2–22 WBC per 1 µl 
urine) and EPC (median 14, IQR 4–42 EPC per 1 µl urine), and were negative for RBC.

technical Validation
Binary semantic segmentation using a neural network with random patch generator. To eval-
uate the applicability of the dataset to deep-learning-based image segmentation, we developed a patch-based 
U-Net (Patch U-Net) similar to several other architectures proposed previously27,43 to perform urinary cell identi-
fication by binary semantic segmentation. The architecture of the proposed model incorporates a unique random 
patch generator (Fig. 3a) to produce multiple input and output patches at different resolutions in the requisite 
square-shaped U-net dimensions for data augmentation. The image and binary mask components of the dataset 
were equally and randomly split into train, validate, and test subsets with 100 images each. We chose this data 
split, as opposed to the conventional 70/20/10 split, to mitigate potential underrepresentation of certain cell types 
that are morphologically distinct, sparse, and yet significant.

Patch U-Net, which processes patches rather than whole images, was employed since preserving resolution 
was critical for detecting small objects such as bacteria. However, the dimensions of our input images were 
(1392, 1040, 1) making it computationally very expensive to process entire images. Employing a Patch U-Net 
was also effective since our dataset is sparse in nature. Thus, the model can converge faster when shown data that 
is relevant for semantic segmentation rather than the background. For this a filter was applied to the generated 
patches, where a batch of patches of shape (batch size, 256, 256, 1) was used for training only when a specific 
criteria (see section Batch generation - Methods) was satisfied.

Impact of data normalisation on binary segmentation. During the initial stages of our experiments, 
an issue appeared involving the instability of validation accuracy during training. At times, the model displayed 
an unusual behaviour, classifying entire images as either foreground or background, resulting in a significant drop 
in accuracy. Although this behaviour tended to persist for only a few epochs, it raised concerns. To tackle this 
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problem, instance normalisation layers were incorporated into our network architecture after each convolutional 
and deconvolutional block. These layers played a crucial role in preventing instance-specific mean and covariance 
shifts, thereby simplifying the learning process. This technique, introduced by Ulyanov et al.28, effectively allevi-
ated the instability observed during training (Fig. 3b).

Impact of image resolution on binary segmentation. To increase context within the same patch size 
while maintaining the same computational complexity, we tested the effects of reduced image resolutions. Such an 
approach is widely used in computer vision to increase computational efficiency. Specifically, we considered the 
resolutions at scale factors of 0.2, 0.3, 0.5 and 1 of the original resolution, referred to as fold resolution in Fig. 3. 
Notably, pixel information was lost during downscaling and consequent upscaling from any scale factor other 
than 1 (Fig. 3c). This loss of information was measured as the average Dice coefficient between original images 
at full resolution i.e. scale factor 1 and the corresponding images scaled down to a lower resolution. For example, 
images reduced to a factor of 0.2, 0.3 or 0.5 in scale were then scaled back up to full resolution. Pixel information 
was increasingly lost as the scale factor decreased as seen in Fig. 3c. The impact of resolution should therefore be 
carefully considered for this dataset.

To investigate if training on low resolution image and inference on high resolution image could serve as 
a viable alternative, we trained binary segmentation models on scale factors of 0.2, 0.3, 0.5 and 1. Figure 3d 
shows the training performance of our model using different images at scale factors of the original resolution 
to generate patches. Validation was performed on similar patches of the respective downscaling factor from the 
validation set. Once trained, inference was performed on the full resolution images from the test set (Table 2). 
Remarkably, results of all evaluating metrics suggested that a model trained on images downsampled as high as 
factor 0.3 of the full resolution may be as effective in inference on full resolution images, as the model trained 
on full resolution images.

Multi-class morphological feature projection. To make our dataset applicable for computer vision tasks 
such as multi-class segmentation, object-detection and clustering, we have annotated the binary masks into seven 
classes (see section Dataset annotation - Methods). Multi-class segmentation annotations can be translated into 

Fig. 2 Prevalence of lower urinary tract symptoms (LUTS). Pain was the most common symptom associated 
with this cohort of patients, followed by storage and voiding. This is in keeping with the symptoms most 
predictive of microscopic pyuria and, in turn, UTI15.
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object-detection annotations. This can be achieved by treating binary masks as a set of connected components on 
a black background and obtaining bounding boxes of each connected component.

To examine properties of the multi-class objects in an interpretable manner, we evaluated projections of 
some morphological features which we found to be particularly distinct. Specifically we evaluated area (µm) and 
circularity (value between 0.0 to 1.0, where 1.0 represents a perfect circle). We also scaled these values further 
using a standard scaler44,45. These are informative particle metrics in microscopic object analysis associated 
directly with the nature of the object. For this we first obtained connected components from the pixel-level 
multi-class masks present in the dataset. Next, the connected components were projected as manually labelled 
classes using a scatterplot with both features scaled, and area additionally log transformed (Fig. 4). Examples of 
each cell category are demonstrated in the legend.

In summary, UTI is a rising global problem and current diagnostic tests perform poorly. Here, we present an 
annotated, clinically-relevant, image dataset to perform binary and multiclass segmentation and object detec-
tion. We demonstrate the applicability and real world potential of deep learning to this clinical problem by train-
ing a simple semantic segmentation model. Moreover, we explore and present the effect of data normalisation 

Fig. 3 Binary Segmentation using Patch U-Net. (a) Patch U-Net architecture with patches as input and output 
resolutions 1.0 and 0.5, (b) Training performance with batch normalisation only (left) and combined batch 
and instance normalisation (right), (c) Information loss measured as Dice coefficient (±standard deviation) 
between original and downscaled-upscaled images, (d) Training and validation performance using original 
images at full resolution 1.0 and reduced resolutions at scale factors of 0.5, 0.3 and 0.2.
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and image resolution on model performance. This proof-of-concept dataset represents the initial steps towards 
a more fit for purpose and equitable diagnostic test for UTI.

Code availability
All code is available from https://github.com/casus/UMOD under MIT open source licence.
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