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A B S T R A C T 

Gaseous nuclear rings are large-scale coherent structures commonly found at the centres of barred galaxies. We propose that 
they are an accumulation of gas at the inner edge of an extensive gap that forms around the Inner Lindblad Resonance (ILR). 
The gap initially opens because the bar potential excites strong trailing waves near the ILR, which remove angular momentum 

from the gas disc and transport the gas inwards. The gap then widens because the bar potential continuously excites trailing 

waves at the inner edge of the gap, which remo v e further angular momentum, moving the edge further inwards until it stops 
at a distance of several wavelengths from the ILR. The gas accumulating at the inner edge of the gap forms the nuclear ring. 
The speed at which the gap edge mo v es and its final distance from the ILR strongly depend on the sound speed, explaining the 
puzzling dependence of the nuclear ring radius on the sound speed in simulations. 

Key words: galaxies: bulges – galaxies: kinematics and dynamics – galaxies: ISM. 
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 I N T RO D U C T I O N  

aseous nuclear rings are remarkable structures commonly found at
he centres of barred galaxies. They have typical radii of 50 –1000 pc
Comer ́on et al. 2010 ), total gas masses of 10 8 –10 9 M � (Sheth et al.
005 ; Querejeta et al. 2021 ), and star formation rates spanning a
ide range 0 . 1 –10 M �yr −1 (Mazzuca et al. 2008 ; Ma, de Grijs &
o 2018 ). They are among the most intense star-forming regions of
isc galaxies and are considered special laboratories to study star
ormation under extreme conditions (Moon et al. 2021 ; Schinnerer
t al. 2023 ). They are sites where galactic outflows can be launched,
ith profound impact on the evolution of their host galaxies (Veilleux

t al. 2020 ). They constitute cold gas reservoirs for the fuelling of
entral supermassive black holes. The Milky Way hosts a nuclear
ing with a radius of R � 120 pc that is better known as the Central

olecular Zone (Morris & Serabyn 1996 ; Henshaw et al. 2023 ). 
It is well-known that nuclear rings are easy to form in simulations

e.g. Athanassoula 1992b ; Kim et al. 2012 ; Sormani, Binney &
agorrian 2015a , and many others). The recipe is simple: let gas

ow in a non-axisymmetric rotating barred potential, and a nuclear
ing will spontaneously form in the central regions. In the simplest
imulations, the gas is assumed to be 2D, isothermal, non-self
ravitating, and the barred potential is externally imposed, but a ring
an form also if additional physics is included, for example the gas
elf-gravity, star formation & stellar feedback, live stellar potentials,
r magnetic fields (Fux 1999 ; Armillotta et al. 2019 ; Tress et al.
020 ). Ho we ver, being able to watch the ring forming in simulations
oes not mean that we understand the underlying physical process
y which it forms, which has remained elusive. 
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Despite the interest from several astrophysical communities,
he physical mechanism by which nuclear rings form is not well
nderstood. What sets the radius of the nuclear ring? What is ‘special’
bout its location? Various theories have been proposed, but we argue
hat they all fail to explain the formation of the rings. These previous
heories are re vie wed in Section 3.2 . 

One of the most puzzling aspects is that the radius of the nuclear
ing in isothermal simulations of gas flow in a barred potential
epends very strongly on the assumed sound speed (e.g. Englmaier
 Gerhard 1997 ; Patsis & Athanassoula 2000 ; Kim et al. 2012 ;
ormani, Binney & Magorrian 2015a ). For example, doubling the
ound speed from c s = 5 km s −1 to 10 km s −1 can change the radius of
he ring by a factor of two or more (see for example fig. 2 in Sormani,
inney & Magorrian 2015a ). This is surprising because the sound

peed al w ays amounts to just a small fraction of the orbital speed
typically ∼5 per cent). The flow is al w ays strongly supersonic. None
f the currently available theories can explain the strong dependence
f the ring radius on the sound speed. 
In this paper, we develop a framework to understand the formation

f nuclear rings. We propose that the rings are in fact the inner edge
f an e xtensiv e gap that opens around the Inner Lindblad Resonance
ILR) due to the excitation of waves by a bar potential. These waves
emo v e angular momentum from the gas disc, transporting the gas
nwards. The nuclear ring forms due to the accumulation of gas at
he inner edge of the gap. 

The paper is structured as follows. In Section 2 we present some
umerical experiments that illustrate the formation of nuclear rings
n simulations. In Section 3 we re vie w the constraints that we believe
ny plausible theory for the formation of nuclear rings should satisfy,
nd we re vie w pre vious theories. In Section 4 we study the excitation
f density waves by an external bar potential using linear theory. In
ection 5 we illustrate our picture of the formation of the rings. In
© The Author(s) 2024. 
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ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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Table 1. Summary of the simulations run in this paper. 

ID c s R max R disc N R 

[ km s −1 ] [ kpc] [ kpc] 

01 1 1 .5 1 .2 512 
02 2 .5 1 .5 1 .2 512 
03 5 1 .5 1 .2 512 
04 10 1 .5 1 .2 512 
05 20 1 .5 1 .2 512 
04 Large 10 5 .0 5 .0 740 

The parameters are defined in Section 2 . 
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ection 6 we discuss various connections between this paper and 
revious works, in particular the works of Goldreich & Tremaine 
 1978 (hereafter GT78 ), 1979 (hereafter GT79 )] that studied the
pening of the Cassini gap in Saturn’s rings. We sum up in Section 7 .

 N U M E R I C A L  EXPERIMENTS  

e first perform some numerical experiments by letting non-self- 
ravitating isothermal gas flow in an external barred potential. This 
s useful to establish some key points and parameter dependencies 
hat we will need later. 

.1 Numerical setup 

e run a total of six 2D non-self-gravitating isothermal simulations 
f gas flowing in an external barred gravitational potential. The 
otential is described in Appendix A . Table 1 provides a summary
f the simulations run. The equations of motion are 

∂ t ρ + ∇ · ( ρv ) = 0 , (1) 

 t v + ( v · ∇) v = −∇P 

ρ
− ∇� , (2) 

here ρ is the surface density, v is the gas velocity, � is the external
ravitational potential given by equation ( A1 ) and 

 = c 2 s ρ , (3) 

s the isothermal equation of state, where c s = constant. We will use
alues in the range c s = 1 –20 km s −1 . 

We solve equations ( 1 ) and ( 2 ) using the public grid code PLUTO

Mignone et al. 2007 ) on a 2D static polar grid in the region R × θ =
0 . 1 kpc , R max ] × [0 , 2 π]. The grid is logarithmically spaced in R and
niformly spaced in θ with N R × 1024 cells. The resolution along 
he R direction is approximately � R = 0.00529 R , i.e. we have a
esolution of �R = 0 . 529 pc at the inner boundary of R = 100 pc .
he number of cells in each direction is chosen so that the aspect

atio of the cells is approximately �θ ( R / � R ) ∼ 1. We use the
ollowing parameters: RK2 time-stepping, no dimensional splitting, 
LL Riemann solver and the default flux limiter. We solve the 
quations in the frame rotating at �p by using the R O TATING FRAME

 YES switch. Boundary conditions are outflow both on the inner 
oundary at R = 0 . 1 kpc and on the outer boundary at R = R max . 
The initial density distribution is 

0 = 

{
ρ̄ if R ≤ R disc , 

ρε if R > R disc . 
(4) 

ote that, since the equations of motion ( 1 ) and ( 2 ) are invariant
nder density rescaling, the density units are arbitrary. The quantity 

¯ therefore essentially sets the density units, and without loss of 
enerality we set ρ̄ = 1. The quantity ρε = 10 −12 ρ̄ corresponds to 
he density floor imposed in the simulation to a v oid crashing. We
ntroduce the bar gradually to reduce transients (e.g. Athanassoula 
992b ). We start with gas in equilibrium on circular orbits in the
ogarithmic axisymmetric potential � 0 and then linearly turn on the 
on-axisymmetric part of the potential � 1 during the first 313 Myr . 

.2 Disc with initial radius smaller than the ILR 

imulations 01–05 investigate the evolution of a uniform gas disc 
ith an initial radius R disc = 1 . 2 kpc that is smaller than R ILR =
 . 61 kpc (Appendix A ). The only difference between these five
imulations is the assumed sound speed (Table 1 ). Fig. 1 shows
he surface density as a function of time. 

As soon as the bar potential is turned on, trailing spiral waves
re excited. These waves are clearly visible at t = 157 Myr and
 = 313 Myr . The movies of the surface density as a function of
ime show that the waves are first excited at the outer edge of the
isc, and propagate inwards. We will confirm later in Sections 4.3.4
nd 4.3.5 using linear analysis that sharp edges are indeed regions
here strong wave excitation takes place, and therefore play a key

ole in the formation of the rings. The wiggles that are visible along
he spirals in some panels (for example the panel at t = 313 Myr
nd c s = 10 km s −1 ) are due to the wiggle instability (Wada & Koda
004 ; Kim, Kim & Kim 2014 ; Sormani et al. 2017 ; Mandowara et al.
022 ). 
Fig. 2 plots a cut through the x axis of Fig. 1 at t = 157 Myr . The

adial wavelength increases with increasing sound speed. This will 
e explained by the dispersion relation deri ved belo w (equation 54 ).
he amplitude of the waves decreases inward, despite the prediction 
f the linear analysis according to which the amplitude of density
aves should increase inward due to geometric effects (see Section 
 ). The reason for this behaviour is that the waves in the simulations
ecome quickly non-linear and develop shocks. The shocks cause the 
aves to dissipate, decreasing their amplitude and depositing their 

ne gativ e) angular momentum into the gas disc. As we will argue in
ection 5 , this process is what decreases the angular momentum of

he gas disc and causes it to shrink. 
The final size of the ring depends very strongly on the sound

peed (rightmost column in Fig. 1 ). This is further quantified in
ig. 3 , which shows the evolution of the ring size as a function of
ound speed. As can be seen in the bottom panel, increasing the
ound speed by a factor of two can change the final ring size by the
ame factor. 

.3 Disc with initial radius larger than the ILR 

imulations 04 and 04 Large only differ in the size of the initial
as disc, R disc = 1 . 2 kpc versus R disc = 5 kpc . Thus, simulation 04
ncludes only the flow inside the ILR ( R ILR = 1 . 61 kpc ), while
imulation 04 Large comprises the large-scale flow in the entire bar
egion. 

Fig. 4 shows that the final ring size is approximately the same in
oth simulations, and therefore that ring size does not depend on the
arge-scale flow outside the ILR. This implies that the mechanism 

etermining the radius of the ring must be ‘local’ (see point 5 in
ection 3.1 ). 
Fig. 5 illustrates the evolution of the axisymmetrized surface 

ensity as a function of radius in the simulation 04 Large. In
articular, we can see that an e xtensiv e gap of low surface density
s opened around the ILR. The nuclear ring is the inner edge of this
ap, where the material that once was in the gap has accumulated. 
MNRAS 528, 5742–5762 (2024) 
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M

Figure 1. Surface density of simulations 01–05 (see Table 1 ), illustrating the formation of nuclear rings for v arious v alues of the sound speed c s . The only 
difference between these simulations is the assumed c s . Time increases from left to right. Sound speed decreases from top to bottom (top row is the 05 simulation, 
bottom row is the 01 simulation). The black dashed circle indicates the Inner Lindblad Resonance. The thin dotted circle indicates the instantaneous ring radius 
according to the definition used in Fig. 3 . All panels are rotated so that the major axis of the bar potential (i.e. the θ = 0 line in equation A1 ) coincides with the 
x axis. The sense of rotation is clockwise. Trailing density waves excited by the bar potential are visible (see in particular the second and third column from the 
left). The radius of the ring at the end of the simulation (rightmost column) strongly depends on the sound speed. Regions with densities ρ < 10 −2 are shown 
white. 
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Figure 2. Surface density on the x axis for simulations 01–05 at t = 157 Myr 
(top) and and t = 1252 Myr (bottom). In other words, these are horizontal 
cuts in the second column and fifth column of Fig. 1 . The oscillations are 
the density wav es e xcited by the bar potential. The wavelength of the waves 
increases with increasing sound speed c s . The waves are highly non-linear. 
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Figure 3. Top: The full lines show the radius of the ring as a function of 
time in the simulations 01–05. The radius of the ring is calculated as R ring = √ 

R x R y , where R x and R y are the locations of the density maxima along the 
x - and y -axis respectively. The dashed lines show the prediction according to 
equation ( 76 ) obtained in the linear approximation (see Section 5.2 ). Bottom: 
The radius of the ring mediated o v er simulation time t = 1152 –1252 Myr as a 
function of the sound speed. The radius strongly depends on the sound speed. 
The horizontal dashed line indicates the inner boundary of the computational 
grid. 
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 P R E V I O U S  T H E O R I E S  A N D  W H AT  W E  L O O K  

O R  IN  A  T H E O RY  

.1 Conditions that a plausible theory must satisfy 

e introduce the conditions that we believe any plausible theory for
he formation of nuclear rings must satisfy. We take the approach that
umerical experiments, such as those in Section 2 , guide us on how
he ring properties should depend on the underlying parameters. We 
ummarize the insights obtained from simulations into the following 
ve conditions: 

(i) The radius of the ring must depend on the circular rotation 
urve . Athanassoula ( 1992b ) and Li, Shen & Kim ( 2015 ) have shown
hat the radius of the ring in simulations changes if we change the
ircular v elocity curv e of the underlying gravitational potential, i.e. if
e change the axisymmetric part of the gravitational potential (see in 
articular fig. 4 in Li, Shen & Kim 2015 ), while keeping everything
lse fixed. 

