

Coderspeak

Coderspeak
The language of computer programmers

Guilherme Orlandini Heurich

First published in 2024 by
UCL Press
University College London
Gower Street
London WC1E 6BT

Available to download free: www.uclpress.co.uk

Text © Author, 2024
Images © Copyright holders named in captions, 2024

The author has asserted his rights under the Copyright, Designs and Patents Act
1988 to be identified as the author of this work.

A CIP catalogue record for this book is available from The British Library.

Any third-party material in this book is not covered by the book’s Creative Commons
licence. Details of the copyright ownership and permitted use of third-party
material is given in the image (or extract) credit lines. If you would like to reuse any
third-party material not covered by the book’s Creative Commons licence, you will
need to obtain permission directly from the copyright owner.

This book is published under a Creative Commons Attribution-Non-Commercial
4.0 International licence (CC BY-NC 4.0), https://creativecommons.org/licenses/
by-nc/4.0/. This licence allows you to share and adapt the work for non-commercial
use providing attribution is made to the author and publisher (but not in any way
that suggests that they endorse you or your use of the work) and any changes are
indicated. Attribution should include the following information:

Heurich, G. O.2024. Coderspeak: The language of computer programmers. London:
UCL Press. https://doi.org/10.14324/111.9781800085985

Further details about Creative Commons licences are available at
https://creativecommons.org/licenses/

ISBN: 978-1-80008-600-5 (Hbk.)
ISBN: 978-1-80008-599-2 (Pbk.)
ISBN: 978-1-80008-598-5 (PDF)
ISBN: 978-1-80008-601-2 (epub)
DOI: https://doi.org/10.14324/111.9781800085985

http://www.uclpress.co.uk
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.14324/111.9781800085985
https://creativecommons.org/licenses/
https://doi.org/10.14324/111.9781800085985

To the memory of Chris Seaton

	 ﻿ Contents � vii

Contents

Acknowledgements� ix

Introduction � 1

Part I: Open source �

  1	 Principal engineer� 9
  2	 Open source� 19
  3	 The myth of Rails � 31
  4	 Half-broken monoliths � 43
  5	 A new service� 53

Part II: Meta languages �

  6	 Language dreams � 67
  7	 Meta-programming � 77
  8	 Happy programmers� 87
  9	 Chunky bacon � 97

Part III: Beyond binaries�

10	 Learning to see � 109
11	 Beautiful code � 117
12	 Computing gender � 125
13	 Proper programmers� 133

Part IV: Tokyo days�

14	 Not my type � 145
15	 After the rain � 155
16	 Patch first � 167
17	 Supreme beings � 175
18	 The end� 185

Glossary � 191
Bibliography � 195
Index� 199

	 ﻿ Acknowledgements � ix

Acknowledgements

Thanks to Chris Penfold at UCL Press who agreed that this was an
interesting book to write. Thank you for being precise and fair throughout
the editing process. I hope you can read my future books in one sitting as
well.

Thank you to the Leverhulme Trust and to UCL for jointly funding
the research that gave rise to the materials in this book. Being able to
focus on an entire new area of research has been very valuable to me
and it wouldn’t have been possible without this funding. As Head of
Department at UCL Anthropology, Professor Susanne Küechler truly
encouraged me to develop the project further. Thank you, Susanne:
your enthusiasm for the initial idea and your continuous support for this
project have been truly inspiring. As mentor to this project, Professor
Hannah Knox constantly nudged me to think carefully about what I was
trying to say, to be open about ethical questions and to be firm in my
opinions. Thank you, Hannah: I’ve learned a lot from you. Managing this
project would not have been possible without the help of the best Finance
and Research Grants Officer any university department in the world
could have. Wendy Chandler, thank you. You’ve helped me so much,
always in a kind and honest way.

Over the past few years I’ve been very lucky to share great moments,
conversations and laughs with the most interesting scholars and thinkers.
Thank you Ashraf Hoque, Dalia Iskander, Lewis Daly, Alison Macdonald,
Carey Jewitt, Rafael Schacter, Tone Walford, Allen Abramsom, Ludovic
Coupaye, Miranda Johannson, Timothy Caroll, Rik Aadrians, Martin
Holbraad, Heidy Geismar, Sahra Gibbon, Helene Neveu Kringelbach, Aaron
Parkhurst, Nicholas Lackenby and Sara Nila. Hope you enjoy the book.

Workshopping and exchanging ideas in various formats have been
crucial to the development of this project. Thanks to Luis Felipe Rosado
Murillo, Jan David Hauck, John Pelan, Mose Giordano, Ellen Webborn,
Pontus Stenetorp, Jon Corbett, Ranjodh Singh Dhaliwal, Daniel Temkin,
Sareeta Amrute, Hannah Knox, Ron Eglash and Chris Ball for their
massive contributions to different iterations of this project. Thank you
also to Brittany Martin for the invitation to speak on the Ruby on Rails
podcast and to Professor Carey Jewitt for the invitation to talk about my
research on the UCL Minds podcast.

x	 CODERSPEAK

Thank you to the British Library for providing peaceful, beautiful
spaces in which one’s thoughts can be shaped into words. Most of this
book, from first draft to finished piece, has been written in the Asian and
African Studies Reading Room on Floor 3. It’s the best reading room, for
there is a water fountain and a toilet nearby.

Thank you to the Arvon Foundation for organising a brilliant course
on ‘Writing Fiction and Non-Fiction’. The course provided me with the
tools to re-imagine what this book could be; tools that I picked up from
the brilliant workshops given by Will Menmuir and Kim Sherwood.
Thank you to Ali, Chris, Anita, Kate, Jules, Jude, Jenny, Jazzy, Jay, Julia
and Lis for a lovely week of storytelling and lifesharing. Hope we’ll meet
again in Darkest Devon one day.

Thank you to all the programmers who designed, created and
continue to support the development of Emacs. Doom-Emacs has been
my text editor since I found out I could write computer code and books
in the same place. This research was put to together using Emac’s
Org-Roam and the writing has been done, exclusively, in it. If you like
‘second-brain’ tools, remember that Emacs will always be free and open
source – whereas the flashy alternatives may not.

If it weren’t for you, programmers who shared their stories with me, this
book would have never been possible. You are the kindest, most generous
people. You had the patience to listen to my questions and to trust me to
handle your data with care. I thank everyone at Upstream, who not only
had to endure my questions but also to review my pull requests. I thank
the Ruby community, the most welcoming community of all, and I hope
to have told a story that makes sense to you.

I was lucky to receive the support of many amazing developers
during this journey. One of them, Chris Seaton, left us way too early. He
taught me, among other things, the ways in which Rubyists embrace the
chaos of computing. Thank you, Chris. I dedicate this book to you.

Writing a book has a been a dream of mine for a long time. I never
thought the first one would be about programmers. Nor did I ever think
it would be written in a foreign language. But I knew that no one would
have supported me as much as Julia did in writing it. Our daughter Rita
and you, Julia, are the most important things in my life. I wouldn’t be
anything without your love.

	 ﻿ Introduct ion � 1

Introduction

There is a deck of cards in your hands. You need to organise it. You pick
the first card – it’s a Queen of Hearts – and you place it on the floor.
(You should be sitting on an imaginary floor for this thought experiment
to work.) You pick the second card, a Seven of Clubs. You put it on a
separate column; you don’t want to mix Clubs and Hearts. The next card
is a Four of Clubs. Easy: put it before the Seven, on the Clubs columns.
You proceed until the deck is finished and there you are: you have sorted
the cards. Each card is now in one of four columns, from the lowest to the
highest value.

Computer programs can implement this process of sorting cards
(or anything else) in many ways. You did it by going over each element
one by one and comparing them to the ones you had already seen. This
process of going over each element and doing something with it, this
action of picking a card and applying some thinking to it, is at the heart of
one of the quintessential structures of the Ruby programming language:
the ‘block’. One way of doing this, in Ruby, would be:

card_deck.each do |card|
  hearts.push(card) if card.suit == 'Hearts'
  clubs.push(card) if card.suit == 'Clubs'
end

A Ruby block is everything that happens between those two magic
words: ‘do…end’. A block is like a mini tool that you can re-use as many
times as you want. It is ‘ike one of those little Hello Kitty boxes they sell
at the mall that’s stuffed with tiny pencils and microscopic paper’, as one
Ruby programmer poignantly wrote.1 In this analogy such boxes can be

2	 CODERSPEAK

used in ‘covert stationery operations’, although ‘blocks don’t require so
much squinting’. A block is thus a tool that implements what you wish to
do to a group of things, be they deck cards or tiny pencils.

A programming language is made of two things: the language itself and
its community. When Yukihiro Matsumoto started working on the Ruby
language in February 1993, he had full control over the first aspect.
‘Matz’ – the name that Matsumoto-san goes by – had been searching for a
language that would make him happy, but failing to find one. He wanted
an object-oriented scripting language, but was not happy with Perl. Object-
oriented programming languages rely on digital objects called classes, able
to send and receive messages to and from other classes. Object-oriented
programs thus consist of many different classes interacting with each
other. But Perl, thought Matz, did not explore this philosophy enough. It
seemed like a toy-language to him. He wanted a programming language
that was truly object-orientated – one in which ‘everything’ was an object.
Python, another language that already existed at the time, didn’t work
either. Python’s object-oriented features seemed like an after-thought, a
kind of add-on to the language. Like many other programmers before and
after him, Matz decided to build what he couldn’t find.2

It was another developer, however, who came up with the name.
Keiju Ishitsuka suggested ルビ in a private chat message. ‘Why Ruby
(ルビ) ?’ asked Matz. ‘Because of Perl,’ Ishitsuka-san replied. After
a brief chat about what kinds of shellfish actually generate pearls,
both programmers agreed on a provisional codename for the language.
‘Indeed, Ruby is okay,’ wrote Keiju. ‘But Coral is also okay … tsk tsk,’
replied Matz. After a few days Keiju wrote again to say that he had
remembered that Ruby was his birthstone. Matz, now convinced, replied
‘Ruby, then.’3

From the very beginning, Matz thought the language should be open
source. There was no point in keeping it to himself and not allowing other
people to use it. If he hadn’t open sourced it, Ruby might have followed the
path of many other languages that are now completely dead; languages
that only lived in the machines of their creators. Thinking back on it, Matz
says that Ruby only became widely used ‘because of the decision to go
open source, along with a fair amount of luck’.4 That ‘fair amount of luck’
was the second thing that makes programming languages, the one over
which Matz had little control: the Ruby community.

Making software open source does not automatically guarantee
its longevity. Many open-source projects perish. In fact, most of them

	 ﻿ Introduct ion � 3

do – because they don’t create a community around them. For an
open-source programming language to thrive, it needs to generate
daily interest and conversations around it. It needs to be picked up
by developers, not just for personal projects but also for commercial
products or academic experiments. A programming language without
its community is just a collection of files destined to end up in the
recycling bin. Still , the communal element of Ruby was outside of Matz’s
hands. He had no way of knowing whether the language would have
a community at all. In less than 15 years, however, the language that
he created would generate one of the most vibrant, fun, quirky, weird
and successful programming communities that the software industry
has ever seen. Ruby’s success went way beyond Matz’s expectations. A
language that he designed for himself, according to his own personal
taste, resonated with many people in Japan and beyond. People who got
involved in creating the Ruby community.

One of the philosophies of the Ruby language (and of its community)
is that there are many ways of doing something. Everything is open for
modification in Ruby. Elements that most language designers wouldn’t
allow programmers to change, Ruby allows. With Ruby you are free to
add what you want – although, as we’ll see, not everyone agrees that’s a
good idea. Being able to extend the language is key to Ruby’s philosophy,
however, and blocks are a key structure for the programmer to exercise
this freedom to extend the language. You can create your own way of
operating repeatedly over data, just like you did with your card_deck.
You can design blocks to iterate over things in any way you want. Blocks
were even called iterators at some point, but they were soon freed from
playing this relatively limited role. A block can do anything: that’s why
it is the one mandatory structure in the Ruby language.5 If you think in
blocks, then Ruby is for you. It fits your brain and it makes you happy.

The world of programmers and programming is immense. There
are around 24 million people working as software engineers, developers,
programmers, coders or just ‘devs’ in the world today.6 How do you
make sense of such a large and diverse population of people? As I’ve
learned during the past few years of being in and among the people who
inhabit the world of software, you have to cut the problem down to a
manageable size. Reduce it to something that fits your brain, so you can
describe it easily. You might not have the solution for that problem yet,
but at least you know what it is. My way is the anthropological way. I’ve
cut through the programming world with a conceptual knife that gives
me a slice I can just about fit in my head: programmers who write code in
Ruby. For almost two years I worked as part of a team of Ruby developers

4	 CODERSPEAK

in a London company. I’ve learned from them and built things with them
but, most of all, I’ve tried to listen to their stories. Through them and
their connections, I was able to reach out to many other Ruby developers
in the UK, Europe, the Americas and Japan. It is the combination of my
experience as a Ruby dev and the individual trajectories of many other
programmers that sits at the heart of this book.

Anthropology and programming might seem like very different ways of
engaging with the world, but they share one principle: you should learn
things by doing. Just as programmers value tinkering and experimenting
more than a bookish approach to technology, so anthropologists favour
learning directly from the people they study, rather than sitting in an
armchair and reading about it. That is why anthropology’s favoured
method is ethnography. Ethnography is founded on the idea that to
understand a particular group’s experiences of the world, you have to do
things as they do them. In other words, ethnography is anthropology’s
way of ‘learning by doing’ – which in the case of programming means
embedding yourself in that practice. To do as programmers do, however,
you need to program in a specific environment, given that the overall
majority of programmers practise their craft as part of a team within a
company. They build things together, share their knowledge and their
differences, all the while creating a product. It is in this situation that an
understanding of how programmers experience their world makes sense.

In preparation for this research, I went into training and learned
to program in one of London’s many coding boot camps. It was a tough,
intensive, four-month long training course in which we not only learned
the basics of programming, but also wrote real-world software applica-
tions. Ruby was the first language that we learned, followed by JavaScript,
and most of us also explored other programming languages as well. From
the very first moment Ruby became the natural choice as a research subject
because of its easy to use qualities and its welcoming community. The
boot camp experience not only gave me basic programming knowledge;
it also allowed me to build the necessary connections to find a place to
conduct my research. Through them I found Upstream7 (a pseudonym),
the company where I conducted the fieldwork for this book. Although
access to corporate environments is notoriously tricky to negotiate –
because companies are often suspicious of research – presenting myself
as a researcher who could actually program helped me to get my foot in
the door. It allowed me to experience what other programmers in the
company did, to gain access to internal communications and to explore
different relationships between management and programmers.

	 ﻿ Introduct ion � 5

At Upstream, my week consisted of having two days entirely
dedicated to programming – sometimes by myself, often with other
programmers and always in conversations with engineers, testers and
managers. I would spend the rest of the week chatting and interviewing
programmers in the company, learning about the history of programming
languages and studying Ruby code. It was a solid 18-month stretch in
which I was able to expand the network of research participants, which
started in London and ended up in Japan.

Much of my fieldwork was done during the Covid-19 pandemic,
and therefore remotely. The pandemic hit, the research was ongoing and
there was no turning back. I was lucky to have already been part of the
Ruby team at Upstream. Negotiating access from scratch, during a global
pandemic while everyone adjusted to working from home, would have
been tough. My colleagues at Upstream knew me, and they knew about
my research already. Even so, when I recorded private conversations –
as I did with almost everyone in the team – I made sure to explain the
research one more time, and to share with them an information sheet
and a consent form.

Interestingly, Upstream’s team of programmers already included
many remote workers, even before the pandemic. A good portion of
Ruby developers were outsourced from the Ukraine, and having people
joining remotely was already part of the company’s process. In this
regard, adapting to WFH life was easier; we already had a constant
‘Zoom’ connection in our meetings, even before Covid. When some
workers in the UK started returning to work, Upstream remained remote:
there were no offices any more. As with many other companies, paying
for office space made less sense, so the company decided to stay as
it was. Although the pandemic certainly affected the interpersonal
development of my relationships with people at Upstream, it was a
reality that I couldn’t escape from. I chose to continue instead of pausing
this experience. In research, we don’t get to pick the deck of cards: we
only get to work on how we sort it.

This book is not a technical book on the language – there are plenty
of those out there. This is the story of Ruby on the ground, of how
programmers write Ruby to build software that is used by millions of
people every day. A story that has repeated itself many times over in the
histories of hundreds of small and large companies that chose Ruby as
their main language. They chose Ruby and tailored it to their specific
uses. Twitter, Airbnb, GitHub and Shopify are just some of them. Because
Ruby allows for things to be implemented in so many ways, it is said that

6	 CODERSPEAK

each workplace creates its own unique Ruby style. And just as a solution
can be implemented in various ways, this book is only one among many
possible ways to understand Ruby and its community.

Multiple, the Ruby way is.

Notes

1	 _why. ‘why’s (poignant) guide to Ruby’, 19.
2	 Matz. ‘[ruby-talk:00382] Re: history of ruby’.
3	 Ishitsuka. ‘[ruby-dev:5173] Re: to_i,to_s の素朴な疑問’.
4	 Matz. ‘The man who gave us Ruby’.
5	 Venners. ‘A conversation with Yukihiro Matsumoto’, Part III.
6	 /DATA. ‘Developer Nation Report 2020’.
7	 The company’s name is fictional and does not refer to any current or past existing software

companies in London or elsewhere.

Part I
Open source

	 ﻿ Pri ncipa l engineer � 9

1
Principal engineer

In July 2019 I took the London Overground train to Liverpool Street
Station and walked for about 20 minutes towards the Old Street
Roundabout. This is the centre of London's Tech City, an area where
many technology firms have their offices. The area has increasingly
become one of the tech hotspots of Europe; developer numbers here have
superseded other European capitals famous for their tech scenes, such as
Helsinki, Berlin or Paris.1 As I reached a small alley just off the main road,
a smartly dressed 20-year-old walked past me. Blond beard, mustard and
black North Face jumper, green trousers, white shoes. Yes, this must be
the right place.

I walked up four flights of stairs and saw the big logo drawn on
top of a double door: ‘Upstream’. I rang the bell and said ‘Hi, my name
is Guilherme and I’m here for an interview.’ I tend to use my full name
in these circumstances, although I quickly change to Gui – pronounced
Ghee, like clarified butter – as soon as possible. People have always called
me Gui. Someone buzzed me in and came to greet me on the other side
of the double doors. The sun was streaming through one of the windows
and illuminating the floor in front of me. What a lovely summer’s day,
I thought. Am I really in London?

After a few minutes of waiting, a person with a long moustache
and wavy short hair came over. ‘Hi, please come with me.’ I could barely
make out what was said behind the enormous cookie sweeper, but
followed along through a big, open-plan office. We walked past ten rows
of long desks on either side. Three people on each desk, glued to their
screens. It was about 11.00 a.m. and the working day was well on its
way. As we veered left at the end of the rows of desks, I briefly glanced
towards the back of the office in which a long table and a kitchen space

10	 CODERSPEAK

were divided by a wall. We entered a small, enclosed office and sat down
on two armchairs, facing each other. In the middle was a small table with
a glass of water. The interview was about to start.

‘I’m Charles, I’m the Principal Engineer here at Upstream … Hmm,
we’ve reviewed your code test … So, why do you want to work
here?’

I had rehearsed this question at home. Upstream is a start-up trying to
change how people bought their groceries. It focused on organic and
local produce made as close to London as possible. It sold exclusively
online. I said I believed in the company’s mission and that it sounded like
the perfect place to work as a Ruby programmer. He looked at me with
a slight grin. He knew I had prepared that answer. He seemed nervous,
constantly looking at his notes. His nervousness actually relaxed me. He
looked at his notebook and, barely lifting his eyes from behind his glasses
to look at me, he said ‘You have an unusual background … hm, why do
you want to work in tech?’

He was right, my background as an anthropologist with 15-odd
years of experience working in Indigenous Amazonian societies was
unusual. I explained that I needed a break from academia and that I
hoped working as a programmer could give me the experience I needed
to design projects that could help Indigenous peoples in the future.
‘Oh, so you don’t want to work at Upstream for a long time?’ he asked,
grinning as he did so. Damn, wrong answer.

Before I could try to reply, he moved on. He asked me about
different programming languages and what kind of applications people
usually built with each of them. Suddenly someone else walked into the
room, greeted me, introduced themselves as Muneeb and sat down on
a high bench a metre or so away from us. It was strange. I felt watched,
which I guess was the game they were playing. Muneeb asked me about
the boot camp I went to and wasn’t surprised when I said it was intense
but amazing. I mentioned how there was a big focus on Test Driven
Development (TDD), then I went off on a tangent. In very academic
language I talked about TDD being counter-intuitive, making you write
tests before the first lines of the actual program are on your screen. They
looked puzzled. They were probably wondering why they ever let an
anthropologist into the building.

I think it was my bizarre answer that led Charles to ask his next
question: ‘I notice you didn’t use Rails in your code test.’ Rails is the most
popular Ruby ‘framework’ – a collection of software libraries that allows

	 ﻿ Pri ncipa l engineer � 11

you to build applications by following an established pattern. Built on
top of Ruby, Rails has a major influence in the community. Some say
that the Ruby community and the Rails community are the same, which
is probably going too far. ‘If I had to guess, I’d say that 80 per cent of us
do Rails,’ a famous Rubyist and podcaster told me. But that depends
on location: the Americas perhaps lead as the place with most Rails
developers, followed by Europe, and then Japan probably at the bottom
of the list. Japan, which is where Ruby was created, is perhaps the
place where Rails is less influential and least used. ‘They use Ruby for
everything in Japan,’ an American programmer who lives and works
there told me. ‘They even use Ruby to launch rockets.’

There have always been many alternatives to Rails – even if they
never described themselves as such. Sinatra is one of them. A lightweight
Ruby web framework, its logo is a drawing of Frank Sinatra’s hat. It is
notoriously friendly when it comes to building an application because of
its minimalistic syntax.

Some people find that very beautiful.

require 'sinatra'
get 'index' do
  'Hello world!'
end

Sinatra creates bespoke routing functions out of well-known ways of
accessing a webpage, like ‘get’ and ‘post’. It uses that familiarity and
merges it into Ruby’s block construction. In just four lines of code, you’ve
got something running: ‘Hello world!’ appears on a browser.

Things are different with Rails. Rather than creating the files
yourself, Rails generates them for you. Quite a lot of them too. A simple,
new application will generate 1,772 files. If you immediately spin up a
server, the only thing those files will give you is the same ‘Hello world’ as
the four lines of code of a Sinatra app. What’s the trade-off, then? Rails,
of course, creates many important things that you will probably need
anyway: test files, database configuration files, basic front-end skeleton
files, etc. There is nothing wrong with a framework that creates hundreds
of files – in a sense, that’s the whole point of using a framework such as
Rails. You want the basic skeleton of things generated for you. However,
you have to choose your tools carefully. Rails might be good if you are
developing your company’s main app – again, that’s what frameworks
are good for – but maybe Rails is too big a tool if you are only writing a
small program for a job interview. I chose Sinatra for Upstream’s code

12	 CODERSPEAK

test because of its minimalism. It did the job for what I needed, a simple
program to shorten URLs. Now I had to explain my decision.

‘I notice you didn’t use Rails in your code test. Why?’
‘Because Rails would be overkill.’

I realised I had made a mistake as soon as the words came out of my
mouth. Upstream used Rails; they were probably expecting me to
exalt Rails in some way or another. After all, they had chosen it as
a framework and were (possibly) hiring me as a Ruby developer to
work on the back-end of their main app – which was, of course, a Rails
application. Sitting on that chair in an office in the middle of London’s
tech city, I started to sweat. I closed my eyes only to hear Charles say,
‘Yeah, I agree, Rails would be overkill. Thanks for coming, we’ll be in
touch.’

Wait, what?

Imagine you are shopping for groceries. You go to a shop’s website and
start scrolling. Maybe you’ve got a list, maybe you haven’t. You might
be in a rush. You’re definitely not very excited about having to do this.
You start adding things to your basket, considering whether or not you
should go for the ‘three for £7’ cheese offer. As you can imagine, a lot of
things are going on in every action you make. Some of them are visual
and obvious, like the little number on the right upper corner, which
increases every time you add something to your basket. However, a
lot of things are not that visible. What happens if you go on a mad
binge and start adding a million cheeses? Will the shop have that many
available? Will the website crash? If they don’t deliver, will they give
you a refund?

My first task at Upstream was to implement a date field called
‘Available On’. It allowed us to add products to Upstream’s catalogue
without making them immediately available on the shopfront. You could
only buy something if the product’s ‘available_on’ was sooner than the
date you were shopping for. I understood the task, but I had no idea
how to implement it – this was only my first week and I still had to get
used to the codebase. This included the main Rails app and several other
smaller services, all built with Ruby. And that was just the back-end: the
front-end was React, Swift and Kotlin, but I hadn’t been hired to work
on that. (I would at some point touch some React code and break it.) As
I flicked through different codebases, installed the necessary dependen-
cies on the new laptop and spun the right Docker containers to make it

	 ﻿ Pri ncipa l engineer � 13

work, I realised I would need help. This was a bit embarrassing. As they
had hired me to do a job, why couldn’t I do it? Why couldn’t I find my way
to start implementing a bloody attribute field? The answer had nothing
to do with technical ability. This was the first time I felt an infamous
programmer trait: impostor syndrome.

As I sat at my desk in one of the many rows of tables in the large
open plan office, I decided to slide my chair across and ask Charles for
help. He sat a few places away on the same row, so rolling on my chair all
the way there didn’t feel too strange.

‘Charles, could I ask you something quickly?’
He seemed to be deep into something.
He took a deep breath and said ‘Yes’.
He shifted his chair towards me and I briefly glanced at his screen.

The resolution was so high – or the font was so small, or both – and I
wondered how on earth he could read code like that. I told him about the
‘available_on’ task and he matter of factly replied:

‘You need to look at the product files on the API, create a database
migration for the field, then do something similar on the Product
Catalogue app. Oh, and don’t forget the serialiser.’

By the time I had finished writing down what he had just said, Charles
was already back on his desk, reading tiny code on his screen. I worked
it out in my head. The database needs a change to be able to store the
values for the new field. The attribute needs to be created on both the
API and the Product Catalogue to keep them in sync. The serialiser will
format these attributes in a way that other apps can understand them.
Brilliant. Charles helped me figure out what I had to do in just a few
minutes. It didn’t cost him anything. Or maybe I distracted him from
something very important and it did actually cost him something. In
which case he would never admit it.

Charles made me feel I could do that task without uttering any
words of encouragement. He demolished my impostor syndrome by
acknowledging me as a programmer. I was obviously just a junior,
but that didn’t matter to him. He treated me as an equal and ushered
me in. Born the same year as me, Charles had heaps of experience
already, but he treated me, a developer in his first job, as if we were
on the same level. He was never condescending, never patronising.
Even though sometimes it was hard to understand what he said
because of his monstrous moustache, his words were always spoken
with respect.

14	 CODERSPEAK

Well, almost always.
As I juggled multiple applications to do the ‘available_on’ task,

I stumbled again. This time I didn’t even have to say anything. The
swivelling chair rolling along towards him was enough.

‘Do I need to add the date field to the Basket app as well or is it
enough to just have it on Product Catalogue and the monolith?’
‘Yes.’
‘Thanks, Charles.’

I rolled back to my desk, only to realise that he’d given me a non-answer.
I was experiencing Charles’s clever humour for the first time. Some
people loved it. I certainly enjoyed it, but a few people at Upstream
didn’t. It was dry, very dry. He always had a clever comment to make
if you didn’t use the precise and correct meaning of words. If there was
room for ambiguity, he would point it out.

‘Do we need to implement this now or are people still debating?’
someone wrote on Slack once.

Charles’s response was ‘Yes’.

Like many other Ruby programmers his age, Charles suffered from ‘Post
Traumatic Java Disorder’. After years of writing Java, he once described
his transition into Ruby like a breath of fresh air. With Ruby, code was
actually readable. ‘Suddenly you don’t have to have all these curly braces
everywhere,’ he told me when we spoke about his early days in computing.
‘It actually reads like – not completely like English, but, you know, it’s a lot
more readable than Java.’ All you did in Java was repeat the same bits of
code in several places in order to make the compiler happy.

Java wasn’t totally bad: it had some nice things. It did all the
memory management for you. You didn’t have to worry about getting a
load of memory – actual physical rows of memory – and tell the computer
you’d put your data in there. As Charles remarked

‘I could just say “here is an object” and then when I’ve stopped using
the object, the garbage collector will clean it up. I didn’t have to
worry about memory management at all.’

Java was crucial at the time. It was embracing Object Oriented
Programming, taking an academic language like Smalltalk and making
it more commercial. At a time when Python wasn’t object oriented and
Perl didn’t do anything like that, Java seemed cool. But it left many

	 ﻿ Pri ncipa l engineer � 15

programmers with a sense that, somehow, somewhere, code could be
written in a more friendly way. For a lot of them, the friendly way was the
Ruby way. Few people went back to Java after finding Ruby.

Charles found Ruby in 2014. The community was already known
for being fun and playful, a welcoming place for misfits and whimsical
people. It had conference titles like ‘Keep Ruby Weird’ and ‘Ruby on Ales’.
Such playfulness impacted everything, including the names that people
chose for their software libraries. (A library is a bundle of computer code
that can be used by other computer programs.) You had libraries like
‘rake’ – a contraption made of Ruby and Make, and not a gardening tool;
or ‘hpricot’ – an HTML parser that tastes like an apricot. If contemporary
software engineering relies on library managers to install and keep
libraries in sync, it seemed that the Ruby community was taking the
mickey.

In Ruby, at least since 2010, RubyGems has been the tool to add
and manage other people’s software in your own projects.2 Accordingly,
a Ruby library is called a ‘gem’ – in keeping with the mineral theme –
and you install and download one by typing ‘gem install [library_
name]’ on a terminal. So you can imagine how people go a long way to
find an easy name that people can remember. You can’t just call your
library something like ‘abhorrent_nameresolver3000’ because you risk
no one using it. People will just use some other library, like ‘name_jam’.
When Charles joined the community, it seemed to him that it was more
important to find a funny name for a gem than focusing on what the
gem did. He once wrote a library that organised a type of file called
‘yaml’ and called it ‘befuddle’. He loved the idea that someone would
type ‘gem install befuddle’ and install his library to befuddle their yaml.

I remember my interview as if it were yesterday. And I know
exactly why. It is because of Charles, the role that he played at Upstream
and how I became part of that small world. I felt I was accepted into a
community that I didn’t really know at all. Not because Charles was a
gatekeeper of the community – he really wasn’t involved in conferences
or meet-ups, for instance – but because he treated me as someone he
could work with, build things with. Later on we would spend a few
afternoons trying to optimise a nasty database query or try to encrypt
and decrypt information with the proper elliptic curve algorithm – but it
was still the initial weeks of treating me as a programmer that gave me
the confidence to believe that maybe, perhaps one day, I could fix broken
programs.

I know that it was easier for me to feel accepted than it might have
been for many people. Although an immigrant, it is certainly much

16	 CODERSPEAK

easier for a white, middle-class Brazilian man who speaks good English
to be accepted in the computational boys’ club. Later in my research
interviews, and also at Upstream, which had a fairly diverse team,
I would hear stories from women and non-binary people of colour who
have not only struggled much more than I have to break into this club,
but have also had to work extremely hard to remain in it. The linguistic,
gendered and racial make-up of the world of computing made it easier
for me to feel at home among the geeks.

Charles wasn’t around when Upstream started, but he blamed most of
the problems with the codebase on one initial bad decision: someone
had decided that it was a good idea not to build the application entirely
from scratch. Instead, they would build it on top of a free e-commerce
platform called Spree. They grabbed this existing open-source project
and decided to expand it into their own version – they forked it. The
idea was that once developers started working on the code, it would
become increasingly detached from the original Spree fork. Ideally, the
code would be different enough in future for Upstream to present it as a
completely alternative solution. However, things sometimes don’t go to
plan. In this case, Upstream’s developers never managed to get rid of the
original Spree code. As it evolved, disentanglement didn’t really happen.
One app became many apps, and the curse of the initial fork was always
present.

In a sense, Upstream’s history mirrored the history of the Ruby
community, which could never disentangle itself from the Ruby on Rails
framework. Although there was never an intention to separate Ruby and
Ruby on Rails – to some people, the communities are one and the same –
the creation of the Ruby on Rails framework is one of the single most
important events in the history of the Ruby community. ‘Ruby would
be a very niche language if it weren’t for Rails,’ Charles told me. Rails
catapulted Ruby into the world and created one of the community’s most
enduring mythologies: that Ruby is the perfect language for building
things quickly. The perfect language to use if you want to build, say, a
blog in 15 minutes.

However, what made Ruby on Rails possible in the first place
started many years earlier. It is, perhaps, quite hard to imagine the world
of software development as it is today without this major development
in the history of computing. A global, multi-faceted and participatory
movement that coalesced around the late 1990s. It’s something that
every company today uses, perhaps without even noticing it. Companies
such as Upstream would never be able to survive without it. Like old

	 ﻿ Pri ncipa l engineer � 17

furniture that we have in our houses, sometimes we don’t even see it any
more. It has faded into the background, become old news. It is known as
free and open-source software.

Notes

1	 Quetteville. ‘Teaching tech’.
2	 Elmendorf. ‘RubyGems’.

	 ﻿ Open source � 19

2
Open source

‘You can’t talk about free software if you don’t talk about what was
happening in Seattle during the late 1990s,’ Luis Felipe told me. He
was an early Linux adopter in the mid-1990s and has been researching
open-source communities for a long time. We’ve now known each other
for over 20 years. I reached out to him because I wanted to understand
the cultural history of free and open-source software. I needed the point
of view of someone who knows a lot about anthropological attempts to
understand software. In his experience, everything began in Seattle – a
city whose name would echo profoundly in the Ruby community and in
the world of free and open-source software.

‘Is free software the same as open-source software?’ I asked him
when we met over Zoom to have a chat.

‘They sometimes go together, but they mean different things. Free
software is software that respects basic software freedoms. The word
“free” is not about money at all, it’s about writing code that people can
study, modify, share and use how they want it.’

‘And open source?’
‘Open source historically has become more about the licence that

you use for giving people permission to use, modify and redistribute
software. The licence needs to say that a user may change, use and study
that code however they want.’

‘They sound pretty similar to me …,’ I said.
‘I know, right?’ Luis Felipe laughed. ‘First it was called “free”, but

then people decided to re-brand it as ‘open source’ to be more palatable
to the corporate world. Open-source advocates sometimes emphasise
‘permissive licences’ that do not require for licensees to reciprocate when
they take a piece of permissively licenced software.’

20	 CODERSPEAK

‘Who changed it?’
‘Oh, a bunch of people, but key names include Bruce Perens, Eric

Raymond, Tim O’Reilly and Linus Torvalds.’

O’Reilly now owns one of the major media companies in the software
industry, publishing mainly technical books. He was crucial in
promoting the term ‘Web 2.0’ in the early 2000s, mainly as a way of
changing the public perception of the internet. In 1998 the tech stock
market collapsed, bursting a bubble that had been building for a while,
and slashing the confidence of people in the new-ish internet. The ‘Web
2.0’ was a way of re-branding the internet, and open-source software
was a crucial part of that re-invention. Linus, for his part, is famous
for a few of his software inventions: Linux, the operating system, and
git, the version control management system. They are major figures
in the history of the free and open-source software movement – often
referred to as F/OSS. The history of the movement can be traced
back to the early 1980s, when ideas around freedom and computing
started floating around the Massachusetts Institute of Technology’s
AI lab in Cambridge (USA). Ideas which, ultimately, derive from the
development of the Unix family of operating systems in the 1970s at
Bell Labs in New Jersey (USA).

There is, of course, a long history to the development of open-source
software, but we can sum it up, for now, by saying that:

‘It’s basically BL and AL, isn’t it?’ I asked Luis Felipe.
‘BL?’
‘Before Linux and After Linux?’
He laughed, shook his head and said, ‘Sure, let’s go with that.’
‘You were talking about Seattle, though. Do you mean the anti-

corporate globalisation movements?’
‘Yes, but also the creation of the Independent Media Centre.’
‘Why that, specifically?’
The answer to that was complex.

‘Because there was a lot of back-end and front-end software
development involved in creating that centre in Seattle, which then
trickled down to the creation of these “Indymedia” centres all over
the world. It was a collective effort to create software that could
be used by anyone for political purposes. There was someone who
was involved with these guys who became very relevant in the way
we think about software in anthropology: Gabriella Coleman. She
started her PhD in 2000, in Chicago, and she got to know IndyMedia

	 ﻿ Open source � 21

activists from Seattle. These political activists were very keen free
software activists as well. Their stories are very much connected
with the experience of folks in Brazil, who were in turn connected
with other people that organised a global independent media space
during the World Social Forum in 2003. In this community space,
there were a bunch of machines that we installed that were running
a version of GNU/Linux.’

I was interested in the role of Gabriella Coleman. ‘And she comes to that
event?’ I asked.

‘She comes to the International Free Software Forum as part of her
study of the Debian community, which becomes her PhD research. And she
starts publishing, years later, about the liberal bases of the free software
movement. She connects this experience of creating free software with
the liberal tradition of free speech, you know? As if free software was a
of form of free speech.’

‘How about the experience with Free Software in the Global South?
I wonder what she thinks of that?’

This drew another complex reply from Luis Felipe, revealing the
movement’s international scale.

‘Basically, she helped us understand that the free software
movement is grounded in “liberal” sensibilities in the Euro-American
context. The interesting and mostly unexplored thing is that we
have different political and historical experiences with “software
freedom” in countries such as Brazil. The F/OSS community also
took different shapes in Japan, Mexico, India, Spain and many
other countries. In our experience in Brazil, we were very much
aware that we lived in the periphery of the periphery of capitalism.
We would change, adapt and subvert everything that came from
the metropoles in an instant.’

Coleman takes ‘cultural liberalism’ to be the main cultural staple
of programming.1 The things that programmers talk about, such as
privacy and the power of the individual, have been central themes of
the North American liberal tradition. What programmers – or hackers,
as she usually calls them – have done is to rework those ideas in the
context of computing. But what hackers do isn’t only to repackage
liberal ideas in the context of computing. There is also a communal,
collective side to it.

22	 CODERSPEAK

The lived experience of F/OSS hacking is more populist and
communal, and at the core of F/OSS practice is an awareness
of connection with a community of developers who make all
code possible: the source code of others is easily available for
use or re-use; source code repositories, Internet Relay Chat,
mailing lists, bug tracking software and other technical appli-
cations facilitate all work; and all the while your fellow coders
are at hand, ready to help when difficulties arise and willing to
serve as an attentive audience to view and admire the finished
product.2

Understanding these and other approaches to software is crucial to
connect the history of open source to the experiences of contemporary
software developers.

This was obviously a key point. ‘The relationship between “free
speech” and software wasn’t as important in Brazil, then?’ I asked Luis
Felipe.

‘Think about Richard Stallman and the Free Software Foundation.
When he came to Brazil, it wasn’t because people were importing
everything he said about politics, technology and software. He was more
of a canvas, on which people would project the discussions that we had
with local governments about developing software as something that
concerns local autonomy and technical sovereignty. What I mean is this:
Stallman doesn’t come to colonise us; he comes to be cannibalised, and
for Free Software to be re-imagined as Software Livre according to our
own political projects.’

I am still a little confused. So I ask, ‘But it’s not like the movement in
Brazil was against free speech, right?’

‘Of course not, but the problems we faced were different. We
improvised and hassled to put things together. We tried, best we could,
to resist the influence of corporations and to create our own things. Our
approach, if anything, was anti-liberal. We wanted to put forward the
political project that we cultivated, locally.’

When Luis Felipe was a teenager, Microsoft Windows was the king
of operating systems. There was no Android and very few people had
access to Macs. If you wanted to use a computer in the 1990s, you had to
deal with the white clouds of Windows 95 or the green hills of Windows
XP. ‘Absolutely rubbish operating systems,’ he told me, ‘but they were
everywhere.’ Windows is still everywhere, but in the late 1990s the first

	 ﻿ Open source � 23

versions of Linux appeared and everyone went nuts. A bunch of young
people, in the southernmost tip of Brazil, erasing Windows machines and
installing Linux.

In 2000 some Linux enthusiasts, alongside civil servants and the
local Labour Party government in Porto Alegre, organised the first Free
Software International Forum (Fórum Internacional de Software Livre,
FISL). Richard Stallman was there, running around the stage with no
shoes on. The State governor Olivio Dutra came, confusing everyone
with a speech about ‘force code’. He probably meant ‘source code’.
A year later, the first World Social Forum (WSF) occurred in Porto
Alegre. Created as an antithesis to the World Economic Forum in Davos
(Switzerland), the Forum would become one of the most important
series of events in the history of grass-roots organisations. It was massive,
especially for the development of the free software movement.

‘There was one guy who was really influential around that time,’
Luis Felipe told me. ‘Eric Raymond. He published an essay in 1999 about
Linux, open source, and free software.3 He is a very controversial guy in
the community because he took over the Hacker Jargon Files,4 which had
been created by a bunch of hackers at MIT. It’s a collection of entries that
describe concepts and ideas of hacker culture. It circulated around the
networks and bulletin boards in the 1990s. Raymond became the first
self-titled editor of the Jargon Files, though, and began to influence the
free software movement quite a lot.’

‘Influential through his essays?’
‘Yes, absolutely. Because he was writing about being pragmatic and

commercially orientated right at the moment that ideas around “open
source” were put together.’

‘The idea of open source starts to become a thing of its own – it
detaches itself from “free software”?’ I queried.

‘Something like that,’ Luis Felipe replied. ‘The open-source
narrative brought this idea that free software should be branded in a way
that is more palatable for commercial enterprises. It was around this time
that companies like Red Hat established themselves by making their own
Linux distribution and their IT services a commercial success.’

In his essays, Eric Raymond writes that the hacker ideology of open
source is like liberal ideas about common-law and land tenure.
According to common law, there are three ways to occupy a piece of
land: you take it, if no one owns it; you buy it; or you occupy it if it’s been
abandoned. ‘This is equivalent to the general culture of licensing within
the [software] community,’ Raymond writes. ‘The idea is that you own

24	 CODERSPEAK

an open-source project if you found it, if it’s given to you or if it’s been
abandoned.’5 He agrees that hacker culture could also be more ‘market-
friendly’, following the lead of Linus Torvalds, who spearheaded a
new tradition within hacker culture. Raymond describes a ‘pragmatist’
tradition that combined technical prowess and commercial mindset,
and that gently did away with ‘the more purist and fanatical elements
[of free software]’.6

From Google to the start-up that your cousin created last year, everyone
uses open-source software. Undeniably free software dominates a good
part of today’s computing ecosystem. Upstream, the London company
that I worked for and researched, used an open-source e-commerce
software called Spree. Spree allows you to set a shop on the internet
and sell your stuff. You don’t have to pay anyone to use it, but there is
an expectation that you might contribute to the development of Spree
itself. There is a sense of community here, in which you are welcome to
use and modify things, on the expectation that you should, if you can,
fix any issues with the software and release an improved version back
to the community. However, most companies don’t spend a lot of time
and money in contributing to the community – the tension that arises
between companies and communities lies at the heart of this. While
free software advocates might look at this as a conflict, open-source
enthusiasts argue that private companies and the software community
can benefit each other.

The debate around free software and open source is crucial to
understanding the trajectories of people working at Upstream and the
people who are part of the Ruby community. Ruby probably wouldn’t
exist if it weren’t for the wider hacker community that grew during the
early 1990s. Upstream wouldn’t exist were it not for Spree, Ruby and
Rails (which we’ll come to in the next chapter).

However, one of the most striking characteristics of free and open-source
software debates is that Raymond, in his essay, draws on an academic
concept developed in France almost 100 years ago.

‘The real problem, in that essay,’ Luis Felipe told me, ‘is how
Raymond interprets the idea of the “gift”.’

‘Do you mean “THE” gift? Marcel Mauss’s gift?’
‘The very same one, yes. Raymond understands the gift economy

from the point of view of American liberal economics,’ Luis Felipe told
me. ‘He thinks people engage in a gift economy purely because it gives
them an ego boost. An ego boost that raises your value, your …’

	 ﻿ Open source � 25

‘Prestige?’ I interrupted him.
‘Prestige, yes. It’s a very utilitarian reading of Mauss. And Mauss was

launching an attack on utilitarianism, so it’s very misguided, Raymond’s
reading.’

Marcel Mauss was a French anthropologist. About a century ago, he
wrote an essay about gift exchange and how it works in society. This is
still probably one of the most read essays in anthropology. His focus was
not on the gift that your cousin Eric gave your brother-in-law Richard
last Christmas. Society is not just a collection of individuals. There is
something else, something more, that produces relations between people.
Social life, he thought, should be understood as a system of relations.
Individuals are, in a sense, the result of social relations, not the opposite.

Marcel Mauss writes about the social, contractual and economic
logic of gifts that people give to each other. He is not focused on one
specific gift exchange: his problem is not the present that Eric gave
Richard. His problem is how this specific exchange fits within a wider
network of relationships. Eric and Richard’s relationship, given that they
are brothers-in-law, doesn’t include just them: it has to do with their
families and with their class, their gender, their occupations and their
race. In one gift exchange, all of that comes together.

‘I don’t understand how giving gifts to one another has anything to
do with software,’ I told Luis Felipe.

‘Think about the free and open-source communities in general.
What are people giving to each other? Sometimes whole programs, web
frameworks, libraries, documentation, tips, tricks, direct and mutual
help – but mostly they are circulating patches. I use your software, find
a bug, fix it and send a patch to you, so you, the maintainer, can fix it for
everyone, not just me.’

‘Sure, but, if I remember correctly, Mauss is saying: “Look, there
is very little freedom in the way that economics works. Receiving and
giving gifts are not acts that people do willy-nilly”.’

‘True. People don’t give and receive gifts out of the goodness of
their hearts. It is not a tit-for-tat in gift economies. They are bound by
social obligations. It’s like they have to. It’s not as free as it might look
at first. It is, simultaneously, interested as in implicated in people’s
social web yet also disinterested, as in not being primarily motivated by
individual needs and goals.’

We usually think of people and the objects that they possess as separate
things. Objects are things: people are not. Objects can be made, shaped

26	 CODERSPEAK

and given away; people cannot be made, moulded or parted with. This
separation is at the heart of how world economies work: it’s the idea of a
commodity, something that can be extracted, moved, sold and bought in
vast quantities – irrespective of the connections it has with a particular
land or people.7 Marcel Mauss pioneered a different way of thinking
about the economy. He changed the perspective by questioning this
core idea: what if we could never separate an object from its creator? If I
write a piece of software, isn’t there a part of me that is always in there?
We might be tempted to say that this ‘part of me’ is just a projection onto
the thing itself. It’s not the software in and of itself, it’s how I feel about
it that creates that illusion of a connection. If I give this software to you,
there is nothing of me in there: it’s all yours now. Maybe. But then how
do we explain the fact that people feel an obligation to give back? When
we receive gifts, don’t we feel we need to reciprocate, at some point,
at some date? We do. But where does that come from? Mauss has an
answer.

What imposes obligation in the present received and exchanged
is the fact that the thing received is not inactive. Even when it
has been abandoned by the giver, it still possesses something
of him.8

He is borrowing this idea from Polynesian societies, but he wants
to make a point about every economy in the world. There is
always a ‘spirit’ within a ‘thing’ – physical or not – that is being
exchanged between people. It is something attached to me, the
giver, and it will be permanently attached to me, even if you pass
my gift along.

We can think about software in this way. Programmers talk about
reciprocating gifts all the time. When they contribute to open-source
projects, they often say they want to ‘give back to the community’. Is the
community asking them, individually? Not at all. Then why do they feel
the need to give back? Where does this sense of obligation come from? It
comes from the connection between the programmers who wrote it and
the program they created. Mauss might have replied, it’s the spirit in the
machine.

‘There was a point when I was reading everything I could about free
software,’ said Luis Felipe. ‘And one person writing a lot about these
communities and the kind of social relations they created through
software was a guy called Chris Kelty.’

	 ﻿ Open source � 27

‘Weren’t you one of his students?’ I asked him.
‘I was. Gabriella Coleman put me in touch with him and he really

supported what I wanted to do. At the time, very few people were looking
into this relationship between anthropology and programming.’

‘Well, that’s still true today.’
‘It is.’
‘But how did your research interests fit with his?’
‘Chris connects well the history of software development with

the growth of free software and open source as part of a massive
cultural shift. It’s the creation of a social and technical collective – a
“recursive public”, he calls it – that changes the way we think about
knowledge and power. He uses this idea that we were talking about
earlier, that code should be public and open to change, and he says
that this changes how we see the way that private companies use
software. There is an expectation, after open source, that code should
be more out there, that it shouldn’t only be the property of a private
enterprise.’

‘A cultural change that massively changes the economy of software,
right?’ I ventured.

‘It does. What Chris does is interesting. He wants to understand
software beyond a simple utilitarian thing. He is talking about a moral
economy, you know?’

‘What do you mean?’
‘Utilitarianism is this idea that the individual is at the centre.

Everything stems from individual action. Self-interest and rationality are
supposed to be what people mobilise when they make their economic
decisions. We calculate and reason, making economic decisions that
are meant to maximise our happiness. Chris, building on some of the
stuff that Mauss and other moral philosophers said, is very critical of
this approach. People are not only self-interested individuals; they
make rational economic decisions because they are also tied to social
moralities and obligations that shape the decisions they make. And the
ones they don’t make as well. The market itself is not the pure land of
rationality; it is filled with rituals and myths.’

‘And how does that fit in what Chris is working on?’
‘His approach is very clear when he is talking about the invention

of GPL.’
‘GPL?’
‘GPL is the licence that Richard Stallman, from the Free Software

Foundation, and others invented. It’s not just one licence, but more like a
whole bunch of them. The basic idea is that anyone can use, learn from,

28	 CODERSPEAK

share and modify a piece of software under a GPL licence. It’s where the
whole thing of copyleft comes from, you know?’

The General Public Licence (GPL) emerged in 1989 as a way of
unifying the software licences that existed at the time. At its core, the GPL
states that a human readable version of source code must accompany any
distribution of software. It all started when Richard Stallman needed to
use some software which had been released free to use, but had, since
then, been closed and sold off to a private company. Stallman wanted to
make sure everyone could use a piece of software once it had been made
available to the public. The genie could not be put back in the bottle.

‘What was I saying?’ Luis Felipe returns from his daydream.
‘That the GPL is not a stroke of geniality that emerges from Stallman

as an individual?’ I suggest.
‘Exactly. He is a great programmer, of course, but he didn’t come

up with this single-handedly, right? There was a very complex social
situation that emerged out of a practical problem. He needed the driver
to use for a video display on Emacs, but it had been created by a guy who
sold it to another company and now he couldn’t use it anymore. How do
you solve that? And Chris, in his book, shows how the whole imbroglio
between companies and programmers created a lot of confusion about
who was contributing what and where. And this situation creates the
perfect condition for GPL to be invented, because it takes the idea of
personal property out of the equation. If it doesn’t matter who owns
a particular piece of code, since a lot of people contributed to it, then
people can share and modify software more freely. And what Chris
is pointing out is that behind any technical innovation lies a hugely
complex social and technical process which we should be looking at.’

My conversation with Luis Felipe was crucial to understanding the
links between open-source software and wider cultural issues. It made
me think not only about how companies such as Upstream use free
software, for example the platform Spree, to kick-start their own
businesses, but also how small companies can rarely afford to give back
to the community. They simply don’t move resources into contributing to
open-source projects, even though they benefit from them. On the other
hand, many developers mentioned their desire to make more contribu-
tions. They feel the need to reciprocate – they sense the ‘spirit of software’
emanating from the code they use; they hear the echoes of the developers
who wrote that code.

Unlike Eric Raymond, they are not in it for the prestige only. They
wish to be part of this larger community that built things such as the

	 ﻿ Open source � 29

Independent Media Centres running Linux on desktop machines during
a gathering of grassroots organisations such as the World Social Forum.
A community that enabled many things to happen, including one of
the most significant events in the history of Ruby: the launch of a web
framework called Ruby on Rails. An event directly connected to the
political and technological initiatives that a small bunch of Linux hackers
kicked-off in the south of Brazil in the early 2000s. People that Luis Felipe
has known all his life, who gathered to discuss the politics, techniques
and economics of free software. It was there, almost 20 years ago, that
Ruby on Rails emerged for the very first time.

Notes

1	 Coleman. Coding Freedom.
2	 Coleman and Golub. ‘Hacker practice’, 263.
3	 Raymond. The Cathedral and the Bazaar.
4	 Jargon File.
5	 Raymond. The Cathedral and the Bazaar, 65.
6	 Raymond. The Cathedral and the Bazaar, 70.
7	 Gregory. Gifts and Commodities.
8	 Mauss. The Gift.

	 ﻿ The myth of Rails � 31

3
The myth of Rails

Myths are not ancient history, not just stories of a long forgotten past.
They offer a virtual space that holds a group’s cherished values and bring
their full weight to shape the world in which we live. Myths provide a
backdrop against which you construct the present. They structure our
world through narratives of events that could recur again and again.

On 2 June 2005, at 8:45 p.m. local time, David Heinemeier Hansson
began a presentation that would echo through the Ruby community
and provide one of its foundational myths.1 It became inescapable.
It captivated and brought people into the community; it made them
interested in the Ruby programming language. The presentation was
called ‘How to build a blog in 15 minutes’ and was later described as
one of the talks that would make non-programmers think you are a
magician.2 In it DHH, as he is usually known in the programming world,
presented to the world his framework for building web applications. A
framework is a program that creates other programs: a meta-program, a
program generator. It was called Ruby on Rails.

DHH uses Rails to create a fully functioning blogging website in
just 15 minutes. By the end of his talk, users of the blog could post, edit,
delete and update posts, as well as add comments to the posts of other
people. He gave the talk during what was then the largest open-source
conference in Latin America, the Free Software International Forum
(FISL)3 – the one organised by Luis Felipe, who we met in Chapter 2,
and his friends. Hosted every year since 2000 in Porto Alegre, Brazil,
the FISL conference had a crucial role in kicking off the debates around
free and open-source software. At the time the city was also the host
of the World Social Forum – the huge initiative that promoted local
political movements as alternatives against the rise of neoliberalism, a

32	 CODERSPEAK

politico-economic philosophy promoted by the World Economic Forum
in Davos, Switzerland. In contrast to the World Economic Forum
and neoliberalism, the World Social Forum upheld a ‘think global,
act local’ ideology in which local political action was perceived as
paramount in tackling global problems such as climate change, poverty
and inequality. The free and open-source movement was very much
in line with such initiatives, and the focus on fairer information tech-
nologies echoed those ideals. Participatory initiatives that helped to
shape the emergence of ‘web 2.0’ – the new phase of the internet, in
which people could interact and create things on the web rather than
be passive readers of text in webpages. It is in this context that Ruby on
Rails came to be.

DHH blazes through his talk to get everything done in 15 minutes. He
needs to move fast to get everything finished in time, and many commands
that he executes are only partially explained: code seems to appear out
of nowhere. He creates a magical atmosphere. ‘Look at all the things I’m
not doing,’ he repeats constantly, at one point warning the audience: ‘It
goes fast, so don’t blink’. After every one of his ‘magic tricks’ in which code
magically appears, DHH shouts ‘whoops’ as if to say ‘how did that happen?
I don’t know, it’s magic!’ He says it so much that the talk itself is known as
the ‘whoops’ video. Surprise, speed and magic would become his trademark
over the years: quick-paced screen casts showing new features of his web
framework. It is almost like he’s been re-building the same blog example
over and over. He can’t get past it; he’s been swept along by the myth.

Now almost 20 years old, DHH’s talk inspired many programmers
to try Ruby on Rails for the first time. Programmers today still mention it
as the major influence at the start of their careers and one of the reasons
they stayed in the Ruby community. They saw the magic in the presenta-
tion and stayed to figure out what was behind it. For some, the video was
not only their first contact with Rails but their first contact with Ruby
as well. A French developer told me about his experience of watching
DHH’s video for the first time.

‘I looked at it and thought “Oh, wow, this is (written) in a
programming language that I don’t understand anything about, but
it looks a lot like what I’ve been learning about in Python. It looks
really cool and there’s a whole framework which abstracts all the
kinds of stuff that we’ve had to do over and over again.’

He was quite right. Rails enabled you to build an application quickly,
with a neat logic and code that looked cool.

	 ﻿ The myth of Rails � 33

But why was the video about a blog?
If you were born after the internet, it may be hard to appreciate

what the first iteration of the web was like. In its infancy, the internet
consisted of text-based webpages, some animated content, images that
took a while to download and basic search engines to find content. It was
the era of internet relay chats, where you could create your own chat
room – and wait for someone, anyone, to join – or join the chat rooms of
other people. And then there was Gmail. Launched in 2004, Gmail was
shrouded in secrecy at first. You could only get an account if you were
invited by someone already there – the same with Facebook. And from
that moment on, the web changed; it became known as ‘web 2.0’. Or at
least that’s how big tech might want us to see it. Many of the technolog-
ical developments that underpinned this new era came from the efforts
of the free and open-source community. It wasn’t the result of a single
company’s product. It was many people, building software together,
collectively, and sharing the results.

To clarify what ‘web 2.0’ means, Tim O’Reilly wrote an extensive
appraisal of what companies such as Google and Amazon were doing
differently back then (in 2005.) Among other things, he praises the
ability to harness the collective intelligence of the internet, the millions
of user changes that happen all the time. Here he praises open source as
‘an instance of collective, net-enabled intelligence’. He adds:

There are more than 100,000 open-source software projects
listed on SourceForge.net. Anyone can add a project, anyone can
download and use the code, and new projects migrate from the
edges to the center as a result of users putting them to work, an
organic software adoption process relying almost entirely on viral
marketing.4

‘Web 2.0’ is still the current era of the internet. Weirdly, the change
from 1.0 to web 2.0 had nothing to do with technical updates of the
internet’s infrastructure. What changed was the way in which people
started to interact with websites – something that we might take for
granted now. From 2000 onwards websites became dynamic, allowing
for more interaction with users. Instead of plain texts that you could only
look and read, web 2.0 pulled us in. It told us to create our own content.
Through so-called ‘web applications’, web 2.0 absorbed us all, and
blogging became the quintessential thing to do on the internet. It was a
way of putting your ideas out there without needing any knowledge of
programming. Although web 2.0 started in the mid-noughties, things

http://SourceForge.net

34	 CODERSPEAK

only really got going about eight or ten years later. By the early-2010s
Ruby and Rails conferences could be found all over the world. In just
a few years, many web tools and applications started using Rails and
spreading the word. A few years later, it felt as though Ruby was taking
over the whole (tech) world.

In many ways, Ruby and Ruby on Rails are the hallmark of the
web 2.0 era. Not only because there was a lot of blogging, but also
because, for a while, it seemed that everything on the internet was
made of Ruby. Many of the applications that millions of people use
today were created with Ruby on Rails, all of them around the start of
the century. Twitter (2006), Shopify (2006), SoundCloud (2008) and
Airbnb (2008) all use Rails – in some cases, as with Shopify, the main
application is still a Rails app, 17 years later. Of course, some companies
such as LinkedIn (2002)5 have moved on from Rails towards other tech-
nologies. Granted too, many other companies of this era have no Ruby
at all in their codebase. Google, YouTube and Facebook, for instance,
have zero Ruby; they rely mostly on C++, Java and Python. But think
about the programming infrastructure developed around that era. The
two main applications where people store code – GitHub (2008) and
Gitlab (2014) – are Rails apps, while the main package manager for
MacOS – Homebrew (2009) – is written entirely in Ruby. No wonder
Rubyists refer to this era as ‘the time that Ruby was building the web’.
It might not be technically true – there was (and probably there still is)
more PHP code on the web than anything else – but for some people it
felt as if the web was made of Ruby.

On the day that I was watching DHH’s video for the zillionth time, I
received an email from someone called Mike. He wrote that he had come
across my research and he wanted to talk about the Ruby community
with me. We set up a call. I explained the research briefly and gave him
my usual spiel: tell me your story as a developer. Mike froze. I thought it
was the Zoom call, but no, it was him. ‘Hm, I don’t really like to talk about
myself,’ Mike said. I’m so glad that he did.

Sometime in 2014 Mike joined a consulting company. They
worked with start-ups and helped them to navigate the world of web
development. It seemed to him that everyone at the time was using Ruby
and its tools. They helped people at Twitter in fixing performance issues
with Ruby. They navigated through many GitHub repositories built with
Rails. They deployed everything with Heroku. As Mike explained

‘It felt like this really magical time where all of these new tools were
available to us. We were beating all these tools to death, and they

	 ﻿ The myth of Rails � 35

were all working and pretty much doing what we wanted. And they
were all implemented in Ruby.’

People working in these companies all knew each other. Some of the
companies, like GitHub, had been invented during Ruby conferences. It
felt like a small world.

‘It was just a really amazing period of time where it felt like you
were part of something. We felt like the cool kids. The kind of
feeling you get … like, it felt really good, it felt nice to belong …
like, I don’t know how else to describe it other than it was a really
exciting time.’

These days Mike works for one of the largest Ruby companies in the
world: Shopify. Many Rubyists have recently flocked to Shopify. Rails
and Shopify have been threading the world of web development for a
long time. It is said that DHH gave Toby, Shopify’s founder, a flash drive
with the files of what was to become the first version of Rails. Today
Shopify not only uses Rails and Ruby, but it has the money to pay a big
team to work exclusively on the Ruby language and on the Ruby on Rails
framework. They don’t even work on company code. Some of them have
actually never seen it. They just work to make the language and the
framework better. No business logic, no deadlines for new features, no
customers. Rather, other programmers are their customers. They write
code to make it easier for other people to write code.

Rafael França, a Brazilian programmer, put this team together. He
has been contributing to Rails for more than a decade and I reached out
to him one day. I wrote the email in Portuguese as we’re both from the
same neck of the woods. Rafael told me that he hesitated to reply, as he
doesn’t really like to put his voice out there.

‘I’m more of a laid-back programmer, I take it slowly. I never wake
up before 9.00 a.m. and usually work until very late. I’m constantly
working. I never speak at conferences, but I’ve been trying to
change that. That’s why I said yes to have a chat with you.’

Rafael told me that part of his shyness has to do with not being a native
English speaker in a world dominated by this language. These language
barriers prevented him from speaking at conferences, being invited to
podcasts and sharing his views on Ruby, Rails and the communities
around them.

36	 CODERSPEAK

At the beginning of 2012 Rafael made a new year’s resolution:
he would contribute to Rails every day of the year. After three months
he became an official ‘committer’ – what open-source contributors
are called. After seven months he became a member of the Rails core
team. He continued on this path until the end of that year, then started
2013 on the same vibe. The next year, 2014, came and went; so did
2015, and it’s now been 10 years of daily contributions to one single
open-source project ‘with the exception of weekends and the occasional
holidays, of course’.

He heard about Ruby while at university. He had an assignment
and tried doing it in Java, but it was too much boilerplate – too much
repetitive code. He then found a Java framework which was inspired
by Rails, leading him to investigate this new tool that he’d never heard
of. That was only the start, as he explained. ‘But what really brought
me in was the community around Rails.’ Rafael had heard of software
engineer Martin Fowler and his book Refactoring.6 As Fowler had been
suggesting people take up Rails, Rafael decided to invest in it. That
was in 2009, and the rest is (commit) history. However, it wasn’t just
the big names that brought Rafael to the community. At the end of the
noughties he started working at Plataformatec, a major IT company in
São Paulo. ‘Plataformatec was where I started in the Ruby community,’
he told me. ‘There were people there who already contributed to
the community, like José Valim.’ Already a Rails core member by
then, Valim would later create the Elixir programming language,
directly inspired by Ruby and its community. Rafael acknowledged the
importance of his influence.

‘With José’s mentorship, I became interested in open source. It
was never a formal mentorship, but it created in me a sense of
obligation … or maybe an objective, really, to contribute to a
framework that gave me the will to work as a programmer again.’

It is amazing to think that sometime around 2010 two of the most
impactful members of the Rails community, Rafael and José, were
working in the same Brazilian company. And that both felt a sense of
obligation to give back to the community. Marcel Mauss would be proud.

At the time, Rafael was very uninterested in his university degree in IT
and was thinking of giving up, something that he eventually did. However,
working with Valim and others gave him the spark that he needed to work
as a Ruby dev and to make that fateful resolution on New Year’s Eve.
Rafael had tried to contribute to open source before, but he felt unable to

	 ﻿ The myth of Rails � 37

access the communities around the development of the Linux kernel – the
most successful open-source project of all. The Linux community was just
too big and too scattered around to give him confidence to contribute.
On top of that, there was also the language barrier. ‘I am a shy man, and
I never formally studied English,’ he told me. If the Linux community was
too big and English-centric – as most programming communities were, in
fact – Plataformatec provided a friendly and contained environment that
inspired him. It gave Rafael a way into Ruby and generated in him the will
to give back to the community.

Rafael’s words echo something that I encountered again and
again in my Ruby journey. A developer’s contact with the wider
programming community is often through their work colleagues. In
a sense, the community ‘is’ the company for which they work. Many
developers have relayed to me how for them the Ruby community is the
people they work with and the occasional newsletters they read. If they
are lucky, like Rafael was, those people are also involved in the wider
community (i.e. interested in open source, present at conferences,
part of core teams, etc.) and that might inspire you to do those things
as well. However, that might not be the case – which doesn’t mean
you won’t still benefit from your local community. Maybe people give
internal talks, perhaps there might even be a book club, like the one we
had at Upstream. Most certainly the company’s coding style will shape
the way you work.

There isn’t just one Ruby community: there are many, many Ruby (and
Rails) communities. Perhaps not as much as one per company, but
certainly more than only ‘one community’. The reason being that Ruby
managed to create a generative philosophy in which there are multiple
ways of doing things. Incredibly, that is something that works in code
and in the community, with each reinforcing the other. You can create
a new framework because the language itself – its blocks – allows you
to do that easily. The many ways of writing code blocks mirror the many
shapes of the community.

At the 2020 Ruby World Conference in Japan, Matz and DHH
hosted a Q&A about Rails and its relationship to Ruby. Being able to
change something, DHH told Matz, ‘is part of the wonders of Ruby for
me. The core language allows someone else to come up with their own
dialect that makes the language better for them. That is what I’ve done
for 18 years.’7 According to DHH, Ruby’s malleability also applies to
Rails: if you don’t like something, you can just open it and change it. As
he observes

38	 CODERSPEAK

‘It means that what we have is not like a beautiful sculpture made in
marble. It’s made in clay. And if we want it to be different, we can
just shape it different.’

‘There’s a sense in which there’s a Rails community inside Ruby,’ Andy
Croll told me when we spoke over Zoom at the beginning of 2021. We’d
met at the Paris RubyConf in February 2020, just two weeks before the
first UK Covid-19 lockdown. Andy had given a talk about mental health
and programming at the Paris RubyConf and I thought he might be a
good person to talk to about the community. I introduced myself and
told him I was planning a bit of research about the cultural values of the
community. ‘Oh, interesting,’ he replied. ‘I have many theories about the
Ruby community.’ Brilliant.

About a year later we continued our conversation. ‘So, there is
Rails and Ruby, but there are many offshoots that sort of almost define
themselves in contrast to Rails,’ Andy continued, set on his exploration
of what he calls the ‘concentric circles of the community’. He emphasises
the importance of Rails, commenting

‘There is the “dryer” part of the Ruby ecosystem, there is Roda,
which is one man’s brain turned into a framework […] and then
there are lots of alternative frameworks, but none quite have the
heft of Rails in terms of mind share.’

In other words, if Rails is only one of many frameworks, it is also very
much the most dominant one.

Rails has brought many people into the community and helped
to shape the era in which the web was made of Ruby. It created
one of the lasting myths of the community: that you can come in
and create your own dialect of the language. You can pick up some
blocks, twisting them into shape, and build your own clay house. As
a myth, though, it also established the limits of the community. It
is the place where the community tends to go, where it tends to sit.
But what happens when one of the many ways of doing something
becomes the dominant one? If Rails is ‘the’ web framework, can it
ever be challenged? Rails might be made of clay, as DHH says, but
what happens when the clay hardens and you can no longer shape it
into something else?

In 2021 I came across a rant by Ukrainian developer Victor Shepelev
on Twitter. I immediately reached out to him and we had several

	 ﻿ The myth of Rails � 39

conversations about Ruby, Rails and his life as a developer. Among other
things, Victor made me understand what the so-called ‘Rails magic’ was
and why he disliked it so much. It confused things, he thought, because
it made people think that Ruby and Rails are the same. His thread used
the same metaphor that DHH used to describe Ruby – clay – but he had a
different view on the matter.