(ii) The radius of the ring must depend on the non-axisymmetric 
art of the underlying potential . Sormani, Binney & Magorrian 
 2015b ) has shown that the radius of the ring can change significantly
f we change the quadrupole of the potential while keeping the
onopole (and therefore the rotation curv e) fix ed. Hence, a theory

iming to explain why rings form at a certain location must take into
ccount a dependence on the non-axisymmetric part of the potential. 

(iii) The radius of the ring must depend on the bar pattern speed .
any authors (e.g. Athanassoula 1992b ; Li, Shen & Kim 2015 ;

ormani, Binney & Magorrian 2015b , among others) have shown 
hat the radius of the ring depends on the rotation speed of the bar. 

(iv) The radius of the ring must depend on the equation of state
f the gas. Many authors (e.g. Englmaier & Gerhard 1997 ; Patsis &
thanassoula 2000 ; Kim et al. 2012 ; Sormani, Binney & Magorrian
015a , among many others) have shown that the size of the ring
trongly depends on the sound speed. This is confirmed by the
umerical experiments we conducted in Section 2.2 (see in particular 
igs 1 and 3 ). Thus, the radius of the ring does not depend solely on

he gravitational potential but must involve the equation of state of
he gas. 
MNRAS 528, 5742–5762 (2024) 
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Figure 4. Surface density of the 04 Large (left and zoom-in panel) and 04 (right) simulation at the end of the simulation ( t = 1252 Myr ). The only difference 
between the two simulations is that in simulation 04 Large the initial gas disc extends to R max = 5 . 0 kpc , while in simulation 04 only to R disc = 1 . 2 kpc . 
Simulation 04 is the same as shown in the second row of Fig. 1 . The dashed circle indicates the ILR. All panels are rotated so that the major axis of the bar 
potential (i.e. the θ = 0 line in equation A1 ) coincides with the x axis. The sense of rotation is clockwise. Comparison between the two simulations shows that 
the ring al w ays reaches the same final size, regardless of the larger-scale flow outside the ILR, demonstrating that the physical process determining the radius 
of the ring must be ‘local’. 

Figure 5. Axisymmetrized surface density 〈 ρ〉 θ = 

∫ 
ρ( R , θ )d θ /(2 π ) as a 

function of cylindrical radius R for the simulation 04 Large at three different 
times. An e xtensiv e gap opens around the ILR. The material that once was in 
the gap is transported inwards and accumulates at the inner edge of the gap, 
forming a nuclear ring. 
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(v) The radius of the ring must be determined ‘locally’ , i.e. the
nal ring size should not depend on the larger-scale flow at R >

 ILR . This is demonstrated by the numerical experiments in Fig. 4 ,
hich shows two simulations that differ only for the extent of the

imulated gas disc. The 04 Large simulation (left) co v ers the entire
bar region’, out to R disc = 5 kpc . It includes the usual bar-driven
ccretion flow from the disc to the ring. The 04 simulation (right) is
he same shown in the second row of Fig. 1 , and it only simulates
 gas disc of R disc = 1 . 2 kpc , which is all contained within the ILR
t R ILR = 1 . 61 kpc (Fig. A1 ). The final size of the ring is essentially
he same in the two simulations (it is slightly larger in the 04 Large
imulation because fresh gas is continuously brought from outside
he ILR, which takes longer to lose angular momentum). This shows
hat removal of angular momentum also happens in the vicinity
f the ring. Material from outside the ILR that crosses the ILR
ontinually loses angular momentum up to when it settles on the
ing. 

.2 Previous theories for the formation of nuclear rings 

ere we briefly summarize previous theories for the formation of the
ing and for determining its location. We argue that none of them
NRAS 528, 5742–5762 (2024) 
rovides a satisfactory explanation for the formation of the rings by
howing that each of them fails to satisfy at least one of the conditions
utlined in Section 3.1 . 

(i) The resonant theory (Combes 1988 ; Buta & Combes 1996 ;
ombes 1996 ) . This is perhaps the most widely accepted theory,
specially in the extragalactic community. It states that the ring forms
t the Lindblad resonance under the continuous action of gravity
orques from the bar potential. 

(ii) × Refutation : This theory satisfies conditions 1, 3, 5, and if
he notion of ILR is generalized to include strongly barred potentials
van Albada & Sanders 1982 ; Athanassoula 1992a ), it may satisfy
ondition 2. Ho we ver, since the position of the resonance does
ot depend on the equation of state of the gas, it does not satisfy
ondition 4. Moreo v er, the numerical e xperiments shown in Fig. 1
how that the radius of the ring forms at a radius R that is much
maller than R ILR = 1 . 61 kpc (on this point, see also Regan & Teuben
003 ). 
(iii) The minimum shear theory (Lesch et al. 1990 ; Krumholz &

ruijssen 2015 ) . This theory states that the ring forms at the radius at
hich the shear, as calculated from the axisymmetric rotation curve,

s minimum. This conclusion stems from an analogy with accretion
isc theory, in which transport is more efficient where shear is higher,
o gas is expected to pile up and form a ring at the point of minimum
hear. 

(iv) × Refutation : This theory satisfies conditions 1 and 5, but
oes not satisfy conditions 2, 3, 4. Sormani & Li ( 2020 ) demonstrate
n detail that simulations are inconsistent with this theory. 

(v) The reverse shear theory (Sormani et al. 2018b ) . This theory
tates that the ring forms in a region where a family of non-
xisymmetric closed periodic orbits called x 2 orbits displays ‘reverse
hear’ that prevents viscous spreading, making it possible to confine
 stable ring. 

(vi) × Refutation : This theory satisfies conditions 1, 2, 3, and 5,
ut it does not satisfy condition 4 since it predicts that the radius of
he ring depends e xclusiv ely on the gravitational potential. 

In conclusion, none of the currently available theories satisfies all
he criteria introduced in Section 3.1 , highlighting the need for a new
heory. 
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frequency is real [ κ2 > 0; see equations ( 30 ) and ( 46 )]. 
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 LINEAR  DISC  DY NA MIC S  

he simulations in Section 2 suggest that density waves are important 
or the removal of angular momentum of the disc and the opening
f the gap. To gain insight into this process, in this section we study
he excitation of waves by the bar potential in the linear regime, and
stimate the amount of angular momentum that the y remo v e from
he gas disc as a function of the unperturbed density profile ρ0 and of
he sound speed c s . As we shall see, the excitation of waves happens
rimarily at two locations: (i) near the ILR. This regime has been
tudied in detail by GT79 , and we will not repeat their calculations
ere; (ii) at sharp edges (i.e. strong gradients) in the unperturbed 
ensity distribution ρ0 . The insight gained in this section will be 
sed in Section 5 to develop a new picture for the formation of
uclear rings. 
Consider a 2D axisymmetric differentially rotating fluid disc in 

quilibrium in an external gravitational potential. Our goal is to study
he propagation of small perturbations (waves) and their excitation by 
 ‘small’ external potential. These ‘density waves’ are conceptually 
imilar to sound waves in air, but the rotation makes the dynamics
icher and mathematically more complex. In Appendix B we present 
 1D toy problem that can be solved fully analytically and provides a
athematically simpler analogue to the more complicated problem 

tudied in this section. 
We start from the disc’s unperturbed steady state and linearize the 

quations of motions around it. We ignore the self-gravity of the gas.
he equations of motion are the continuity and Euler equations, 

∂ t ρ + ∇ · ( ρv ) = 0 , (5) 

∂ t v + ( v · ∇) v = −∇P 
ρ

− ∇� , (6) 

here ρ is the surface density, v = v x ̂  e x + v y ̂  e y is the velocity, P is
he pressure, and � ( x , t ) is the external gravitational potential. We
ssume a polytropic equation of state 

 = Kργ , (7) 

here γ ≥ 1 and K is a constant. To simplify the calculations it is
onvenient to introduce the enthalpy h defined by 

 h = 

∇ P 

ρ
, (8) 

ubstituting ( 7 ) into ( 8 ) and integrating we find 

 = 

{ 

K 

(
γ

γ−1 

)
ργ−1 if γ > 1 , 

K log ρ if γ = 1 . 
(9) 

sing ( 8 ), the equations of motion ( 5 ) and ( 6 ) can be expanded in
olar coordinates ( R , θ ) as 

 t ρ + 

1 

R 

∂ R ( Rρv R ) + 

1 

R 

∂ θ ( ρv θ ) = 0 , (10) 

 t v R + 

(
v R ∂ R + 

v θ

R 

∂ θ

)
v R − v 2 θ

R 

= −∂ R h − ∂ R � , (11) 

 t v θ + 

(
v R ∂ R + 

v θ

R 

∂ θ

)
v θ + 

v R v θ

R 

= − 1 

R 

∂ θh − 1 

R 

∂ θ� . (12) 

.1 Unperturbed state 

e assume that the density, velocity and gravitational potential of 
he unperturbed steady-state are 

= ρ0 ( R) , (13) 
 = h 0 ( R) , (14) 

 = �( R) R ̂

 e θ , (15) 

 = � 0 ( R) . (16) 

ubstituting these into ( 10 )–( 12 ) and assuming steady-state and
xisymmetry ( ∂ t = ∂ θ = 0), we see that the continuity equation ( 10 )
nd the azimuthal Euler equation ( 12 ) are already satisfied, while the
adial Euler equation ( 11 ) gives 

2 R = 

d( h 0 + � 0 ) 

d R 

. (17) 

n the following, h 0 , � 0 and � are prescribed functions of R that
atisfy equation ( 17 ). Note that given � 0 ( R ), there formally exists
n equilibrium solution h 0 ( R ) for any arbitrary rotation profile �( R ).
o we ver, not all possible profiles are physical. To a v oid instability,

he unperturbed state must satisfy the Rayleigh stability criterion, 
hich states that a necessary and sufficient condition for the local

xisymmetric stability of an inviscid differentially rotating fluid disc 
s that the specific angular momentum monotonically increases with 
 , i.e. 1 

d( R 

2 �) 

d R 

> 0 . (Rayleigh criterion) (18) 

n this paper we will assume mainly two types of density profiles.
he first is a constant density profile 

0 ( R) = ρ̄ = constant . (19) 

he second is a truncated disc profile, i.e. a density that is roughly
onstant at R 
 R edge , has a relatively sharp transition at an edge
 edge during which it drops at a much lower value, and is then roughly
onstant again at R > R edge . Note that the edge cannot be made too
hin, otherwise it would violate the Rayleigh criterion ( 18 ). When
ater in the paper it will be necessary to assume a specific truncated
rofile for numerical calculations, we will use the following: 

0 ( R) = 

ρ̄

2 

[ 

1 − a (
1 + a 2 

)1 / 2 

] 

, (20) 

here 

 = 

R − R edge 

�R 

, (21) 

here R edge is the position of the edge and � R controls its width.
he quantity ρ̄ is a constant that, as noted in Section 2.1 , essentially
efines the units used for density. Physically meaningful results 
o not depend on the particular value of this quantity since the
quations of motion ( 5 ) and ( 6 ) are invariant under density rescaling.
ithout loss of generality, we set ρ̄ = 1. 