1.	� Ruby’s unique proposal: find the way your ideas is expressed
the best way, design your dictionary, combine it in different
ways, see where the combinations lead you. It is the proposal of
a modelling clay: you have it as a material and can go wherever
you want.

2.	� Rails’ unique proposal: somebody took the modelling clay,
created a language in a shape that was natural to them and gave
it to you as a ready-made (baked) frame, with small holes you
now can fill.

	 (@zverok)8

Clay is one of the oldest materials humans have used. It can be anything.
You can build a tiny pipe; you can build a large house. Because Ruby
is made of clay, you can mould Ruby’s structures into different shapes,
creating a ‘dialect’, a language within the language. But when a dialect
looks so much like the language itself, when Rails became so dominant
that people can’t separate it from Ruby, it becomes harder and harder
for other projects to have their time in the sun. There is a problem when
people look at Rails and think it’s Ruby, when they can’t tell the house
from the clay.

As any potter knows, once clay is fired no change can be made.
What comes out of the kiln remains. To Victor (and others), Rails has
hardened the clay. Rails has covered the Ruby clay with its own glaze,
marking it with an aesthetic form. The only thing left is to present it
‘ready-made’ and ‘baked’, as Victor writes. ‘Sometimes I wish that the
Rails “hype” died to the ground and, for a few years, people stopped to
try building water towers of modelling clay.’ Only when ‘it became half-
forgotten’ could Rails be ‘rediscovered for its true value. But that’s just
me being old and grumpy.’

Grumpy he may be, but the points Victor makes are crucial
at a time when DHH’s public comments on the web have turned
people away from Rails, and perhaps even from Ruby too. In April
2021 the so-called ‘Basecamp debacle’ took over Twitter. Jason Fried
and DHH – founders of Basecamp – circulated messages within the

40	 CODERSPEAK

company to discourage anyone to talk about politics in the workplace.
The messages leaked. People were outraged, not least because DHH
himself often talked about politics online. The result was that over
one-third of Basecamp employees left the company, including people
who had been there for over 15 years. In his summary of the main
events, Richard Schneem, a long-time Rails contributor, wrote that
he was ‘anxious over the future of Rails and the Rails community’.9
Schneem felt that the potential effects of the Basecamp debacle
weren’t being addressed by the community. A Ruby newsletter of that
same week didn’t mention it at all, simply adding ‘Ruby is not Rails’
as the newsletter’s email subject. On another blog post, Eric Schultz
wrote of his fears that the

‘positive work in the Rails community on diversity and inclusion
has been put at risk. The work by Rails Girls brought so many
people into our community who would otherwise have not partici-
pated. […] In a practical sense, all of these problems boil down to
one thing: Ruby on Rails is simply too associated with Basecamp
and DHH.’10

Schultz makes a great point: this tight coupling between Rails and DHH/
Basecamp is not just bad for the community, but bad for Basecamp as
well. Each of them should be able to change without having to worry
about changing the other.

The debate is perhaps as old as the community; it flares up every
now and then. It shows the diversity within the Ruby community,
but also the grip that Rails has on it. Ruby would never be what it is
today if it weren’t for Rails. But Ruby is, in many ways, bigger and
very different to Rails. Many prominent Rubyists have never worked
with Rails, including Matz himself and other members of the Ruby
core team, the people who maintain the language. ‘There are a lot
of alternative frameworks,’ Andy Croll told me, and even though
none of them have quite the gravity that Rails has, ‘everyone is kind
of interested in the ideas coming from these frameworks’. These
different approaches highlight how the Ruby community is not ‘a’
community but many: concentric blocks with Ruby at the centre, with
Rails forming the outer block and a whole bunch of others coming in
between.

Ruby wouldn’t be what it is without Rails – but can Ruby ever
become something else if it wanted to? David Heinemeier Hansson’s
presentation on how to build a blog in 15 minutes showed to the world

	 ﻿ The myth of Rails � 41

that Ruby allows for many things. It allows you to create your own
bespoke language, a language that hides away everything that you don’t
want to show. At the end of the presentation, DHH showed that only
58 lines of code were written to get the blog up and running. At the time
this was unheard of; no web framework could do this. Even today, few
would give you so much with such little code.

The dominance of Rails is like a mirror that shapes the community.
It certainly doesn’t limit anyone to create other things – and the many
blocks of the community are here to prove that. Yet it is a limit, in
the sense that you constantly need to work against it. You can always
develop new things, but Rails will be lurking in the background, perhaps
waiting to say, ‘That’s nice, but I’ve implemented that already.’ No matter
what you do, Rails will be there. You can pile up the clay and create a
brand new house. Then Mr Rails, your next-door neighbour, will come
and greet you, saying

‘Oh, that’s a lovely little house. But come here, come see my
house … this can be your house too … Old house? Oh no, this house
is not old, it’s almost new. It was only created 1 year ago.’

The rise of blogging is one of the celebrated features of ‘web 2.0’. With a
combination of new technologies such as RSS and permalinks, blogging
has allowed the development of conversations between people writing
on different pages, commenting and post about each other. It all may
sound a bit dated now, but the ‘blogosphere’ was all the rage when Ruby
on Rails was coming about. As O’Reilly observes,

‘“[T]urning the web into a kind of global brain, the blogosphere is
the equivalent of constant mental chatter in the forebrain, the voice
we hear in all of our heads.’

If we move aside the brain metaphors, which seemed to be a bit too
abundant today, it becomes clear that Rails emerged by harnessing
the possibility of spinning up production-ready web applications able
to tap into the heralded potentials (truthful or not) of the new era. My
intention, however, is not to bust the myth of Rails. What we need is a
new definition of myth; myth as a ‘place’ in time, a moment in which
certain cultural developments came together – open source and the
internet, blogging and collective conversations. Rails as a myth, as
the best possible way of putting your idea out there – a bet that many
companies, including Upstream, felt was worth a go.

42	 CODERSPEAK

Notes

  1	 Heinemeier-Henson. ‘Ruby on Rails demo’.
  2	 Visser. ‘What tutorials would make a non-developer think you’re a magician?’
  3	 Takhteyev. ‘Open source, open world’.
  4	 O’Reilly. What is Web 2.0, 2.
  5	 Hoff. ‘LinkedIn Moved From Rails to Node’.
  6	 Fowler. ‘Refactoring’.
  7	 Ruby World Conference, RWC2020 基調講演 2 David Heinemeier Hanson 英語.

  8	 Shepelev. ‘A long rant about Ruby’.
  9	 Schneem. ‘The room where it happens’.
10	 Schultz. ‘Effect of the Last Week on Ruby on Rails’.

	 ﻿ Half-broken monoliths � 43

4
Half-broken monoliths

The icon you tap on your phone is an illusion. It looks like a single,
contained thing, but is in fact multiple. An app is usually many apps. It
might have started as one small application, but as it grows it splits into
many. A large app begs for multiplication. The larger it gets, the harder it
is to maintain it. Smaller things are always more manageable. The sheer
size of a large application makes it more complex. It is much harder to
keep the app’s logic in your head. Breaking it down could, potentially,
turn a big, complex thing into many smaller, simpler ones.

The process often goes like this. You create an app and start doing
business. It grows, the app becomes a bit too big, and then you start
splitting it up into smaller apps, each responsible for one domain or
area of the original app. Ideally, if extractions go well, your app makes
the transition from being a monolith to becoming several microser-
vices. The key word here is ‘ideally’, because often this process doesn’t
go so smoothly. If it doesn’t go to plan, you end up having to manage a
few apps that still rely heavily on the original big app. In other words
the process gets stuck somewhere in the middle, resulting in an app
that has failed to become a collection of smaller services: a half-broken
monolith.

‘What are you working on these days, Dmytro?’ I asked him, just to
make conversation. I already knew the answer.

‘Just doing API stuff,’ he replied.
Dmytro’s updates had been the same for the past few months. At

Upstream we had an all-hands tech-team meeting every morning, known
as ‘stand-ups’. One by one, we’d tell the others what we were currently
working on. Not Dmytro. He’d usually say the same thing: ‘Just doing
API stuff.’ Sometimes he would go into more detail, but not often. I don’t

44	 CODERSPEAK

think he ever ‘stood up’ during our daily calls either. It was hard to tell as
he’d always worked remotely from Kyiv, dialling in on the stand-up call.
Maybe he did stand up, we just couldn’t see it. He was one of the software
engineers from a team of outsourced Ukrainian developers working at
Upstream. Over the years this team would grow to become almost the
entirety of the company’s tech team.

Upstream programmers called the company’s main app ‘the API’.
They sometimes called it ‘the monolith’ too. Any application can be
designed as an API, or ‘application interface’ as the acronym actually
stands for, but that didn’t matter at Upstream. Whenever someone
mentioned ‘the API’, everyone knew that it referred to the original Rails
application, built when the business started. Sometimes I had the feeling
that the definite article ‘the’ also implied that the original application was
‘the’ most important one. It certainly was important because it did the
bulk of the back-end work. But it was also ‘important’ because everyone
complained about it all the time.

Over the years, the API had accumulated many responsibilities;
it had simply grown too much. For many developers working on the
front-end applications – the website, the iOS and Android apps – the API
had become too slow. Painfully slow. This was a real problem, because
the front-end applications had to go through the API in everything
they did. The API provided the data they needed to display to the user.
To some of these developers, the issue was not only that the API was
bloated. They also blamed the language it was written in – Ruby.

‘The API’ started as a Ruby on Rails monolith. It was built on top
of Spree, the open-source e-commerce platform. The idea was that the
Spree code would be slowly replaced as the business and the code took
shape. The Spree code was never completely removed, however, and it
created significant obstacles when the time came to start breaking down
the big monolith. Because Spree had been designed to be one single
application, breaking it down would have already been difficult, even
without all the extra Upstream code on top of it. With that additional
burden it became almost impossible.

Building an app on top of an existing e-commerce application is
more common than one would imagine. Dmytro explained how he saw
similar issues in the new company he works for when we talked about his
life as a developer over a Zoom call in 2021. ‘It is a Rails application based
on Solidus, which is based on Spree, which is exactly the problem that
Upstream had,’ he commented. They struggled to move away from it. A
new service written in Go – a newish programming language – couldn’t
be completely detached from it. He felt that people at Upstream – and

	 ﻿ Half-broken monoliths � 45

in his current company – simply didn’t put in the time to understand the
philosophy behind Spree. ‘When you look into it, it actually makes a lot
of sense.’ Even though understanding Spree’s logic could have helped,
however, to expand on Spree and go free style can be tricky.

‘It sounds like a terrible idea to use Spree, Dmytro,’ I told him.
‘It’s always that trade-off of choosing a system like that and then

having to go with it … having to do something with it, having to start
modifying it in a way that just means like, eventually, it’s so tedious that
in fact you’re actually fighting against it, rather than adding enhance-
ments to it.’

‘Why do it, then?’
‘I remember talking to people who were saying “Well, it got us to

where we are now, so clearly it’s been valuable in some way” – but even
at the time there was a regret that it had been put in.’

The problem of a growing monolith is usually described as a problem of
growth and entanglement. Apps grow too much and become harder to
reason with; code becomes too ‘entangled’ and hard to change. If it’s hard
to keep all the different parts of the app in your head, then you’re probably
heading that way. You can read thousands of blog posts about this
problem, usually with a preferred way of preventing or overcoming these
issues. Microservices architecture – ‘many little interconnected apps’ – is
often suggested as the antidote to having a big, clunky, monolithic app.
Sometimes, a modular monolith – essentially ‘a few apps within a big app’
is also a chosen path. These are valid solutions, of course, and carry their
own specific challenges. To an anthropologist, however, what is more
interesting is how developers talk about these issues and how they live
through them. How some things just seem impossible to solve, even if (or
because) you throw more money and more people at them.

When Upstream developers described the process of creating
new applications based on parts of the API, they often used sculpting
metaphors. A monolith is like a stone. You carefully chisel some of its
bits. A monolith is something that you ‘break down’, ‘carve pieces out
of’ and ‘extract functionality’. Such metaphors were slightly shifted
when I spoke to Amir, an experienced programmer working at a major
Ruby company. He reached out to me during the research for this book;
he wanted to share his insights about the Ruby community. I was also
interested in his life, of course, because it is from stories like his that a
partial picture of this community could be composed. As Amir described
his current work situation, I couldn’t help but think about what I had seen
at Upstream. He explained:

46	 CODERSPEAK

‘A big part of our [team’s] mandate is paying attention to the code
base and making sure that if we continue on this track for another
hundred years, those apps are still going to be malleable, they are
still going to be pliable, and we can still ship stuff.’

To ‘ship stuff’ is to deliver new features to an application. Amir wasn’t
talking about carving out pieces of a block of stone, but only because he
was looking at it from another point of view. He wanted to avoid code
becoming stone-like. ‘My main job,’ Amir told me, ‘is to prevent code
from ossifying.’

Dictionary.com defines ossification as a process in which something
‘hardens like bone’ or ‘becomes inflexible in habits, attitudes, opinions’. I
like the idea that computer code could become inflexible in its ‘attitudes’.
It gives the cold letter of the code a human persona. There is a limit
to how much we can – or should – think of computers and software as
humans, but I think a little bit of anthropomorphising never hurt anyone.
It reminds us of the fact that writing code is not a human-only activity; it
depends quite a lot on the moods, the state and the history of that specific
codebase. We write code, sometimes, despite the difficulties presented
to us by the codebase, despite its affordances. In other words, we ignore
some of the code’s opinions and we tolerate the machine’s attitudes, in
order to change its habits.

Working with the API at Upstream was a constant battle with a
codebase that seemed to be hardening before my eyes. I didn’t have a
concept to understand it before Amir described it as ossification, and it
made me wonder how that happens. How does a codebase start turning
into bone? When an application gets too big, does that mean it has
ossified?

‘Well, not necessarily,’ Amir told me. ‘I think it's a function of the
size, but it’s also a function of inappropriate coupling going on.’

‘What’s inappropriate coupling?’ I asked.
‘It’s when two separate parts of an application have become

intertwined. You change something in one place, and something breaks
in a place that you didn’t expect it to. You can’t change part of your
app without having cascading test failures everywhere else.’ I saw this
happen a few times at Upstream: if you change one thing, something
unrelated breaks. This is often the case with Ruby on Rails, says Amir,
because Rails makes it so easy to design an app, to make it grow – but
then ends up with too many things talking to each other. Yet size is also
a factor in defining when a codebase ossifies. If you don’t know that

http://Dictionary.com

	 ﻿ Half-broken monoliths � 47

touching something in one place will break something in another, then it
might also be because the application has grown to the point where you
can’t hold it in your head any more.

‘And that’s when you need to make sure that you’re paying
attention,’ Amir explained.

‘It’s not just small start-ups that struggle with this, then?’
‘Not at all. I’ll give you an example. Say there is an area of the

monolith that we would like to scale up. Sometimes we can’t because
everything is so tightly coupled together and it’s weird. Everything
breaks, and then what we do is put some stuff in the secret drawer.’

‘A secret drawer?’ I had to ask.
He laughed. ‘It’s bad. Basically, anything that doesn’t fit – and

something else – goes in there. And so, of course, everything then
depends on it, and it can call out to anything else. And okay, that’s bad.
So this year, what we're trying to do is we’re trying to introduce some
component boundaries within that component.’

It’s bad, of course, but it does put things into perspective. If even
his company, with its myriad of engineers, can’t crack these things
easily, it makes places such as Upstream seem more normal. As I talked
to Amir, things started falling into place. I couldn’t help but tell him that
his description matched what I’d been seeing. I described to him how
Upstream’s main app had all these other apps dangling around it, all of
them only partially extracted from the main application. I didn’t know if
Upstream’s situation was common, but after his description of his own
workplace, it certainly seemed less unique.

‘You know,’ I said, ‘people talk about microservices architecture
a lot these days. Some people are against it and want to defend the
majestic monolith; others want to re-write everything into smaller apps.
But I think some companies are just stuck in the middle, and it’s very hard
to move away from that. It’s like they have half-broken monoliths. Does
that make any sense, Amir?’

‘What you are describing is what has happened in every single
organisation I’ve ever worked for.’

A crucial part of any ecommerce application is to be able to handle
different products, and to know how many of which one can sell at a
specific point in time. At Upstream the logic to handle this was in a part
of ‘the API’ called the availability service. The availability code had two
main parts: a service class and a calculator. When front-end clients asked
for the availability of some products, they would send the product ids
to the API. The API inherited its way of handling products from Spree,

48	 CODERSPEAK

where a product has many variants. Milk, for instance, can be a product
that has two variants: a 200 ml bottle and a 400 ml bottle. Each product
has an identification – an ID – and each variant has one as well. They
were called spree_product_id and spree_variant_id. All these IDs are
stored in the database and contain information regarding that product or
variant: how many batches of the variant are stocked in the warehouse,
what the average shelf life of the product is, what its dimensions are, etc.
Both product and variant ids stored in the database had normal numbers:
1, 2, 3 …

Milk bottle 200ml, spree_variant_id = 42
Milk bottle 400ml, spree_variant_id = 43

On top of this relationship between a product-id and its variant-id(s),
a service called Product Catalogue was created to handle the logic
regarding purchasing bundles of products. In this new service, each
variant was given a product_catalogue_id. However, this new id was
not an ordinal normal number: 1, 2, 3, etc. Instead each product_
catalogue_id was uniquely generated following an encoding format
called ‘Universally Unique Identifier’ or UUID. These IDs are randomly
generated. It is a safer system than a normal ordinal count of IDs because
it prevents different things sharing the same ID by mistake. Using the
UUID format, the chance of two things having the same ID is close to
zero.1 But having another set of IDs on top of the existing ones created
more complexity. This in turn made it very difficult to understand
them when it was time to extract the availability service from the API
as a service on its own. If you wanted some information about milk, for
instance, you would have to know three ids:

A product id of ordinal type: ‘2’
A variant id of ordinal type: ‘42’
A catalogue UUID: ‘123e4567-e89b-12d3-a456-426610000242’

In 2020 Diego, Carly and I were tasked with implementing a new service
to handle the availability of products. Following Charles’s design, our
job was to extract the availability logic from the API into a new service.
Ideally, this would prevent the front-end clients from hitting the API with
too many requests for the availability of products. One day, on Slack,
Carly commented ‘Hey! I think we should look at the legacy_product_id
name as it’s a bit confusing’. Legacy_product_id was yet another way
of dealing with IDs. Supposedly, it would work as referring to the

	 ﻿ Half-broken monoliths � 49

spree_product_ids, but by changing its name – signalling that it shouldn’t
be used from that moment forward. Supposedly, of course. Carly then
suggested we should abandon it.

‘What are our thoughts on using just ‘spree_variant_id ?’ she wrote.
She also posted a message from Charles, from a direct conversation with
him:

the names we use for things are a bit of a mess. lots of bad
decisions. the plan was to move away from spree and the idea
of variants. in the product catalogue everything is a product, and
variants are the relationships, whereas in spree a product is a
parent object, and a variant is what we actually sell. but once we get
rid of spree, we'll have to get rid of legacy_product_id, so we may as
well have used the spree_variant_id.

‘Once we get rid of Spree’: I heard that sentence over and over again. The
shiny light at the end of the tunnel: a Spree-free territory. We’ll get there
very soon, once we get rid of Spree. The promised land.

‘The reason for spree_variant_id is the front-end and product
catalogue are already using it,’ replied Diego.

‘That sounds good to me, especially if nothing else is using legacy_
product_id,’ wrote Carly.

We decided to keep using spree_variant_id as the main way of
referring to our products in the new availability service. The product_
catalogue_ids would remain in the product catalogue app, while the
legacy_product_id wouldn’t be used at all. Faced with the growing
complexity of referring to the same things in different applications, we
would continue to use the original IDs that had been in use since the
beginning of time: the IDs we inherited from Spree. Sounded like it
wouldn’t be this time that we would ‘get rid of it’.

The complex situation with IDs echoes a joke that some programmers
at Upstream pointed out to me. It goes something like this. Two
programmers look at the current situation of a system’s design and
see that there are three different ways of doing the same thing. ‘This is
absurd,’ they think. ‘We should be doing this in the same way everywhere.
We need to develop a standard that covers all use cases and implement
that!’ The programmers agree that creating a new system to replace the
current three-way system is the way to go and get to work. And that is
how the fourth way of doing the same thing is created. In a conference
presentation in Kyiv, Dmytro talked about monoliths, microservices and

50	 CODERSPEAK

the problems of working with big Rails applications. He added more
variations to the joke.

‘You have a problem and decide to use threads. Two now problems
have you.’
‘You have a problem and decide to use functional languages. Now
your problems are immutable.’
‘You have a problem and decide to use Java. Now you have
ProblemFactory.’

Battling with spree_product_ids, spree_variant_ids, legacy_product_
ids, product_catalogue_ids and the id that we created for the new avail-
ability service sounded just like that. Sure, we weren’t trying to replace
any of the old ids, only trying to find a way of moving away from the
API and the Spree logic. The question is, how do you do it? It is certainly
not an easy task. You have to create some sort of continuity with the old
system while at the same time creating something that is simpler and
makes more sense in the new one. You must create boundaries, but you
also need to maintain the connection. You need a fence, but you also
need a gate.

Martin Fowler, one of the most influential software engineers and
a long-time Rubyist, wrote that microservices architecture are not
something so new; in fact, its roots go back to the way Unix was
designed.2 Unix is a system developed during the 1970s at Bell
Labs which has influenced the field quite a bit, to say the least. A

Figure 4.1  XKCD. ‘How standards proliferate’. XKCD.com. CC BY-NC 2.5.

http://XKCD.com

	 ﻿ Half-broken monoliths � 51

crucial component of Unix philosophy is the idea of modularity and
Fowler thinks that microservices are a way of implementing that
idea.3 He mentions the move towards microservices by companies
such as the Guardian newspaper, Netflix and Amazon during the
mid-noughties, but stresses how there are also downsides to this
architectural choice.

When everything is split into different processes, communica-
tion between them takes longer than if they were all in the same
place. In addition, any change of responsibilities between components
becomes harder to do, because now you are not just moving within
the same process but also ‘crossing process boundaries’. In this talk of
microservices versus monoliths, it seems that the issue of boundaries is
crucial. Boundaries are hard to enforce when a monolith application,
and there are many out there, sits somewhere in between, half-
broken. How do you enforce boundaries when there are so many holes
in the fence?

We might be tempted to see a stalled transition from monoliths
to microservices as a failure. If the goal of a clear transition from point
A to point B didn’t occur, it is easy to regard it as a botched attempt to
succeed. This makes sense – but to see it as a failure requires that we
adopt the point of view of an ideal. An ideal in which programmers
could easily migrate a whole software architecture from A to B, from
monolithic to microservices. Upstream’s architecture, for example,
would be very far away from that ideal and could be thought of as
a failed architecture. But what if instead of thinking of half-broken
monoliths as failed attempts, we consider them for what they are?
Real-world architectures with which programmers must grapple daily.
These are not failures, but realities. Majestic half-broken monoliths, if
you will. They attempted a transition, but have struggled to complete it.
Perhaps treating them as a more permanent feature, rather than just a
transitional state, might help us to understand better what they are and
how to work with them.

Upstream’s architecture fits here too: different apps struggling to
find the ‘right ID’ and to communicate with each other. My guess is that
Upstreams situation is far from unique: many companies are probably in
this situation as well, as Amir observed.

A boundary is usually thought of as something that creates a divide
between two things, for example a fence that demarcates the boundary
between two fields. It’s interesting that Amir’s work of preventing
code ossification is actually one of creating boundaries. If enforcing
boundaries is a way of preventing code from ossifying, then how do you

52	 CODERSPEAK

create boundaries in a half-broken object? How do you fence off a shared
space? Depending on the scale, the cohesiveness of software can change.
What seems like a half-broken monolith from one perspective might
seem like a rounded piece of code from somewhere else.

Notes

1	 Wikipedia. UUID.
2	 Fowler. ‘Microservices’.
3	 On modularity, see McPherson, ‘U.S. operating systems at mid-century’.

	 ﻿ A new serv ice � 53

5
A new service

In 1974 Vint Cerf and Bob Kahn came up with a way of sending
information from one computer to another by dividing it into small
packets. Since then, virtually all information on the internet is passed
around like that. Instead of sending a big chunk of 0s and 1s, which
is what computer information is, you slice it into small blocks, send
each one as a packet and put them back together at the other end.
Small packets to be bundled up somewhere down the network. Sadly,
conversations between humans never really work quite like that.

‘Can you pass me those crisps?’ I asked Charles at a Leytonstone pub
sometime in February 2021.

‘Things are not great at Upstream,’ I said.
‘I don’t think we’re hiring at my place at the moment,’ Charles said.
Every time I complained about Upstream, Charles seemed to think

I was asking him for a job. Upstream made Charles redundant a few
months before. It wasn’t long until he found a new job. He didn’t like it
that much.

‘I’d love to hire you, you know.’
‘Charles, that’s not why I’m saying this. I mean, thanks, I appreciate

it, but really, not asking for a job. Not that I wouldn’t like to work with you.’
Oh God, what a mad conversation. Why can’t we humans just be

like transistors sometimes? Why can’t we just process information in a
clean and efficient way?

A few months before Charles left Upstream, he put me in a team to
build a new program – a new ‘service’. The new availability service. There
was already a plan to build this, but it suddenly became very urgent
when we started getting the same problems almost every day with the
big monolith, the API. They were timeout errors. The API kept having,

54	 CODERSPEAK

or ‘giving’, as they say, timeout errors. People would click on a certain
product, add something to their baskets – then it would just spin forever.
The spin of death. The reason was that the website requests for the avail-
ability of products weren’t completing in time. They timed out, leaving
clients with no data, no numbers of how many products were available
that could be sold to the people shopping for their groceries. It’s hard to
sell something if you can’t tell the customer that it’s available.

‘I think I know what it is,’ Charles told me one day at Upstream. ‘It’s
that damned sequel query. I’ll show you.’

He sat down and I slid my chair over to his desk, like I’d done so
many times. I had used SQL (i.e. ‘sequel’) before; it’s a raw language,
used to get stuff out of the database. Every retail app has a database,
a place to store data about your products, users, orders, etc. This
information is spread out into different tables, each one with columns
and rows. Products table, variants table, stock batches, inventory and
merchant shipments tables. It will probably also have information about
orders and deliveries, so you have tables that hold data on line items and
delivery slots. Then you use that data by building connections and rela-
tionships between these tables. You join them, in various ways. You join
all the users that live in a certain postcode with all orders above £100, for
instance. It’s like you’re applying a filter, telling the database which bits
of information you need at a particular time. You ‘query’ the database. As
Charles opened the file with the SQL query he wanted to show me, I tried
to recollect what I knew about SQL. It wasn’t much.

‘Here it is,’ he said.

WHERE merchant_shipments.id = $1
    AND (
       spree_products.held = false
      OR
       (
        spree_products.held = true
       AND
        shipment_line_items.quantity > 0
      )
     )
    AND spree_variants.is_master = false
    AND…

The query was 214 lines long. It had loads of things written in caps, like
WHERE, AND, OR, SELECT, FROM. It read as a sequence of steps, each

	 ﻿ A new serv ice � 55

of which had a condition attached to it. Get the shipments that have this
id, look at the available products in there, make sure we’ve got some of
them, make sure the variants are not master variants. Wait. What the
hell is a master variant?

‘That’s just something we inherited from Spree. But, you know,
once we get rid of Spree, we won’t have to worry about that,’ Charles
explained.

Oh, great. Once we get rid of Spree.
Charles and I spent a few days on that query, trying to make it

better. We rewrote bits of it, extracted things to other queries, did things
to the make it faster. We actually made it slower. How hard can it be to
find out how much of a product is in the warehouse? Surely this shouldn’t
take longer than me going there and counting it myself? It wasn’t that
simple. Conditions that were inherited from Spree, combined with
bespoke business logic, were forcing the query to timeout. There didn’t
seem to be a way around it, it was just too hard to find out how many
products we actually had available. There were too many things to check
and, over the years, they had all been coupled together in such a way that
it was hard to disentangle. It was time for a new service.

‘I’m putting you in a team to build the new availability service, Gui.’
Whoosh, impostor syndrome. A new service, me?
‘Diego and Carly are going to lead it, but you’ll do most of the work.’
I see.

So it was that, after only a few months at Upstream, I was placed in
the team that would build a new service. The new availability service.
The team was made of three: Diego, Carly and myself. Carly would leave
quite early on. She had bigger fish to fry, or so it seemed to Diego and I,
who remained until the end. The others had both joined the company after
I did, but they were way more experienced than me. Diego had worked
in several different companies and had been made redundant a couple of
times. Carly had only worked for a couple of places, including a start-up
that became an enormous company in only a few years. While we tried to
figure out exactly what we needed to extract from ‘the API’, the necessary
discussions on how to implement the communication between different
services started as well. Could this be an opportunity for us to experiment
with something new? Maybe a different programming language, perhaps
some other form of sending information between apps?

While setting up the new service, Diego talked to other people
in the wider tech team about what they had done while implementing
other services. After talking to Muneeb about how the basket service

56	 CODERSPEAK

had been implemented, he came back to tell us on the messaging
platform Slack:

Diego 11:22 AM:
So after speaking with Muneeb. The Basket uses dry-container and
dry-auto_inject. Dry-rb have since come out with dry-system which
uses both of the gems mentioned and more – https://dry-rb.org/
gems/dry-system/0.12/ – Take a look and let me know what you
think? I really like the way dry-system boots files only when you
need them making the booting of the service much quicker as well
as the tests and the convenient plug-ins.

Carly 11:34 AM:
Worth giving it a go I reckon. Regarding the file loading, I guess it
may be desirable to have different behaviour in dev vs. production
similar to how Rails does eager loading of files in production but
not in development by default. So that in prod the app can boot
fully before it starts accepting requests, for better performance.

Building a new service from scratch is quite an exciting thing. It is not
something that developers do very often. Most developers these days
work for a company for two years and then move on. In that relatively
short time, it may be that no new services will have been implemented.
Building a new service is exciting because there is a bit of room to
implement or work with technologies that you might have wanted to
work on for a while but hadn’t yet had the opportunity. Again, most
developers come for two years and work on whatever they need to work
on: if it’s a Rails app, then Rails it is; if it’s a pure Ruby app, then that’s
what it will be; if it’s JavaScript, God forbid, then you’ll have to work with
that.

In her book about Indian programmers in Berlin, Sareeta Amrute
observes that ‘coding can be a tool to extend and think through human
possibilities’. She also notes that many programmers use different
strategies to ‘carve out spaces and times in the office to pursue their
own coding projects that allow them temporary ownership over their
work’.1 And Martin Fowler writes, ‘You want to use Node.js to stand-up
a simple reports page? Go for it. C++ for a particularly gnarly
near-real-time component? Fine.’2 There are options, but there are
trade-offs.

‘Should we write it in Elixir?’ Carly suggested to Diego when we
had a chat about the new service.

https://dry-rb.org/gems/dry-system/0.12/
https://dry-rb.org/gems/dry-system/0.12/

	 ﻿ A new serv ice � 57

‘Why?’ he replied.
‘I really want to learn it. And it would be faster than a Ruby app.’
‘Sure, but what happens after you leave the company? Who would

maintain it?’
It was a good point. Someone else could potentially learn the

language, but that takes time – something that companies probably
won’t have.

‘I think we should stick with Ruby. But maybe we could use a
different framework?’

We eventually settled on a combination of different gems in a
pure Ruby app – in other words, we wouldn’t use any web framework
such as Rails at all. While Diego worked on setting up the basic skeleton
of the app and Carly focused on setting up the deployment pipeline, I
worked on creating the JIRA tickets. JIRA is a project management tool
and creating the task tickets was a classic task job for a junior developer
like me.

The tricky thing about building this service was understanding
firstly which information the new service needed to get from where,
and secondly which information it needed to send to whom. There was
no clear plan laid out and we had to chase people for answers. After a
meeting with the chiefs, Carly came to relay some of these answers to us
on a Friday afternoon.

Carly 5:43 PM:
Re the order events – after exchanging a few more messages with
Muneeb earlier and running it past Charles, a meeting may not
be necessary unless you guys have any concerns about Muneeb’s
suggestion. Charles seems to think it sounds OK.

The suggestion being that we don’t consume the events published
by basket service, but instead wait for orders service to be live so we
can consume the new order events it will be publishing.

Neither Diego or I replied during the weekend, so she asked again on
Monday.

Carly 9:58 AM:
Morning guys, what are your thoughts on the above? Does this
sound fine or do you think we should try and avoid the dependency
on the orders service going live? (I don’t know how realistic the 1–2
month timeline is.)

58	 CODERSPEAK

I suggest we go along with this for now and we can change our
minds later if it’s looking like orders service won’t be ready in time

Diego 10:05 AM:
I’d like to set up a call with front-end clients Andy, Muneeb and
Charles, so we can discuss all the points we have. [edited]
The orders service also involves front-end clients.

Gui 10:10 AM:
Hey guys, good morning Given that basket is currently unstable and
that Muneeb is the only person dealing with that and given that he
is the only one working on the order service, I think it’s unlikely this
will be finished in the next couple of months

Diego 10:13 AM good to know:
Lets see what we can get out of them in the meeting.

At this point, maybe a month into the building of the new service, things
between Diego and Carly started to get a bit difficult. They had the same
experience, but Carly had a better job title. Diego told me once that ‘just
because of her title, she can decide things and I can’t. And I’m the lead
in this project!’ That was true. Diego’s title was not a Lead Engineer –
someone who manages people – but he was the ‘lead’ in this project.
Soon Carly started taking over, having meetings with Charles and Ivan by
herself, completely side-lining Diego. He and I often felt that we were not
part of any decisions, even though there were only three of us working on
the new service. Then one day, Carly wrote on Slack that Charles, Ivan
and she ‘agreed that we shouldn’t wait for the order service to be ready’.

Diego got really upset. Not being invited to decide on this was too
much. He reached out to me and we had a call.

‘Every time I talk to someone, everyone has a different opinion,’ he
told me.

‘About the plan for the new service?’
‘No. Well, yes, that too, but like the order service, for example, only

yesterday it was mentioned we should be using that and now we’re not.
It’s getting very confusing.’

‘But what about the plan?’
‘I’ve always said the plan for end of June is to move the calculator

to the new availability service and then implement the warehouse
management system. But no, people wanted to wait for the order service
to be ready.’