.2 Linearized equations 

o study the propagation of small waves on top of the unperturbed
tate described in the previous section, we expand all quantities as 

= ρ0 + ρ1 , (22) 

 = h 0 + h 1 , (23) 
MNRAS 528, 5742–5762 (2024) 
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 = v 0 + v 1 , (24) 

 = � 0 + � 1 . (25) 

ubstituting equations ( 22 )–( 25 ) into equations ( 10 )–( 12 ) and lin-
arizing by keeping only first-order terms in the quantities with
ubscript 1, we obtain 

D 

Dt 

(
ρ1 

ρ0 

)
+ 

d log ( Rρ0 ) 

d R 

v R1 + ( ∂ R v R1 ) + 

1 

R 

( ∂ θ v θ1 ) = 0 , (26) 

Dv R1 

Dt 
− 2 �v θ1 = −∂ R [ h 1 + � 1 ] , (27) 

Dv θ1 

Dt 
+ 2 Bv R1 = − 1 

R 

∂ θ [ h 1 + � 1 ] , (28) 

here we have defined the convective deri v ati ve of the unperturbed
tate 

D 

Dt 
= ∂ t + �∂ θ , (29) 

nd the Oort parameter 

( R) = � + 

R 

2 

d �

d R 

. (30) 

ithout loss of generality, we can write all the ‘small’ subscript-1
uantities as 

1 = ˜ ρ1 ( R) exp [ i( mθ − ωt)] , (31) 

 1 R = ˜ v 1 R ( R) exp [ i( mθ − ωt)] , (32) 

 1 θ = ˜ v 1 θ ( R) exp [ i( mθ − ωt)] , (33) 

 1 = 

˜ h 1 ( R) exp [ i( mθ − ωt)] , (34) 

 1 = 

˜ � 1 ( R) exp [ i( mθ − ωt)] , (35) 

here ˜ ρ1 , ˜ v 1 R etc. are complex, and the ‘physical’ quantity is the
eal part. The general solution of equations ( 26 )–( 28 ) can al w ays be
ecomposed in such modes because the equations are linear and the
uperposition principle applies. Each mode evolves independently
rom the others in the linear approximation. In this paper, we will
nly be concerned with m = 2 as this is the only non-zero term in
he expansion of the external potential described in Appendix A .
ereafter, we drop the ˜ symbol to a v oid cluttering. With these

ubstitutions, we have ∂ t = −iω and ∂ θ = im . Substituting equation
 31 ) into ( 9 ) we have 

 1 = c 2 s 

(
ρ1 

ρ0 

)
(36) 

here we have introduced the sound speed of the unperturbed
edium 

 

2 
s = γKρ

γ−1 
0 . (37) 

Equation ( 36 ) is valid for γ ≥ 1 (including equality). We also define 

p = 

ω 

m 

. (38) 

his is the angular frequency with which each mode appears to rotate,
s can be understood by noting that 

 

i( mθ−ωt) = e im ( θ−�p t) . (39) 

n this paper, we will al w ays tak e �p to be the same as the pattern
peed of the bar described in Appendix A , since only modes at
NRAS 528, 5742–5762 (2024) 
his frequency can be excited by the external potential in the linear
pproximation. 

Substituting ( 31 )–( 35 ) into ( 26 )–( 28 ) we obtain 

 m 

(
� − �p 

)(ρ1 

ρ0 

)
+ 

d log ( Rρ0 ) 

d R 

v R1 + 

d v R1 

d R 

+ 

i m 

R 

v θ1 = 0 , (40) 

m 

(
� − �p 

)
v R1 − 2 �v θ1 = − d 

d R 

[ h 1 + � 1 ] , (41) 

 m 

(
� − �p 

)
v θ1 + 2 Bv R1 = − i m 

R 

[ h 1 + � 1 ] , (42) 

solating v R 1 and v θ1 from ( 41 ) and ( 42 ) we find 

 R1 = − im 

D 

(
2 �

R 

+ 

(
� − �p 

) d 

d R 

)
[ h 1 + � 1 ] (43) 

 θ1 = 

1 

D 

(
m 

2 ( � − �p ) 

R 

+ 2 B 

d 

d R 

)
[ h 1 + � 1 ] (44) 

here we have defined 

 = κ2 − m 

2 ( � − �p ) 2 , (45) 

2 = 4 B�, (epic yclic frequenc y) . (46) 

he points where D = 0 define the Lindblad resonances, 2 while the
oint where � = �p defines the Corotation resonance. Now we can
ubstitute ( 43 ) and ( 44 ) into ( 40 ) and use ( 36 ) to eliminate ρ1 to
btain an equation in the variable h 1 : 

d 2 h 1 

d R 

2 
+ 2 H ( R) 

d h 1 

d R 

+ W ( R) h 1 = F ( R) (47) 

here 

 ( R ) = 

1 

2 

d 

d R 

[
log 

(
R ρ0 

D 

)]
, (48) 

 ( R) = C( R) − D( R) 

c 2 s 

, (49) 

( R) = 

(
2 �

R( � − �p ) 

)
d 

d R 

[
log 

(
ρ0 �

D 

)]
− m 

2 

R 

2 
, (50) 

 ( R) = −
{

d 2 

d R 

2 
+ 2 H ( R) 

d 

d R 

+ C( R) 

}
� 1 ( R) . (51) 

Equation ( 47 ) coincides with equation (13) of GT79 . The same
quation has been also derived by others (e.g. Feldman & Lin
973 ; Bertin et al. 1989 ). It is a second order ordinary differential
quation with non-constant coefficients H ( R ) and W ( R ). The term
 ( R ) is a forcing term (recall that � 1 ( R ) is externally prescribed).
ote that H ( R ) and W ( R ) diverge where ( � − �p ) = 0 and where D
 0, i.e. at the corotation and Lindblad resonances. 
In order to eliminate the first order deri v ati ve from equation ( 47 ),

t is convenient to define a new variable g 1 such that 

 1 = 

( | D| 
Rρ0 

)1 / 2 

g 1 . (52) 

ubstituting equation ( 52 ) into equation ( 47 ), one finds 

d 2 g 1 
d R 

2 
+ K 

2 ( R ) g 1 = Q ( R ) , (53) 

here 
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Figure 6. Schematic diagram of where the various approximate solutions 
of equation ( 53 ) apply. ‘WKB is valid’ denotes where the general solution 
of equation ( 53 ) is well approximated as the sum of the WKB solution ( 56 ) 
and the equilibrium solution g Q given by ( 60 ). ‘WKB not valid’ denotes the 
region near the edge where equation ( 67 ) is more appropriate. The shaded 
‘matching regions’ denote where both solutions are simultaneously valid and 
we can apply the method of matched asymptotic expansions. The region 
within approximately one wavelength λ from the ILR is where the analysis of 
GT79 is appropriate. ‘Stage 1’ and ‘Stage 2’ denote the regions corresponding 
to the two stages in our picture of the formation of the rings described in 
Section 5 . 
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Figure 7. Top : The coefficient K ( R ) in equation ( 53 ) for a uniform disc (full 
black line) and a truncated disc (dashed black line) in the case c s = 10 km s −1 . 
In the WKB approximation, this represents the wavenumber versus radius of 
free density waves that rotate with the same pattern speed of the bar (see 
Section 4.3.2 ). The cyan lines compare with the wavenumber given by the 
Lin-Shu dispersion relation ( 59 ). Middle : The forcing term Q ( R ) in equation 
( 53 ). Bottom : The uniform ( ρ0 = 1) and truncated disc (equation ( 20 ) with 
R edge = 0 . 6 kpc and �R = 0 . 03 kpc ) density profiles assumed in this figure. 
The red vertical dashed line marks the ILR. The green vertical dashed line 
marks R � , which is defined as the radius where K ( R ) = 0 (see Section 4.3.1 ). 

s  

e

4

T  

a

 

t
t

 

c  

L

 

a  

i  

s  

w
f  

i  

t  

0  

t

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/528/4/5742/7560561 by U
niversity C

ollege London user on 11 M
arch 2024
( R) = 

[
W − H 

2 − d H 

d R 

]1 / 2 

, (54) 

 ( R) = 

(
Rρ0 

| D| 
)1 / 2 

F ( R) . (55) 

Equation ( 53 ) is the fundamental equation that go v erns linear modes
n the disc. It is similar to equation ( B10 ) in the toy problem in
ppendix B , but is more complicated because K is not constant.
o follow the calculations in the following section more easily, it

s useful to note that equation ( 53 ) is equi v alent to that of a forced
armonic oscillator, m ̈x + k 2 ( t ) x = q( t ), where t replaces R , m is
he mass, k ( t ) is a time-dependent spring constant, and q ( t ) is a time-
ependent external force. 

.3 Analysis of equation ( 53 ) 

quation ( 53 ) describes the dynamics of the most general linear
erturbation in the presence of an external potential. To calculate the 
mplitude of waves excited by the bar potential we need to solve
his equation with appropriate boundary conditions. Unfortunately, 
o general analytic solution is available, so we need to resort to
arious approximations that are valid in different radial ranges. Fig. 
 provides an overview of the various regimes that we analyse. 
This section is structured as follows. In Section 4.3.1 we identify 

pecial points where the treatment of equation ( 53 ) require special
are because the coefficient K either vanishes or diverges. In 
ection 4.3.2 we derive the WKB solution of the homogeneous 
quation associated with ( 53 ), and show that it is generally very
ccurate away from the special points and away from sharp edges 
see Fig. 6 ). In Section 4.3.3 we derive a particular solution of the non-
omogeneous ( 53 ) that is approximately valid when c s is sufficiently
ow and away from special points and sharp edges. In Section 4.3.4
e obtain exact numerical solutions of equation ( 53 ) in a few selected

ases, to illustrate that truncated discs with sharp edges excite much 
tronger waves than uniform discs. In Section 4.3.5 we present an 
pproximated analytical solution of equation ( 53 ) that is valid near
harp edges and estimate the flux of angular momentum at sharp
dges. 

.3.1 Special points 

here are two types of points where equation ( 53 ) requires special
ttention: 

(i) Turning points . These are the points R � where K ( R � ) = 0. At
hese points, the character of the solutions changes from oscillatory 
o exponential. 

(ii) Singular points . These are points where K ( R ) diverges. As
an be seen from equations ( 54 ) and ( 48 )–( 51 ), this happens at the
indblad and Corotation resonances. 

Fig. 7 shows the coefficients of equation ( 53 ) for a uniform and
 truncated disc profile in the case c s = 10 km s −1 . In the region of
nterest for this paper there is typically one turning point R � and one
ingular point at R ILR , with R � < R ILR . As we shall see below, R � is
here the medium becomes absorbing and leading waves incident 

rom R < R � are reflected into trailing waves that subsequently travel
nwards. The position of R � depends on both the sound speed c s and
he shape of the unperturbed density profile ρ0 ( R ). In the limit c s →
 we have R � → R ILR . Ho we ver, for a finite value of the sound speed,
he two points are distinct. 
MNRAS 528, 5742–5762 (2024) 
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.3.2 WKB solution of the homo g eneous equation 

onsider the homogeneous equation associated with equation ( 53 ),
.e. the equation obtained setting Q = 0. This equation describes the
ropagation of ‘free’ density waves on top of the unperturbed disc
n the absence of the external bar potential. In this case, equation
 53 ) is of the same form of equation ( C1 ) and it can be solved in
he WKB approximation. The general solution is given by equation
 C9 ), which adapted to the notation used here reads 

 1 ( R) = 

C 1 √ 

K( R) 
exp 

[
i 

∫ R 

R 0 

K( s )d s 

]

+ 

C 2 √ 

K( R) 
exp 

[
−i 

∫ R 

R 0 

K( s )d s 

]
, (56) 

here C 1 and C 2 are arbitrary complex constants and R 0 is an
rbitrary radius. 

The two terms on the right-hand side of equation ( 56 ) represent two
a ves tra velling in opposite directions, analogously to the two sound
aves that are possible in a uniform medium at a giv en frequenc y (see
ppendix B ). The quantity K is the wavenumber, which varies with

adius. When K 

2 > 0, the solution ( 56 ) has oscillatory character and
aves can travel, while when K 

2 < 0 it has exponential character and
he medium is absorbing. Thus, as can be seen from Fig. 7 , travelling
aves can exist only at R < R � . Equation ( 54 ) implicitly contains ω,

nd therefore for fix ed R this e xpression can be seen as a dispersion
elation K = K ( ω). 

The direction of propagation of the waves can be understood from
he group velocity. In Appendix D we calculate the group velocity
f the WKB waves and we find that trailing waves ( C 1 = 0 and C 2 

 0) propagate inwards, while leading waves ( C 1 = 0 and C 2 = 0)
ropagate outwards. 
The angular momentum flux associated with the WKB waves ( 56 )

s calculated in Appendix E and is given by equation ( E10 ), 

 A = m π
(| C 1 | 2 − | C 2 | 2 

)
. (57) 

ince C 1 and C 2 are constant for a giv en WKB wav e, this equa-
ion shows that the flux of angular momentum is constant as a function
f R . It can be shown that the angular momentum flux corresponds
o the adiabatic invariant associated with the general WKB solution
 C9 ). Equation ( 57 ) also shows that the trailing wave has F A > 0,
hile the leading wave has F A < 0. Thus, trailing (leading) wave
ackets remo v e (increase) the amount of angular momentum in the
egion where they travel. 