	 ﻿ A new serv ice � 59

‘Are we going to?’
‘I don’t know. That’s why I’m saying we should get everyone on the

same call.’
He had a meeting to go to, so we hung up. Later in the day he DM’ed

me about it:

‘It seems like no one knows what the order service is. So it would be
a good time for all of us to know what it is and how it links into the
current architecture. (edited).’

The issue with the order service was a terrible distraction – it took our
attention right away from the task. In particular, it took Diego away from
feeling in control of his own project. He messaged me again the next
morning.

Diego 10:11 AM:
Morning. I’ll find out the hell is going on with this order service.
We’re doing it … we’re not doing it … we’re doing it … we’re not
doing it … we’re doing it.

We were not doing it. The availability service would have to rely on the
current state of things – which was probably what we expected at the
beginning. We lost a month on the whole order service shenanigans, and
we still had to decide how we would send data from the new service to
the other apps. The conflict and the lack of communication between the
two senior developers certainly damaged the project. It created a state
of confusion and uncertainty that would last until the end. But it wasn’t
just the leadership of the project that had communication problems. The
code we were writing did too.

Conway’s Law – a famous concept in software engineering – states that
there is a predictable relationship between the structure of communica-
tion within an organisation and the systems that such an organisation
designs. The way that people communicate with each other is replicated
in the way they design anything that needs to have communication
channels. In other words, if five people are working on a project, the
project will have five different parts.

Examples. A contract research organisation had eight people who
were to produce a COBOL and an ALGOL compiler. After some
initial estimates of difficulty and time, five people were assigned to

60	 CODERSPEAK

the COBOL job and three to the ALGOL job. The resulting COBOL
compiler ran in five phases, the ALGOL compiler ran in three.3

We built the availability service to plug into the existing way in which
apps communicated with each other at Upstream. They used something
called Kafka. Kafka is a messaging system – a way of transferring data
between two places, using the internet. Kafka can handle a high volume
of messages and it works in a distributed way: there is no central
structure that holds all the messages, but instead there are several.
LinkedIn built Kafka in 2009–10 to handle the complexity and size of its
databases. They open-sourced it in 2011. LinkedIn had different systems
with different databases that needed to talk to each other. They named it
after Franz Kafka to describe the (Kafkaesque) situation they were trying
to escape from: difficulties in communication.

So far, so familiar.
Kafka was always a controversial topic at Upstream. Some people

liked it, other people hated it: everyone used it.
‘I hate Kafka so much,’ Diego told me one morning after our

daily stand-up. ‘I just don’t understand why people want to use it. It’s
impossible to test, you never really know if the messages are being
published or consumed. It’s just too much of a black box to me.’

‘Can’t we just use something else? Can’t we just do like normal API
calls and stuff?’ I asked, trying to sound clever.

‘I wish, but I don’t think we can really. Kafka is everywhere in our
system now.’

It sounded like we needed a solution to get out of this Kafkaesque
situation that Kafka had created for us. Talk about naming karma. But
as Diego said, there wasn’t much point in debating. We had to suck
it up and just do it, and the result was that I spent months writing
code to handle Kafka ‘events’. A Kafka event is something that an
app wants to share with the world (of other apps in the system). If
‘the API’ wants to tell everyone that a new stock batch has arrived at the
warehouse, it publishes a Kafka event. If a new order has completed, the
Basket service will probably want to broadcast that to the world. Other
apps will be on the lookout for events like that. When a new stock batch
is in, the availability service would need to know and change the stock
numbers accordingly. After an order has been finalised, the availability
service would also want to hear about that, and probably diminish stock
numbers accordingly.

You need quite a bit of code to handle this back and forth of
messages. I spent weeks building these message handlers. Because it was

	 ﻿ A new serv ice � 61

so repetitive, I made mistakes all the time. I didn’t particularly hate doing
it. I didn’t have a strong opinion about Kafka. It sounded like a clever
way of handling a bucketload of messages, although it was tricky to test
it. What actually made me angry was having to continue using Spree.
In this new service, not only did we have to keep using it; we had to put
it back in. One Kafka handler, for instance, replaced any mention of a
‘legacy_variant_id’ variable with a ‘spree_variant_id’ variable.

module Kafka
  module Consumers
   module Handlers
    class VariantUpdated < Base
     include Import["repository.bucket"]

     KEYS = %w[legacy_variant_id].freeze
     MAPPINGS = { "legacy_variant_id" => "spree_
     variant_id" }.freeze

     def call(payload)
      bucket.upsert(
       prepare(payload),
       unique_by: %i[spree_variant_id in_hub_
       at sell_by]
     )
     end

     private

     def prepare(payload)
      keys = payload.slice(*KEYS)
      keys.transform_keys { |k| MAPPINGS[k] || k }
     end
    end
   end
  end
end

We were, literally, putting Spree back in. But hey, once we get rid of
Spree …

62	 CODERSPEAK

Diego and I worked on this project for months. We wrote about 5,000
lines of code. We tested it, the testers tested it and it seemed to work
just fine. There were data discrepancies, but that was to be expected,
given that the new service could never be exactly on par with the
current one. It just didn’t have all the historical data. We did import
it, but there were things in the data accumulated for years in the API
that we just couldn’t replicate. Slowly, we started to lose confidence
in the work we had done. The new availability service provided results
which were very close to the old service inside the API. But they
weren’t the same. They were very close, but not equal. And we needed
equal.

The project was called off.

Months after the project was shelved, Diego and I had a call to chat about
what had happened. Diego blamed Kafka for it. It bloated the codebase –
adding loads of repetitive or very similar code. Kafka was also horrible
to test; you never knew if the messages were being sent and received
properly. Diego didn’t like how Kafka just created a whole load of code
that needed to be added to the codebase (which always means more code
to maintain).

‘You know, you have the consumers, you have the events, you
need to encrypt the message. So, then, you start having loads of other
crazy like file structure of the payload that needs to go into it. You need
4/5 different files to actually send the message itself. Yeah, I just, I can’t
see … We are either using Kafka wrong at Upstream – we’re not using it
how it’s meant to be used – or I just don’t like it. Or both.’

‘I get that, but I don’t understand why we ended up shelving it? I
know that there were some data discrepancies, but they were minimal,
and they were to be expected as well.’

Diego suddenly paused, and asked:
‘Do you, do you actually don’t know?’
‘I don’t, no.’
‘So, you know how difficult it was to keep all the data in sync, right?

There were so many ways of allocating the variant on specific days, there
were the block-listed days, the multiple places it was causing so many
problems … I did mention to Ivan that I didn’t feel comfortable with the
service. And can you remember how many times we kept finding new
things that people didn’t know about?’

Of course I remembered, and it was bizarre. People just used the
systems in so many ways that it was hard to understand it.

	 ﻿ A new serv ice � 63

‘To me, personally,’ Diego explained, ‘I felt like there were so many
unknowns. There are still so many unknowns. I mean, does it give you
confidence that even people in the company don’t know how certain
things work? Does that make you feel confident?’

I told him that we had managed to tackle the edge cases, that it was
hard to keep in sync before launching it, that I felt that we could have
gone ahead, it would have been hard for the first month or so, but we
would have dealt with it when it was live. He disagreed.

After so many months of hard work, it was frustrating not to see
it go ahead. Diego lost confidence in himself because communication
within the team was so poor. We lost confidence in the code we were
writing because its different parts weren’t passing data around correctly.
Communication was a bit off; data was a bit off. We didn’t go ahead,
and the new availability service would remain what it is now: dead code
never to be used – 5,000 lines of it.

Notes

1	 Amrute. Encoding Race, Encoding Class, 22.
2	 Fowler. ‘Microservices’.
3	 Conway. ‘How do committees invent?’, 28.

Part II
Meta languages

	 ﻿ Language dreams � 67

6
Language dreams

There were usually around 20 developers in Upstream’s ‘tech team’.
When I joined, roughly half of the team was outsourced from the Ukraine.
Not too distant from the UK time-zone wise, with a rich computational
tradition and costing half the wages of a London programmer, no wonder
tech companies love the country. Dmytro told me once that virtually no
one in the Ukraine works for local companies: everyone works remotely
for foreign ones. He was the team lead for outsourced employees at
Upstream. ‘I sleep about three hours a night,’ he told me. ‘I’m always
working.’ Over the years, the number of outsourced developers at
Upstream increased. The Covid-19 pandemic, by making remote work
more acceptable, reinforced that trend. To me, the opportunity to listen
to the life stories of Ukrainian developers was crucial, even though this
book is not focused on international labour dynamics.1 It was crucial
because it spoke, in a clear way, about the dynamics of human and
programming languages in the world of computing.

Upstream’s team was divided into smaller teams, each responsible
for a different area or application. One group worked on developing
Android applications, another focused solely on the website and so on.
The biggest section of the team provided back-end functionality that
enabled other applications to run – this was where I worked, as part
of the Ruby back-end. Overseeing all this, a quality assurance team of
engineers – known simply as ‘QA’ – made sure that any change in the code
base wouldn’t break things and cause disruption for users or customers.

One of the QA developers was called Oleksandr. A Ukrainian, he
lived and worked out of Kyiv and considered both Ukrainian and Russian
to be his native languages. But the computer code he reads, analyses and
tests every day is written in Ruby. Of course Ruby is not based on Russian

68	 CODERSPEAK

or Ukrainian, nor does it have Japanese keywords. When Matz created
Ruby, he based it on English – like most programming languages in the
world.

 Over the past 70 years, English has come to dominate the world of
computing. It has achieved this to such an extent that one needs to look
hard to find programming languages or computer systems that are not
based on English syntax, grammar or vocabulary. From a language
designer’s perspective, creating a programming language in languages
other than English has become not only impractical, but perhaps even
unthinkable. When the developer Ramsey Nasser created قلب, a
programming language that uses only Arabic characters, 2 he quickly
realised that even though the language is perfectly good for creating any
computer application, modern software development requires that your
language interacts with libraries and tools that already exist. The majority
of these are written in English. 3

English permeates computing all the way through, from the content
of webpages to keywords in compilers. More than half of webpages are
written in English; Russian comes second with about 7 per cent.4 This
dominance is not restricted to the words on webpages; it extends to the
level of operating systems and, of course, to computer source code.
The barriers created against non-English languages can even extend
to the characters that you type, given that software will often have a
hard time dealing with non-ASCII characters. The American Standard
Code for Information Interchange (ASCII) is a character encoding
standard for electronic communications; developed in the 1960s, it
supports 128 characters from the Latin alphabet. It wasn’t until the early
2000s, for instance, that Windows started supporting Arabic fonts, while
Word, PowerPoint and Excel only fully supported Arabic and Hebrew in
2016.5 In Ruby, for instance, you couldn’t name a Class with non-ASCII
characters until 2018.

Throughout his working life, Oleksandr has used programming
languages written in one of his native languages, Russian. However,
programming in those languages makes him feel uneasy. There is
something strange and eerie in those languages – something that makes
him cringe. Compared to languages written in English, those languages
don’t look serious to him. He feels embarrassed by them. As he told me

‘I have my own experience because I speak Russian. And I know that
we have at least one popular programming language in Russian
which is called 1C and it’s terrible, and people keep laughing at it.
I don’t know how that feels for native English guys, but in Russia,

	 ﻿ Language dreams � 69

when you code in your natural language, you just start laughing.
They cannot read it. … Their minds start blowing up because they
read it as a natural language. But it’s not natural. It’s technical. So
what the fuck?’

Well, what the fuck indeed.
How can you feel embarrassed by reading code written in your own

language? What would it take for something like that to happen? How
can natural languages and programming languages intersect and mix in
such a way?

Programmers usually focus on technology, but they should think
about the people using their language as well. As Matz declares: ‘We are
humans, we are people, so we have minds and feelings.’ His advice for
anyone contemplating designing a programming language is that they
should focus on human psychology as well as on the technical side of
things. Rubyists love to say that the Ruby language is exactly like English,
that it reads like English. They say this makes code more readable, which
should always be a good thing. According to Matz, ‘humans invented
programming languages because there is a limit to the human under-
standing of machines’. If we could understand what machines say, if
(only) we could understand binary code, we could just write everything
in machine language. But we don’t and we can’t – not at least in any
productive way. And so we need high-level languages such as Perl,
Python or Ruby.

Larry Wall, who created the Perl programming language in 1988 and
is one of Matz’s programming heroes, says that Perl is much closer to a
human language than most computer languages. It tries to access a deep,
fundamental level. This fundamental level is the way that people use
language and expect it to evolve over time: the myriad of ways in which
language is used.6 Wall recognises the diversity in speech communities
and inserts that into the community spirit of Perl. He explains that a good
language designer should take that into account; they should also ‘stay
out of the face of the programmer’ and give programmers many ways of
expanding the language. Let them use it as they please. This is the role
model to which Matz is so attracted. The leader who can give something
to the community and then step back and watch it grow. Ruby adopts this
view and translates it to the notion that there are multiple ways of imple-
menting something.

But it seems that Ruby also wishes to access a different level: the
way people feel about that language, the sensations they have in using

70	 CODERSPEAK

it to write code. This is something that Oleks also manifested, though
in a rather different way. If people in the community often talk about
Ruby’s ability to ‘fit our brain’ or to be the ‘language of our thoughts’,
Oleks’s feelings suggest that this has something to do with Ruby being
written – and then having been shaped, over the years – to be intuitive for
people who speak English. ‘We speak natively,’ says why the lucky stiff,
one of the most prominent historical figures in the Ruby community; but
perhaps only if we speak English natively as well. ‘It means that you don’t
have to make a lot of effort to use it. It’s like using a second language, but
that language is actually English,’ a member of the Ruby Core Team, the
group that decides what happens to the development of the language,
told me. Coderspeak is not a language that you are born with – no
languages are. Coderspeak is something you learn.

Language designers often point to the other languages that inspired
them to create their own programming language. In the case of Ruby, the
languages that are usually invoked are Perl, for the philosophy of doing
many things; LISP, for the focus on high-level functions and closures;
and SmallTalk, for the use of Object Orientation as the main architec-
tural philosophy. However, I think we can add some other languages to
the mix as well. Languages that are perhaps a little bit less talked about
these days, languages such as FLOW-MATIC, BASIC and Self. Along
with Ruby, these languages share the dream of creating a programming
language that is as close to English as possible. The reasoning is that this
would make them more approachable – which is why we need to add a
little something to understand how languages such as Ruby fit the brain
of programmers. Something that is as important as neuronal connections
in the brain, but lies at the surface level of Ruby’s syntax. We need to
sketch a brief history of programming languages that dream of being like
English.

Programming languages only became known as ‘languages’ after the
creation of FORTRAN in 1957 at MIT by John Backus and his team.
Before that, they were known as machine code. At first, ‘language’ meant
the language of engineers, as FORTRAN’s syntax is more akin to algebra
than to any human language. The success of FORTRAN is tied to its
ability to hide the specific workings of the machine behind a code that
allowed engineers to solve their own problems. It allowed them to focus
on themselves, not on the machine – FORTRAN somehow echoing Ruby
before Ruby even existed.

Computing historian Paul Ceruzzi has observed that ‘Fortran’s
success was matched in the commercial world by COBOL (Common

	 ﻿ Language dreams � 71

Business Oriented Language).’ COBOL replaced algebraic symbols with
English commands. For instance, the sign ‘>’ became ‘GREATER THAN’ –
and the idea was that managers and businesspeople would be able to
read the code of the programs they were using.7 Jean Sammet, one of the
minds behind COBOL, says that the companies involved in developing
the language were quite proud of it. However, that didn’t stop companies
who were not involved from having a ‘smug attitude of “I could have
done it better”’.8

When FORTRAN was being developed, Grace Hopper and her
group at the Rand corporation developed a system called AT-3, which
later became MATH-MATIC. It had the same intentions as FORTRAN:
a language to write code like mathematical equations. In the event only
FORTRAN survived, but Grace and her team had something else under
their belts, FLOW-MATIC. This has been described as ‘“the first English-
like language for business data processing […] released in 1958’.9

In 1953 the engineering department at Rand Corporation in New
York proposed to management that mathematical notation should be
used for mathematical programs, whereas English statements should be
used for data processing programs. The department also offered to create
a compiler for each. Almost two years later, it was done.

We got our little compiler running. It wouldn’t take more than
20 statements. And on the back of this report, we put a nice little
program in English. And we said,

"Dear Kind Management:
If you come down to the machine room, we’ll be delighted to
run this program for you."

And it read: INPUT INVENTORY FILE A; PRICE FILE B;
OUTPUT
PRICED INVENTORY FILE C. COMPARE PRODUCT #A WITH
PRODUCT #B.
IF GREATER, GO TO OPERATION 10; IF EQUAL, GO
TO OPERATION 5; OTHERWISE GO TO OPERATION 2.
TRANSFER A TO D; WRITE ITEM D; JUMP TO OPERATION
8. REWIND B; CLOSE OUT FILE C AND D; and STOP.

Nice little English program.10

The team at Rand quickly realised that the program was a bit too short
for the big budget they had requested. They therefore wrote another

72	 CODERSPEAK

program, which translated the English words into French, and sent a
similar letter out: “Dear Kind Management …”. Next they wrote one
in German, but this time the management got suspicious. How could
the computer understand German? ‘That hit the fan!!’ remembered
Grace Hopper in a speech. ‘It was absolutely obvious that a respectable
American computer, built in Philadelphia, Pennsylvania, could not
possibly understand French or German! And it took us four months to
say “no, no, no, no! We wouldn’t think of programming it in anything but
English”.’11

The language they came up with, FLOW-MATIC, came with a
brochure. It promised to take you ‘directly from Flow Chart to Finished
Program’, the main selling point being the English-like pseudo-code that
would generate the program to be stored in a magnetic tape: ‘To program
a new application, the user merely describes his systems flow chart in
the English-language instructions of FLOW-MATIC’. But the number
one ‘unique saving’ of the language was that it eliminated almost all
your ‘coding load’ by shifting the ‘emphasis of programming effort from
detailed coding to problem definition and systems analysis’.12 The idea
of reducing ‘coding load’ through a friendlier interface is a characteristic
of FLOW-MATIC that echoed in subsequent programming language
design.13 In other words, the idea was that English-like syntax reduces
the mental overload and allows you to think about the problem. Fewer
braces (in the code), more spaces (in your head).

Invented at Dartmouth College and closely linked to the evolution
of time-sharing computers, BASIC is another language that dreams of
being understood by a wider audience. The desire to build it came from
the realisation that people with little computing experience make the key
decisions in business and government. Yet how could they make correct
decisions about computing if they couldn’t understand a word of the
code used in those machines? The development of ASCII and cheaper
terminals allowed researchers at Dartmouth to build ‘a system that
would be friendly and easy to use. We had absolutely no doubt about the
easy-to-use part,’ wrote one of BASIC’s designers.14

They chose commands that encouraged non-technical people to
use the computers, such as HELLO and GOODBYE. They felt these were
essential if the number of BASIC users was to grow. A crucial idea was
that the code actually generated by their program would be totally
hidden. They could write their program, compile it by typing RUN,
receive neat English error messages if anything was wrong – all without
ever looking at the outputted code.

Let’s take a look at an early BASIC program.

	 ﻿ Language dreams � 73

Instr. no.	 Operation	 Operand
10			 LET		 X = (7+8)/3
20			 PRINT		 x
30			 END		

We can see right away that it doesn’t go as deep into the English-likeness
that FLOW-MATIC, COBOL and other languages were going for. It’s a
table, a spreadsheet, rather than a sentence. But, in a sense, creating
something that reads like a sentence wasn’t their main aim. English was a
tool to do something else: to get more people into computing, to create a
community. ‘We did not design a language and then attempt to mould the
user community to its use,’ said Thomas Kurtz, one of BASIC’s designers.
This is the reason why hobbyists could write their own compilers and
change anything they wanted; they were never restricted by a language
specification.15 A philosophy that echoes again in Larry Wall’s notion
of letting the programmer be, of not forcing things into people’s minds.
Ruby would follow a similar approach to community building.

FLOW-MATIC, COBOL and BASIC shared yet another trait: the
dream of breaking communication barriers between programming
and non-programming groups. For the first two, perhaps because the
languages were designed inside a company, the aim was to create a
language that would unite these two groups. As the FLOW-MATIC
brochure says, they wished to create a world in which ‘flow charts
and codes are made intelligible to the non-programmer as well as to
the programmer’.16 FLOW-MATIC and COBOL wanted managers and
programmers to be the same, or at least to speak the same language.

Today most programmers would agree that businesspeople
shouldn’t be too close to the logic of the applications. They believe
that there should be a neat separation, a wall – usually provided by
product managers – that shields the development of applications from
the development of business ideas. Business should specify the needs
and features, but the details of implementation should remain in the
programmers’ hands. You can ask any programmer on how becoming one
means unbecoming the other: how managing usually means not having
the time and head space to focus on programming tasks. Programmers
and managers will never be the same.

BASIC was different – which is why, by the early 1980s, it had
become the most widely used computer language. BASIC aimed at
bringing ‘ordinary people’ into programming by ‘removing unnecessary
technical distinctions’, by providing defaults when the ‘user doesn’t care’
and by showing that ‘error messages can be made understandable’.17

74	 CODERSPEAK

This sounds a lot like Ruby, and something starts to click when we realise
that BASIC was in fact Matz’s first language. Ruby is not for managers at
all, but it is a language to bring people into programming. It is a language
for programmers, one that ‘reads (almost) like English’ and that wishes
to reduce the mental load through a friendly syntax. But if FLOW-MATIC
went too far on this – it conflated programming languages and natural
languages; it wanted them to be the same – Ruby seems to have got it
just right. The key to having a programming language that is easy on
the mind and the eyes is not in having it look exactly like English. It’s
sufficient that it only resembles English, that it pretends to be English.

Computers pretend all the time. They pretend to be sentient, to work
perfectly, to think about you, to make you feel wanted. Pretence is at
the heart of computing. That’s not necessarily a bad thing. Programming
languages also pretend to be things. They can pretend to be English,
for example, by mixing tokens from the language with programming
structures. Ruby does so by using special keywords that echo the
language, such as unless – perhaps the only programming language to
use that word. Along with other English tokens, unless allows you to
write Ruby code like this:

return card_deck.first unless card_deck.empty?

In other words, give me the first card of the card_deck unless the
card_deck is empty. Ruby programmers use expressions like this one all
the time. It is very much one of the preferred styles of writing contem-
porary Ruby – it is idiomatic Ruby. It is because of function names that
are ‘like English’, such as ‘first’, ‘unless’, and ‘empty’, and a syntax that
resembles English that Ruby programmers often say that Ruby reads
almost like English. The key here is ‘almost’. It creates a connection
between something you know (English) and something you want to
master (Ruby) – but at the same time it adds just a slight bit of difference.
Almost English.

Rubyists talk about their language in ways that you wouldn’t expect
from a programmer. They say thinks like ‘Ruby fits my brain’, or it allows
me to ‘express myself’, or it’s easy to ‘translate my thoughts into code’.
‘The logic I saw in my head,’ says the Ruby programmer Avdi Grim,
‘transferred into program logic with a minimum of interference.’18 Of
course, programmers and machines read programming languages in a
very different way, but Ruby doesn’t work on the computer's terms. It is

	 ﻿ Language dreams � 75

not designed to accommodate the computer, says the programmer called
why the lucky stiff. We shouldn’t even call Ruby a computer language, he
writes, because we are not using it to translate what the computer thinks.
We are not ‘foreigners, seeking citizenship in the computer’s locale’.

But what do you call the language when your brain begins to think
in that language? When you start to use the language’s own words
and colloquialisms to express yourself. Say, the computer can’t do
that. How can it be the computer’s language? It is ours, we speak it
natively! We can no longer truthfully call it a computer language. It
is coderspeak. It is the language of our thoughts.19

Somehow the ways in which Ruby programmers think and wish to
express themselves is echoed by the language’s design. This link between
Ruby and its programmers, between language syntax and thinking, runs
deep in the community. Coderspeak: a language that is neither human
nor ‘machinic’ but actually both. A language that pretends to be both;
a language that builds on a sense of kinship between what happens in
a computer and what happens in people’s brains, emerging in the late
1970s as part of a rising ‘computational culture’. This culture afforded
new ways of linking information processing, computer programming
and the human mind.20 If the ‘mind’ of a computer works in binary terms,
that is, if a computer thinks in 0s and 1s, human minds seldom work like
that. Human values are better described with labels such as ‘almost’ or
‘not exactly’, rather than with straight answers. That’s not a problem, it’s
just the way it is.

Although much has been written for and against the idea that our
brains are like computers, there is something more interesting in the
way that humans learn languages which in turn applies to the way we
learn programming languages. In this sense, it brings them together. The
most important thing when learning a new language is that two different
‘people’ can exchange symbols in a way that enables the learner to put
themselves in the perspective of the other.21 What matters is that one
person can feel that there is an actual exchange. In other words, that
the programmer can have an appreciation of things from the computer’s
point of view.

We might think that’s not possible because we can’t understand
machine language – but we are not talking about understanding when
talking about learning a language. In some ways, it’s impossible to
understand things from someone else’s point of view. It’s theirs, it
belongs to them. But that doesn’t mean we can’t have an appreciation,

76	 CODERSPEAK

a partial understanding, of what it feels like. That’s what well designed
error messages are for. That’s what English-like keywords and symbols
are for. We can exchange them. If the programmer why the lucky stiff
questioned how Ruby could belong to a computer if we can speak its
words and colloquialisms, it is precisely because such words are collo-
quialisms; they are part of a conversation between programmer and
computer. They sit somewhere in between the two. They are something
in between, a mix-in. Ruby is not a computer language, but nor is it a
human language – it’s both. Well, almost both.

The idea that coders had various ways of ‘speaking’ pointed to the
linguistic diversity that we see in natural languages: the different accents,
registers, languages and dialects. But it also pointed to a connection
between humans and machines. Some sort of underlying language of
languages, that made it all possible. The discussion was all getting very
meta. I needed to understand a bit more about this whole business of
languages and how they function in society. I needed to bounce this off
someone, so I reached out to another academic friend.

Notes

  1	 This was before the Russian invasion of Ukraine in 2022.
﻿  2 Nasser. ‘The قلب Programming Language’.
  3	 Nasser. ‘A personal computer for children of all cultures’.
  4	 Lawrence. ‘Siri disciplines’.
  5	 Stanton. ‘Broken Is Word’.
  6	 Wall. ‘Larry Wall: Why Perl Is like a human language’.
  7	 Ceruzzi. Computing, 62.
  8	 Sammet. ‘General Views on COBOL’, 345.
  9	 Sammet. ‘History of IBM’s technical contributions’, 522.
10	 Hopper. ‘Keynote address’, 17.
11	 Hopper. ‘Keynote address’, 17.
12	 Remington. ‘Introducing a new language for automatic programming’, 3.
13	 Marino. FLOW-MATIC, Critical Code Studies, 146.
14	 Kurtz. ‘BASIC’, 519.
15	 Kurtz. ‘BASIC’, 534.
16	 Remington. ‘Introducing a new language for automatic programming’, 4.
17	 Kurtz. ‘BASIC’, 535.
18	 Grimm. ‘Confident Ruby’, 2.
19	 _why. ‘why’s (poignant) guide to Ruby’, 32.
20	 Turkle. The Second Self, 229.
21	 Tomasello. The Cultural Origins.

	 ﻿ Meta-programming � 77

7
Meta-programming

Language is not just an underlying cognitive structure in the brain.
Language is a social activity; it is bound to a social context. Language is
in essence communicative; it is about what we say to each other and how,
and when, we do it. In programming, communication also abounds. The
difference, perhaps, is that conversations happen not only between coders
using human languages, but also between them and their machines.
Coderspeak, the language that connects them, is made of all that: the
human chatter, the programming language syntax, the social and the
computational contexts and the meta elements that make it all possible.

Language has different functions. There is the literal meaning of
words and the potential poetic effect of them – but there is also the social
context that binds an utterance. For example, to what extent can we
separate the language we use to write our software in from the wider
political context of the world? Can we even consider writing software
in anything other than English? Who would use that software if we did?
Even programming, a small example of how we do things with words,1
is integrally connected to the social lives of languages. Everything
is context-sensitive and everything is tied, in some dimension, to a
language ideology:2 the understandings that speakers have of language
in relation to the political and social context that surrounds and shapes
the way we communicate to each other.

‘It’s not just about the prevalence of English in business contexts,’ I
said to Jan. I’d been telling him about Oleksandr’s story. ‘It’s also the
dominance of English in the development of programming itself, which is
fascinating. But what happens when English becomes a global language?
How many different “Englishes” are out there?’

78	 CODERSPEAK

I reached out to Jan to get his view on what I’d been hearing from
people in the Ruby community. I’ve known him for a very long time.
He’s an expert in linguistic anthropology, especially in things such as
linguistic ideologies and meta-pragmatics, fields which I thought could
help me understand what I was seeing. He’s been researching language
and society in Paraguay for the past 20 years. My conversation with
Oleksandr had had a big impact on me. I wanted to understand a bit more
about how linguistic anthropologists think about cultural perceptions of
language and stigma. How could someone be embarrassed by his own
language? How can software provoke such feelings?

‘I remember the first time I was in Paraguay,’ Jan told me. ‘I had an
interview scheduled with an anthropologist in Posadas. I’ll never forget
him. We sat down to chat, I turned on my little recorder, but the battery
suddenly died. He immediately knew why. “Oh, you probably bought
the cheap batteries that they sell here, they’re no good. Look, just go
down to the market, buy new batteries, but make sure they’re Alkaline.
I'll be waiting here. There is no rush.” He was very patient with my
inexperience.’

‘What did you and the Paraguayan anthropologist talk about?’
I asked.

‘Argentinian, he was.’
‘Sorry.’
‘We talked about all the progressive, leftist governments in South

America of the time – it was around 2005, I think. Lula in Brazil, Kirchner
in Argentina, Mujica in Uruguay. There was a strong push for regional
integration between these countries, and the guy’s research was about
the grassroots organisations that were trying to resist the economic
policies that these countries were trying to implement.’

‘Why were you there?’
‘I was part of an interdisciplinary project that focused on the

cultural integration between those countries in relation to economic
integration that was happening in the region. And my part in the project
was to think about the role of the Indigenous Guaraní language in these
attempts to integrate.’

‘Why Guaraní?’
‘Because it’s a language spoken in all of these countries, even

though Paraguay is the only one to have made it an official language.
Most people in Paraguay speak Spanish and Guaraní, both are used in
official documents and stuff.’

‘You thought that Guaraní would be the glue between the countries,
linguistically?’

	 ﻿ Meta-programming � 79

“Yes, one of the cultural elements that they have in common. It
turned out that I was a bit wrong, though. Guaraní is a language that,
essentially, Paraguay claims for itself. It’s what differentiates Paraguay
from Brazil, Argentina and Uruguay. And this view goes back a long time.
So this idea that Guaraní was a language that united these countries
through the same Indigenous heritage was totally wrong. The opposite
was the case: only Paraguay claimed Guaraní as its national thing.’

It seemed that Jan and I were getting far away from any discussion
about linguistic anthropology and programming. However, there was
something in chatting about Guaraní, an Indigenous language from
South America, that I thought might help me understand the languages
of this other tribe, the programmers.

‘After coming back from Paraguay, I started looking into linguistic
anthropological theory – concepts like indexicality and language
ideology – to help me understand what I’d seen,’ Jan continued. ‘Most
people think about language primarily as a way to communicate content.
But language actually has many different functions. For instance, people
use language to differentiate themselves from others.3 We understand
ourselves as part of a group, or as different from other groups, through
the language or the dialect that we speak. And the good thing about
linguistic anthropology is that you can talk about all these things
together: you don’t need one theory that explains linguistic structure and
the meaning of words, then another theory to make sense of the social,
cultural, economic and political aspects of using those words. You have
one theory that explains both: how words refer to things in the world and
how they refer to the people and groups of people that use them.’4

Language theory and computer science have been walking, hand in
hand, for a long time. In the 1950s, when both modern linguistics and
modern computer science became more established, there was a lot
of borrowing between the disciplines. We might think that there is
a ‘natural’ connection between the way human languages work and
the way programming languages work, but there isn’t. Programming
‘languages’ only started to be called languages after FORTRAN in the
1950s – before that, there was only code. In those days coders, mostly
women, would pull levers and fill in punch cards with coded instructions
that made computers work. As the job of programming moved away from
physical levers and holes in paper card, it became connected more and
more closely to the written word.

‘What Chomsky was trying to do in his linguistic theory was to
break everything down into digital information,’ Jan told me.

80	 CODERSPEAK

‘So he was saying that in the end words don’t really matter – what
matters is the structure underneath them?’

‘And that structure is binary,’ he replied.
‘That is, of course, the essence of how computers work today:

binaries. People have argued that software isn’t even that relevant,
because “everything in computing”, at the end of the day, relies on the
binary structure of transistors. Everything in computing boils down to
the 0s and 1s in the transistors, and therefore whatever you have on the
surface, whatever language you use to write software, doesn’t really
matter. At the end of the day, it’s all binary logic on the core. Which ties
back to Chomsky, I guess.’

‘It does.’
‘In the sense that Chomsky might be saying: “Different languages

don’t really matter because there’s only the kernel, the true universal
grammar”.’

‘But not really, right?’ Jan intervened.
‘Right!’
‘That is the core difference between Chomskyan approaches to

language and linguistic anthropology. As linguistic anthropologists, we
recognise that if you really want to understand language, you need
to consider context. The way in which you use language, the effects
of words, the social meaning people associate with words. All of that
matters.’

‘Absolutely, and there is a similar problem with computing,
hardware and binaries. There isn’t only hardware. The way people build
software, the decisions that they make, the language that they speak,
the way they use it, the kind of bugs they introduce, the kinds of ways in
which they solve the bugs, the social consequences of software, all of that
also matters.’

‘I think,’ Jan said and paused. ‘I think …’ and then he paused again.
‘I think …’

‘I can see that you’re thinking, Jan.’
He laughed and said ‘I think that the broader question here is

about linguistic diversity. I think a lot of people, including linguists and
computer scientists, assume that, no matter what language you speak,
there is some sort of basic core – perhaps what you guys call “kernel”
in computer speech. This may be a universal grammar, abstract binary
structures, a language acquisition device in the brain or certain semantic
primes that are part of every culture. The assumption is that you can
reduce all communicative behaviour to certain universals which allow us
to translate and break everything down into these core elements.’

	 ﻿ Meta-programming � 81

‘Which is an OK assumption, I suppose?’
‘It’s mostly how things have operated so far, yes. However, I think,

you know, linguistic anthropology and other sciences have been trying
to propose a different model. What if the exercise was not to assume that
we need to break things down into “universal components”? What if we
could use linguistic diversity in and of itself?’

Human languages – the so-called ‘natural’ languages – are not just made
of grammar and syntax. The way we use language, the context in which
we communicate, the nuances of our linguistic performances and the
effects of our speech acts all have considerable significance. If that much
is clear to most people when thinking about natural languages, my
big question was how to transpose that to the context of programming
languages. My chat with Jan showed me at least two ways to pursue that
question. Firstly, look at the ways in which English dominates this scene
and the resistance to it that may arise. Secondly, explore the varied ways
in which programmers talk about programming languages by investi-
gating code comments, code that writes code (meta-programming) and
the history of software libraries. As Jan suggested, we may not need
the grammar and the syntax to start understanding the structures that
emerge when programmers talk about programming.

‘I’m curious to know something,’ Jan said. ‘Imagine a world in
which there was no English. What would computer programs look like?
What if we didn’t have English at all? What if we couldn’t use ‘do’ or ‘end’
and all those constructs? What if we had to find a different way of doing
things?’

 ‘There’s a programmer called Ramsey Nasser who created a
programming language in Arabic called قلب (Alb),’ I remarked. ‘You can
write all your programs in Arabic, but the problem is this: your software,
written in Alb, is never going to be commercially (or more widely) used
because the entire infrastructure of the internet is in English. You must
find … you’ll have to find ways to interface with that infrastructure – and
to do that your programming language is going to have to succumb to
English at the edges or at certain points, right? That was Nasser’s
conclusion, anyway. His work is interesting, though, because it shows
that there is a material or infrastructural aspect to this presence of
English in computing. Whether or not this prevalence of English is
intentional or coincidental is beside the point. It’s baked in.’

‘People use language to differentiate. In all communities there
are multiple ways of saying things in the form of different varieties,
or registers, or styles. But usually there’s some sort of hierarchy built

82	 CODERSPEAK

into the relationship between language A and language B or variety
A and variety B; one has more prestige than the other. However, that
hierarchy doesn’t always have to stay the same. Sometimes it shifts. In
Paraguay, for example, there is Spanish and there is also Guaraní – but
then there are moments in which Guaraní becomes, in certain situations,
more prestigious. It’s a dynamic hierarchy, and it really may vary from
situation to situation or from place to place.’

‘I never thought of it like that, but if you write a programming
language in something other than English, for example, there might be
different angles of looking at this. On the one hand, you might reach
a conclusion that it’s impossible to counter English in computing, it’s
just too dominant – just as Nasser did. On the other hand, the effect of
creating a programming language in Portuguese, for example, puts that
language in another position as well.’

‘If you write in English, then OK, everybody will understand. But
there’s something special when you write a programming language in
Arabic or in Portuguese. Again, you need a community of speakers who
share your code and who share a particular understanding of it. This
creates a space in which you can add something on top of the generic
code of English or Spanish. It’s generic code, but it’s just assumed that
everybody speaks English anyway, and everybody sort of defaults to it.
However, you can have something special on top of that.’

Our conversation touched on programming and language ideologies,
then moved back to Guaraní and finally returned to programming
again. I told Jan about things such as ‘Chinese-Python’, in which a
layer of Chinese characters is added on top of the Python programming
language. It makes the program slower, because there is an added layer
of translation, but it makes it easier for more people to code in. I told him
about other linguistic mixes created by programmers: whereas in Japan
programmers code mostly in English (without Japanese characters), in
Brazil people tend to mix English and Portuguese when writing Ruby.
The result is a mixed register in which the language keywords (‘do’, ‘end’,
etc.) stay in English because they can’t be changed, but the variables,
class names and constant names are in Portuguese.

‘There is something called meta-programming, which I don’t
understand very well, but people in the Ruby community seem to think
it’s very important,’ I told Jan.

‘OK …’
‘It’s a technique. You write code that generates code.’
‘Very meta, OK …’
‘Okay, listen. Imagine you’re a virtual gardener,’ I proposed.

	 ﻿ Meta-programming � 83

‘Unlikely, but I guess you never know, with all the metaverse stuff.’
‘Listen! As a gardener, you have loads of things to do. You have

tasks. You need to rake the leaves, then dig the ground, then plant some
plants, then water everything. One depends on the other: there is a
logical order in which you need to do them.’

It was hard to get this across to Jan without writing something
down. I shared my screen with him and typed some stuff on a blank
document. ‘Watering the plants depends on planting them. Planting them
depends on digging, which depends on raking the leaves. Something like
this,’ I said, hovering over the documents on the screen.

task :watering	=> :planting
task :planting	=> :digging
task :digging	 => :raking
task :raking

‘What actually happens during each task?’
‘Oh, I don’t know … maybe you shout what you’re doing?’
‘OK.’
He wasn’t convinced.
‘So, it would look something like this, I think …’

	 task  :raking do
	   shout "Raking the leaves!"
	 end

	 task  :digging do
	   shout "Digging the ground"
	 end

	 task  :planting do
	   shout "Planting the plants"
	 end

	 task  :watering do
	   shout "Watering the plants"
	 end

	 def method_missing(name, *args)
	   print "#{args[0]}\n"
	 end

84	 CODERSPEAK

‘I confess that I’m lost. I don’t really know what is what. Is this written in
Ruby?’

‘Yes, but it’s using Rake.’
‘What about “shout”?’
‘That is our little bit of meta-programming. Ruby doesn’t know

anything called “shout” and we haven’t defined it anywhere. If we simply
ran the program without the ‘method_missing’ bit at the end, it would
just crash, but we told Ruby: ‘if there is anything here that you don’t
understand, just print it to the screen. Back in our little virtual gardening
job, we could come to a new garden, run our program, shout our tasks to
the screen and it’s all done.’

‘I think I’m totally lost now,’ Jan concluded.
‘What I’m trying to say, I guess, is that we have ways of using language

to talk about language, right? It’s the same with meta-programming.
We’re using code to program code.’

Jan and I finished our conversation about language after a couple of
hours, both slightly exhausted. I’d failed to explain meta-programming
to him, but he’d succeeded in telling me about the social aspects of
language, especially the role of language ideologies in shaping society’s
political and economic underpinnings. In the days that followed I kept
thinking about this conversation, trying to match it up with other
chats I had about meta-programming. Chris Seaton, a brilliant Ruby
programmer, taught me many things. He told me that the most crucial
bits of Ruby’s ecosystem are based on meta-programming, things such as
Rails and RSpec.

‘Rails showed that meta-programming could scale and could work
well,’ Chris told me. ‘It showed what it could do in terms of power. And I
think it’s a big part of what makes developers happy to be working with
Ruby.’

I was already struggling to understand meta-programming, let
alone how it would connect to happiness. Chris went on to explain.

‘I think Ruby is low friction, low ceremony,’ he continued. ‘People
can come and start working with it, no problem. This works because
they don’t have to worry a lot about importing functions, and dealing
with different parts of the system, like “This is a run time thing, this
is a compile time thing”. So I think Ruby provides the illusion of
an integrated system through this meta-programming. This means
programmers don’t have to think too much about it; they can just go on
to be happy.’

	 ﻿ Meta-programming � 85

Notes

1	 Austin. How to Do Things With Words.
2	 Kroskrity. ‘Language ideologies’.
3	 Irvine and Gal. Signs of Difference.
4	 Silverstein. ‘Shifters, linguistic categories, and cultural description’.

	 ﻿ Happy programmers � 87

8
Happy programmers

There is a sentiment among programmers that coding should be fun. Or
that you should do it for fun, that it should be a hobby as well as a job.
This sentiment puts a bit of pressure on people whose job is to program
but who don’t necessarily program ‘for fun’ nor as a ‘hobby’. They do it,
it’s a job, pays the bills – but they might feel that unless you are tinkering
with unusual programming hacks, you are not a proper developer. On
the other hand, there is something about fun, weirdness and tinkering
that makes the relationship between humans and computers visible in
strange ways. Programmers often find happiness in things that serve
no immediate purpose; programs that make you stop and think about
how we relate to computers. A program that generates itself. Or one that
translates itself into other languages. A language that is unable to hold
any data for a long period of time, in which data decays every time you
run it. A program that makes PDFs speak. A language that is not based in
English and finds no way of working in the real world because software
infrastructure only speaks that language. Things that make you pause,
scratch your head and wonder. Random things.

Happiness is a big topic in the Ruby community. Matz often argues
that the language itself is ‘optimized for happiness’. Does that mean that
Ruby has incorporated strange features to allow for joy in programming?
Instead of immediately dismissing that pursuit of happiness as some
sort of Silicon Valley fad, my research led me seriously to explore what
Matz’s idea might mean. How could a programming language influence
happiness? It all began at Upstream, at a moment when things were not
‘happy’ at all.

‘Hey, have you finished writing that rake task yet or are you still
working on it?’ Charles asked me, waking me up from my daydreams.

88	 CODERSPEAK

‘Yes!’ I replied.
Charles smiled and went away. I’d beaten him in his own game of

always answering an either/or question with a yes. As for the task, I’d
been writing a script to update the values of all products and variants,
but this script would fail every time I tried running it. I was getting a
bit behind and Charles knew it. He didn’t usually put much pressure on
anyone to get things done by a certain date, but this was something that
Ivan, the big boss man, was pressuring him to do, so he was asking me to
get on with it. Fair enough, chain of command.

I wasn’t very happy to be writing this script. It was something that
could be done manually by people in the company’s product team. It
would probably take less time to do it manually in fact, considering I had
to write the code, test it, wait for the next deployment of the real app and
then run it there again. It would take at least three or four days for a task
that could be done manually in a few hours. A task that would probably
never be used again. I wasn’t happy about this at all. I could feel the code
dying, never to be used again, even as I wrote it.

‘Ivan, hi, sorry, hi,’ I approached him like an idiot.
‘Yes?’
‘You know this script you asked me to write, you know, for the

product team.’
‘Oh, yes, have you done it?’
‘Well, no, not yet. You do realise that this code would never be used

again and that I’m kinda of wasting my time. People at the product team
could just update these values themselves.’

‘Yes, I know. Can you just do it though?’
‘Really?’
‘Yes.’
I walked back to my desk, slowly, like a donkey refusing to go up

a hill. I sat down to write the task, but immediately got distracted. I was
writing a type of script that Rubyists call a ‘rake task’. It’s something that
you write to be used every now and again, something that changes or
does something to the data or the app. It’s not something that you want
inside your app as a normal function because you don’t want other parts
of the codebase using it. You want to keep it separate, often in a folder
called ‘tasks’. As I browsed that folder, looking for a sub-folder to place
my task in, I found a file called ‘unfuck.rake’.

The file had a series of smaller tasks, grouped together under the
heading ‘:unfuck’. The tasks had descriptions like ‘Get rid of the table in
the production database that shouldn’t be there’ or ‘Unfuck orders that
have the wrong adjustment amount’. Tasks usually show their status

	 ﻿ Happy programmers � 89

when you run them. They’ll tell you at what stage they are at and let you
know if things fail. If they do fail, they usually have no dangerous conse-
quences, which is why they are so useful. By reading the code, I could see
that some of them would tell you their current status by showing on your
screen things like

‘Unfucking the adjustments for #{adjustment.adjustable.number}’
and
‘Unfucking the totals for #{order.number}’.

What the fuck was this?
As I scrolled through the file, I realised that someone had already

been in the same head space that I was in now. Someone else had already
felt that they were writing stupid code and decided to have some fun while
they were at it. Why call a useless task a beautiful name? Why not call it by
its real, shitty name? The more I read the code, the more I was assured that
this programmer and I shared similar feelings of being stuck with a terrible
job to do. I came across a comment that would confirm my suspicions:

This is the same logic that is in
app/services/refunds/line_item_refund_creator.rb
but its not in a reusable state,
and I'm not refactoring the code
for the sake of this rake task.

The line ‘I’m not refactoring the code for the sake of this rake task’
says it all. The person writing this is pissed off with the state of things;
something has made them quite annoyed about having to write this
task. And what they are doing is not worth the extra work of ‘refactoring’
some other code. Who was it? I opened the codebase on Gitlab, where
the code was hosted, and searched through the history of changes in that
file. I was looking for the person who’d made the changes to that specific
portion of that file, the one that’d unfucked it all. What a surprise to find,
in the history left behind, Ivan’s name. Of course: he’d been here before.
It wasn’t just that he wanted me to do it, he wanted me to feel it, to learn
from it. I thought about our conversation.

‘Can you just do it though?’
Yes, Ivan, I sure can just write this rake task for you.

Jim Weirich created Rake in 2009 and it has since become one of the
staples of Ruby programming. It’s always there; you use it all the time.

90	 CODERSPEAK

I’d wager good money – I’ll eat my own hat, as my old boss used to say –
that ‘rake db:migrate’ is the most written set of characters in the history
of Ruby. Rake is part of every Ruby application’s ecosystem, it’s always
there. Boring, nothing new, furniture, part of the landscape. That's why
it’s special; rake is one of the things we take for granted.

Jim writes that he never intended to write the program in the first
place. He didn’t think it was particularly useful and probably wasn’t
going to be interesting to anyone. At the time, he was writing programs
that help you put together a software library. These programs are called
‘build tools’ because they contain the steps to build a large chunk of
software in a safe way. Why? To create software without having to resort
to human memory to remember which bits go first and which ones go
second. You can’t build a house roof first; you must lay the foundations.
Build tools contain the instructions that tell the computer what to do to
build a software library. Believe it or not, programs have loads of things
that they depend on and you must stack them together in a nice way.
To do that, Jim used what everyone was using at the time: Make. Make
was created at Bell Labs in 1970 and shipped during the first version of
UNIX.1 It uses Makefiles to describe how each part of a program should
be compiled and in what order. When you run Make, it follows those
instructions and packages your software.

Jim created Rake in 2009, just five years before he died.2 With
more than 500 million downloads, Rake is the 10th most downloaded
Ruby gem. Rails is number 40.3 The problem with Make and other build
tools is that their uniqueness is so unique they don’t know how to talk
to any other programming language. Jim had the idea of creating Rake
because he kept running into the same problems with Make. He had to
use a Ruby script to work around that, then thought it would be nice to
be able just to use Ruby inside a Makefile. He gave it a go. ‘I showed the
code to my co-worker, and we had a good laugh,’ Jim wrote. ‘It was just
about a page worth of code that reproduced an amazing amount of the
functionality of Make. We were both truly stunned with the power of
Ruby.’4 Rake is also tailored to a specific problem, but it is cosmopolitan
and well-travelled. Rake has been to Japan and it now speaks Ruby.
Rake is made of Ruby: it’s like a little dialect of Ruby, a dialect that you
mumble as you write the code that will execute the useless task that Ivan
asked you to do.

If Rake is basically just Ruby, what makes it so special?
It is a well-established tradition in the Ruby community that

whenever you are about to start writing a rake program you must clap
three times and mumble to yourself the word ‘task’. A task is ‘the basic

	 ﻿ Happy programmers � 91

unit of work in a Rakefile. A task has a name, a set of prerequisites and
a list of actions to be performed’.5 Every time a task is ‘invoked’ – the
term used by many programmers to give their actions a hint of magic – it
checks which other tasks it depends on. A typical Rakefile will have tasks
that depend on one or more dependencies. ‘Task’ means nothing in Ruby.
It won’t do anything – not even if you clap profusely and shout ‘task, task
task!!!’ But move into a Rakefile – anything that ends with .rake – and
you’re golden. Task will do anything you want; it will unfuck all your
problems.

Many months after I’d finish writing the task that Ivan wanted me to
write, I was looking through the actual code that Jim wrote for Rake. I
was prompted to do this by a comment made by one of the first Ruby
programmers that I reached out to outside of Upstream. I came upon
a list of projects on machine learning written in Ruby,6 and found his
project Rley.7 As it sometimes happens with publicly available source
code, the owner of the project didn’t reveal who they were; they simply
went by the name of ‘FamishedTiger’.

I eventually managed to contact the secretive tiger. What followed
was a long exchange of emails and interviews about natural language
processing, and machine learning, but also about Ruby and what it
means to create beautiful ruby code. We exchanged long emails about
the history of programming languages; I even sent him a draft of one of
my academic papers on the anthropology of programming.8 He didn’t
like my paper particularly, but our conversation went on. One day
he wrote about which Ruby programs or libraries he found the most
beautiful.

‘I was always seduced by gems / libraries that provided a DSL
(Domain-Specific Language) that helped programmers to express
their intents in Ruby in a fluent way.’

He pointed out the simplicity of something like Sinatra (which we saw in
Chapter 1), which he admired – but what he really loved was Rake.

I cannot but consider it as a masterpiece. The much regretted
Jim Weirich created a tool that surpassed the original C Make
by making rakefiles just Ruby files. As with C (or C++) we can
express dependencies in our projects and still use the full power of
the Ruby language. He could achieve this, thanks to the malleable
Ruby syntax.

92	 CODERSPEAK

I understood what he was saying, but I couldn’t feel it. I couldn’t really
explain why Rubyists loved it so much. Ruby allows you to create your
own dialects within the language: like Jan and I did while using ‘method
missing’. It wasn’t just because it was useful, I thought; there had to be
something else. What makes Rubyists so happy about this? It must be
something in this idea of the ‘task’, I thought. ‘Task’ looks like a lot of
other things in Ruby: something important that opens a block. A keyword
that unlocks (unfucks?) the door to another dimension. We could, for
instance, insert our code block to sort a card_deck into a Rake task.

task sort_cards: do
  card_deck.each do |card|
    hearts.push(card) if card.suit == "Hearts"
    clubs.push(card) if card.suit == "Clubs"
  end
end

Does that make us happier?
I rummaged through Rake’s code and found a file with something

called ‘Rake::DSL’. If I am to feel what Rake is all about, I thought, I might
find it here.9 The file describes what Rake is, what its main components are,
how to write a Rakefile and how to run them. The file is long, with loads of
comments, but the key is right at the end, at the very end of the file. There
Jim wrote a few comments, explaining how part of the code would ‘Extend
the main object with the DSL commands’ and allow ‘top-level calls’ to task.

This is the code:

 self.extend Rake::DSL

A simple and concise line. It literally says please extend (your)self with
the language of Rake. I repeat: self.extend Rake::DSL. It takes Ruby by
the hand and asks, ‘could you please add my dialect to your programs?
Would you allow us to say “task” every now and then?’ The expression
‘self.extend Rake::DSL’ cements Jim’s cleverness. More than cleverness,
perhaps. This is the type of thing that makes Ruby code look so powerful;
most of all, this is the kind of thing that makes Ruby programmers happy.
It allowed Jim to add his seasoning to Ruby – something that very few
programming languages allow you to do. Language designers often
think this is a bad idea: it gives programmers too much freedom. Matz
disagreed: he felt that you could go and make Ruby your own. Add your
quirks to it, no problem, whatever makes you happy.

	 ﻿ Happy programmers � 93

The beginning of Jim Weirich’s announcement of Rake got stuck in
my head for a while:

OK, let me state from the beginning that I never intended to write
this code. I’m not convinced it is useful and I’m not convinced
anyone would even be interested in it. All I can say is that why’s
onion truck must by (sic) been passing through the Ohio valley.

What was he on about? What does a truck full of onions belonging to
someone named ‘why’ have anything to do with him writing software?
To find some answers I did what I never do, which is to go to Twitter.

‘Would any Rubyists know what “why’s onion truck” was about?’
I tagged a few people and Brittany quickly replied, saying that Nick
Schwareder would be the person to ask. He came back quite quickly, in a
short burst of tweets.

ooh now this is an interesting curiosity
why’s famous ruby guide included an onion. the idea was that the
poignant ruby should make you weep, if not the onion would help.
[…]
my gut says that it is in line with some whimsical phrasing of the
time, and why was very active on ruby talk and message boards,
and maybe he got swept up in the excitement, and this is how he
phrased it
(also Jim lived in the Ohio valley I believe)10

I have a very hard time using social media, the anxiety of it all, but this
time it worked. Jim lived in the Ohio valley, and maybe why had been
messaging on RubyTalk about trucks and onions. Nick put it all together:
why’s truck drove through the Ohio valley, the onions made Jim cry,
tears fell on his keyboard and Rake was written.

Onion tears, coding tears, tears of joy.
I guess that is what we do when we are happy: we write a beautifully

concise program such as Rake.

When Charles and I talked about his story as a developer, he told me I
should speak to someone called Chris. They’d gone to university together
and Chris was quite involved in the Ruby community – he was writing
a compiler for it. I hesitated to contact Chris straight away because I
wanted to build my connections in the community one-by-one. Charles
didn’t have Chris’s contact, they hadn’t kept in touch, so I would need to

94	 CODERSPEAK

send him a cold call/email. I hate sending cold emails even more than I
hate receiving them. This time I did it, however, and Chris’s reply was
hilarious.

‘Developers get tons of these survey invites,’ he wrote. ‘I’ll say yes
since you look like a legitimate researcher and I’m very interested in
human aspects of Ruby, but if you’re wondering why you get low uptake
it’s because we get spammed with these things all the time.’ I replied
saying that it wasn’t a survey at all; I wanted to have a chat about his life
as a Ruby dev. That didn’t help much and I considered giving up. I’m so
glad that I didn’t. Not only did Chris and I have a great chat, but he ended
up becoming a great supporter of my research, encouraging me every
step of the way. But that was later – the beginning of our first chat was
tough. I introduced myself, explained the research, as I always do, and
tried to break the ice by referring to Charles and mentioning that they
both had gone to university together.

‘I don’t remember him,’ Chris said, his face staring at me through
our Zoom call. I asked something else and again, quick reply, face stare.
Oh boy, this would be a hard interview. Chris and I talked about many
things, including his trajectory as a developer and in the army, and how
he was pulled back from his career in the armed forces because his work
on compilers got some attention. He decided to focus on programming
languages that, for various reasons, were harder to optimise, to make
them work more efficiently. This was one of many conversations with
him, this Ruby legend. One of them was about meta-programming, as I
described in the previous chapter, but this one is from the first time we
ever met.

‘The problem with Ruby,’ Chris said. ‘is that it has a lot of “what ifs”.
What if a function hasn’t been used yet during this run time? What if it
has, but some other method has changed its meaning since the program
started?’

‘And those “what ifs” are costly?’ I asked.
‘In terms of performance, they are. They take a while, and these

performance penalties come directly from Ruby's idea of “optimizing for
happiness”.’

In 2008, a year before the release of Rake, David Flanagan and
Matz published The Ruby Programming Language. It came at a particu-
larly crucial point in the development of Ruby, the troublesome crossing
from version 1.8 to version 1.9. To this day, some 15 years later, Matz still
refers to this epoch as the moment he was most afraid that the community
would break into two: the ones using the 1.8 version and the ones using

	 ﻿ Happy programmers � 95

the 1.9 one. In their book Flanagan and Matz describe how domain-
specific-languages (DSLs) work in Ruby. It reads like a description of
what Rake would be when it was released a year later. DSLs use blocks ‘as
if they were keywords’11 – they have first-grade properties – to extend the
Ruby syntax ‘in ways that make programming easier,’ they write. This is
what Rake does: it turns a ‘task’ into something you can use anywhere. By
extending the main object of a program to include the methods defined
in it, Rake makes it easier for programmers to write tasks. Rake and other
DSLs makes the lives of programmers easier. They make programmers
happy. They don’t necessarily chuckle or sing when they use Rake, but I’d
like to think that most Rubyists at least smile when they read Rake’s code
for the first time.

However, if reflection and meta-programming are tools to make
programmers happy, they don’t make the computer happy at all. As Matz
often says, optimising for happiness is opposed to optimising for the
compiler. He means that the more DSL-like techniques you inject into
your programs, the more things need to be checked when your program
is running. The more you create special syntax such as Rake’s ‘task’, the
less efficient your computational process will be. And compilers hate
that. Compilers want to be as efficient as is machinically possible. Well …
maybe not the compilers themselves, but certainly the people who design
compilers and work to make Ruby as efficient as it can possibly be.

It seemed that the fact that things are malleable in Ruby, that each
Rubyist does things a little bit differently, that there are a lot of domain-
specific-language and loads of meta-programming – all of these things
had a real impact on the speed of Ruby.

‘Does that bother you, Chris, as someone trying to optimse things?’
‘What?’
‘That the Ruby community likes those things that make the life of a

compiler harder?’
‘Not at all. That’s just idiomatic Ruby, it’s the way people write it. I

don’t feel the community should change its ways. It all springs from the
fact that Ruby embraces the chaos.’

Ruby embraces the chaos. I don’t think I could find a better
description of this community. A community in which (almost)
everything goes in terms of programming. Things that make up the chaos
and complexity of Ruby. For a programmer writing compilers, like Chris,
instead of telling the community how they should write code to make it
easier to optimise it, ‘we said we would optimise Ruby as humans use it,
as humans understand the Ruby language’. If people want cake, let them
eat it. We’ll deal with the crumbs at compiler level.

96	 CODERSPEAK

The useless task that Ivan asked me to do led me to understand
the diversity of the Ruby language. It had a technical side to it, this idea
of meta-programming, which is one of the ways in which Ruby allows
programmers to turn their flavours of the language, their ‘dialects’, into
real working code. In a way, Ruby is designed to accommodate these very
human tendencies: to explore, to diversify, to make something our own.
To rake it in. A human trait that is more than an individual desire because
it only makes sense socially, operating within a community. That is how
people create and shape meaning in social life.

Notes

  1	 Kernighan. UNIX, 90.
  2	 Rubygems. ‘Rake-versions’.?
  3	 Rubygems. ‘Stats’.
  4	 Weirich. ‘Rational’.
  5	 Weirich. ‘Glossary’.
  6	 Arbox. ‘NLP-with-Ruby.’
  7	 Famished-tiger. ‘Rley.’
  8	 Heurich. ‘Language Automata.’
  9	 Weirich. ‘DSL Definition.’
10	 Schwaderer. Tweet.
11	 Flanagan and Yukihiro Matsumoto. The Ruby Programming Language.

	 ﻿ Chunky bacon � 97

9
Chunky bacon

In January 2020 I attended the monthly meeting of the London Ruby
User Group (LRUG). Murray Steel, LRUG’s organiser, would be one of
the speakers there, giving a talk that had this curious description:

Some time ago I stumbled across the header description for
WAV files and wondered, what if I took a file and calculated the
appropriate WAV file header for it, could I hear my data? Yes, you
can. You probably don’t want to, but you can.1

When I read the description of Murray’s talk and the idea of trying to
transform text files into ‘music’ (WAV files), it immediately pulled me in.
It was my first encounter with another side of computer programmers;
one in which logic and rationality are not the primary aim. There was
something very interesting in that project. This was its jokey aspect, but
it was more than that. It was something else. It was the fact that it didn’t
sound particularly useful. A project that turns a PDF into a file you can
listen to? Listen to a PDF?

Computing is often framed as either a rational and mathematical
pursuit or a purely capitalistic endeavour. However, this was something
different. It was not only humorous but also useless, devoid of any
commercial or scientific value. In his presentation Murray took the whole
of Ruby’s source code and successively transformed its files into sounds
and images. Did anyone learn anything about Ruby by ‘listening’ or
‘seeing’ it? Probably not, but it was still amazing to watch.

‘How did you come up with that, Murray?’ I asked him almost a
year after the talk. We were chatting about his life as a developer, his
role in LRUG, the generational changes in the Ruby community and,

98	 CODERSPEAK

of course, about the most whimsical character in the community: _why
the lucky stiff. Murray told me the project was a few years old and had
been inspired by people who were trying to visualise Microsoft Word’s
executable file.2 At first, he said, he played around with turning any file
into a WAV file by changing the file header. Next he explored changing
files into images (bitmaps), which required changes in the header and
data manipulation as well. Finally he ventured into MIDI, for which both
data and headers had to be messed with quite a lot.

‘There’s something about being able to ask a computer to do
something that’s sort of pointless but is fun; there’s like a playfulness.’
Murray explained. ‘And historically, I don’t know if it’s necessarily true
any more, the Ruby community cared about that kind of thing, and
characters like why embraced that.’

‘Do you think it’s changed more recently?’
‘It was definitely something that Ruby kind of cared about … It is a

bit more pragmatic these days as a community, I think. But that [i.e., the
fun] was what drew me, I think, to Ruby in the first place. And there’s no
one creating this stuff that why used to create, and I think that’s a real
shame.’

Understanding the cultural aspects of a community of programmers
requires many things. You need to grasp the technical nuances. You need
to work as part of a team, building software. You need to hear their stories.
You need to investigate the history of the community and understand the
characters that shaped it. When I found out about why, it made sense
to look into him. He showed me a fun and quirky side to programming
that rarely extends beyond programming communities. This playful
and humorous side to coding communities has been written about,3
but is not, somehow, the image that most people have of programmers.
In my case, I wanted to see how these ingenious and devious ways of
programming were reflected in the Ruby community. What’s more, I
wanted to see how they become technical pieces embedded in code. In
other words, how does quirkiness become a concrete part of software?

Why is a mythical character in the Ruby community. A token of a previous
era, when everything in the Ruby world was a bit less corporate, when
performance and speed were not so much on the horizon. A time when
playing around with code was important; when libraries had names like
‘bloobsaphone’. Back then, of course, Ruby was already paying the bills
of a lot of people. You made a living writing Ruby, but you also had a
laugh with it.

	 ﻿ Chunky bacon � 99

Why wrote many things. He wrote Ruby code; he also wrote C code.
He devised, experimented and tinkered with code. He tried to keep his
personal identity as secret as possible. He never revealed his name – at
least not in any public forums. why gave talks in conferences, sometimes
alongside his band, combining music and live coding with a technical
presentation on the internal logic of Ruby. He wrote posts and articles,
interacting with people on the mailing list. In his introductory book to
Ruby, why created a guide to the language that was simultaneously
technical and artistic. Throughout the book, he uses cartoons to create a
parallel narrative in which foxes and other characters develop a relation-
ship with the book’s author – himself, presumably. It’s all very meta. At
one point the foxes need to get his attention, and they think that shouting
‘chunky bacon’ at him might help.

The book has a long section in which a rabbit battles an assortment
of creatures. It is structured as a role-playing game, in which monsters are
generated through meta-programming. Despite being built on a fantasy
of sorts, it is the clearest chapter of his guide: very focused on delivering
a message, on teaching something. It’s less ‘fever dreamy’ than the rest of
the book, where many characters and cartoons come together in strange
ways. Oddly, it’s the only chapter in which why quotes academics – like
Terry Eagleton, a famous literary scholar. This is quite strange for him,

Figure 9.1  why’s famous cartoon foxes. _why. ‘why’s (poignant) guide to Ruby’.
CC BY-SA 2.5.

100	 CODERSPEAK

and why knows it. He feels obliged to downplay the seriousness of what
he writes. He was getting too high-brow and needed consciously to dumb
it down a bit.

You could say that programming itself is meta-language. All code
speaks the language of action, of a plan which hasn’t been played
yet, but shortly will. Stage directions for the players inside your
machine. I’ve waxed sentimental on this before.

When why’s guide first came out – as a website, not a book – people used
the Ruby mailing list to give him feedback. why was very polite and replied
to most of it. He agreed with some of the criticism, but he also defended
the chapter with the rabbit warrior RPG. ‘The code is simple, useful,
practical (a usable RPG game is hardly contrived) and fully explained,’
he replied. The topic – meta-programming – was not an easy one, but he
thought he managed to write something ‘more revealing than anything
else […] around’.4 Let’s see. After describing meta-programming as
‘writing code that writes code’, a common definition, why comes up with
his own, alternative ‘definition’:

Let’s say [meta-programming] is more like a little orange pill you
won at the circus. When you suck on it, the coating wears away and
behind your teeth hatches a massive, floppy sponge brontosaurus.
He slides down your tongue and leaps free, frolicking over the
pastures, yelping, ‘Papa!’ And from then on, whenever he freaks
out and attacks a van, well, that van is sparkling clean afterwards.

How does a van-licking-coated-brontosaurus reveal what meta-
programming is? Because, he continues, ‘meta-programming is packing
code into pill-form, such that a slender drop of water could trigger it to
expand’. A tiny sliver of code that, when faced with the right conditions,
blooms into the beast it was always meant to be. The code was always
destined to become a van-licking-brontosaurus, you see: it was just
waiting for the right amount of saliva to expand into its true form:
[self.extend Van::Licking::Bronto]. Is that clear yet? Do we need some
cartoon foxes?

In a 2006 short video-collage titled ‘Time.now.is_a? MagicTime’,
why ironically describes the future of Ruby.5 The video shows a guy with
a microphone asking several people to imagine what Ruby will be like
3 years from now. Unsatisfied with their unimaginative replies, the guy
with the microphone urges them to go further:

	 ﻿ Chunky bacon � 101

What if we had a chewing gum that had a virtual machine inside it,
and while you’re chewing, it’s using the kinetic energy from your
colliding jaws to compile a cure for rabies?

How did such nonsensical humour become so influential in a
community of computer programmers? Aren’t they supposed to be
engineers?

why wrote ‘serious’ code too. Among many other things, he wrote
a famous HTML parser that allowed you to slurp a whole webpage
without having to visit it, extract the relevant HTML pieces and play
around with the content. You can grab all the content of a website,
search through the resulting document, find all links and display them
all. Or you can just store it somewhere. It also fixed bad HTML. And
bad HTML was everywhere, especially during the age of web 1.0,
when a lot of pages were created in simple text files on editors with
no plug-ins to check your code. A lot of that code is probably still out
there.

There is nothing exactly funny about Hpricot – why’s HTML
parser – or its code. If anything the code is a bit weird, with a funny
constant called Hpricot that does all the work, a mysterious syntax that
was easy to read but unexpected. It’s not exactly great code, but it is the
link between why’s comedy code and his more serious code. Hpricot was,
back then, the resistance. Resistance to Ruby becoming more corporate,
centred on speed and efficiency. Whimsical resistance.

When Hpricot got a lot of attention in the community, people
started building similar things and claiming they had made their own
parsers faster than his. ‘You’re missing the point!’ why would shout.
Hpricot was about a quirky and dirty way of gobbling down a webpage’s
content. It didn’t have to be insanely fast: that was not the aim. It seemed
that, over the years, the Ruby community had changed a bit. While
looking at why’s writings, there had been a clear shift, as Murray told me.
A shift towards productive and efficient code. This hadn’t happened just
in the Ruby community, though. If the early 2000s saw the emergence
of free software and a politics of community building, the 2010s saw the
dominance of big tech in every aspect of society. Code was still play, but
it had become money too.