What is the range of validity of the WKB approximation? The
KB approximation is expected to work well when the following

arameter is small (see equation C3 ): 

= 

∣∣∣∣d K/ d R 

K 

2 

∣∣∣∣ , (58) 

Fig. 8 shows that the WKB approximation works exceptionally well
t R < R � , but breaks down near R = R � . The WKB approximation
ill also fail near sharp edges, because d K /d R becomes large (e.g.
ig. 7 ). 
The WKB approximation used here is not completely equi v alent

o the more well-known Lin-Shu approximation. The Lin-Shu dis-
ersion relation in the absence of self-gravity ( G = 0) is given by
equation 6.55 of Binney & Tremaine 2008 ) 

 

2 
Lin −Shu = −D 

c 2 s 

, (59) 

here D is given by equation ( 45 ). The top panel in Fig. 7 compares
he Lin-Shu dispersion relation (cyan line) with the dispersion
NRAS 528, 5742–5762 (2024) 
elation given by equation ( 54 ). The two are similar at R < R � ,
ut differ considerably around R � and R ILR . In particular, in the
in-Shu approximation the turning point (which is the point where
aves are absorbed) coincides with the ILR, while it is at a smaller

adius ( R � ) according to equation ( 54 ). This is because the Lin-
hu dispersion relation assumes very small sound speed, while the
ispersion relation ( 54 ) takes into account the effect of finite sound
peed. Indeed, in the limit of vanishing sound speed we reco v er the
in-Shu dispersion relation from our dispersion relation ( 54 ). This
an be shown by noting that in this limit W ( R) � −D/c 2 s (equation
9 ), while H 

2 
 W and d H /d R 
 W (equation 54 ). 

.3.3 Approximate non-oscillatory solution of the 
on-homo g eneous equation 

n approximate particular solution of equation ( 53 ) is 

 Q 

( R) = 

Q 

K 

2 
. (60) 

n the analogy with the harmonic oscillator, this solution corresponds
o following the ‘instantaneous’ equilibrium position of the oscillator
s the external force slowly varies. It is expected to be valid when
he ‘force’ Q ( R ) varies slowly enough compared to the frequency
f the harmonic oscillator. More formally, one can substitute g 1 
 g Q in equation ( 53 ), and impose that the first term on the left-

and side is small, i.e. d 2 g 1 /d R 

2 
 K 

2 g 1 . This gives the following
ondition: 

d 2 

d R 

2 

(
Q 

K 

2 

)

 Q . (61) 

his condition is verified in particular at low sound speed, since K →
 as c s → 0 at fixed R (see equation 54 ).Equation ( 60 ) is equi v alent

o equation (15) of GT79 . It is a non-wave solution which is the
nalogue of the black dashed solution for the toy problem in Fig. B1
n Appendix B . 
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Figure 9. Schematic diagram of excitation of waves in the region [ R 1 , R 2 ]. 
W 1 and W 2 are the wav es e xcited by the barred potential in this region. Arrows 
indicate the direction of propagation. See Section 4.3.4 for more details. 
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.3.4 Excitation of density waves in uniform and truncated discs 

e numerically solve equation ( 53 ) in a few selected cases. The goal
s to calculate the amplitude of density waves excited by the bar
otential in a region [ R 1 , R 2 ] where R 1 < R 2 < R � , to illustrate how
he amplitude depends on c s and on the unperturbed density profile 
0 . A sharp edge might be present inside [ R 1 , R 2 ]. The appropriate
oundary conditions are ‘radiation’ boundary conditions (see Fig. 9 ). 
ausality requires that waves propagate away from the region [ R 1 ,
 2 ], because a solution in which waves come towards it would require
 source of waves outside this region. Therefore, the correct solution 
o our problem contains waves propagating inwards at R = R 1 , and
utwards at R = R 2 . These are schematically shown as the two waves
 1 and W 2 in Fig. 9 . The goal is to calculate the amplitude of W 1 

nd W 2 . 
Although the numerical solutions of equation ( 53 ) described in 

hese section are exact, to impose the boundary conditions we need 
o use the results of the WKB analysis as we need to identify the
irection of propagation of the waves. We proceed as follows. Let 
 1 be an exact solution of equation ( 53 ) that satisfies the radiation
oundary condition. We assume that at R 1 and R 2 the conditions ( 58 )
nd ( 61 ) are valid, so in a neighbourhood of these points we can
ecompose the solution as the sum of the WKB solution ( 56 ) and of
he ‘equilibrium’ solution ( 60 ). Therefore in a neighbourhood of R 1 

e can write 

 1 ( R) � g Q 

+ W 1 , (62) 

nd in a neighbourhood of R 2 

 1 ( R) � g Q 

+ W 2 , (63) 

here W 1 and W 2 are trailing and leading WKB waves respectively 
equation 56 ), 

 1 ( R ) = 

C 1 √ 

K( R ) 
exp 

[
i 

∫ R 

R 0 

K( s )d s 

]
, (64) 

 2 ( R ) = 

C 2 √ 

K( R ) 
exp 

[
−i 

∫ R 

R 0 

K( s )d s 

]
. (65) 

o find C 1 and C 2 , we use the shooting method. We start from R
 R 1 with an initial guess for C 1 (which is a complex number, so

he guess involves two real numbers) and initial conditions given by 
quation ( 62 ), and integrate until R 2 . At R 2 we decompose g 1 − g Q 
nto its WKB components. This decomposition is unique and can be 
ound by equating g 1 − g Q and d( g 1 − g Q )/d R with equation ( 56 )
nd its deri v ati ve and solving the resulting algebraic system of two
quations in the two unknowns that give the amplitude of the two
aves. We then vary the initial guess for C 1 until the solution at R 2 

nly contains an outgoing wave. The amplitude of the latter gives 
 2 . 
Fig. 10 shows the result of this procedure applied to [ R 1 , R 2 ]
 [0.1, 1.0] for a uniform (left) and truncated disc profile (right),
nd for two dif ferent v alues of the sound speed. The truncated disc
rofile is chosen so that the width of the edge is comparable to the
avelength ( λ = 2 π / K ) at the edge. The edge cannot be much smaller

han this without violating the Rayleigh criterion (Section 4.1 ). The
op panel shows the solution g 1 , the middle panel the corresponding
ensity profiles, and the bottom panel the flux of angular momentum
ssociated with the waves W 1 and W 2 obtained performing the WKB
ecomposition as a function of R . The amplitude of the excited
aves is given by the oscillations around the equilibrium solution g Q 

dashed line). 
The figure illustrates the following points: 

(i) Wav es e xcited in uniform discs are weak (right panels). The
mplitude is essentially zero at c s = 1 km s −1 , while it is small but
isible at c s = 10 km s −1 . This reflects the fact that the approximate
olution g Q is very accurate at low sound speed, but is less accurate
hen the sound speed is slightly larger. Physically, the reason why

tronger waves are excited for larger c s is that the wavelength λ
f WKB increases with c s (Fig. 11 ), so that waves couple more
f fecti vely to the forcing term Q which varies on large scales.
s we shall see in Section 5 , waves excited in uniform discs are

oo weak to remo v e the angular momentum necessary to open the
ap. 

(ii) Wav es e xcited at the edge of a truncated disc are strong (left
anels). The total density becomes ne gativ e near the edge ( ρ1 + ρ0 <

), indicating that the linear approximation breaks down. The waves 
ecome highly non-linear and in reality they will develop shocks 
ery quickly near the edge, as indeed seen in the simulations of
ection 2 . The amplitude of the waves is similar at c s = 1 km s −1 

nd c s = 10 km s −1 , but the flux of angular momentum is much
arger for c s = 10 km s −1 . This will be explained by equation ( 72 )
elow. 

There is a simple explanation for why strong waves are excited at
harp edges. When the background density ρ0 ( R ) varies rapidly, such
s at the edge of a disc, the forcing term Q ( R ) on the right-hand side
f equation ( 53 ) will have a localized bump on the same scale (see
ashed line in the middle panel of Fig. 7 ). This localized bump acts
ike an impulsive force. In the analogy with the harmonic oscillator,
his force will impart a finite amount of ‘momentum’ equal to the
ntegral of the force. The amplitude of the resulting oscillations gives
he amplitude of the waves excited at the edge. 

.3.5 Analytical estimate of the waves excited at the edge of a 
runcated disc 

n this section, we derive an analytical estimate for the amplitude of
av es e xcited at a sharp edges. 
Consider an edge at R edge of width R out − R in = � R , where R in 

nd R out > R in are the two extremities of the region over which the
dge extends (see Fig. 6 ). The shape of the edge can be arbitrary.
he edge is assumed to be thin but not too thin, otherwise the
nperturbed density profile would violate the Rayleigh criterion 
 18 ) and become unstable. In practice, considering the Lin-Shu
pproximation (equation 59 ) this means that the edge should not
e thinner than approximately one wavelength, λ = 2 π / K . 
Away from the edge and from turning and singular points,, i.e. at

 < R in and R out < R < R � , the general solution of equation ( 53 )
an be approximated as the sum of the WKB solution ( 56 ) and of
he particular solution ( 60 ). We assume that waves are excited only
ear the edge, i.e. at R in < R < R out . We impose radiation boundary
onditions, so that at R < R in we have only the trailing wave and at R
MNRAS 528, 5742–5762 (2024) 
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M

Figure 10. Waves excited by the bar potential in the region [ R 1 , R 2 ] = [0 . 1 , 1 . 0] kpc in uniform and truncated discs in the linear approximation. Waves excited 
in uniform discs are small, while waves excited at the sharp edge of a truncated disc are much larger. For each of the four cases shown, the three panels from top 
to bottom display the following. Top : The solution of equation ( 53 ) with radiation boundary conditions at R = 0 . 1 kpc and R = 1 . 0 kpc (full black line), and 
the approximate ‘instantaneous equilibrium’ solution g Q given by equation ( 60 ) (dashed black line). The oscillations of g 1 around g Q give the amplitude of the 
e xcited wav es. Middle : The thin full black line shows the unperturbed density profile ρ0 , which can be either a uniform disc ( ρ0 = 1) or a truncated disc given 
by equation ( 20 ) with R edge = 0 . 6 kpc and �R = 0 . 03 kpc (for c s = 10 km s −1 ) or �R = 0 . 003 kpc (for c s = 1 km s −1 ). The dashed and full thick black lines 
show the total density (unperturbed + perturbation) that corresponds to the solutions g 1 and g Q shown in the top panel. Bottom : The flux of angular momentum 

associated to the two WKB waves into which g 1 − g Q can be decomposed. See Section 4.3.4 for more details. 
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 R out only the leading wave. Therefore outside the edge we write 

 1 ( R) = 

⎧ ⎨ 

⎩ 

C in √ 

K( R) 
exp 

[ 
i 
∫ R 

R 0 
K( s )d s 

] 
+ 

Q 

K 

2 , for R < R in , 

C out √ 

K( R) 
exp 

[ 
−i 

∫ R 
R 0 

K( s )d s 
] 

+ 

Q 

K 

2 , for R > R out . 
(66) 

he constants C in and C out will be determined by solving equation
 53 ) near the edge and matching the two solutions. 
NRAS 528, 5742–5762 (2024) 
Near the edge, the forcing term Q varies rapidly, violating
ondition ( 61 ), and the equilibrium solution ( 60 ) fails (dashed line
n the middle panel of Fig. 7 ). To solve equation ( 53 ) near the edge,
e proceed as follows. We assume that K is approximately constant

cross the edge, i.e. in the range R in < R < R out . This is justified by our
ssumption that the edge is relatively sharp (see also the black dashed
ine in the top panel of Fig. 7 ). Under this assumption, equation ( 53 )
an be solved using the method of variation of parameters. The



Nuclear rings are the inner edge of a gap 5753 

Figure 11. Wavelength of WKB waves ( λ = 2 π / K ) for different values of 
the sound speed c s . The wavenumber K is given by equation ( 54 ) assuming a 
uniform disc ρ0 ( R ) = 1. 
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3 Linear waves of small amplitude travel to the centre without affecting the 
unperturbed density of the disc. It is only when they become non-linear that 
they can dump their angular momentum in the unperturbed disc. 
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eneral solution is 