It must have been a shock to most people in the community when why
started deleting all his public code, shutting down his website, and
then totally disappearing in August 2009. ‘The popular Ruby message
boards, listservs and blogs descended into a state of panic. Had he been

102	 CODERSPEAK

hacked? Who had heard from him? Was he in physical danger?’ wrote a
journalist, vividly recalling the concern about why’s disappearing act.6
Many people questioned and wondered. Some even tried to find out
what had happened to him; others feared him dead. A few years later he
came back and resurfaced with a closing piece, only to disappear once
more.

John Weald joined the community after why disappeared, but
before he performed his final act. I’d found John’s name in one of
the IRC chat logs that ensued why’s comeback. After quite a bit of
internet archaeology, I managed to contact him for a conversation
about Ruby, programming and why’s brief resurgence. I asked John
how he felt about it at the time. why was already a Ruby legend by
that point, and his self-announced return put everyone on their toes.
People flocked to IRC to wait for whatever the hell why was going to
do. Suddenly a link to a printer interface appeared in one of the web
domains that he owned. Like a ghost in a machine, why was sending
messages. There another link would download and print pages of a
book. People printed them out, and waited – waited for the next link
to come along.

‘It happened over the course of a couple of days,’ John told me in a
Zoom chat. ‘The whole thing feels like a fever dream. I read over a good
chunk of it when you contacted me, and some of it I do remember, but
it’s all quite hazy.’

‘Do you remember the files he was sending?’
‘People would print out the pages and put them together. I think

that, in the end, someone combined everything and gave it a name. I
don’t think why named the book, or whatever it was he was sending us,
himself.’

‘It’s currently on Github with the name Closure,’ I told him. ‘Steve
Klabnik holds the repo, I think.’

‘That makes sense. He was definitely involved in it. And the name
fits as well.’

‘But how did it make you feel?’
‘As if I was part of something. A chance to be closer to someone that

the community looked up to. An era that I wished I’d been a part of,’ John
told me.

‘Maybe a glimpse of what it might have felt like to email why, to
interact with him, see his talks live?’ I suggested.

‘I definitely remember spending some time with his writing,
CLOSURE, and trying to make sense of it, and sort of getting the gist of
what he was saying,’ John said.

	 ﻿ Chunky bacon � 103

And then it was finished, gone, closed. why stopped sending his
stuff, he found closure, and left everyone to put the pieces together.
People tried to the make sense of it, but they failed. It wasn’t clear, at that
point, that this was in fact his final act. Tired, and exhausted of trying to
figure it out, someone leaves what was to be the last message in the IRC
logs. ‘Maybe he just wants us all to go insane.’7 ‘Because when you read
something he wrote,’ John continued, ‘you can’t take it literally. You know
there is a lot of hidden meaning, and a lot of it is just a stream of conscious-
ness. He is just connecting his brain to whatever medium is there.’

‘You can never fully comprehend what’s there.’
‘Yeah, exactly. It doesn’t make sense outside of his thought

processes, although there is a lot of coherent stuff there. And, you know,
the little anecdotes, the fantastical elements.’

In the document that he left behind, why gave some hints as to
why he decided to withdraw from the community and the programming
world. ‘It is strange – I felt a great relief in those days, to no longer
be programming,’ he wrote. One may wonder if that was an indirect
comment to all the people trying to compete with his HTML parser – to
make it faster and more efficient just for the sake of it. why noted that he
was ‘totally disillusioned’, feeling ‘betrayed by computers’ and ‘glad not
to be fighting NULL’. NULL, the ultimate enemy, the result that you don’t
want, the value that will make your program break.8 Yet perhaps why
was also annoyed by the people who were trying to out him, to discover
his real name and force him to come out of internet anonymity. In
CLOSURE, the name given to his final document, his own name – why –
features as the topic of an imaginary dialogue between him and someone
else, written in third person.

‘Danny Douglas,’ he said, holding his hand out. ‘What's yours?’
We shook. ‘why the lucky stiff.’
‘Eh?’ he said, turning his head, but keeping his eyes on me.
‘why the lucky stiff,’ I said.
‘You gotta be who you are, mate. Now what’s your name? Go on,
just say it.’
‘Nah,’ I said. ‘You don’t need it.’
Danny insists, grabs him, yells at him to tell his name. why runs off
into a forest. There tired, exhausted by all the madness of Danny’s
bullying, he sits and thinks about his name.
Well, I knew there were reasons I liked ‘why the lucky stiff’,
but I couldn’t think of what they were. […] The name ‘why’ is
introspective. It lends itself to profundity.

104	 CODERSPEAK

As if revealing the nature of contemporary capitalism, Danny Douglas
says to why: ‘You gotta be who you are, mate.’ You can’t hide any more,
not in the world of constant surveillance. There is no room for privacy
and hidden identities any more. Platforms need to know who you are,
what you’re doing, monitor your heartbeat the entire time. Have you
done your steps today, mate?

In 2020 why’s ‘poignant guide to Ruby’ was published as a printed
book for the first time since its creation, more than 15 years earlier.
The limited edition was given as a token of gratitude to everyone who
purchased a ticket for that year’s Brighton Ruby conference, which had
to be cancelled due to the Covid-19 pandemic. A couple of years later,
before I travelled to Japan for the first time to interview Ruby developers,
I managed to secure 10 copies of the printed book thanks to Andy – the
Brighton Ruby organiser – and Emma – who organised the printing. I
took 10 copies of why’s guide with me and gave them as gifts to a few
developers I met in Japan. They had heard of why, of course, and fondly
remembered his interventions on the mailing list and his projects. To one
of them, it didn’t remind her of a forgotten era of the community, but of
a more continuous feeling.

‘It’s about the meaning of programming, isn’t it?’ she told me
when we met. I had run into her at a local Ruby meet-up and we went
out for a coffee in a small shop in Kyoto. She is Taiwanese and has
been in Japan for quite a few years. ‘He made me think about code and
about myself in a weird way,’ she continued. why does indeed make us
think about code in strange ways. Not only does he write about meta-
programming, he is himself a meta-programmer: he is the random
programmer generator.

‘His meta-programming stuff, is just wild, but some of it is lost these
days. There is too much burnout. Most programmers just want to
quit and open a coffee shop in the countryside. They are sick of it,
a bit like why was.’

And that may be why left to open a coffee shop somewhere. In it,
cartoon foxes serve large slices of chunky bacon, sugar-coated pills
who turn into van-licking brontosauruses and chewing virtual machine
gum. The shop is probably called cafe-meta and the coffee doesn’t come
in a cup. It comes as a short snippet of code, engraved on a clay tablet,
that expands into a Mount Fuji-sized frapuccino when you drop a
single drop of water on a footprint left by the only penguin to have ever
written a compiler.

	 ﻿ Chunky bacon � 105

Notes

1	 LRUG. ‘January 2020 meeting’ announcement.
2	 Steele. ‘Stegosaurus’.
3	 See Levy, Hackers; Torvalds, Just For Fun; Coleman, Coding Freedom; Himanen, Hacker Ethic;

Graham, Hackers & Painters.
4	 _why. ‘why’s (poignant) guide to Ruby’, Chapter six: Downtown.
5	 _why. ‘Time.now.is_a? MagicTime’.
6	 Lowrey. ‘What happened when one of the world’s most unusual …’.
7	 IRC. ‘14 May 2013 logs’.
8	 steveklabnik. ‘CLOSURE’.

Part III
Beyond binaries

	 ﻿ Learning to see � 109

10
Learning to see

‘We’ve got a lot of things planned for the next few months,’ Ivan said at
the beginning of our weekly Friday meeting. This was called ‘Retro’ –
short for retrospective – and it was the place to discuss what had
happened during the week.

‘One of them is the new sign-in with Apple feature, which Gui will
be responsible for.’

Oh boy, here we go, first project on my own.
‘What’s that?’ Akira asked.
‘It’s something that Apple requires now, that you need to give

the user the possibility of logging in with their own Apple id if they
want to.’

After the meeting Ivan stopped by my desk.
‘About the Apple stuff. Have you decided if you want to go with a

ready-made platform or if you want to build our own?’
‘I think we should build our own,’ I said, trying to sound as

confident as possible. I had done some research on the possibilities, and
building our own sounded as if I would learn far more from this project
than just using some off-the-shelf solution. I didn’t know if I could do it,
I’d only been a developer for six months, but I went for it anyway.

I swivelled over to Charles’s desk after Ivan had gone.
‘Charles, sorry, got a minute?’
‘Sure.’
‘Apple Sign-In. What’s the best way of implementing it, do you

think?’
‘You could use a Rails engine. The code that handles Facebook

log-ins is already there. You should build handlers for each, and an
adapter on top of that. Just use the adapter pattern.’

110	 CODERSPEAK

‘Brilliant, thanks.’
I had no idea what any of that was.

Programmers love books about patterns. Design patterns, they call them.
Like other programming books, they have a particular style. They have
an air of authority, they tell you how things should be done, they explain
how these should work. It is a style that intersperses bits of code with
some sort of lesson, chunks of programs that give you some take-away
learning. If you look at programming shelves in bookshops, you’ll find
titles like How to Implement Design Patterns or Ruby Cookbook – filled with
recipes on how to write code properly. I often wonder if these books are
written in this style because programmers are trying to shape the (messy)
reality of software development into something neat. Programming
books are always trying to organise the world, to transform it into a
patterned reality.

I struggled a bit to understand what Charles was talking about
when he mentioned Rails engines and the adapter pattern. Eventually,
I came to see the code we wrote for the Apple Sign-In as quite beautiful.
Charles would probably chuckle at that idea – a simple engine,
beautiful? – but aesthetics is a tricky thing. What is or isn’t beautiful lies
somewhere between our own taste and what we’ve been taught to like
by our community. The desire to apply cultural patterns to the world
is something that programmers share with every other social group on
the planet. The reality around each group might be different – from a
rainforest to a London office building – but the technique is similar. It’s a
way of imposing a way of being, of creating a different world, one shaped
by the way we would like to see it. I look back at some of the code that we
wrote and I like it, but why? Because I learned how to see it.

I met Akira when he came back to Upstream’s tech team after a period of
leave. He took the empty desk space between Charles and me, making
my swivelling for help towards Charles’s desk a bit more difficult. Over
the next year of working together, I would resort to Akira instead of
Charles for help with some of my doubts. I asked about the adapter
pattern and Akira sent me some articles about it. He showed me how to
make the code work.

‘Basically it’s like a selector,’ he told me. ‘The handler will decide
which route the code should take. Is the user trying to log in with
Facebook? Then go that way and run this bit of code. Is the user trying
to login in with Apple? Left door on the right. Google? Not yet …’ Akira
was hilarious.

	 ﻿ Learning to see � 111

‘I get that, but why is it called the adapter pattern?’
‘No idea.’
Akira would often reminisce about the time that he joined the

company. He called it the ‘golden age of the tech team’. It was 2017, a
time when lots of people were being hired, which is always happier than
the lukewarm hiring or even the waves of redundancies that we faced
together. But it was also a good time for him, as his confidence was at its
lowest when he joined. He thought he was a terrible developer because
he couldn’t really work or communicate with anyone. He had felt
distraught when leaving his last place – ‘I couldn’t write code, nothing’ –
but the team at Upstream turned it around for him.

Akira had joined the team dealing with customers and started
working on ‘the API’. It was difficult to get his head around a massive
codebase with many applications, but everyone had been helpful.
‘Although I was very scared to ask for help because of my previous
experience,’ he told me over Zoom when we chatted about his career
trajectory, ‘they were there for me and helping me, and gave me time to
start doing things, and it was good. It was a lovely thing.’

‘Was Charles there when you joined?’
‘Yep.’
‘Was he your manager?’
‘Not at first. It was funny. Although you were kind of scared to go

ask him for help, even if you even mention something, he would give it
to you. He would come to your computer to help you – because you can’t
really work on his computer and see what he’s doing.’

‘I know, it’s bizarre. All those opened files, the tiny code,’ I agreed.
How had Charles ever taught us how to see?

‘You know … you know him, you haven’t heard him speaking above
70 decibels ever in your life. I don’t know if it’s 70, but you know what
I mean. Very calm. I really wonder if he has ever raised his voice for
something. Most senior developers, I guess, they hate working with less
experienced developers … And maybe he felt the same, but you would
never know.’

A lot of tech companies have book clubs and Upstream was no
exception. A few months after Akira joined, we started a book club.
Everyone in the company was invited. Well … everyone from the tech
team. Well … everyone from the tech team who didn’t work remotely.
This was pre-pandemic times, so the sessions were all face to face.
After everyone shifted to remote, there were some attempts to include
some of the people working from the Ukraine, but none of them ever
came. This ended up being important to how the book club evolved,

112	 CODERSPEAK

the absence of outsourced developers creating a bond between the
UK-based developers. This in turn transformed the book club’s purpose –
something that happened slowly over two years. From being only about
reading books, it became a space and a moment in which we could share
news, tips, comments and personal anxieties. It was crucial to sustain
some sort of camaraderie when Covid-19 made us work from home and
prevented us from seeing each other on a regular basis. It also became a
source of solidarity in troubling times, when a few members were made
redundant. The club provided us with a safe space to share our worries
about future redundancies and to try to help, as much as we could,
those who had been made to leave or were anxious that they would
soon have to.

The way in which the book club changed to what it eventually
became happened in winding ways – not perhaps how a book club should
be. Maybe at the beginning there was an intent to make us all better
programmers by reading books – but that got lost along the way. Instead,
the club opened spaces for us to discuss personal grievances, job prospects,
company culture and, of course, different styles of programming, philos-
ophies behind software engineering practices, programming languages
and operating systems. It was also a place where we learned to see code
together.

Some of us in the book club were not very experienced. A couple of
us had changed careers, for example Lindsay, who used to be a teacher.
Disappointed by the state of primary school education, she decided to
follow in her partner’s footsteps. She heard of a coding boot camp in
London and enlisted there. Lindsay didn’t find learning to code very
easy. It was an experience that filled her with anxiety, not only because
of how hard it was but also because it was a massive change. It meant
abandoning her career, giving up what she knew. It meant she had to
learn as much as she could fast to make sure that she would be able to
find a job and be OK. She did find a job quite quickly after finishing the
course, and then felt a bit guilty because a lot of people in her boot camp’s
cohort were having trouble finding a job. ‘It was like I cheated,’ she told
me, ‘because I only applied for two jobs and got one, while other people
were applying everywhere and not getting a job.’

Starting a new career in tech often comes as a packaged deal: we’ll
give you a new set of skills, but also a tiny bit of impostor syndrome. Sure,
everyone has a bit of impostor syndrome from this age of generalised
anxiety in which we live, but learning to code takes that to a whole new
level – or so it feels. All of a sudden, after a few months of learning,
you end up in a well-paid job in which you are asked to do things

	 ﻿ Learning to see � 113

that you probably haven’t encountered before. You run into problems
that you didn’t experience in your coding course, and have to solve them
with tools that six months ago you didn’t know existed. A lot of people
pretend to know what they are supposed to do – and then google the hell
out of that problem to try and solve it.

But not Lindsay.
She realised quite soon that she needed to rely on more experienced

programmers in order to find her path. She refused to pretend she knew
things and instead asked for help, trying to do more and more ‘pairing’.
Pair programming – also known as ‘pairing’ – is one of those buzzwords
in the programming world. It is a technique in which two programmers
work together on the same bit of code. Ideally, one should be coding
while the other observes; every now and then they should change
positions. Coding with someone else can be one of the most rewarding
things you can do as a programmer. You can learn so much from a single
thing that another programmer does, something that would probably
take you a lot longer to figure out by yourself.

Even though boot camps focus on pair programming quite a lot,
however, whether it actually happens at workplaces really depends on
individual company culture. When Lindsay realised that pairing was a bit
scarce in Upstream’s culture, she knew that she would have to convince
people to do it. ‘The reality is that I still have a lot to learn,’ she told me.
‘And that for me has been the best way to learn: by pairing and watching
them code.’

I often wondered why pairing wasn’t more of a thing at Upstream.
One senior developer explained it was a question of size. ‘Our company
is just not big enough … we can’t waste resources by having two
people work together on the same problem.’ A lot of developers seem
to share that view: working with someone else on a task will halve the
productivity of a team. Sounds unlikely though, given that two people
can probably accomplish tasks faster by working together rather than
separately.

Despite this local anti-pairing culture, and despite a lot of anxiety,
Lindsay didn’t seem to care. Quite philosophically, she told me

‘Life is a stream that’s constantly carrying you through different
places and you gotta know that we’re not going to see a lot of these
people like ten or fifteen years down the road.’

She pointed out that we probably wouldn’t even talk to any of these
senior devs in the future, so we might as well just take advantage of what

114	 CODERSPEAK

they can offer, find something that we can take from their experience.
Realising that she sounded quite wise, Lindsay laughed. ‘But I always
forget that too,’ she added. ‘I just say “Oh, yeah, I can do that by myself”
and then struggle on a task.’

The club at Upstream did start with reading books, though, and one of
them was Sandi Metz’s 99 Bottles of OOP. Object Oriented Programming
(OOP) is a way of thinking about code that relies on creating objects.
Its applications are built on relationships between objects and Metz’s
book is about building those objects properly. In it she observes,

‘Those feelings you have about the rightness of code are likely
correct, but the big super-computer of your unconscious mind can’t
supply words to defend them. Sadly, advocating changes to code
based on feelings you can’t explain is not likely to be convincing.’

Metz writes in a reflexive style, perhaps trying to escape from the
normativity that abounds in programming literature. She uses the
famous song ‘99 Bottles of Beer’ as the running code example in her book.
The program she implements in the book generates the lyrics of the song
in a programmatic way. Instead of writing the whole thing down – from
1 to 99 – she uses a Ruby program to generate it for the reader. One of
the things she uses to generate the verses is a Ruby block – but instead
of using the do…end syntax that we used to sort our card_deck, Metz
replaces it with an equivalent syntax: two braces {}.

def verses(upper, lower)
 upper.downto(lower).collect {|i| verse(i)}.join("Än")
end

The nice thing about this function is that it counts from the highest
number (99) down to the lowest (1). For each number it generates
a verse, and the type of verse – the variations within it – are handled
somewhere else in the code. Finally, the verses are all collected, that
is put together one after the other. That’s it. Done. The song is in front
of you:

99 bottles of beer on the wall, 99 bottles of beer …

But why does she use the braces-syntax {} instead of the do … end syntax
to write the block? Metz explains.

	 ﻿ Learning to see � 115

It’s sometimes possible to imbue actual language syntax with
additional meaning. For example, the late Jim Weirich took
advantage of the fact that Ruby allows code blocks to be delimited
either with curly braces {…} or with do…end. Because most folks
use these variants interchangeably, he felt free to co-opt them to
send signals. Weirich used do…end to warn that the enclosed block
had side-effects, and {…} to assure that it did not. Readers of his
code remain grateful for these signals.

Then she adds a short, sad note: ‘We still miss you, Jim.’
Jim – the author of Rake – was making a very subtle difference,

something that a lot of Rubyists would take for granted. It isn’t even
something that became a cultural norm in the community. Like
Metz says, the opposite is true: most people use do…end and {…}
interchangeably when building their Ruby blocks; it’s not culturally
important. What Jim does is to adapt Ruby to his own accord, ‘to
co-opt them to send signals’. By doing that, he makes us see something
about the language, perhaps something about software itself. He
shows that meaning, in software, is not something you should take
for granted.

Media scholar Friedrich Kittler once wrote that ‘there is no
software’.1 There is no software because, no matter what you write, the
only meaning that can ever be given is what the silicon chips will do to it.
Everything in computing is always a material process that happens inside
transistors. But what about the things that other programmers teach you
to see? What about the subtle differences that Jim makes? What about
the neat objects that Sandi makes us see? What about Charles’s adapter
pattern?

Perhaps Kittler was missing the point. In his journey to learn
how to code, he abandoned a high-level language that he was using
to write machine code. He wanted to get ‘closer to the machine’. But
programming is not about trying to get as close as possible to machine
code – there is a reason why people put so much effort in translating
machine code into more palatable ways of coding. The point is not that
you are trying to find meaning in software. There is nothing there: you
need to add it. You need to chase senior programmers and learn from
them what you can attach to it, as Lindsay did.

In other words, you don’t just add meaning by yourself; instead
you learn from others how to do it. You learn to see what the people who
will use your software might want from it, as Akira often asked himself,
and you realise that perhaps a little improvement here and there can

116	 CODERSPEAK

be significant. Then you also realise that finding a little bit of meaning
creeping in is just enough to give you the energy to keep coding for
another day.

Note

1	 Kittler. ‘There is no software’.

	 ﻿ Beaut iful code � 117

11
Beautiful code

To get the first element of a set, in Ruby, you can write ‘card_deck.first’. If
you want to get the first element every day of the week except Mondays,
you can do this:

return card_deck.first unless Time.now.monday?

Give me the first card unless it’s a Monday. It’s that sort of code that
Rubyists talk about when they describe Ruby as a simple and direct
language that allows you to write beautiful code. It might not be
Shakespeare, but it is quite readable.

Code and literature are both meant ‘before all else, to be read
and understood by human beings,’ writes Matz, the creator of Ruby.
For him, writing code is like writing an essay. Most people assume
that programmers just tell computers what to do, but they don’t realise
that programs need to be constantly maintained and re-written. What
programs do is only one part of it; the other part is that programs need to
be readable. ‘Computers can deal with complexity without complaint, but
this is not the case for human beings,’ he writes. In real life ‘[u]nreadable
code will reduce most people’s productivity significantly, […] easily
understandable code will increase it. And we see beauty in such code’.1

In a poetic manner, Matz is suggesting that in the way that Ruby is
designed, he and others have put in a lot of effort to make it easier to write
programs in it. Because Ruby is concise, because it doesn’t have a lot of
repeated code, because there are very few brackets and braces, Ruby is easy
to write in. It’s also easy to read, so you can nicely follow what the code is
doing. That will make you more productive and happier as a programmer.
However, such usable code requires a lot of complexity under the bonnet.

118	 CODERSPEAK

In other words, Ruby is constructed in a complex way so we can read it
easily. ‘Because Ruby is not simple, the programs that use it can be.’2 The
internal machinery of Ruby is complex – but it is this very complexity that
allows Ruby programmers to enjoy the simplicity of the language.

Programming is a form of writing. You spend your days typing
words on a text editor, words that have some sort of effect on the world.
Type a few sentences and you can sort your card deck or figure out how
many products you have in your warehouse. Some computer scientists
view code as a form of art. Programming gathers knowledge and applies
it to the world through a skilful practice that ‘produces objects of beauty,’
writes Donald Knuth. Programmers who view themselves as artists, he
remarks, even if not in a conscious level, will enjoy what they do.3 Like
Matz, Knuth views the programmer as an essayist who ‘chooses the
names of variables carefully’.4 In Clean Code, one of the most influential
programming books, Robert Martin observes that good programmers
have a ‘code sense’ that enables them to write good, clean code. Acquiring
that ‘sense’ requires looking at the techniques and tools that experienced
programmers have used in the past, just as experienced artists have
developed their own techniques throughout their lifetimes. But a book
on code, like a book on art, can only give you so much. Just like ‘books
on art don’t promise to make you an artist’, Martin can’t promise to make
you a good programmer.

Thursday 20 April 2006. An email comes through the Ruby mailing list,
exhorting the beauty of a few lines of code.

Subject: Symbol#to_proc is just so beautiful
From: Daniel Schierbeck <daniel.schierbeck@…
Date: Thu, 20 Apr 2006 01:27:18 +0900

When is this ever getting into Ruby Core?
class Symbol
  def to_proc
   proc{|obj| obj.send(self) }
  end
end

Consider this:
class Numeric
  def positive?
   self > 0

	 ﻿ Beaut iful code � 119

  end
end

[1, 2, 3].all? &:positive? => true
[–1, 2, 3].all? &:positive? => false

It’s just so damn beautiful!
Daniel5

No explanation of the context, nothing about the origins of this bit
of code. The only question is: when? When will the Ruby core team
implement this? The request, in fact, is a bit too direct. After all, why
would the core team care? One could assume they might, but maybe
they don’t. Maybe they have already considered adding it ‘to the core’,
but then decided against it. So, to soften the blow, perhaps, the email
concludes: ‘It’s just so damn beautiful!’ Daniel emailed the list on 20 April
and less than a month later, the feature had gotten into the Ruby core
language.6 The feature itself had only been in its original library for a
little over six months.7 I searched the archives of the main ruby lists,
including the Japanese ones, and could find no reference to discussions
on the process of including this in the language.

The code change is visible on GitHub and we know who
implemented it. In the committer’s comment we can glimpse the origin
of this beloved feature: ‘imported from Active Support’.8 But ‘symbol to
proc’ is not the most readable feature to have. It uses an ancient symbol,
the ampersand (&) that means ‘AND’, but changes its meaning to ‘turn
this into a procedure’. Turn this symbol into a procedure, transform
:positive into { |x| x.positive? }. In a community that praises readable
and intelligible code, how did this hazy and ugly feature get merged
in? Did Ruby people find it pleasing in some unexpected way? Could
not-very-readable code be considered an object of beauty by the Ruby
community?

Consider this, Daniel asks. There is a set of numbers and I want to
know if they are positive or not.

[1, 2, 3].all? &:positive? => true
[−1, 2, 3].all? &:positive? => false

The first set is, but not the second one. Simple. But what is that
ampersand symbol (&) doing there? What is it doing between the ‘all?’
and the ‘positive?’

120	 CODERSPEAK

I had used this symbol many times before I stopped to think about
it. Only after a conversation with Murray did I come to appreciate
everything that was packed inside this method. Murray, one of the main
organisers of the London Ruby User Group (LRUG), wrote the program
that allows you to ‘listen to a PDF’ (Chapter 9).

‘You know, I think, as a programmer, you should be wary of
brevity,’ Murray said. We were discussing the ‘symbol to proc’ method,
the one that Daniel wrote about in his email.

‘If you want to iterate over all of the elements in this array and call
one method on them,’ Murray continued, ‘I feel like “symbol to proc” is a
good micro-level optimisation.’ His point was that code shouldn’t be long
and filled with boilerplate, but nor should it be so brief as to be unintel-
ligible. The ampersand method – the ‘symbol to proc’ – is one of those
things that can get away with being very terse. It replaces six characters
with only one, an ampersand, to achieve the same result.

Somehow, I couldn’t square how the community accepted this
compromise. It certainly doesn’t make your code more readable. The
braces and little bars in the first example are not exactly an easy read,
but the ampersand doesn’t make it better. Murray acknowledged that
the ampersand does add some obscurity to the code. Even Daniel, in
a follow-up email, recognises that ‘symbol to proc’ added some level
of obfuscation to the code. Replying to a response to his email, Daniel
writes:

This has got to be the most obfuscated way to write 2 * 3:
[2, 3].inject(&:*) => 6
Daniel

Ruby programmer and writer Sandi Metz takes a different route than
‘programming is art’ in her thinking about code. Instead she wants to
know about the facts and the stats. ‘Our sense of elegance, expressive-
ness and simplicity is an outgrowth of our experiences when reading
and modifying code,’ she observes. ‘Although your opinions about code
matter, you would be well served by facts,’ she adds, were it only possible
to ‘measure these qualities’.9 When measurements and numbers become
the criteria for beauty, the focus shifts towards the functionality of
code. Weird things suddenly start being described as ‘beautiful code’:
algorithms, C pointers, regular expressions, performance enhancements
and recursion. ‘When an algorithm clocks in at a quarter of the execution
time of some earlier code, then the only word that I find appropriate is
beautiful,’ writes Charles Petzold.10

	 ﻿ Beaut iful code � 121

Metz and others take us into another arena, one that sees beauty in
functionality. We have left the sphere of art and moved firmly into that
of mathematics. Here code is about function, about measuring beauty
and elegance to see if they stand up. It is about finding ways to measure
how good code is, for example by counting lines of code, by evaluating
the complexity of certain functions or by seeing how fast a different
algorithm can make a program be.

Much like art, however, mathematics is often thought of as a
discipline in which beauty plays a huge part. The two concepts are
opposite sides of the same coin. Programmers-cum-artists write code
that is visually beautiful because it is compact and terse; programmers-
cum-engineers conceive of code that is functionally beautiful because it
is measurably better. Programmers can and will disagree which is better,
and which programs fulfil each criteria, but the two are inextricably
linked.

It is through this link that programmers come to appreciate code,
how they come to judge it. You learn to appreciate code as you learn how
to write it. It is an acquired skill. The best code allows you to say ‘that of all
the ways the line could have been written, this way is the most compact,
the most effective, and hence the most elegant’.11 As a result, that line
of code is the optimal line of code. Optimisation, of course, is the art of
making things perfect. It often refers to improvements in code execution
time, but it can, as the example of happy Ruby programmers shows, also
mean code that improves developer experience, code that makes you
happy. Beauty as brevity and function as beauty don’t necessarily go
together – not every brief code is faster, not all great implementations are
readable – but they can sometimes be found on the same bit of code. This
is the case of ‘symbol to proc’.

In other words, an otherwise cryptic symbol – the ampersand (&) –
may be excused for its brevity because it optimises your code. Instead of
writing …

[1, 2, 3].all? { |x| x.positive? }…you write:[1, 2, 3].all? &:positive?

Certain programming communities take this idea of the programmer
as an artist to an extreme. A good example is programming poetry
competitions. Perl poetry, for instance, is not about just re-arranging
words cleverly or experimenting with scansion. No: in Perl poetry, the
poem is the code and the code is the poem. The main criteria for Perl
poetry competition is that the code must be executable. It has to run,
otherwise it doesn’t count. In other words, the poem needs to make sense

122	 CODERSPEAK

to both humans and machines; it needs to be both human and machine-
readable. In this, Perl poetry is tied to a practice that entices many a
programmer: writing code that is not understandable at all, but that still
does something. Cloudy, hazy, opaque and nebulous code. The opposite,
perhaps, of what a lot of programmers would associate with ‘beautiful
code’.

The opposite of writing readable code, writing obfuscated code
implies something that is barely understandable – if at all. In contrast
with Matz’s idea that writing beautiful code should be like writing an
essay for a human reader, writing obfuscated code takes literature to
its extreme. It bends the language as much as possible, creates a gap
between what things mean and hopes for some aesthetic pleasure.
Instead of trying to name things in a clear and convenient way, here we
have things such as ‘naming obfuscation’, in which variables should be
named in the most incomprehensible way.12

There are competitions of obfuscated code, of which the
International Obfuscated C Code Contest (IOCCC) is the most famous.
Code submitted to this competition is judged by several different criteria
and receives prizes such as ‘most explosive’ and ‘most head turning’.
Yusuke Endoh, a Ruby programmer and part of the Ruby core team, often
wins the IOCCC. He writes many obfuscated programs, including a mind-
bending one described as

a Ruby program that generates Rust program that generates Scala
program that generates … (through 128 languages in total)…
REXX program that generates the original Ruby code again.13

A whole genre of programming serves to bring obfuscation to
the centre of language design. The so-called esoteric programming
languages, or ‘esolangs’, take the practice of obfuscation to another
level by designing programming languages that are, in themselves,
obfuscated. INTERCAL, for instance, the ‘Compiler language with no
pronounceable acronym’, was created in 1972 to make fun of the idea
that programming is about telling a machine what to do. INTERCAL is
not about commanding a machine. In fact, INTERCAL programs only
work if you write ‘please’ the correct number of times. Piet, a language
inspired by the artist Piet Mondrian, works by coding with blocks of
colour, generating programs that have the potential to look like works
of art.14

Esoteric languages are, in fact, programming languages. You could
potentially write web applications in them – but that would be missing

	 ﻿ Beaut iful code � 123

the point. The idea here, says Daniel Temkin, a programmer and esolang
designer, is to challenge the mainstream ideas and the default aesthetics
of what it means to design programming languages.15 Obfuscated code is
clearly not about writing readable code, but nor is it about writing func-
tionally beautiful code. If Ruby code is often thought as a compromise
that sacrifices speed to have more readable code, which in turn increases
developer happiness, what would be the point of writing code that is
barely understandable and doesn’t even take performance into account?
Isn’t that the definition of programmer unhappiness?

The crucial thing is balancing the aesthetic pleasure that derives
from confusing patterns and unclear language with the need to make the
code actually run and the language function. If it doesn’t run, it doesn’t
count. More than anything, obfuscating code is a practice that suggests,
by contrast, the supposed ‘values’ of what computing must be, of what
beautiful code means and what programming is all about. It shows that
programming is not something automatic and disconnected from the
world; it is something that involves play and fun. As Nick Montfort has
observed

All obfuscations […] explore the play in programming, the free
space that is available to programmers. If something can only be
done one way, it cannot be obfuscated.16

Obfuscated code plays around with the multiplicity of code, a bit
like Ruby does, by emphasising the many ways in which something can be
implemented. In strange ways Ruby echoes this practice of obfuscation,
giving freedom to the programmer to do what they want. For all the
emphasis on readable code, it is quite refreshing to see that something as
obscure as a magic ampersand – the & in ‘symbol to proc’ – might make
its way into the Ruby standard library, and that it is a favourite example
of how beautiful Ruby code reads.

If ‘esolangs’ made me rethink what programming language can
be, ‘symbol to proc’ made me rethink the gulf between what people say
about Ruby – praising a language that is easy to read and understand –
and some of the things that the community value in practice. People
use ‘symbol to proc’ and its mysterious ampersand all the time; it has
become an idiomatic way of writing Ruby. There is nothing wrong
with that, of course. It simply shows the distance that exists between
prescriptive discourses about beautiful code and what programmers
do in practice. A distinction between ‘proper code’ and ‘(actual) coding
practices’.

124	 CODERSPEAK

If you want to understand a group of people, you have to look not
only at what they say, but also at what they do (as well, of course, as
what they say they do). Few people would look at an obscure symbol like
the ampersand (&) and suggest that it is a beautifully clear and elegant
way of writing code. Yet the same people might use that symbol in their
code all the time. The difference between what programmers say and
what programmers do, in this case, shows how coding isn’t simply a ‘type
of literature’. It is also engineering; it is also about making machines
more efficient. Uncovering these contradictory aspects of programming
was illuminating. It helped to make explicit the hidden histories of
programming. As we will see in the next chapter, such histories are
crucial in shaping the way programming works today.