 1 ( R) = A 1 e 
iKR + A 2 e 

−iKR + 

− ie iKR 

2 K 

∫ R 

R 0 

Q ( s ) e −iKs d s + 

i e −iKR 

2 K 

∫ R 

R 0 

Q ( s ) e iKs d s , 

(67) 

here K � K ( R in ) � K ( R out ). The constants A 1 and A 2 are determined
y the condition that the solution contains only waves travelling 
nwards at radii R < R in , and waves travelling outwards at radii R out 

 R . These calculations are reported in Appendix F1 . We find 

 1 = 

Q out 

2 K 

2 
e −iKR out + 

i 

2 K 

∫ R out 

R 0 

Q ( s ) e −iKs d s (68) 

 2 = 

Q in 

2 K 

2 
e iKR in − i 

2 K 

∫ R in 

R 0 

Q ( s) e iKs d s , (69) 

here Q out = Q ( R out ) and Q in = Q ( R in ). 
Both equations ( 66 ) and ( 67 ) are valid solutions of equation

 53 ) in a neighbourhood of R in and in a neighbourhood of R out 

shaded regions in Fig. 6 ). Matching these two solutions gives (see
ppendix F1 ): 

 in = −C 

∗
out = 

ie iKR 0 

2 K 

1 / 2 

∫ R out 

R in 

Q ( s) e −iKs d s 

+ 

Q out 

2 K 

3 / 2 
e iK ( R 0 −R out ) − Q in 

2 K 

3 / 2 
e iK ( R 0 −R in ) . (70) 

he coefficients C in and C out give the amplitude of density waves 
xcited at the edge. It can be shown that the absolute values | C in |
nd | C out | are independent of R 0 , as they should since the angular
omentum flux at the edge should be independent of this arbitrary 

adius. 
The rapid variation of Q near the edge is what generates density

aves. The coupling between the forcing term Q and the density 
aves is expected to be maximum when the scale-length o v er which
 varies is comparable to the wavelength of the waves λ = 2 π / K

similarly to the toy problem in Appendix B ), i.e. when � R � λ. 
We can use equations ( 57 ) and ( 70 ) to calculate the angular
omentum flux carried by the waves excited at the edge. To obtain a

losed formula it is necessary to make some further assumptions on 
he edge. If the edge of the disc is marginally stable to the Rayleigh
riterion ( 18 ), one has | R out − R in | ∼ c s / � ∼ 1/ K . This is the sharpest
dge that can be constructed without making the unperturbed density 
istribution unstable. Then the exponential exp ( − iKs ) in the integral
f equation ( 70 ) is nearly constant. As shown in Appendix F2 , in this
ase equation ( 70 ) reduces to 

| C in | � | C out | � 

[ (
Rρ0 

K | D | 
)1 / 2 ∣∣∣∣d � 1 

d R 

+ 

2 �

� − �p 

� 1 

R 

∣∣∣∣
] 

R= R edge 

. (71) 

ote that this is essentially the impulse approximation, i.e. we have
ssumed that the force Q gives an instantaneous ‘kick’ at R =
 edge . Using equation ( E10 ), the flux of angular momentum of waves
xcited at a sharp edge is then 

 A � m π

[ (
Rρ0 

K | D | 
)(

d � 1 

d R 

+ 

2 �

� − �p 

� 1 

R 

)2 
] 

R= R edge 

. (72) 

Equation ( 72 ) is correct when the distance of the edge from the ILR
s larger than approximately one wavelength, i.e. K | R edge − R ILR |

1. At | R edge − R ILR | = λ/(2 π2 ) = 1/( πK ) and approximating
 ( R ) � ( R − R ILR )(d D /d R ), as appropriate near the ILR where D
anishes, equation ( 72 ) becomes identical to equation (46) of GT79
hich gives the flux of angular momentum of waves excited at the

esonance. 

 T H E  F O R M AT I O N  O F  N U C L E A R  R I N G S  

e are now ready to put everything together and describe our picture
f the formation of nuclear rings. For simplicity, we illustrate our
cenario by starting from a uniform density distribution that extends 
rom R = 0 to R � R ILR . This is essentially the same situation as in
imulation 04 Large shown (Fig. 5 and Section 2.3 ). The formation of
he ring can be schematically divided into two stages, which depend
n the distance of the edge of the gas disc from the ILR. The regions
orresponding to the two stages are marked in Fig. 6 . The simulations
1–05 shown in Fig. 1 only include the second stage. 

.1 First stage ( | R edge − R ILR | � λ) 

n the first stage, a trailing spiral wave is excited near the ILR by
he external bar potential. This is the regime analysed by GT79 . The
a ve tra vels inwards b ut for realistic strengths of the bar potential

t very quickly becomes non-linear and develops into a shock. The
ave then dissipates, depositing its (negative) angular momentum 

nto the gas disc (i.e. removing angular momentum from the gas
isc). 3 This reduces the angular momentum of the disc, causing the
as to mo v e inward. A gap opens around the ILR. 

The width of the gap opened in the first stage is the range of
alidity of the calculations of GT79 , which is approximately one
avelength, i.e. | R edge − R ILR | ∼ λ, where λ = 2 π / K . Using the
in-Shu approximation (equation 59 ) and approximating D � ( R

R ILR )(d D /d R ) (recall that D = 0 at the resonance) we have λ
c s / | D | 1/2 ∼ c s / | ( R edge − R ILR )(d D /d R ) | 1/2 and therefore | R edge −

 ILR | ∼ | c 2 s / (d D / d R ) | 1 / 3 ∼ ( c s /v 0 ) 2 / 3 R ILR . The size of the gap is
herefore much smaller than the radius of the resonance, and increases 
or increasing sound speed. 

The velocity at which the edge of the gap mo v es can be estimated
y dividing the flux of angular momentum of the waves, F A , by the
mount of angular momentum per unit radius in the unperturbed disc,
 πρ0 R 

3 �, 

d R edge 

d t 
= −

[
F A 

2 πρ0 R 

3 �

]
R= R edge 

. (73) 
MNRAS 528, 5742–5762 (2024) 
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4 Recall also that as discussed in Section 4.3.5 the edge cannot be too thin, 
otherwise the system becomes Rayleigh-unstable. Thus, we expect the edge 
width to remain of order λ during the shrinking process. 
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he angular momentum flux F A during the first stage can be estimated
sing equation (46) of GT79 , bearing in mind that these calculations
re valid in the linear approximation and should not be expected to
e too accurate for the highly non-linear waves excited by a strong
ar potential considered here. Taking into account that m = 2, we
nd 

d R edge 

d t 
= −

[ (
π

R 

2 �(d D / d R ) 

)(
d � 1 

d R 

+ 

2 �

� − �p 

� 1 

R 

)2 
] 

R= R edge 

(74) 

nserting the numbers of our gravitational potential (Appendix A )
nto equation ( 74 ) we obtain d R edge / d t � 6 km s −1 . The duration
f the first stage can be estimated by dividing the size of the gap
y the velocity of the edge. Using | R edge − R ILR | ∼ ( c s / v 0 ) 2/3 R ILR ,
 0 = 220 km s −1 , R ILR = 1 . 6 kpc and the value of d R edge /d t found
bo v e we obtain 

 1 � 

( c s 

10 km s −1 

)2 / 3 
30 Myr . (75) 

his time is relatively short compared to the total timescales involved
see Fig. 3 ). In reality, the evolution is likely to be even faster than
quation ( 75 ) suggests because of the non-linearity of the process.
he evolution of the gap after the first stage and its final size are
etermined by the second stage. 

.2 Second stage ( | R edge − R ILR | � λ) 

t the beginning of the second stage there is a gap around the ILR,
nd the distance between the inner edge of the gap and the ILR is
pproximately one wavelength. Since the width of the edge at this
oint can be at most one wavelength (because the edge tail cannot
 xtend be yond the ILR), the edge is ‘sharp’ by definition and strong
aves will be excited at its location according to the analysis in
ection 4.3 . Similarly to the wav es e xcited near the ILR in the first
tage, the wav es e xcited near the edge will become quickly non linear
nd dissipate, removing the angular momentum from the gas disc and
ausing the edge to mo v e inwards. Gas will accumulate at the edge,
orming a ring. 

This process can be seen in action in Figs 1 and 2 . The first
gure shows trailing waves excited by the bar potential (see for
xample t = 157 Myr ). The pitch angle of these waves is in good
greement with that predicted by the WKB analysis of Section 4.3.2 ,
ndicating that these are indeed trailing waves of the same type
tudied in the linear analysis. Fig. 2 shows that the amplitude of
he waves decreases inwards, contrary to what would be predicted
n the linear approximation (e.g. Fig. 10 ). This is because when
he waves become strongly non-linear and develop shocks, they
uickly dissipate and decrease their amplitude. This dissipation is
hat allows the wave to deposit their angular momentum into the
as disc. 

The speed at which the edge mo v es during the second stage can
e estimated using equation ( 73 ), where we use equation ( 72 ) to
stimate the flux of angular momentum F A of waves excited at sharp
dges. Using the Lin-Shu approximation (equation 59 ) to write K �
 D | 1/2 / c s , and m = 2, we find 

d R edge 

d t 
= −

[ (
2 c s 

R 

2 � | D | 3 / 2 
)(

d � 1 

d R 

+ 

2 �

� − �p 

� 1 

R 

)2 
] 

R= R edge 

. 

(76)
NRAS 528, 5742–5762 (2024) 
here the factor of 2 takes into account that the outward-travelling
eading wave excited at the edge will be reflected at R = R � into an
nward-travelling trailing wave. Note that equations ( 74 ) and ( 76 )
nly differ for the factor in the first round parentheses on the right-
and-sides, and this factor coincides in the two equations at a distance
f approximately one wavelength from the ILR. This is the point
here we transition from the analysis of GT79 to the analysis in
ection 4.3.5 , and from the first to the second stage. 
Fig. 3 compares the size of the ring as a function of time predicted

y equation ( 76 ) to that measured in the numerical experiments of
ection 2.2 . We find that the equation captures the general trends

n the figure, including the fact that the edge mo v es faster for larger
ound speed, but it tends to underestimate the speed at which it mo v es,
specially at large sound speed. That the analytic prediction is not
uantitatively accurate is not surprising considering that equation
 76 ) is derived in the linear approximation, but the wav es e xcited at
he edge are strongly non-linear (Figs 2 and 10 ). The flux of angular

omentum generated in the case of a uniform disc is too small to
o v e the edge significantly o v er the course of several Gyr (Fig. 10 ).
When does the edge stop moving? The process above continues

ntil waves can be ef fecti vely excited at the edge, which happens
hen both of the following conditions are satisfied: (i) the edge is

sharp’, i.e. the edge width is smaller than a few times the wavelength
f density waves λ = 2 π / K ; (ii) the gravitational potential � 1 is
ufficiently strong. The distance between the edge and the ILR poses
n upper limit to the width of the edge since the edge cannot cross
he ILR, � R < | R ILR − R edge | . 4 Therefore, when the edge is not
ufficiently far from the ILR, it must be sharp. In particular, we can
xpect the edge to keep moving until it is located a few wavelengths
way from the ILR. Since λ increases linearly with c s (equation 59
nd Fig. 11 ), we expect the edge to mo v e farther at larger sound
peed, which explains why the ring radius depends on the sound
peed. 

Predicting exactly where the edge will stop, and therefore the
nal radius of the ring, is a difficult task. The process is highly
on-linear, and the unperturbed density profile changes in a way that
annot be calculated in the linear approximation. Empirically, we find
rom the numerical experiments in Section 2 that for our assumed
ravitational potential the ring stops when one can fit approximately
ev en wav elengths λ between R edge and R ILR . For weaker barred
otential, the edge might stop sooner if � 1 is too small to generate
ufficient flux of angular momentum at the edge. 