Notes

  1	 Matsumoto. ‘Treating code as an essay’, 478.
  2	 Matsumoto. ‘Treating code as an essay’, 481.
  3	 Knuth. ‘Computer programming as an art’.
  4	 Knuth. ‘Literate programming’, 97.
  5	 Schierbeck. ‘Symbol#to_proc is just so beautiful (a)’.
  6	 Ruby. ‘imported Symbol#to_proc from ActiveSupprot’.
  7	 Rails ‘Add Symbol#to_proc’.
  8	 Rails. ‘Add Symbol#to_proc’.
  9	 Metz et al. 99 Bottles, 28.
10	 Petzold. ‘On-the-fly code generation for image processing’, 127.
11	 Black. ‘The art of computer programming’, 126–7.
12	 Montfort. ‘Obfuscated code’.
13	 Endoh. ‘Quine Relay’.
14	 ‘Hello world’ in Piet: https://retas.de/thomas/computer/programs/useless/piet/explain.

html.
15	 Temkin. ‘Esoteric programming languages’.
16	 Montfort. ‘Obfuscated code’.

https://retas.de/thomas/computer/programs/useless/piet/explain.html
https://retas.de/thomas/computer/programs/useless/piet/explain.html

	 ﻿ Comput ing gender � 125

12
Computing gender

During the Second World War women were strongly encouraged to
‘join the war effort’. One of the ways they could do this was by taking up
positions in heavy industry, for example ammunitions factories, plane
construction hangars and tank manufacturing. There was room for any
woman to become a ‘factory girl’; characters such as ‘Rosie the Riveter’ or
‘Wendy the Welder’ were created to encourage women that they could do
such work too.1 But if the encouragement to take up these positions was
strong during the war, the push to make them return home afterwards
was even stronger. Women were now expected to go back to their
unpaid jobs as housewives. From the ‘home front’ to, well, just the home.
However, not all women went back to that traditional role. They didn’t
stay in the factory either though. They moved into the office.

In Programming Inequality, historian of computing Mar Hicks traces
the relationship between automation and feminisation. Hicks writes about
the move of early automated machines into offices and explores how office
work created the foundations of the push for technocracy that happened
in the 1960s and 1970s – the time when computing would start to become
masculinised. Hicks focuses on the British Civil Service and the role of
government in the early days of computing, revealing how women and
machines entered the modern office hand in hand during the 1940s and
1950s. In 1948, for instance, the British Civil Service created a new job
class, that of machine operators, which covered all ‘work on calculating,
punch card and accounting machines’. Although the Civil Service had long
been held as a level playing field in which class was less important than skill,
many of its job classes were divided by gender. Jobs were not just implicitly
geared towards women; they were explicitly defined, by the British Civil
Service, as being ‘for women’.

126	 CODERSPEAK

The creation of this new class of civil service workers to work on
punch card machines, to be purely filled by women, formalised the
relationship between women and automated systems. Women and the
machines that processed the increasing amount of public data would
go hand in hand. Any computing work would now be deemed women’s
work – labour that was functional and low-skilled from the manager’s
point of view, and valued less than other clerical work done in any
office environment. A crucial element here is a change in the perception
of what a ‘machine operator’ does. This is what Hicks calls ‘labour
feminisation’ – something different from being simply work done by
women. To feminise labour in a patriarchal society implies changing the
perception of how skilled a certain task is. In other words, it means that
women are good enough for this job because it doesn’t require much skill.

As a historical process, feminization makes work less valuable
as women become the majority of those found in it, setting up a
vicious cycle in which workers’ status drops further as the work
becomes devalued, sometimes out of all proportion to the work’s
actual content. Once this process has occurred, even men who
return to these job categories are subject to the effects of labor
feminization, meaning that feminization can affect workers of both
genders negatively.2

Hicks’s narrative about the work of women in the British Civil Service
stresses yet another point: these positions had a clearly defined expiry
date. Women were not expected to work as machine operators forever.
Like other jobs designed to attract women workers, these jobs had a
comparatively high initial salary but very slow progression. There was
an expectation that these women would leave the service when they
married and settled as housewives. If the starting salary was good but did
not improve, it made no financial sense to stick around for long.

In the 1960s, Hicks tells us, the British conglomerate J. Lyons
& Co. became the first company in the world to apply computing
to its business interests. The company bought plans from Cambridge
University’s ‘Electronic Delay Storage Automatic Calculator’ (EDSAC)
and successfully used them to create their own system called ‘Lyons
Electronic Office, known as LEO I. Lyons created a whole women-only
team who would call each Lyons manager around the country to ask for
inventory data. The women would then feed this information into LEO I,
which would spit out how much bakery products each shop would need
for the next morning.

	 ﻿ Comput ing gender � 127

Handling inventory was therefore one of the ways the first
computers were used in business. It is interesting to think that, almost
60 years later, we too would be attempting to come up with a system –
the new availability service – to handle inventory at Upstream. Soon the
LEO I started being used for payroll, a development that eliminated the
need for two dozen workers in accounting. Many other large companies
followed, with the retailer Sainsbury’s and the pharmacy Boots being two
of them. However, it was the British government that played the biggest
role in the early adoption of computers.

The effects of labour feminisation of machine workers lasted a long
time, defining the relationship between workers and machines until
the 1970s. Slowly, however, managers started to try and undo it. As
computation grew, and therefore grew in importance, it was reasoned
(by managers) that there needed to be a way for men to enter this space.
Computer work had to become more attractive to them, with better
prospects and, crucially, a better perception of what the work entailed.
It needed to look like a man’s job, not just something that any former
‘factory girl’ could do.

A crucial change happened during the 1960s, when the image of the
relationship between women and computers changed. Advertisements
by British computing companies ‘became the object of a specific kind
of managerial “male gaze”’.3 Instead of a combined women + machine
combo, the 1960s created ads that portrayed women with mini-skirts
sitting on high office chairs. Such ads showed how the male gaze onto
female machine operators started to foreground the women – sexy
and dressed in office clothes – and push the machines themselves to
the background. The relationship between women and machines was
no longer as important as it had been in the 1940s and 1950s. Now it
was reduced to that of a conduit: ‘she transfers the order data to the
computer, via the terminal’.4 If there had been little sexual subtext
before, the gaze had now become a heteronormative male gaze. The
machine was still there, but it had been feminised. Computers were now
given female names such as SUSIE (Stock Updating and Sales Invoicing
Electronically), BETSIE or SADIE. It seemed that by extending a hetero
normative male gaze towards the machine, retailers were trying to make
them attractive to men.

One of Hicks’s conclusions, after years of researching the role of
women in the history of computing is that gender, not women, should
always be the category to use. Only by thinking about gender, by
looking at the relationship between men and women and non-binary and
trans, will we start to understand how ‘patterns of underachievement

128	 CODERSPEAK

and perceptions of women as less technically competent persist within
Anglo-American culture, business, and higher education’ and how ‘the
professional identity of computer workers is tied to a history of structural
discrimination that has nothing to do with skill’.5

Male dominance in computing today makes it hard to imagine that
it was ever different. Quite often, when we look at the history of labour
and professions, the space for women is something that has slowly been
carved out and conquered, over decades, from male-dominance. Men
establish themselves and are only slowly made to loosen their grip on
an industry. Computing, however, is a different story. Initially quite
open to women, it was only from the 1970s onwards that it would
start to become masculinised. Nathan Esmenger, another historian of
computing, has tried to understand things by focusing on how the
‘computer boys’ eventually took over a field that had, for decades, been a
working space for women.

It wasn’t that women were uninterested in computing, or
unprepared or constitutionally disinclined to participate, the
historical evidence seemed to suggest, but rather that their
participation had been systematically ignored or underreported.6

In the 1940s the first famous electronic computer, the ENIAC, was
operated by the so-called ‘ENIAC girls’. They were responsible for turning
the cranks that would make it calculate whatever was needed. There
were plug panels, just like telephone switchboards, which ‘reinforced
the notion that programmers were mere machine operators, that
programming was more handicraft than science, more feminine than
masculine, more mechanical than intellectual’.7 According to Esmenger,
famous early computer scientists such as Herman Goldstine and John
Von Neumann took the distinction between manual and intellectual
labour to heart. If men should be doing the brainy stuff, like planning
and designing things, then women could be responsible for the imple-
mentation. But this distinction between analysis and implementation
quickly broke down in practice. The actual implementation required a
lot of adaptions, compromise and improvisation due to the machine’s
limitations. It wasn’t just the case of implementing the design as it had
been designed. Fine-tuning and last-minute adjustments were always
required.

What’s really puzzling is this: how did we go, in the space of two
decades, from images of women sitting on office chairs operating the
terminal to images of young men sitting alone at home behind a screen?

	 ﻿ Comput ing gender � 129

Slowly male engineers created the perception that programming was a
complex form of analysis that required the talent of ‘unique individuals’
who loved mathematics, engineering and tinkering with things. A
series of aptitude tests and personality profiling reinforced the idea that
companies should look for innately talented individuals who were born
to solve puzzles but were unable to handle interpersonal relationships.
As Hicks explains, in Britain,

gains made by women operators as a class would begin to disappear
in the late 1960s as employers and policymakers placed more hope
in the young men who were expected to become experts in the
application of computer technology in order to save the British
economy. A potent new role for computer workers – that of the
technocratic expert – was emerging in society and government, and
structural changes made in the public sector would begin to solidify
this new identity.8

The technocrat would be the one to save the computing industry from
decades of feminisation. A type of saviour who echoes what the artist
Grayson Perry dubs ‘Default Man’. In his exploration of masculinity,
Perry discusses a series of characteristics of men’s behaviour, style and
attitudes.

They dominate the upper echelons of our society imposing, uncon-
sciously or otherwise, their values and preferences on the rest of the
population […] They are, of course, white, middle-class, hetero-
sexual men, usually middle-aged.

In his broad brushstroke, Perry focuses on the various machismos
inherent in Default Man behaviour. The phallic symbols, the lycra bike
riders, the fitness freaks. Above all, he writes, Default Man believes in
being an individual.

He prioritises ‘rational’ goals like profit, efficiency, self-
determination and ambition over emotional rewards like social
cohesion, quality of life, culture and happiness. Centuries of
patriarchy have fashioned the world to reflect and favour the
middle-class masculine viewpoint […] Default Men are, of
course, full subscribers to that glorious capitalist project, they are
individuals.9

130	 CODERSPEAK

Working as a programmer, I inhabited spaces that were overwhelm-
ingly masculine. Offices, meet-ups, conferences, meetings. Much more
masculine, in proportion, than the academic environments I’d mostly
inhabited before. But geeks are not typical machos; they perform a
different type of masculinity. They share, with Default Man, the belief
in efficiency and individualism as the ultimate directions. But they are
not out on their bikes wearing spandex or wearing a bushy beard in
lumbersexual ways. Geeky masculinities draw on other symbols to create
a narrative of what counts as ‘normal’ or ‘default’. What is normality,
though, when it comes to gender?

Imagine that gender is like the law. We accept the law and
give it a certain authority; we behave in a certain way. We act
how we think the law expects us to act. In other words, it’s not
that the law creates obedient subjects, but rather that people create
themselves as law-abiding citizens by performing what is expected
of them. ‘I wondered whether we do not labor under a similar
expectation concerning gender,’ writes the philosopher Judith Butler.
An expectation that ‘ends up producing the very phenomenon that it
anticipates’.10 In this sense, gender is a performance – which doesn’t
mean that gender isn’t real. It means that people perform their gender
many times a day. It is a repetitive and ritualised act, a ‘persistent
impersonation that passes as the real’.11

In computing, the gendered expectations that inform how people
act are defined by this peculiar past in which women were erased
from the discipline’s history. Through years of persistent acts, the
history of computing created a ‘natural order’ in which geeky men now
seem to have always dominated the field – contrary to what history
tells us. It is against this natural order – this law – that programmers
perform their gender today. Reflecting on this inaccuracy might
help us to challenge certain assumptions of what counts as ‘normal’,
‘correct’ or ‘proper’ programming. It will help us to see how being
a programmer is not only an individual performance; it is also a
gendered one.

Realness, as the men in Paris is Burning understood, is the pinnacle
of heterosexual masculinity. Realness, authenticity, genuineness,
legitimacy: all qualities that back up a man’s feeling that masculinity
is somehow the baseline from which all other identities are judged
or attached. Which in turn implies that other identities, feminine or
homosexual, are not real, not authentic, not legitimate. But sorry,
guys, realness is an act too!12

	 ﻿ Comput ing gender � 131

Writing about men of my generation, millennials, Perry says that we
‘seem more at ease with gender fluidity’ and are ‘less afraid of appearing
gay’. I’m not so sure. I’ve seen men being judged and joked about when
sharing their stories of sexual fluidity and gender experimentation. Perry
is hopeful of a new gender dawn and the emergence of a plethora of
masculinities – but, at least in the case of tech, the history of computing
seems to suggest that heteronormative masculinity is not shrinking or
diversifying: it is growing. As new forms of automation and financial
insecurity emerge, perhaps driven by waves of large language model
machines, God knows what male tech geeky spaces will become. What
seems to be characteristic of the history of programming is the increase
in the maleness of its social space. Computer programming is not an
area in which masculinity is threatened or ‘in crisis’ – on the contrary, it’s
thriving.

Notes

  1	 Wikipedia. ‘We can do it’.
  2	 Hicks. Programming Inequality, 77.
  3	 Hicks. Programming Inequality, 113.
  4	 BARIC commercial leaflet apud Hicks Programming Inequality, 123.
  5	 Hicks. Programming Inequality, 231 and 237.
  6	 Esmenger. ‘Making programming masculine’, 120.
  7	 Esmenger. ‘Making programming masculine’, 123.
  8	 Hicks. Programming Inequality, 147.
  9	 Perry. Descent of Man, 23.
10	 Butler. Gender Trouble, xv.
11	 Butler. Gender Trouble, xxviii.
12	 Perry. Descent of Man, 63.

	 ﻿ Proper programmers � 133

13
Proper programmers

‘One thing I was told when I started programming was that I could not be
a good developer because I’ve never watched Star Wars,’ said Marie. She
was a witty and sharp-tongued developer at Upstream and another key
member of our book club. Always ready to give her opinions, and with
great knowledge of many things, including the new flavours of ice cream
that come out each year, Marie trusted me one day with her opinion
about what she called the gatekeepers of programming, the members
of an ‘inner circle’ that was hard to access. If there is a lot of talk about
increasing gender, racial and cultural diversity in tech, our chat about
gatekeeping and geeky masculinity put things in perspective.

‘What does Star Wars have to do with programming?’
‘Well, nothing and everything,’ she said. ‘You won’t learn much

about Object-Oriented Programming or software architecture from the
films.’

On the other hand, by being familiar with lightsabres, Darth Vaders
and Jedi warriors you are partaking in the cultural references on which
a lot of programming culture was built. If someone makes a Jedi joke in
a meeting and you don’t get it, or at least if people see that you don’t get
it and make a comment, you lose prestige and clout. A wise nerd, the
programmer must be.

While Marie explained this to me, I suddenly remembered a conversa-
tion with another programmer from the team that had taken place more
than a year before. We were in a lift together and I was trying to break
an awkward silence by asking him about something that I assumed he’d
be interested in. I asked if he’d seen the latest Star Wars film. Without
turning his head towards me, and seeming quite embarrassed, he said

134	 CODERSPEAK

‘I’m not really into Star Wars. Please don’t tell anyone.’ As I brought my
attention back to what Marie was saying, she had already moved on
and was talking about job adverts. She was describing job adverts that
declare ‘attractive bonuses’ such as after work role playing game (RPG)
sessions. She explained how such job adverts discourage lots of people
from applying because they think ‘oh, fuck, how boring’.

‘What about the latest Dungeons and Dragons campaign, ‘Dragon
of Icespire Peak’? Isn’t it great?’ I thought about saying to her, but didn’t.

‘I’m going through a book about AR [Augmented Reality],’ she
continued, ‘but all the examples are, like, there’s a mini tank, a mini car,
etc. You know, it’s also kind of boy-centric in all the examples. For the big
boys to be able to relate to the small boy inside them and for the girls to
feel excluded.’

‘Do you think this is a conscious effort?’
‘I don’t think any of the guys actually, consciously, try to exclude

women from this club. They just don’t understand that examples about
displaying Arsenal logo or football scores are not actually appealing to
everyone as a cool thing to build.’

It would take a while to unpack what Marie summed up in those
sentences. Take the idea that men don’t consciously try to exclude
women, for instance. The sort of unconscious bias that is quite tricky
to discuss. ‘What’s wrong in building a project that generates football
logos?’ Well quite a lot, as it turns out. There are infinite varieties of
projects that you can build; by focusing on clearly male-oriented ones –
the train-football axis of masculinity – you end up limiting the number
of people who could enjoy the content of what you are creating and the
process of creation itself. But the problem is, as Marie was saying, that
most of this is unconscious. This is probably why many men get so angry
when someone suggests that the examples they are using – such as the
car and the Arsenal logo – are not very cool.

Because the team at Upstream wasn’t that big, I ended up getting involved
in hiring new programmers. I’d only been there for a few months, but I
think Charles and the other senior developers felt it would be good for
me to be there. We analysed their code tests, interviewed candidates,
made them do some live coding and decided who we should accept. We
hired a couple of developers, both of them women. This was a conscious
decision by a couple of the senior developers, who felt the team was
excessively male dominated. There was only one female developer in the
team when I joined. ‘At least there is one,’ another programmer told me.
‘It’s the first time I’ve worked in a team that has any women in it.’

	 ﻿ Proper programmers � 135

‘Hey, welcome to the team. Let me know if you need anything,’ I
said to Lindsay on her first day at Upstream. One of our senior managers
who was walking past heard me saying that, and felt like he needed to
jump in the conversation. Before Lindsay had even replied to what I’d
said, he said ‘I just wanted to say that we hired you because you are the
best person for the job, not because you are female.’ He said that and
continued walking. Lindsay looked at me with raised eyebrows and open
eyes.

Months later, I relayed that conversation to an American Ruby
developer called Mae when we spoke about her career trajectory. Part of
my interviews were deliberately with people from outside Upstream and
Mae works at a big Ruby shop. I mentioned that I didn’t really understand
why he had done that: no one had asked him anything, he wasn’t part
of our conversation, he just felt that he need to say that. ‘That’s not the
worst bit,’ Mae said. ‘The worst part was that he probably thought he was
doing the right thing.’ I told her how the topic of gender often arose by
itself when I talked to women, but that it almost never came up when I
was talking to men.

‘Well, that’s pretty obvious,’ Mae said. ‘It’s usually people in the
position of privilege who can ignore the issues. Some recent discussions
within the (Ruby) community highlight this too. They highlight the
difficulty in having wider social debates within the community.’

‘In light of the Black Lives Matter movement,’ I told Mae, ‘someone
at Upstream suggested we changed all references to “blacklisting” and
“whitelisting” when we control access to certain parts of the product. The
suggestion was to switch to “block-list” and “allow-list” as non-racialised
ways of dealing with access. There was quite a bit of pushback on that,
though.’

Such pushback was not surprising, according to Mae. ‘You know,
the tech industry’s motto of “moving fast and breaking things” works very
well except when it comes to addressing sexism or racism.’

Mae told me that the problem of gender in programming has to do
with the fact that women and non-binary people in the Ruby community
produce very little of its technical content. There are exceptions such
as Sandi Metz, whose books we read in our book club, but most blogs,
technical posts, programming guides and books are written by men.
Regarding this, Mae explained, you need to be very careful, as a woman
in programming, with the style that you use to voice your opinion
on things. Several people in the tech world – the Ruby community
included – tend to write articles and books which are very forceful: ‘This
is my strong opinion on this!’ But a woman could never write something

136	 CODERSPEAK

in that style and survive the backlash. ‘Women can’t do this,’ she said.
‘If I want my writing to be read, I can’t go super strong.’ The expecta-
tions of what technical writing should look like are, therefore, defined
through gendered lines. Women and non-binary Rubyists must write in
accordance with these unwritten norms,1 which have become part of this
cultural space.

Having strong opinions does come naturally – or culturally, we
should say – to some programming books. Organised by Robert Martin,
known as ‘Uncle Bob’ in the programming world, Clean Code is a classic
book in programming, and the first we read together at Upstream.2
The text encapsulates a few traits of the programming world. It has an
imperative style that tries to teach the ‘best practices’ a good programmer
‘absolutely needs to have’. It uses acronyms and catchphrases to maximise
its influence – the principle of avoiding repetitive code, for instance, is
called ‘Don’t repeat yourself’ and abbreviated as ‘DRY’. It has examples
in Java, which are a bit dated and hard to read. And it only features
knowledge from white male programmers. That’s a whole programming
world and a half in a few hundred pages right there.

At the beginning of the chapter on ‘Comments’ there is a depiction of
three women sitting on a desk drinking coffee and gossiping. Underneath
the drawing is a quote that reads ‘Don’t comment bad code – rewrite it’.
Code comments are lines of code prefixed by a special symbol that tells
the computer ‘this is not code’. Programmers use comments for many
things, but here the message here seems quite clear: comments are like
gossip, which serve no real purpose, is trivial and can distract you from
the proper job of rewriting bad code. Use comments only if there is no
other option. Most people in the book club absolutely hated this chapter.
Everyone agreed that the drawings were terrible. Lindsay said, with
heavy irony, ‘They captured exactly what we [women] are like’.

When Marie joined Upstream, she was added to a Slack channel called
‘#badcode’. She was taking over the role from a developer who had just
left. This was the chat that resulted in her being added to the #bad-code
channel.

<Marie> was added to #bad-code by Developer1
<Developer1> @Marie To slate me after I leave
<SeniorDeveloper1> its traditional to blame the last person that
left for everything, especially if you’re the only developer working
on something
<SeniorManager1> Is it time to retire some traditions?

	 ﻿ Proper programmers � 137

<SeniorDeveloper> no [point up emoji]
<SeniorDeveloper2> this is a big part of our identity as a company

Developer1 adds Marie to the channel so she can ‘slate him’ after he
leaves, meaning that she can talk trash about his code and complain
about the ‘millions’ of bugs he left. SeniorDev1 steps up to explain that
such blaming and shaming is traditional and should be respected. A
manager intervenes, but gets shut down – not only by the developer’s
‘no’, but also by another developer who seconds the tradition. ‘Blame
culture’, as it is often referred to in tech, is about banter – especially the
type of banter in which you try to make others feel stupid through making
witty comments. Some managers do try to combat ‘blame culture’, but
programmers can be quite reluctant to accept that, especially because it
relies a lot on making fun of people’s code.

The conversation on Slack when Marie joined might look a bit
harsh. It certainly exemplifies certain postures in tech, but we should
take such defence of the company’s ‘identity’ with a pinch of salt. Very
little slating of colleagues actually occurred in this channel. Some
certainly did in conversations and during stand-ups, but there was not
much public ‘blaming and shaming’ of anyone. Most of the time the
#bad-code channel was used to showcase random bits of terrible code,
or even some programming gifs that people came across during the day.
I’m not sure what to make of this contradiction between lauding blame
culture and not really practising it.

I posted an example on #badcode once. I was working on a service that no
one really wanted to work on. After working on that service for a couple
of days, I felt there was so much truth in that comment; it described that
code perfectly. There was no time to fix that function. It just had to be
done like this. ‘The proper use of comments,’ writes the author of Clean
Code, ‘is to compensate for our failure to express ourselves in code.’ He
goes on to state that ‘comments are always failures’, arguing that we
shouldn’t celebrate them; we should just accept that only sometimes
do we need comments in the code. As a programmer, however, I came
across many instances in which comments were not exactly the failure
of expressing oneself, but rather a way of expressing things that weren’t
computable – like the context for a piece of bad code that I posted on the
channel.

This is a fucking mess, but I'm not fixing it as there's
no time to untangle the stuff on the producer portal end.

138	 CODERSPEAK

Not sure there is a clean way to deal with that
at the moment. Or that it matters.

‘I know this code is terrible, but I just won’t fix it,’ the programmer
seemed to say. They left it in the comments, the only place where it
could go. Maybe it was an expression of his team’s failure in fixing that
code, but then perhaps there was no way around it. Like half-broken
monoliths, half-broken code leaves behind comment jewels.

Contemporary code repository managers such as GitHub or Gitlab
allow you to check which developer changed each portion of a file. This
is a feature called ‘blame’. It is basically a nice and easy way of ‘blaming’
someone if the change they made ends up having unfortunate conse-
quences, or if the code is particularly bad in style. One of the funniest
comments I came across while working at Upstream wasn’t a failure
either. It was a way of leaving something for posterity.

Don't believe the blame. Ivan made me do it.

Below that particular comment was a function that updated all elements
on a table in the database. There was not much there, the class was clean
and readable. So why was this developer saying that someone made him
do it? And why shouldn’t we believe the blame? The context seemed to
be similar to the comment that declared ‘this is an absolute mess’: major
forces of the world made me do this. In the first case, the code depended
on another service; there was just too much mess that had to be sorted
out on the other end before sorting this particular bit of messy code. Here
the programmer knew someone would eventually come across that bit of
code – like I had – and might think that the code didn’t make sense. They
would look at the history of the changes and find out that the ‘blame’
pointed to that programmer. But it wasn’t him; Ivan had made him do it.

If there is one maxim that can be applied to most human cultural groups,
it is that there will always be some people who believe they embody
the original and proper spirit of the group. They do things in a way that
separates them from the others and gives them a feeling of superiority.
It is the group of the ‘select few’. Although the existence of such groups
might be quite widespread, the shape that the group takes, the cultural
form that its activities have and the way in which the select few perform
vary significantly. In programming, they are the people who refuse to
use any form of Graphical User Interface, known as GUI. These ‘proper
developers’, as Marie described them to me, do everything from the

	 ﻿ Proper programmers � 139

terminal (or console), the ancient black screen that harks back to the
days of big mainframes that occupied whole floors. A terminal or console
from which you can type your instructions to the machine. No clicks,
no mouse, just the keyboard. That’s how true developers work. While
Marie and I talked about these issues, she said that maybe they were both
connected. Maybe the gatekeepers of the ‘inner circle’ and the hackers
that only use the terminal were connected. Both made her feel excluded,
but she couldn’t work out why. Suddenly, as we talked, she realised what
the link was.

‘There’s something in that,’ she said. ‘Maybe deciding who is in and
who is out. Yes!’ With a big smile on her face, Marie pursued her train of
thought.

It’s the knowledge of certain things, like Star Wars and RPG, and
the use of certain tools, like the terminal, that differentiate who
is ‘in’ and who is ‘out’. And if you don’t meet those secret criteria
then you’re an outsider; you don’t fit in and you’re not a developer.
Not a proper developer anyway, right? And that’s an important
distinction: to become a proper developer.

A proper developer with a proper gender, enjoying proper games and
the proper football club, writing proper code with the proper comments.
No need to blame anyone, no need to. Just bring the lightsabre in, speak
the ways of the Force. The proper Jedi for the proper codebase, proper
monolith. We’ll get there soon enough. We’ll get there. Communities may
be welcoming, but they are also spaces that reproduce toxic masculinity.
Proper developers who like things to be ‘pure’.

‘Purity,’ reflected Marie. ‘I generally don’t understand this approach.
Kind of difficult to say more. I think that, in a way, it excludes people who
have a more common-sense approach to stuff.’

‘What do you mean by purity? Is it because code should be written
in a very specific way?’

‘I mean, I’m opinionated about where the curly braces go, but
certainly yeah, people are opinionated about stuff like that a lot. I’m
dyslexic and I use git tower for all my commits because I can see what’s
going on. But a lot of people say they only use git from command line like
it is another badge of honour.’

Proper programmers and the inner circle: two things that Marie
felt blocked her and other people from feeling more comfortable and
at home in tech. Git from the command line, not through some fancy
graphical interface. She became thoughtful.

140	 CODERSPEAK

There’s no real value in what you choose to tackle the task with.
I think it’s easier to see those things if you come into this whole
community from the outside. So, if you had a career beforehand
that was completely different, then you look at everything with
fresh eyes. I guess if you go to uni you absorb a lot of this as the
‘normal’ way you do things. But when you come to it, what's the
value of this? I don’t see it. Maybe there is a value of doing it from
command line.

Her perception impressed me. ‘Do you think it’s been like this a long time,
Marie?’

‘Well, my mum was a developer. More than half of her team were
women. And that was true maybe until the late 80s. I think what happens
is when a job gets better paid than it used to be, you get a lot of men
coming in. The same thing when you see a lot of women going into a
profession, only then the salaries drop. It’s just awful. Having more
women signifies that a profession is less of a desirable career path.’

‘I don’t think a lot of people realise that there used to be way more
women in tech.’

‘I think people know that for sure. They just don’t care. How
many times have I said something in a meeting to be told it is absolute
nonsense, then Paul says ‘actually, it’s not nonsense’ and everyone
agrees! It’s only when it kind of gets that confirmation from the man that
we can have a discussion. Which is … it is annoying and it’s discouraging.
As far as I know, most women don’t make it past five years in software
development; they just cannot handle it and they drop out. There’s a lot
of that, just not being listened to.’

In 2022 I sent the first draft of this book to a few research participants.
Getting feedback was a part of a dialogic process that began before I even
started the book when I published blog posts – some of which would
become chapters in the book. People’s perceptions of what they told to
me were particularly interesting. Some programmers told me that it was
weird to see their own words in print. It made things more permanent
than our conversation. Most people were fine with the quotes I showed
them, but some did have comments or things they wanted to change. One
of them was concerned that it didn’t represent his opinion. He offered
some edits, which I accepted. He still wasn’t happy, though, and offered
more edits, then some more. It got to a point where I barely recognised
our initial conversation in his edits. I suggested that perhaps I shouldn’t
quote him at all. He was OK with that and I cut that bit out.

	 ﻿ Proper programmers � 141

I had a long, back and forth discussion with a participant who
offered a lot of edits to her quotes. We must’ve sent a dozen emails to one
another, each of them with rewritten bits. In the end, she wasn’t worried
about the content of what she’d said to me or about any perceptions
that future readers would have about her. She was worried that she
didn’t ‘sound like herself’. This was quite tricky, because our opinion of
ourselves is probably the most subjective of all. I included most of her
edits in, but there was one that I couldn’t accept. ‘I never would’ve said
something like that,’ she told me. ‘It just doesn’t sound like me.’ I showed
her the recording. The comment was there, word for word.

‘I think some of the names you’ve used are too European,’ Charles
told me when we met to talk about the book. ‘I spent years trying to build
a diverse team, and the names you’ve chosen don’t reflect that.’

‘Which names in particular?’ I asked.
‘Martin and … well, Charles.’
I smiled. It was a fair criticism and I took it on board. I changed

some of the names, including Martin. I’d grown too attached to Charles,
though, so I kept it.

Marie gave me her feedback on the manuscript when we met for
drinks in central London. I was anxious to get her opinion on it because
she is often very direct and honest. I knew she wouldn’t hold things back,
which was important – if hard – at that stage for me.

‘It reads very smoothly,’ she started. ‘But there are many things
you could improve.’ And that’s how a five-hour feedback session started,
through which I took pages of notes. She was very thorough and we went
through each chapter together. She would point out the things that she
felt were weird or unexpected, things that could be explained better.

‘What about the bits where we talk about the inner circle and the
gatekeepers?’ I asked Marie.

‘I felt very seen,’ she replied.
The draft I sent Marie had a few chapters missing. Not because I

didn’t want her to see them, but because I simply hadn’t written them yet.
I was waiting to include the conversations I would hopefully have when
I finally made it to Japan.

Notes

1	 Butler. Gender Trouble.
2	 Martin. Clean Code.

Part IV
Tokyo days

	 ﻿ Not my type � 145

14
Not my type

‘I was born before the beginning of time, you see?’
‘What do you mean?’ I asked Neil.
‘Before UNIX was created.’
I laughed. ‘Is UNIX the Jesus Christ of Computing, then?’
‘Oh, God no!’
We both laughed a bit too hard. An awkward moment of silence

between two people who barely knew each other. We each drank some
coffee. I looked out of the window, Neil reached for his phone. It was
June 2022 and I’d been in Brighton for a couple of days, attending
Brighton Ruby. This was the first face-to-face conference I’d been to after
Paris RubyConf more than two years before. I didn’t know Neil until
the day we were introduced to each other at a pub in The Lanes, one of
Brighton’s bohemian areas. Hachi, a Ruby developer that I knew, texted
me to find out where I was, then suggested I joined him and Neil at the
Druid’s Head. The pub was super loud, but Neil and Hachi were deep
in conversation about Ruby. I introduced myself to Neil and sat down.
Hachi mentioned the research I was doing to Neil and added:

‘Gui really wants to know about the Ruby community in Japan!’
‘Well, yes …,’ I mumbled, but Neil immediately jumped in.
‘It’s hard, over there, in Japan. Communication is very difficult.’
‘Yes!’ Hachi interrupted him. ‘I’ve been trying to talk to one of the

Ruby core maintainers and it’s so hard.’
‘Let me guess. He takes a while to reply?’ Neil asked Hachi with a

smile.
‘Yes!’ Hachi replied. ‘Sometimes a whole week!’
Hachi was one of the top committers in an important Ruby

tool, which was maintained by a Ruby core team member from Japan.

146	 CODERSPEAK

He’d been struggling to talk to the maintainer. He couldn’t get access to
the repository even though he was a big contributor. Neil listened to him,
patiently, for a long time. Eventually he started sharing his experience
as well.

‘You know, Japan is very Japanese. When I moved to Japan, I
had to assemble a whole team of Ruby devs. I didn’t speak any
Japanese; they spoke some English. I think what they did to me
was a social experiment: throw a foreigner who doesn’t speak
Japanese into a very Japanese company. I very quickly set up
a Tokyo meet-up. But I could never learn the language, it was
too difficult for me. Maybe if I did it could’ve helped with the
communication. You know, many people say that you have to
learn English to work in this business, but I think that, in the case
of Ruby, we should all be learning Japanese.’

Ruby was created in Japan in 1993. Although it is used by
thousands of developers worldwide, a core part of the maintainers
of the language is in Japan. Maintainers are responsible for, well,
‘maintaining’ a certain part of the Ruby ecosystem. For instance,
perhaps they ensure a specific library is constantly being developed;
or perhaps they are responsible for improving the language itself.
The separation between Japan and the rest, however, is both real
and not real. It feels real when an issue that is raised doesn’t get a
reply, as Hachi told me. But it also feels less real if you manage to get
in touch with some of the Japanese developers. As with most things
in the world of computing, it all boils down to cultural differences
expressed through language – not only programming languages, but
human ones too.