Finally, we note that our theory satisfies all the five conditions that
e laid out in Section 3.1 . Conditions 1–3 are satisfied because

learly the radius of the ring depends on the rotation curve, on
he non-axisymmetric part of the gravitational potential, and on the
attern speed of the bar which sets the location of the ILR. All
hese dependencies are also evident in equation ( 76 ). Condition 4 is
atisfied because the radius of the ring depends on the sound speed of
he gas in two ways: first because the speed at which the edge mo v es
way from the ILR increases as a function of c s (see equation 76 ),
nd second because the final ring size is determined by the condition
hat the edge should be a few wavelengths away from the ILR, which
esults in smaller rings at larger sound speed since as discussed
bo v e the wavelength increases with the sound speed. Condition 5 is
atisfied since the excitation of density waves at the edge is a local
rocess. 
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Figure 12. Black full lines : Streamlines of the non-wave solution ( 60 ) in the 
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 DISCUSSION  

.1 Comparison with the works of Goldreich & Tremaine 

uring the late 70’s and early 80’s, Peter Goldreich and Scott 
remaine published a series of papers in which they studied the 
ynamics of planetary rings. The calculations and physical processes 
tudied in these works have much in common with those presented 
n the present paper. Here we highlight the main similarities and 
ifferences between them and the present paper. 
GT78 developed a picture for the formation of the Cassini division 

n Saturn’s ring that has several similarities with our picture for the
ormation of nuclear rings described in Section 5 . In both cases:
i) a gap opens near the Lindblad resonance due to waves excited
t the resonance; (ii) subsequent excitation of waves at the edge of
he gap continues to widen the gap. The main differences are: (i)
he bar potential considered here is a perturbation many orders of
agnitude stronger than the one from Saturn’s satellite Mimas; (ii) 

he sound speed is negligibly small in Saturn’s problem, while the 
ffects of finite sound speed are important in our problem (Section 
 ); (iii) self-gravity is negligible for our case, but it is not negligible
n Saturn’s problem. In particular, gravity is the main means of
ransport of angular momentum in Saturn’s problem, while adv ectiv e 
ransport through pressure is the main mechanism for transport in our 
roblem. 
GT79 studied the excitation of density waves in a differentially 

otating gas disc by a rigidly rotating external potential. Their 
alculations have similarities with those presented in Section 4 , but 
here are three key differences: (i) GT79 assume that c s → 0, while
e take into account the effects of finite sound speed; (ii) GT79

ssume that ρ0 varies slowly; (iii) GT79 included the self-gravity 
f the gas disc, which we have neglected. The combination of (i)
nd (ii) is why GT79 find that waves can be excited only at the
esonances, while for example in Section 4.3.4 we find waves excited 
way from the resonance. The physical explanation is the following. 
he external potential can couple ef fecti v ely to density wav es only
hen the wavelength of WKB waves ( λ = 2 π / K ) is comparable to

he typical scalelength o v er which the forcing term Q in equation
 53 ) varies, i.e. when λ ∼ Q /(d Q /d R ). The quantity Q /(d Q /d R ) is
etermined by the external potential � 1 and by the unperturbed 
ensity distribution ρ0 , and is therefore typically very large unless 
here are sharp edges in ρ0 . In the limit of vanishing sound speed,
 /(d Q /d R ) � λ everywhere except near the turning point R � at which
→ ∞ (see Fig. 11 ). In the limit c s → 0 the turning point merges
ith the ILR (Section 4.3.1 ) and λ is small everywhere else. Thus, in

his limit waves can be excited only at the resonance. For finite sound
peed instead λ can become large and comparable to Q /(d Q /d R ) away
rom the resonance and waves can be excited (see Fig. 11 ). As we
ave seen in Section 5 , the effects of finite sound are important in
he formation of nuclear rings. 

.2 Relation to x 2 orbits 

ev eral works hav e suggested a connection between nuclear ring 
nd x 2 orbits (e.g. Regan & Teuben 2003 ; Li, Shen & Kim 2015 ;
ormani et al. 2018b ). The x 2 orbits are a family of non-circular
losed orbits that can exist in the central regions of a bar potential,
nd are elongated in the direction perpendicular to the major axis of
he bar (e.g. Contopoulos & Grosbol 1989 ; Athanassoula 1992a ). Fig. 
2 illustrates the relation between these orbits and the present paper. 
he streamlines of the ‘equilibrium’ solution equation ( 60 ) are very
imilar to closed x 2 orbits in the same bar potential. Therefore, the
KB wav es e xcited by the bar potential that we studied in Section
.3 travel on top of an x 2 gas disc. Our picture for the formation of
he rings is therefore consistent with the idea that gas in nuclear rings
ows on x 2 orbits. 

.3 Relation with the resonant theory 

ur theory is somewhat the ‘opposite’ of the resonant theory, which
tates that the ring forms at the ILR (Combes 1988 , 1996 ; Buta &
ombes 1996 ). In our theory the gas is pushed away from the ILR

ather than accumulating at it. Our theory is more consistent with the
act that the rings are typically inside the ILR in simulations (e.g.
nglmaier & Gerhard 1997 ; Patsis & Athanassoula 2000 ; Kim et al.
012 ; Li, Shen & Kim 2015 ; Sormani, Binney & Magorrian 2015a )
nd with observations that show that for example in the Milky Way
he radius of the nuclear ring is � 100–200 pc while the ILR is at
 > 500 pc (Henshaw et al. 2023 ). A key difference between our

heory and all previous theories, including the resonant theory, is 
hat we can explain the puzzling dependence of nuclear ring size on
he sound speed seen in simulations. 

.4 Brief considerations on magnetic fields and turbulent 
r essur e 

he mechanism for the formation of rings described in Section 5
elies on waves propagated through pressure. We would therefore 
xpect that adding magnetic fields, which create magnetic pressure 
n the gas, could have a similar effect as increasing the sound speed,
nd would therefore lead to smaller rings. 

Turbulent pressure seems to have a smaller effect than ‘real’ 
icroscopic pressure on the size of nuclear rings. Salas, Naoz &
orris ( 2020 ) performed some numerical experiments with external 

urbulence driving. Their figs 1 and 2 show that turbulence driving
MNRAS 528, 5742–5762 (2024) 
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hanges the size of the nuclear ring by a smaller amount than an
ncrease in the sound speed when the injected turbulent energy is
omparable to the corresponding increase in thermal energy. We
ttribute this to the fact that, due to the presence of inelastic collisions,
n a gas with turbulent pressure sound waves do not propagate as
fficiently as in a gas that has the same amount of microscopic
ressure. 

.5 On the assumption of an isothermal equation of state 

hroughout this work, we have assumed an isothermal equation of
tate. This follows a tradition of works adopting the isothermal
rescription to study the dynamics of the interstellar medium (ISM)
n galactic scales and in nuclear rings (e.g. Roberts 1969 ; Cowie
980 ; Athanassoula 1992b ; Englmaier & Gerhard 1997 ; Fux 1999 ;
aciejewski 2004 ; Kim et al. 2012 ; Sormani, Binney & Magorrian

015a ; Fragkoudi, Athanassoula & Bosma 2017 ; Li et al. 2022 ).
o we ver, the real ISM is multiphase, turbulent, and highly inho-
ogeneous. It is therefore natural to ask whether the isothermal

rescription can capture the basic mechanism for the formation of
uclear rings. 
Numerical simulations that include a multiphase medium via

hermal instabilities (Sormani et al. 2018a ) as well as gas self-gravity,
tar formation, and supernova feedback (Armillotta et al. 2019 ;
ress et al. 2020 ) show that the large-scale morphology of nuclear
ings is only moderately affected by the presence of this additional
hysics. The main differences are observed at small scales (smaller
r comparable to the width of the rings), where gas condenses into
olecular clouds and collapses to make star formation. The large-

cale properties of the ring, such as its radius and width, can be
ften mimicked by using an ‘ef fecti ve’ isothermal sound speed.
 or e xample, we found that the morphology, width, and radius
f the nuclear ring in the simulations of Sormani et al. ( 2018a ),
hich include a non-equilibrium chemical network that produces a

wo-phase medium via the thermal instability, are very similar to
hose obtained by replacing the non-equilibrium network and the
ssociated cooling function with an isothermal equation of state with
 low sound speed of c s � 1 km s −1 . This low value is because the gas
n the ring is very cold in these simulations, as they did not include
ny sources of heating or turbulence such as stellar feedback. When
tar formation and stellar feedback are added to the simulations (e.g.
rmillotta et al. 2019 ; Tress et al. 2020 ), they heat up the gas and
enerate turbulent pressure, and the morphology of the rings can
till be crudely mimicked by raising the isothermal sound speed
although as noted in Section 6.4 by less than the turbulent velocity
ispersion, which would be the naive way of doing it). Similarly, the
ffects of magnetic fields can be crudely mimicked by increasing
he sound speed by summing in quadrature the typical Alfv ́en
peed. 

In conclusion, the isothermal prescription should be viewed as
n ‘ef fecti ve’ equation of state that takes into account in a phe-
omenological way the additional physics via a single parameter
hat can be easily controlled. Ultimately, the key property that
eeds to be captured in this approach is the ability of the medium
o propagate waves through pressure. Thus, the sound speed does
ot correspond to the actual kinetic temperature of the gas, but to
n ‘ef fecti ve’ temperature that tak es into account in a crude w ay
v eraging o v er different phases, turbulent motions on unresolv ed
cales, and other effects such as magnetic pressure. Reassuringly,
umerical simulations suggest that the basic mechanism for the
ormation of the ring is well captured using this approach. 
NRAS 528, 5742–5762 (2024) 
 C O N C L U S I O N  

e have used both hydrodynamical simulations and analytical
alculations of linear disc dynamics to construct a new theory for
he formation of nuclear rings in barred galaxies. According to this
heory, nuclear rings are an accumulation of gas at the inner edge of
 gap that forms around the ILR of a bar potential. The gap initially
pens because the bar potential excites strong trailing waves around
he ILR, which remo v e angular momentum from the gas disc and
ush the gas inwards. The gap then continues to widen because the
ar potential excites trailing waves at the inner edge of the gap, until
he edge stops at a distance of sev eral wav elengths from the ILR.
he gas accumulates at the inner edge of the gap, forming a ring.
he speed at which the gap edge mo v es and its final distance from

he ILR, which determine the radius of the nuclear ring, depend on
he gas sound speed through the dispersion relation. 

Our theory has much in common with the picture for the formation
f the Cassini gap in Saturn’s ring proposed by GT78 . The most
mportant differences are that (i) the effects of finite sound speed are
mportant in our problem, while the sound speed can be assumed to
e vanishingly small in the planetary problem; (ii) we have neglected
he effects of self-gravity, which are typically less important in the
uclear ring problem, but cannot be neglected in the planetary rings
roblem. 
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PPENDIX  A :  EXTERNA L  G R AV I TAT I O NA L  

OTENTIAL  

n Appendix A , we describe the external barred gravitational po- 
ential that is used throughout the paper. Consider a rigidly rotating 
otential of the following form: 

 ( R, θ ) = � 0 ( R) + 

˜ � 1 ( R) cos (2 θ ) , (A1) 

here ( R , θ ) are standard polar coordinates. This represents the
implest possible barred potential, consisting of a monopole and 
 quadrupole. For the monopole, we take a simple axisymmetric 
ogarithmic potential, 

 0 ( R ) = 

v 2 0 

2 
log 

(
R 

2 + R 

2 
c 

)
(A2) 

here v 0 = 220 km s −1 and R c = 0 . 05 kpc . The logarithmic poten-
ial is convenient because the rotation curve is rising at small R and is
at at R � R c , roughly consistent with the rotation curves observed

n many disc galaxies (e.g. Lang et al. 2020 ). For the quadrupole, we
mploy the analytic density-potential pair described in appendix A 

f Sormani et al. ( 2018b ), 

˜ 
 1 ( R) = −A ( v 0 e) 2 f 

(
R 

R q 

)
(A3) 

here A = 0.4 is a dimensionless parameter that quantifies the bar
trength, e = 2.71[. . . ] is Euler’s number, v 0 = 220 km s −1 is the
ame as in equation ( A2 ), R q = 1 . 5 kpc is the radial scalelength, and
 is the following function: 

 ( x) = 

3 − e −2 x 
(
2 x 4 + 4 x 3 + 6 x 2 + 6 x + 3 

)+ 4 x 5 E 1 (2 x) 

20 x 3 
, 

(A4) 

here E 1 ( x ) is the exponential integral function, a special function
efined as 

 1 ( x) = 

∫ ∞ 

x 

e −t 

t 
d t . (A5) 
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his quadrupole reproduces well those generated by N -body expo-
ential bars. We assume that the potential rotates with pattern speed
p = 40 km s −1 kpc −1 . This places the ILR at R ILR = 1 . 61 kpc ,

he corotation resonance at R = 5 . 5 kpc , and the outer Lindblad
esonance at R OLR = 9 . 39 kpc . Fig. A1 shows the circular velocity
top), the resonance diagram (middle) and the quadrupole (bottom)
f our potential. 

PPENDIX  B:  E X C I TAT I O N  O F  1 D  WAV ES  BY  

N  OSCILLATING  GAUSSIAN  POTENTIAL  

TOY  M O D E L )  

n Appendix B , we describe a toy model that shares various
imilarities with the actual problem studied in the main text but
as the advantage that it can be solved fully analytically. This toy
odel is helpful for understanding why the amplitude of the waves

xcited by an external potential can depend very strongly on the gas
ound speed. 

We can draw the following correspondences between this toy
roblem and the problem studied in the main text (i) 1D sound
aves correspond to spiral density waves, and in particular to the
KB waves discussed in Section 4.3.2 (ii) the 1D Gaussian potential

orresponds to the bar potential; (iii) the linear momentum of plane
aves plays a similar role to the angular momentum of the spiral
ensity waves; (iv) equation ( B7 ) is the analogue of equation ( 53 ). 

1 Statement of the problem 

onsider a 1D isothermal fluid at rest with uniform density ρ0 . Our
oal is to study the wav es e xcited in this medium by a ‘small’ time-
arying external potential � ( x , t ). 

The equations of motion of this system are the same as equations
 1 ), ( 2 ), and ( 3 ) where the gradient is replaced by d/d x since the
roblem is one dimensional. We linearize these equations around the
ackground state by writing ρ( x , t ) = ρ0 + ρ1 ( x , t ) and v( x , t ) =
 1 ( x , t ) and keeping only the first-order terms in the quantities with
ubscript 1. We obtain 

∂ t ρ1 + ρ0 ( ∂ x v 1 ) = 0 , (B1) 

 t v 1 = −c 2 s 

∂ x ρ1 

ρ0 
− ∂ x � . (B2) 

ithout loss of generality, we can write all variables as 

 ( x, t) = 

˜ F ( x ) exp ( −i ωt) , (B3) 
NRAS 528, 5742–5762 (2024) 

igure B1. The function W ( ξ , a ) defined by equation ( B15 ) for various 
alues of a . 
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here ˜ F are complex quantities. We use complex notation for
athematical convenience, but it is understood that the physical

uantities are given by the real part. Substituting all perturbation
ariables in the form ( B3 ) into ( B1 ) and ( B2 ), and omitting the
ymbol ̃  hereafter for simplicity of notation, we obtain 

−iωρ1 + ρ0 ( ∂ x v 1 ) = 0 (B4) 

− iω v 1 = −c 2 s 

∂ x ρ1 

ρ0 
− ∂ x � ( x) (B5) 

solating v 1 from ( B5 ) and introducing the variable s 1 = ρ1 / ρ0 we
ave 

 1 = 

c 2 s ( ∂ x s 1 ) + ( ∂ x � ) 

iω 

(B6) 

ubstituting ( B6 ) into ( B4 ) we obtain an ODE for s 1 : 

ω 

2 s 1 + c 2 s 

d 2 

d x 2 
s 1 = F (B7) 

here 

 ( x) = −∂ 2 x � . (B8) 

Equation ( B7 ) is the equation of a forced harmonic oscillator. Now
onsider an oscillating Gaussian potential of the form 

 ( x, t) = � 1 exp 

[
−
(

x 
x 0 

)2 
]

exp ( −iω 0 t) (B9) 

here � 1 is the strength of the potential, x 0 is the width of the
aussian perturbation, ω 0 is the oscillation frequency. Since in the

inear approximation there is no coupling between modes at different
requencies, only modes with frequency ω = ω 0 will be excited by
his potential. Hence we assume ω = ω 0 hereafter. Introducing the
imensionless coordinate ξ = x / x 0 and using ( B9 ), equation ( B7 )
ecomes 

d 2 s 1 
d ξ 2 

+ a 2 s 1 = ba 2 K( ξ ) (B10) 

here 

( ξ ) = (1 − 2 ξ 2 ) exp 
[−ξ 2 

]
, (B11) 

nd we have introduced the following dimensionless parameters 

 = 

ω 0 x 0 

c s 
, (B12) 

 = 

2 � 1 

ω 

2 
0 x 

2 
0 

. (B13) 

he parameter a is the inverse of the sound speed, normalized with
he typical scale-length and frequency of the problem. The parameter
 is the normalized strength of the external potential. 

2 Analytical solution 

he general solution of equation ( B10 ) is 

 1 ( ξ ) = C 1 exp ( iaξ ) + C 2 exp ( −iaξ ) + bW ( ξ, a) , (B14) 

here C 1 and C 2 are arbitrary constants and 

 ( ξ, a) = −1 

2 
a 2 e −ξ2 + X( ξ, a) , (B15) 

( ξ, a) = −iα
[ 
e iaξ erf 

(
ξ + i 

a 

2 

)
− e −iaξ erf 

(
ξ − i 

a 

2 

)] 
, (B16) 

= 

√ 

π

8 
a 3 e −a 2 / 4 . (B17) 
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ere, erf ( z) = 

2 √ 

π

∫ z 
0 e 

−t 2 d t is the error function, which is defined
or complex argument z (to e v aluate the integral, you can choose any
ntegration path in the complex plane that leads to z). Note ho we ver
hat the functions X and W are real because the erf function has
he properties erf ( z ) = erf ( z) and erf ( −z) = erf ( z), where the bar
enotes the complex conjugate. 
Fig. B1 plots the function W ( ξ , a ) for various values of a . In the

imit ξ → ±∞ we have that erf ( ξ + ic/ 2) → ±1 for any fixed c ,
o W ( ξ , a ) → ∓i α[ e ia ξ − e −ia ξ ]. Therefore W ( ξ , a ) becomes a plane
ave when ξ → ±∞ (as one would expect). In the limit a → ∞

he W tends to the forcing term K on the right-hand-side of equation
 B1 ). 

What is the amplitude of the waves that are excited by the
xternal potential ( B9 )? In order to answer this question we have
o determine the constants C 1 and C 2 in equation ( B14 ) by imposing
ppropriate boundary conditions. Causality requires that for large | x | 
he waves propagate ‘away’ from the potential (this is the same 
oundary condition that is used to derive retarded potential in 
lectrodynamics). A solution in which the waves come from infinity 
owards the potential would instead require a source at infinity, which 
s unphysical. Therefore, we impose that the solution propagates 
o wards positi ve ξ as ξ → +∞ and to wards negati ve ξ as ξ → −∞ .
o see in which direction the solution ( B14 ) is travelling, we look at

ts time-dependence by reattaching the factor exp ( − i ω 0 t ) to it, 

 1 ( ξ, t) = 

[
C 1 e 

iaξ + C 2 e 
−iaξ + bW ( ξ, a) 

]
e −iω 0 t . (B18) 

A plane wave of the form e i aξ−i ω 0 t ( e −i aξ−i ω 0 t ) travels towards
ositiv e (ne gativ e) ξ . The solution that satisfies our ‘radiation’
oundary conditions is then 

 1 ( ξ, t) = b 
[−i αe iaξ − i αe −iaξ + W ( ξ, a) 

]
e −iω 0 t . (B19) 

his solution tends to s 1 ( ξ, t) → −2 iαb e ±iaξ e −iω 0 t for x → ±∞ .
hus, the potential excites waves with an amplitude of 

A = 2 bα = b 

√ 

π

4 
a 3 e −a 2 / 4 . (B20) 

he key point here is that the amplitude A of the excited waves
as an extremely strong dependence on the sound speed c s ∝ 1/ a .
he amplitude A tends to zero very quickly both for a → 0 ( c s →
 ) and a → ∞ ( c s → 0), and (for fixed b ) has a maximum in

etween at a = 

√ 

6 . This has a simple physical interpretation. The
oupling between the external potential and sound waves in a uniform 

edium is strongest when the wavelength of free sound waves at the
requency of the external potential is comparable to the scale-length 
f the potential. This is indeed what happens, as can be seen as
ollows. The dispersion relation of free sound waves travelling in a 
niform medium is ω = c s k , where k = 2 π / λ is the wavenumber and
is the wavelength. Therefore, the wavelength of free sound waves 

ravelling in a uniform medium at frequency ω 0 is λ0 = 2 πc s / �0 .
he parameter a = 2 πx 0 / λ0 is, apart from a numerical constant, the

atio between the scale-length of the potential and the wavelength of
ree sound waves at that frequenc y. Thus, we e xpect the potential to
e most ef fecti ve in driving waves when a is of order unity. 

PPENDIX  C :  T H E  W K B  M E T H O D  

he WKB method is a method for finding approximate solutions to 
inear differential equations with spatially varying coefficients. Let 
s briefly re vie w ho w it works (for a more extensi ve re vie w see for
xample Bender & Orszag 1999 ). The notation used in Appendix C
s not related to the notation in the main text (for some quantities we
se the same symbols). Consider the following equation: 

¨ + ω 

2 ( t) x = 0 , (C1) 

here ω( t ) is a given function of t . If ω were constant, equation
 C1 ) would be the equation of a harmonic oscillator, with general
olution, 

( t) = C 1 exp [ iωt ] + C 2 exp [ −iωt ] , (C2) 

here C 1 and C 2 are arbitrary complex constants. The period of
scillation is T = 2 π / ω. 
When ω( t ) is not constant, equation ( C1 ) has in general no analytic

olution. Ho we ver, when ω( t ) is ‘slo wly v arying’, we can find
olutions using the WKB method. By ‘slowly varying’, we mean that
he changes in ω( t ) during an oscillation are small. This condition
an be written as ∣∣∣∣ ω̇ 

ω 

2 

∣∣∣∣ 
 1 . (C3) 

Equation ( C1 ) physically corresponds to a mass m connected to a
pring with a time-dependent spring constant k ( t ) = m ω 

2 ( t ). When
( t ) is varying slowly, we expect the system to instantaneously
ehave almost as if ω were constant, and to slowly ‘morph’ o v er
ime between solutions of the problem with constant ω (equation 
2 ). Thus we guess a solution of the following form: 

( t) = A ( t) exp 

[
±i 

∫ t 

t 0 

ω( s )d s 

]
, (C4) 

here the amplitude A ( t ) is ‘slo wly v arying’. Note that as the
rgument of the exponential in ( C4 ) we have the integral 

∫ 
ω( s )d s ,

nd not the product ω( t ) t . Intuitively, we can think of 
∫ 

ω( s )d s as
he phase of the oscillation, i.e. a number that quantifies how many
scillations occurred since the beginning of the motion. In the case
 = constant, the integral reduces to ωt and we reco v er the harmonic
scillator (equation C2 ). 
Calculating the deri v ati ves of ( C4 ) we get 

¨ ( t) = 

(
Ä ± 2 iω Ȧ ± i ̇ω A − ω 

2 A 

)
exp 

[
±i 

∫ t 

t 0 

ω( s )d s 

]
. (C5) 

ubstituting equations ( C4 ) and ( C5 ) into equation ( C1 ), we obtain 

¨
 ± 2 iω Ȧ ± i ̇ω A = 0 . (C6) 

p to this point everything has been exact. Equation ( C6 ) is
ompletely equi v alent to ( C1 ), and equation ( C4 ) can be simply
iewed as a change of variable in which we replace x with A . Now
omes the WKB approximation. The essence of this approximation 
s that every time you take a derivative of A ( t ) or ω( t ), you get
omething smaller by a factor ε, where the latter is of order of
he small parameters written in equation ( C3 ). In other words, we
stimate the magnitudes of time deri v ati ves by replacing d/d t ∼ εω.
hus for example Ȧ ∼ εωA , ω̇ ∼ εω 

2 . For the second deri v ati ves
¨
 ∼ εω Ȧ ∼ ε2 ω 

2 A . Using these relations, we find that the term Ä

n equation ( C6 ) can be neglected compared to the others. Then
quation ( C6 ) becomes 

± 2 iω Ȧ ± i ̇ω A = 0 . (C7) 

his equation can be integrated and the solution is 

 ( t ) = 

C √ 

ω( t ) 
. (C8) 
MNRAS 528, 5742–5762 (2024) 
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Figure D1. Group velocity of WKB waves for c s = 10 km s −1 and constant 
unperturbed density ρ0 ( R ) = 1 (see equation D4 ). The cyan line shows the 
group velocity according to the Lin-Shu dispersion relation ( D5 ). The ILR 

and R � are marked by vertical dashed lines. 
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lugging ( C8 ) into ( C4 ) we find that the general solution of equation
 C1 ) in the WKB approximation is 

( t ) = 

C 1 √ 

ω( t ) 
exp 

[
i 

∫ t 

t 0 

ω( s)d s 

]
+ 

C 2 √ 

ω( t ) 
exp 

[
−i 

∫ t 

t 0 

ω( s)d s 

]
, 

(C9)

here C 1 and C 2 are arbitrary constants. We can also write the
ollowing approximate expression for the deri v ati v e by ne glecting
he small terms Ȧ and Ḃ : 

˙ ( t) = i C 1 

√ 

ω( t) exp 

[ 
i 

∫ t 

t 0 

ω( s )d s 

] 
− i C 2 

√ 

ω( t) exp 

[ 
−i 

∫ t 

t 0 

ω( s )d s 

] 
(C10) 

ote that the total energy of a simple harmonic oscillator 

 = 

1 

2 
m ̇x 2 + 

1 

2 
mω 

2 x 2 . (C11) 

s not in general conserved when ω( t ) is not constant. Ho we ver, if we
alculate E using the approximate solution ( C9 ) and ( C10 ), we find
hat the following quantity is constant, 

 = 

E 

ω 

. (C12) 

his means that the amplitude of the oscillation becomes a function
f ω. If we increase ω slowly then we slowly decrease it to its original
alue, at the end of the process the amplitude will be the same as it
as at the start. It is easy to see that this is violated if ω( t ) does not

hange slowly (think for example of abruptly changing ω when the
ystem passes through x = 0: in this case the energy does not change,
ut ω does). The quantity J is an example of an adiabatic invariant
see for example Arnold ( 1978 ) and Landau & Lifshitz ( 1976 ) for
ore on adiabatic invariants]. 

PPENDIX  D :  G RO U P  VELOCITY  

n Appendix D , we calculate the group velocity of the WKB waves.
onsider a WKB solution ( 56 ) with C 1 = 0 and C 2 = 0. This is of

he form, 

 1 ( R) = a( R) exp [ iφ( R) ] , (D1) 

here 

( R ) = 

C 1 √ 

K( R ) 
, (D2) 

( R) = 

∫ R 

R 0 

K( s)d s . (D3) 

Equation ( D1 ) is of the same form of equation (1) of Toomre ( 1969 )
r (1.26) of Whitham ( 1974 ). The analysis in these references shows
hat the group velocity, i.e. the velocity at which a wave packet
ravels, can be defined by isolating ω from the dispersion relation
 54 ) and then taking the deri v ati ve with respect to K , 

 g = 

∂ ω 

∂ K 

. (D4) 

Fig. D1 shows the group velocity for the case c s = 10 km s −1 . The
roup velocity of solutions with C 1 = 0 and C 2 = 0 is negative,
eaning that these wa ves tra vel inward, while waves with C 1 = 0

nd C 2 = 0 travel outwards. The group velocity of the two types of
aves has the same magnitude but different sign. The group velocity

oses meaning and becomes imaginary at R > R � , when the medium
ecomes absorbing. 
The cyan line compares our group velocity with that obtained from

he Lin-Shu dispersion relation, which is given by (see equation 20
NRAS 528, 5742–5762 (2024) 
f GT79 ): 

 g;Lin −Shu = − K Lin −Shu c 
2 
s 

m 

(
� − �p 

) , (D5) 

here K Lin-Shu is given by equation ( 59 ). The two group velocities
re similar away from R � . 

PPENDI X  E:  A N G U L A R  M O M E N T U M  

R A N S P O RT  

n equation for the angular momentum transport in a fluid disc can
e obtained from equation ( 2 ). Multiplying the azimuthal component
f this equation by R , using standard cylindrical coordinates ( R , θ ,
) and rearranging gives 

∂ ( l z ) 

∂ t 
+ ∇ · F J = −ρ

∂ � 

∂ θ
, (E1) 

here 

l z = ρRv θ , (E2) 

F J = R 

(
ρv θ v + P ̂

 e φ
)

. (E3) 

he quantity l z is the angular momentum per unit volume, while F J is
he flux of angular momentum, which is the sum of contributions due
o bulk motions of the gas and pressure forces. The term ρ∂ �/ ∂ θ

s a source term representing the changes in angular momentum due
o torques from the external potential. When ∂ �/ ∂ θ = 0, the total
ngular momentum of the system is conserved. Indeed, the only
gent that can change the total angular momentum in our problem is
he external bar potential. 

Integrating equation ( E1 ) over the volume V of a cylinder of radius
 0 and using the divergence theorem, 5 we obtain the following
quation for the rate of change of the total angular momentum
ontained within the cylinder, 

∂ L z 

∂ t 
= −F A − F � 

, (E4) 
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here 

 z = 

∫ 
V 

ρRv θ d V , (E5) 

s the total z angular momentum contained inside the cylinder, and 

 A = R 

2 
∫ ∞ 

−∞ 

d z 
∫ 2 π

0 
d θρv θ v R (E6) 

 � 

= 

∫ 
V 

ρ
∂ � 

∂ θ
d V , (E7) 

re the fluxes of angular momentum in and out of the cylinder. 
Equation ( E4 ) states that the change in the total angular momentum

f the gas contained within the cylinder is the sum of two contribu-
ions: F A , the angular momentum flux due to advection, and F � 

, the
ravitational torques from the external bar potential. 
The quantity F A appears in GT79 as their equation (26). F A > 0
eans that material inside the cylinder is losing angular momentum. 
otice that even in a steady-state, in which single fluid elements 
either gain nor lose angular momentum on average, it is nevertheless 
ossible that F A = 0. This can happen if fluid elements carry
ore angular momentum on their outward journey (as they are 

xiting the cylinder) than on their return. This type of transport
as been named lorry transport by Lynden-Bell & Kalnajs ( 1972 ),
ho explained how fluid elements can ‘transport angular momentum 

ust as a system of lorries can transport coal without accumulating 
 growing store on the lorries themselves’. This is similar to a
lane sound wave transporting linear momentum in a steady-state 
ituation. 

In perturbed 2D discs (where quantities are expanded as in 
quation 22 ) equation ( E6 ) can be simplified to (see equation J.16 in
inney & Tremaine 2008 ): 

 A = R 

2 ρ0 

∫ 2 π

0 
d θv θ1 v R1 . (E8) 

sing equations ( 43 ) and ( 44 ), we can rewrite this as (see equa-
ion J.19 in Binney & Tremaine 2008 ) 

 A = Re 

{
πRρ0 im 

D 

[
( � 1 + h 1 ) 

∗ d 

d R 

( � 1 + h 1 ) 

]}
. (E9) 

o e v aluate the flux of angular momentum associated with the
KB waves (equation 56 ), we substitute equation ( 56 ) into equation

 E9 ) using equation ( 52 ) and set � 1 = 0. After a straightforward
alculation we obtain 

 A = m π
(| C 2 | 2 − | C 1 | 2 

)
sgn ( D ) . (E10) 

t the radii of interest (i.e. inside the ILR), one has sgn( D ) = −1. 

PPENDIX  F:  DETA ILS  O N  T H E  

A L C U L AT I O N S  O F  WAV ES  EXCITED  AT  A  

H A R P  E D G E  

1 Deri v ation of equations ( 68 )–( 70 ) 

n a neighbourhood of the point R = R out we can approximate
quation ( 67 ) as 

 1 ( R) = e iKR 

[
A 1 − Q out 

2 K 

2 
e −iKR out − i 

2 K 

∫ R out 

R 0 

Q ( s ) e −iKs d s 

]

+ e −iKR 

[
A 2 − Q out 

2 K 

2 
e iKR out + 

i 

2 K 

∫ R out 

R 0 

Q ( s ) e iKs d s 

]

+ 

Q out 

K 

2 
(neighbourhood of R out ) , (F1) 
here Q out = Q ( R out ). Since the waves are travelling outwards at R
 R out , the term proportional to e iKR should vanish. This condition

ives equation ( 68 ). 
Similarly, in a neighbourhood of the point R = R in we can

pproximate equation ( 67 ) as 

 1 ( R) = e iKR 

[
A 1 − Q in 

2 K 

2 
e −iKR in − i 

2 K 

∫ R in 

R 0 

Q ( s ) e −iKs d s 

]

+ e −iKR 

[
A 2 − Q in 

2 K 

2 
e iKR in + 

i 

2 K 

∫ R in 

R 0 

Q ( s ) e iKs d s 

]

+ 

Q in 

K 

2 
(neighbourhood of R in ) , (F2) 

here Q in = Q ( R in ). Since the wa ves are tra velling inwards at R
 R in , the term proportional to e −iKR should vanish. This condition

ives equation ( 69 ). 
Substituting equations ( 68 ) and ( 69 ) into equation ( F1 ) and

quation ( F2 ) respectively we find 

 1 ( R) = e −iKR 

[
i 

2 K 

∫ R out 

R in 

Q ( s ) e iKs d s 

]

+ e −iKR 

[
Q in 

2 K 

2 
e iKR in − Q out 

2 K 

2 
e iKR out 

]

+ 

Q out 

K 

2 
(neighbourhood of R out ) , (F3) 

nd 

 1 ( R) = e iKR 

[
i 

2 K 

∫ R out 

R in 

Q ( s ) e −iKs d s 

]

+ e iKR 

[
Q out 

2 K 

2 
e −iKR out − Q in 

2 K 

2 
e −iKR in 

]

+ 

Q in 

K 

2 
(neighbourhood of R in ) . (F4) 

atching equations ( F3 ) and ( F4 ) with equation ( 66 ), one obtains
quation ( 70 ). 

2 Deri v ation of equation ( 71 ) 

e approximate equation ( 70 ) as follows. First, we neglect the terms
roportional to Q in and Q out because Q varies rapidly at radii R in < R
 R out . We obtain 

| C in | � | C out | � 

1 

2 K 

1 / 2 

∣∣∣∣
∫ R out 

R in 

Q ( s ) e −iKs d s 

∣∣∣∣ . (F5) 

econdly, the e xponential e xp ( − iKs ) is nearly constant as we have
ssumed | R out − R in | ∼ λ ∼ 1/ K , so we can write 

| C in | � | C out | � 

1 

2 K 

1 / 2 

∣∣∣∣
∫ R out 

R in 

Q ( s )d s 

∣∣∣∣ . (F6) 

e have ∫ R out 

R in 

Q ( s)d s = I 1 + I 2 + I 3 + I 4 , (F7) 

here 

 1 = −
∫ R out 

R in 

d s 

(
sρ0 

| D | 
)1 / 2 d 2 � 1 

d s 2 
(F8) 

 2 = −
∫ R out 

R in 

d s 

(
sρ0 

| D | 
)1 / 2 d 

d s 

[ 
log 

( sρ0 

D 

)] d � 1 

d s 
(F9) 

 3 = −
∫ R out 

R in 

d s 

(
sρ0 

| D | 
)1 / 2 2 �

s 
(
� − �p 

) d 

d s 

[
log 

(
ρ0 �

D 

)]
� 1 

(F10) 
MNRAS 528, 5742–5762 (2024) 
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 4 = 

∫ R out 

R in 

d s 

(
sρ0 

| D | 
)1 / 2 

m 

2 � 1 

s 2 
. (F11) 

ince | R out / R in − 1 | 
 1 and far from the ILR the integrand is
ounded, we have I 1 � I 4 � 0. 
We calculate I 2 and I 3 below. The idea is to integrate by parts in

rder to isolate the integral of a bounded function. We have 

 2 = −2 
∫ R out 

R in 

d s 
d 

d s 

(
sρ0 

| D | 
)1 / 2 d � 1 

d s 

= −2 

[ (
Rρ0 

| D | 
)1 / 2 d � 1 

d R 

] 

R= R out 

+ 2 

[ (
Rρ0 

| D | 
)1 / 2 d � 1 

d R 

] 

R= R in 

+ 2 
∫ R out 

R in 

d s 

(
sρ0 

| D | 
)1 / 2 d 2 � 1 

d s 2 
= 2 

[ (
Rρ0 

| D | 
)1 / 2 d � 1 

d R 

] 

R= R in 

, 

(F12) 
NRAS 528, 5742–5762 (2024) 
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 3 = −4 
∫ R out 

R in 

d s 

[ 

�1 / 2 � 1 

s 1 / 2 
(
� − �p 

)
] 

d 

d s 

(
ρ0 �

| D | 
)1 / 2 

= −
[ 

4 �

� − �p 

(
Rρ0 

| D | 
)1 / 2 

� 1 

R 

] 

R= R out 

+ 

[ 

4 �

� − �p 

(
Rρ0 

| D | 
)1 / 2 

� 1 

R 

] 

R= R in 

+ 4 
∫ R out 

R in 

d s 

(
ρ0 �

| D | 
)1 / 2 d 

d s 

[ 

�1 / 2 � 1 

s 1 / 2 
(
� − �p 

)
] 

= 

[ 

4 �

� − �p 

(
Rρ0 

| D | 
)1 / 2 

� 1 

R 

] 

R= R in 

, (F13) 

here we have used the fact that ρ0 ( R in ) � ρ0 ( R out ). Substituting
quations ( F12 ) and ( F13 ) into equation ( F7 ), we find ∫ R out 

R in 

Q ( s)d s = 2 

[ (
Rρ0 

| D | 
)1 / 2 (d � 1 

d R 

+ 

2 �

� − �p 

� 1 

R 

)] 

R= R in 

. (F14) 

ubstituting equation ( F14 ) into equation ( F6 ), we obtain equation
 71 ). 
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