Neil and I left the pub and headed to a karaoke bar where a bunch
of people from the conference had gathered. It was a squared room with
grey leather sofas going around three walls. There was a big TV, two mics
and a tablet to search for songs. Devs taking turns on the microphone,
beers flowing around, no product managers in sight. When I sat down,
Neil came close and shouted in my ear, ‘is this an anthropological
experience or what?’ Andy, the organiser, was not only there but also the
most talented singer in the room. He was always singing, all the songs.
Even without a microphone, Andy was always ready to take over. After
a few minutes, I felt the pressure to join in. I really wasn’t sure I had it
in me, but I knew I had to try. A song that I knew the lyrics to came up:
Fleetwood Mac’s ‘Sands of Time’. I jumped out of the seat, gave my beer

	 ﻿ Not my type � 147

to Neil, grabbed the mic and started singing. ‘Nice!’ Andy shouted when
the song finished.

Neil and I left the karaoke bar after an hour. It was already late,
and we both had trains to catch the next morning. I threw a last cigarette
on the floor and we shook hands. I promised to write to him so we could
have a chat about the community and his trajectory as a developer. ‘Just
let me know when it works for you,’ he said. ‘I’m sure I can find some
time.’ About a month later we did find some time. On Zoom, of course.

‘I’m glad we’re doing this,’ Neil said.
‘Me too. Do you mind if I record it?’
‘I guess …,’ he replied, clearly surprised by my question. For the

rest of the interview he would oscillate between moments in which he
was comfortable and talkative and other moments when he was stiff
and controlled. In these harder moments, Neil sounded as though he
were reading from a script. He would say things like ‘My company has
contributed …’ or ‘The important thing about the community is being
nice to each other’. It sounded very rehearsed. I felt so bad for having
asked to record it, but there was little I could do at this point. In research,
it’s like that sometimes. Most people are OK with recording and trust
you to use that data with care and respect. Occasionally, though, you get
someone who is very wary of having their thoughts recorded, their words
written down. Still, even when that happens, you might get lucky and
find something to talk about.

‘I think it was the Ruby conference in Los Angeles, whenever that
was, not long ago. I remember that Koichi was there, and there was Matz
there, and some of the Stripe people were there, and they had a bit of a
kind of a meeting. Someone was telling me about the ins and outs of it;
they tried to figure out what the path was.’

‘What path?’
‘Oh, the path to add types to Ruby. You know, Ruby is a dynamic

language, so it doesn’t have types to tell you which function returns what.
It just figures it out during runtime. It’s different in other languages, in
compiled languages. In those the compiler checks that functions are
returning the correct types. Like, is this an Integer or not? Does this
function return a String or something else? The compiler will do that
for you.’

Typing is a way of assigning a data type to variables, functions, objects
and other constructs of programs. A way of saying that the function ‘add
two numbers’ will always result in a number, for example; or that another
function will always give you a set of characters (and not numbers).

148	 CODERSPEAK

Loads of old (and new) programming languages have types, but recently
there’s been a surge in languages using them. Over the past decade
pressure from the Ruby community has grown to add types to the
language. This is a big issue; Ruby is a dynamic language and it doesn’t
have types. Famous Ruby programmers have publicly said they don’t like
types, including Matz himself. But the pressure continues to grow. As
Neil observed,

‘I think that Matz, I don’t want to put words in his mouth, but I think
he has a much more long-term view. He’s my age, a little bit older.
He’s thinking, ‘Ruby has been around for 25 years. But 25 years
from now, are types going to be a thing?’ I think he feels in his mind
like that. It kind of pollutes Ruby as well. For example, you come to
a code base in five years and types have been solved in another way
by the computer. Suddenly, the Ruby interpreter can handle types,
but now you’ve got a million lines of code and 400,000 or more type
annotations. If you’ve got thousands of lines of code all over the
world, millions of people, maintaining this code for something that
doesn’t apply any more. What do you do then?’

I saw his point. ‘So, you think Matz is betting that the interest in types
that many modern languages have might go away?’

‘Exactly. It’s kind of similar to introducing Rust instead of C to
handle some stuff in Ruby. I’m not sure where they are with that, but
Ruby uses GCC, which is 50 years old. GCC is not going anywhere. It’s
going to be here forever. I think Matz thinks that, you know, after he’s
done and gone, in another 50 years, will you still be able to build Ruby?
Jumping on the latest bandwagon, which is what most technical people
tend to do – and I used to do it as well – is complicated. ‘Oh, wow, this
shiny new thing, it’s amazing.’ But then, you know, five minutes later
you’re onto something else.’

At the European Ruby Conference in 2021, Matz said in his keynote
speech that the landscape of typing in contemporary programming
languages is changing: ‘Now is the time of static typing’. Modern
languages such as Go, Rust and Swift all have static types, while old ones
such as Python, Php and JavaScript have added syntax for it. The way
Matz was going, it almost seemed like he was going to announce that
Ruby 4 would have fully-fledged static typing. But then he asked ‘Shall
we do that? I don’t think so. We will have static types without adding
new syntax.’

	 ﻿ Not my type � 149

On Discord, Rubyists kicked off a conversation while Matz was
talking. One person explained what static typing was. ‘A type checker,’
said one, ‘can check your program without running it and that’s the
“static” part of “static typing”.’ Someone else emphasised how static
typing reduces the cognitive load associated with programming by
preventing silly mistakes and bugs that a type checker can easily catch.

Writing code without specifying types sounds dangerous and
problematic to a lot of programmers. But there is a flip side. If most of the
time you can predict or guess what type functions and objects have, then
you can write code faster. If you don’t need to worry about types, you’ll
have a better programming experience. Thinking about types is a terrible
task. No one likes to think about types – you only do it if you have to.
As one conference goer explained, ‘I felt liberated from having to think
about types when I switched to Ruby’.

Other people on Discord focused on what could only be described
as animal welfare concerns: they were worried that a type checker would
end up killing duck typing.

‘What’s duck typing?’ I asked on Discord.
‘A way of performing the “duck test”: if it looks like a duck and

quacks like a duck, then it probably is a duck. Duck typing is trying to
infer what type a function or object has by looking at its behaviour,’
someone replied, very quickly.

Developers use duck testing a lot in Ruby because you often have
to think about how better to interact with certain objects and functions.
You need to think about what kind of object you’re getting from it. Is it an
Integer? Is it a String? Is it a Hash? You also need to keep an eye out for
rogue types, perhaps an Array that should only contain strings but that,
somehow, has a funny Integer in there. You’ve got to make sure that they
are all ducks. No geese, no swans. Although Ruby hasn’t totally accepted
that types could be a thing in the language, there is a clear sense in the
community that types is where things are going.

When I spoke to Aaron Patterson about his trajectory as a developer,
we also talked about types. Aaron lives in Seattle and is a key link in the
relationship between the American and Japanese developers who focus
on open source. If Seattle was crucial to the development of open-source
software, as we saw in Chapter 2, the Ruby community in Seattle was,
and remains, crucial to the community and the language. Aaron speaks
Japanese; he is a self-confessed computer nerd, hardware hacker and
struggling baker. He currently works for Shopify, one of the biggest Ruby
companies. I asked him if he felt that types are something that is growing
in the community, something that people talk about more and more.

150	 CODERSPEAK

‘To me,’ I told Aaron on Zoom, ‘it feels like a big change from the
way things were done before, a big change in the cultural landscape of
the community. If we take Why as an example of that funnier or quirkier
time of the community, it seems that the community is in an entirely
different place now. Does that make sense to you, Aaron?’

‘Oh, for sure. It makes total sense. That change has to do with it not
being a community of hobbyists any more, but of people writing a lot of
company code.’

As a Rubyist, now, company code has become more important
than personal projects. And company code needs standards, some sort of
control, some way of making sure that things are safe. It all sounded as
though Aaron was going to say he loved types – but I was wrong.

‘So what’s your take on it?’
‘Yeah, I’m not a fan,’ he said and laughed. ‘I’m not a fan of putting

types into my code, so I will not do it. I mean, I understand, I understand
why people do it. I get it. I just … I would never do that in my own
projects. It seems like busy work, basically.’

‘Busy work?’
‘Yeah, like making the code very busy, having to think about things

that are not essential. I already know what the types are and I don’t think
that types actually matter. The other thing is, duck typing is important
to me. I got to do these things, with the types, and it just seems like busy
work. I just don’t want to do it. If the code works without it, so why do
I need to do it? Why do I need to do this thing? I don’t use types for the
same reason I don’t use Rubocop in my personal projects. I don’t want to
make more work for myself.’

Aaron turned quite serious suddenly. Not in a bad way; I don’t think
he could ever be like that. But he seemed to have a strong opinion about
it. He actually reminded me of Charles. Not because Charles doesn’t like
types – I think he might, actually – but because of the clear and consistent
opinion expressed by someone who has been doing this for a long time.
And someone who doesn’t want to create more work for himself. I
explained to Aaron about Charles, then told him a story.

‘I remember going to ask Charles for help after I broke some code,’
I said. ‘I was trying to refactor something, but broke it and couldn’t fix
it. I went to Charles and explained it to him. He looked at me and said,
“Was it working before?” I nodded. “Then why did you touch it?” he
asked.’

I laughed at the memory.
Aaron smiled, but he didn’t laugh at all. Serious.
I think he was still focused on the type thing.

	 ﻿ Not my type � 151

‘My feelings on types are: I understand the usefulness of it. I get
why it’s useful and it helps to find bugs. I think it’s a very good thing
in enterprise Ruby applications. We’re currently adding it to all of
Shopify. I mean, we have like thousands of developers working on
the same code base. Being able to have those kind of guard-rails
and support in an app this big, where you might not know different
stuff, totally makes sense, I get it.’

The main person behind adding types to Shopify is Rafael França, the
Brazilian programmer who we met in Chapter 3. His take on this was
slightly different. It didn’t have to do with his personal projects. It had to
do with what he described as a ‘deeper feeling’: accepting types in Ruby
is like giving up on his freedom as a developer. Perhaps Aaron didn’t
express it quite as Rafael did, but there is certainly an echo in what he
was saying. If Aaron’s take sounded quite practical – ‘If I don’t have to
do it, I won’t’ – it was perhaps the expression of a philosophical issue,
something that Rafael expressed to me as a very personal matter. During
our second Zoom chat about his life as a dev and his work at Shopify, he
told me

‘I feel this as an internal conflict. I have within me this notion that
freedom is paramount and that having this sort of paternalism is
not something I want in my language. Ruby has no paternalism
whatsoever. It doesn’t force you to do things in a specific way.
Because of that freedom, there will be people who will write
terrible code and you will get really angry at the pile of crap that
these people do. But, at the same time, you are able to do amazing
things if you know how to do the right thing. […] Ruby is not a
paternalistic language like Python or Java.’

He tilted his head forward, as if considering another point of view, then
continued.

‘However, working in the same company for six years, I can also
see the other side of it; how a lack of paternalism can lead to bad
outcomes. So I have this internal conflict today, in which I have
to accept certain paternalism even though I hate to have them. I
have to impose certain rules on everyone else, rules that I don’t
want to follow. I end up following them, but I don’t want to. A clear
example of this is types.’

152	 CODERSPEAK

There was a lot here to think about. ‘What do you mean by freedom,
though? Is dynamic typing about freedom?’

‘That’s what Ruby is for me: it has always been about freedom, about
freedom to express yourself in different forms. Dynamic typing is about
giving the programmer the responsibility to handle things by themselves,’
Rafael explained. ‘Contrary to the paternalism inherent in static typing,
free languages treat the programmer as an adult. Programmers should
be allowed to make mistakes. Ruby is not a language that will tell you
“Come here, my child, hold my hand, let’s cross the road and nothing will
happen to you”.’

Ruby has come a long way since the days of whimsiness and fun that
characterised the code written by people like ‘why the lucky stiff’.
Ruby now runs in billion dollars’ worth of production code sustaining
thousands of applications. The question, then, is this: is the move
towards static typing related to the fact that Ruby now generates a lot
of money and needs ‘safer’ production code? Are Rubyists getting scared
of being free? I asked Brittany Martin about this. She is a Ruby and Rails
dev, and she hosts the Ruby on Rails podcast – one of the most popular
podcasts in the community. ‘Is weirdness gone?’ I asked her. ‘What has
the Ruby weirdness turn into?’

‘Maturity,’ she replied. ‘We now have these massive companies
that are running on Rails. We no longer have GitHub running three
versions behind on Rails. Everywhere feels caught up and stable. I
think there is still some weirdness in there, and I believe that’s what
keeps some community members in, but overall I think weirdness has
been supplanted by maturity. As we mature, I think that the weirdness
changes. I don’t expect to see something like the ‘Keep Ruby Weird’
conferences any time soon, but I still expect to see some of that weirdness
in the main conferences, but less and less.’

It seems that the community is evolving towards the desire
to control and restrict its objects. Today, the latest version of the
language adds the ability to declare the types of objects, classes and
functions by adding additional files. That was a compromise according
to Neil, who seemed to have a few insights into how the core team has
been dealing with this. ‘Matz sees that typing annotations makes the
code a mess,’ he told me. ‘He sees that it is redundant, in many cases.
But other committers wanted a typing system. So creating an extra
file – like RBS – was a compromise. But switching between a file and
the extra file while we are coding, is awful.’ Maybe Ruby 4 will have
syntax for types. If that happens, there will be no more ducks in the

	 ﻿ Not my type � 153

Ruby ecosystem. Geese will no longer have the freedom to sneak into
a flock of swans.

The conversation with Neil about types during the Brighton Ruby
conference was an unusual moment during the research for this book. It
took place during the first face-to-face events that I had attended since
the beginning of the Covid-19 pandemic. Slowly, things were beginning
to change in the UK; more meet-ups and conferences were starting to
happen offline. Our encounter was also a prelude to other conversations
that I’d been wanting to have for a long time. After a couple of years of
learning about the Ruby community in London and chatting remotely
with Rubyists around the world, the time had finally come to go to Japan.
To speak to developers in the place that gave Ruby to the world.

	 ﻿ After the rain � 155

15
After the rain

I was prepared for a few things before going to Japan. I’d been told that it
would be very difficult to meet and connect with people who didn’t know
me at all. My experience in trying to contact people through Discord,
Slack and Twitter before going corroborated those warnings – it was
difficult. So I was prepared to go and find myself unable to chat with
many developers about the Ruby community in Japan. It would’ve been
a terrible experience, but I was ready for it. However, I was not ready for
the humid heat, nor the rain. Nor was I expecting to feel so welcomed by
everyone I met.

On my second day in Japan, still adapting to about 9 hours of
jetlag, I couldn’t sleep at all. After a whole night of trying I gave up, going
instead for a 6.00 a.m. walk around Tsu City. Tsu is in Mie Prefecture,
just south of Nagoya, and the main Japanese Ruby conference – the
RubyKaigi – was being held there that year. I walked towards the river,
passing through blocks of small residential buildings and houses. On my
way back, I got caught in the rain without an umbrella. I turned a corner
and found the gates of a Shinto shrine, through which I walked and took
shelter under the canopy of a tree. There was a distance of probably
20 metres or so between the main shrine and the road. A large stone path
leads you towards the main building, which was slightly raised (about
a metre off the ground). Stone steps on both sides led to a balcony that
overlooked the path from the road. On the back stood the entrance to the
shrine. It looked closed.

I wasn’t the only one caught in the rain. A woman came running
through the gates and almost slipped on the worn-out stones. She walked
up the steps leading to the main shrine and stopped for a moment to look
at two enormous vases. She smiled as she gazed into them, then suddenly

156	 CODERSPEAK

turned towards the shrine door. She took her shoes off and placed them
facing outwards. She turned, bowed twice, opened the door and slipped
inside.

My attention turned to the front gates again, where another person
was running to safety and splashing in puddles. He had an umbrella, but
the rain was just too heavy. He walked past the main shrine and along a
side path that led to somewhere I couldn’t really see. I forgot about him
and turned my attention to the two large vases. They were about a metre
in height and maybe 90 cm wide. Placed at the edge of the balcony, they
were not totally protected from the rain. Inside them was a school of
bright and tiny blue-silvery fish.

Enthralled by the rain and the shrine, I waited there until the same
splashing noise released me from my early morning daydream. It was
the man I’d noticed earlier, back from wherever he’d been to. He walked
into the shrine’s balcony and put his large bag on a stone bench. He sat
down for a minute or two, then walked towards the edge to watch the
rain. He was in his late fifties, I thought, and suddenly an old memory
rushed into my mind: images of the most beautiful film I’ve ever seen.
It featured a couple who take shelter in an inn because of a typhoon.
Other people are there too, also taking shelter, and after a few days
everyone starts to get hungry. The couple are poor and have run out of
money to buy food at the inn. The man decides to go out and find some
work, coming back after a few days with a load of cash. He gives it all
to the innkeeper and asks for food to be served and music to be played
continuously until the rain has stopped. They party, dance and eat until
the sun returns.

The man in the shrine was standing not too far from me. Suddenly,
he turned towards the door of the shrine, took his shoes off, placed them
facing outwards and tried to open the door. It was locked. Very strange.
How did that lady get in? The man gave up and turned towards the rain
coming down on the main path. It was still going strong. I looked at him
and then looked at the bag he’d left on the stone bench. It was a large
tote bag, with a little red devil on it. Under the devil, it read ‘FREEBSD
CONF 2019’ in big letters. ‘No way,’ I thought. ‘This guy must be here for
RubyKaigi. What a small world.’ I immediately walked up to him. I knew
that if I didn’t ride the adrenaline of that moment, shyness would kick in
and I would never have the guts to talk to him.

‘Excuse me, did you come for the RubyKaigi?’ I asked.
‘Yes.’
‘Ah, me too.’
‘Are you a programmer?’ he asked, a bit suspicious.

	 ﻿ After the rain � 157

‘Programmer and researcher. I’m Brazilian, but I live in England.’
I’m not quite sure why I said that.

‘Ah, I live in Tokyo.’

He told me something about FreeBSD and mruby, but I couldn’t quite
follow it. He kept going, convinced that I knew more Japanese than I
actually do. He asked me about work and I managed to say I used to work
as a Ruby back-end developer, but that now I’m doing research about the
Ruby community. Before he starts talking again, I apologised and asked
if we could switch to English. He nodded.

‘I have no job now,’ he tells me. I’m not sure why he is telling me
this, but he continues. ‘I only contribute to open source now. I work on
FreeBSD and mruby. I started using FreeBSD in 1988. A lot of people
used it back then, but now very few. All switched to Linux. I’m a very old
man.’

‘Oh, you are not old at all. Things change too fast.’
Suddenly he goes towards the stone bench and signals for me to

come with him. He opens his bag and grabs a small device and a charger.
It’s a beige rectangular object, with a few LAN slots.

‘Please, take it.’
‘For me? Oh no, I couldn’t, really.’
‘Yes, take it. It has Ruby inside. If you have any trouble using it, just

let me know. And if you are ever in Tokyo, send me a message.’
He looks out past me. He looks towards the main path and the rain.

He gathers his stuff, says goodbye and leaves. I don’t know his name;
I don’t know what it is exactly he just gave me. I see him walking towards
the entrance gate and leaving the shrine. It is still raining and I don’t have
an umbrella.

RubyKaigi is a very technical conference. Most talks at RubyKaigi are
about what people call Ruby ‘internals’, which to me means a lot
of C and Assembly, garbage collection and memory leaks, compiling
and transpiling, making Ruby faster and more efficient. There aren’t
any talks on communication skills, working together as a team or diversity
in tech. Talks that one would expect to have at a programming conference
these days. But the RubyKaigi wasn’t always a very technical conference.
It included talks on Ruby on Rails, real-world applications, case studies
and talks on soft skills and diversity. It started changing about 10 years
ago, when a new team started organising it. ‘I wanted to see talks that
I couldn’t really understand,’ explained Matsuda-san, RubyKaigi’s chief
organiser, when we met in a Tokyo sukiyaki restaurant about a week

158	 CODERSPEAK

after the RubyKaigi 2022 conference. We met on a Friday at 1.00 p.m.
in front of the Kaminarimon gate. This was the main entrance of the
Senso-Ji shrine in Asakusa, a neighbourhood in Tokyo.

‘Have you had sukiyaki?’
‘I haven’t, actually.’
‘OK. We’ll go to a restaurant that’s been around for 100 years. It

survived the 1923 earthquake and the American bombings during the
Second World War.’

We walked through one of Asakusa’s covered market streets called
shotengai, which are closed off for cars. Through a sliding door, we
stepped inside, took our shoes off and stepped up towards the raised
floor of the restaurant. Matsuda-san ordered, and it didn’t take long for it
to arrive: a couple of plates of raw meat and vegetables, to be cooked by
ourselves on an iron frying pan sitting on top of a low table. A network of
gas tubes beneath the table and across the entire restaurant floor reached
small stoves where the pans sat.

‘I started programming in 2001. Ruby was not a thing, even in this
country. I once had heard about Ruby in a comparison with Perl, but no
one was using Ruby. I was a Java programmer when I first found Ruby
myself. It was maybe 2004. I played with Ruby, but there were no Ruby
jobs in Japan. I was doing Java and Microsoft something as a daytime
job, but I started playing with Ruby as a hobby. Then DHH made Ruby
on Rails.’

As I would hear from other Rubyists in Japan, Rails was the
main drive for many of them to discover Ruby. It seems that the myth
of Rails has a tight grip in Japan as well. Not only Rails has had a big
impact in Japan, but also open-source software more generally. In
a strange echo of my conversation with Luis Felipe about the free
software movement (see Chapter 2), I would hear a lot about the
relevance of Seattle in the development of the Ruby community in
Japan. Matsuda-san continued

‘I built my first Rails application in 2006. I think it was Rails 1.0 or
Rails 1.1. After that I never went back to Java. I think I’m a pure
Rubyist since then. I quit doing anything else as a job – because
it was a language made in Japan. Soon I found the community.
There was a mailing list, a Ruby developers’ mailing list. That
mailing list was the community. People could discuss about the
language in Japanese. It was a refreshing experience for me,
because we could never do that with Java. We could actually reach
the developers and discuss, in Japanese.’

	 ﻿ After the rain � 159

It’s easy to underestimate how significant it is to use your native
language if your native language is English. Developers – and academics
too – are obliged to use English if they want to be relatively successful.
English is so pervasive in computing, academia and the business world
that we forget that English is also a local language. Someone’s local
language. As Oleksandr, the ‘embarrassed dev’ at Upstream, would
say, what is it like for native English speakers to work in their native
language all the time?

‘Then the community started a conference, RubyKaigi, in 2006,’
Matsuda-san continued. He spoke confidently and in bursts. Between
servings of sukiyaki and a bit of rice, he would think for a long while
before continuing his story. I had so many questions for him, but I tried
very hard not to fill in the gaps.

‘For the first RubyKaigi, we had DHH as keynote speaker. And for
the second one, we had Dave Thomas. His keynote was amazing. He
said he came to Japan to say thank you to the Japanese community,
thank you for inventing Ruby, that he feels at home when visiting
Japan because he is a Rubyist. So Ruby was a small island until
Rails prevailed. And then everyone started doing Rails, and the
community became so big so drastically. And the atmosphere, the
quality, I don’t know, the atmosphere was changing, and Dave
said, let's welcome each other, let’s keep this feeling and this
atmosphere, let’s be nice to each other. His keynote was something
like that.’

I was impressed. ‘Has it worked, to keep it welcoming and nice?’
‘I think so,’ Matsuda-san replied. ‘At the time, we were running a

local user group in Tokyo. Rails Benkyokai, literally Rails study meet-up.
We had a physical meeting once a month. The main purpose of the group
was to study. Because I was a veteran in that group, my main role was
to teach the newcomers, so I made a lot of friends in that group. But I
gradually started feeling that there wasn’t much else to do in that group.
I wanted to do something more. And then I founded Asakusa.rb, and
Asakusa.rb’s main purpose was, and still is, to publish software. Our role
model was Seattle.rb.’

‘You mean not just study Ruby or talk about Ruby, but actually to
release stuff?’

‘Yes,’ he answered, after a mouthful of meat.
‘When did it start?’
‘After RubyKaigi 2008. After the third RubyKaigi.’

160	 CODERSPEAK

‘Were you releasing things about Rails or just Ruby?’
‘We started with Rails. At that time there were a lot of Ruby core

developers who lived in this area. Koichi lived here. Nobu, the patch
monster, came by train. And I was just a Rails developer. My first goal
was to make Ruby on Rails work on Ruby 1.9. It was not released at that
time, but Rails was not working on Ruby 1.9. Since we had the VM author
in the group, we could ask him about what was wrong.’

‘You could ask Koichi about it?’
‘Yes, although Koichi was not interested in Rails at all. But I told

him “You know, Rails is a thing”.’
We both laughed. And I just had to ask if Koichi ever became

interested in Rails after that.
‘Hmm, no.’
We laughed again. Rails certainly had its grip in Japan, but, like

other Ruby communities, it is not everyone’s bowl of ramen. Or cup of
tea.

‘After the first Asakusa meet-up, we made a patch for Rails,’
Matsuda-san told me. ‘That was 2008 and GitHub had just started. I
had just learned git, but Ruby on Rails was not accepting pull requests. I
made a patch, and I posted the patch on the issue tracker. That was my
first open-source patch.’

I was surprised because this sounded like a really complex task.
‘Your first patch was to make Rails work on Ruby 1.9?’
‘Yes.’
‘Did it get merged?’
‘Yes, but we actually had to merge about 100 patches to make Rails

work on Ruby 1.9. It took us about a year.’
Ruby meet-ups in Japan are very different from the meet-ups I’d

been to in the UK. To start with, there isn’t just one Tokyo Ruby meet-up
like there is a London Ruby User Group. There are lots. Someone told
me 20 was an approximate number – ‘pre-Corona’, as they say in Japan.
Shibuya.rb, Shinjuku.rb, Asakusa.rb, etc. When I went to the Asakusa.
rb meet-up in Tokyo, I found it consisted of people getting together and
eating, drinking and talking. There were no talks, no fixed schedule.
It was the first face-to-face meet-up they had had since the beginning
of the Covid pandemic, and I was very lucky to be able to attend it. All
through the pandemic, they kept Asakusa.rb going online, meeting every
week – unlike many other local Japanese meet-ups, which just stopped
altogether. At some point during the meet-up, someone brought a board
of Japanese chess, which people played for a couple of hours. There were
about 20 of us.

	 ﻿ After the rain � 161

Matsuda-san continued. ‘Asakusa.rb was actually the second “.rb”
in Japan, but the first one was just a drinking party. We were the first
serious one and now there are hundreds of “.rb” in Japan. We chose the
name in respect of Seattle.rb.’

‘And did Asakusa continued making patches and releasing stuff
over the years?’

‘Hmm, it changed a bit, but we are still a group of hackers. We
copy the Seattle.rb style and we meet up every Ruby Tuesday. We don’t
manage the meeting schedule. So, if you are available, just show up.
That’s our style. We have 50 meet-ups per year and 500 in 10 years. So
far we have had around 700.’

That structure has inspired many other Japanese Ruby meet-ups:
no schedule, just show up, every Tuesday. As I write these lines, I’m
sitting in a house in the suburbs of Osaka. It’s the offices of 6VOX, a
local software company which is hosting Ruby Tuesday, one of the local
meet-ups. Again there are no talks. The office is in a small annex of a
house, but there would be room for many people. There are three people
online and only two of us in the actual office. When I came in, the host
introduced himself and said it was a ‘self-running’ meet-up, which means
each person working on their own thing. ‘What will you study today?’
he asked me after I had introduced myself and my research. ‘I think I’ll
just write, if that’s OK.’ ‘OK,’ he agreed. After about an hour, everyone
got together for ‘share time’ and explained what they had done for the
past hour. Some people had played around with Docker while others had
explored Ruby internals. A couple of people had been trying to make a
Scratch game to run in a Micro-bit processor.

It isn’t just Japanese meet-ups which are quite different to meet-ups
in the UK. Ruby conferences in Japan are too, or at least have become so
in the past few years. Conferences have become a place to praise Ruby
committers – the people who develop the language itself and not just
those who use it. As one Rubyist in Japan told me, the RubyKaigi has
become a place to ‘worship the committers’.

‘RubyKaigi is a very technical conference,’ I told Matsuda-san
halfway through our lunch. ‘There aren’t a lot of talks about how to work
together as a team or mental health aspects. Some people told me that it
didn’t use to be like that.’

‘I became the RubyKaigi chief organiser in 2014 or maybe 2013.
I chose to make conferences super-technical by design. Many of them
were changing, at the time, to become non-technical conferences. And I
missed technical conferences. I had been attending so many conferences.
I’ve been to maybe more than 30 conferences in the world. RubyConf,

162	 CODERSPEAK

RailsConf, Regional conferences in the US, Asian conferences in Taiwan,
Malaysia, India, Singapore. Some in Europe, of course, like Euruko, but
also in Ukraine and Russia. Brazil as well.’

‘You’ve been to Brazil?’
‘Yes. I’m kind of a Ruby conference otaku.’
He laughed. I immediately felt the need to clarify what he meant

by otaku.
‘Lover, lover of Ruby conferences.’
I needed to think about this. Matsuda-san continued to describe his

move to change how RubyKaigi works.

‘I’m a conference otaku, but there was no perfect one, there was
no 100 per cent perfect conference for me. What was missing were
talks I did not understand. I want to listen to talks I know nothing
about. That makes me really excited. I want to feel that experience
more. Conferences like RubyConf used to have that part in the past,
but they are no longer like that. I knew these people who were
working in something difficult regarding Ruby issues. I wanted
to put the spotlight on these people. People who are working on
open-source software. And conferences in the US are changing.
These people are no longer focused, which is … I need to choose
the words. For me, I want to preserve the old values of a conference
style that I liked.’

I found this a bit confusing. ‘Why are RailsConf and RubyConf
changing?’

‘It’s a social change. If they do not change, maybe people start
attacking the conference team, forcing the team to change the event.
That’s America, I think, but Japan is not like that. We can have a different
event talking about diversity or hiring, but RubyKaigi is not for that.’

‘You said you wanted to keep some values?’
‘Yes, good old Ruby values.’
‘But what are those values that you want to keep?’
Matsuda-san thought about it, taking his time to reply. ‘‘Having

a good cycle,” he said at last. ‘A good cycle between the conference
and open-source development. We make a change for the speakers to
bring their own code, bring their own new technology, and that drives
development. It’s called “RubyKaigi-driven development” and if that
cycle stops it will slow down open-source development.’

‘So people come to RubyKaigi and present, and people at the
conference value what they do, and they feel appreciation. Then they

	 ﻿ After the rain � 163

keep working on that, and come back to present again …,’ I suggested,
perhaps explaining it to myself rather than him.

‘Yes, yes, yes,’ confirmed Matsuda-san. ‘We require the speakers
to be open-source developers, not just good developers. We ask them
to publish their software and talk about their own software, not their
company’s product. That is our speciality.’

‘And about that cycle of RubyKaigi. Did you get the inspiration from
somewhere? Was there an inspiration to design it like that?’

‘RailsConf was initially like that. It used to have more speakers from
the Rails team. When they made bundler, the Ruby package manager,
DHH himself, (came). He used to talk about new technologies, like when
he made the asset pipeline, etc. But now RailsConf is more of a user’s
conference. And RubyKaigi, from the first season it was the engine, it was
for Ruby language developers.’

I was still trying to clarify this. ‘When you say users, you mean people
who are using the language, but who are not working in developing or
changing the language?’

‘Yes.’
‘So users on one side, and developers on the other?’
‘Yes.’
‘Was it a decision at RubyKaigi to not have many talks about Rails?’
‘Yes.’
‘Did it use to have more talks about Rails?’
‘Yes. RubyKaigi didn’t used to be so focused. I think I changed

RubyKaigi to be more focused on Ruby core. That was my taste.’
The sukiyaki pan sizzled with the remains of some noodles and

beef. ‘Do you mind if I take this bit?’ I asked. Matsuda-san just nodded. I
picked up the last piece of beef and dipped it in the bowl of raw egg.

‘And speaking of Ruby core team, how does one get a commit bit?
How do people become committers?’

‘You write a patch. That’s the first thing you do: patch first.’

Matsuda-san’s approach to what a conference should be surprised me.
I understood the need to focus on open-source and on the work done
by the core team. However, I didn’t quite understand why such focus
couldn’t exist alongside the social changes that have made the Ruby
community increasingly aware of the need to discuss diversity in tech,
mental health problems and ways of working.

When I spoke to an American programmer who had been to
RubyKaigi several times, he said it was ‘a proper hacker conference’. He
went on to explain.

164	 CODERSPEAK

‘A lot of the Western conferences are more people focused, maybe
a mix of people focused and technology, whereas RubyKaigi is
strictly technology. I really love those people-focused talks, but
also I’m a huge computer nerd, so I’m very happy to watch very
technical talks.’

I was interested. ‘A couple of years ago, I watched a conference on
programming and mental health, on the issue of burnout, during Paris
RubyConf.’

‘That’s what I mean by “people-focused”.’
‘I see.’
‘But RubyKaigi is a conference for hackers, for people who

code.’

It’s easy to be an Orientalist when it comes to Japan, to think that
everything there is naturally ‘different’. But in fact Matsuda-san’s
thoughts on RubyKaigi express how connected and attuned to the
wider Ruby world Japanese developers are. What he and others told me
is very different from what I’d heard from a few non-Japanese Rubyists.
For instance, the idea that Rails was not important proved not to be
exactly true. Perhaps what is happening is a gradual move away from
Rails, with all due respect. A move towards Ruby itself, to a language
created and cherished by the Japanese developers’ community. That
has also meant a shift away from so-called ‘non-technical’ talks –
which makes sense when we look at the history of computing and the
emergence of the idea that skill and technique are separate from rela-
tionships with people.

One of the most striking bits of my chat with Matsuda-san was
to see how important using his own language was to him. When he
found Ruby, he abandoned Java. When he found the mailing list,
from which he could speak to other hackers about programming,
in Japanese, he found the community. As he says, the mailing list
was the community: a community of words, filled with Japanese
language characters. If you don’t speak Japanese, you might feel
disconnected from that community, but the reverse is true in a much
bigger way. If you don’t speak English, as a programmer, you’ll miss
out on a lot. You’ll never be invited to speak at conferences, no matter
how good your coding is. Isn’t it OK, then, to have communal spaces
in which English is not the only language spoken? Given that a lot
of conferences and meet-ups in the Ruby world are run in English,
doesn’t that seem fair?

	 ﻿ After the rain � 165

I left our conversation with those questions in my mind. My
perception of what Ruby might mean in the Japanese context was slowly
shifting, and there were many other shifts to occur. The more I spoke
to developers in Japan, the more it changed my assumptions of what a
programming community might be. The conversation with Matsuda-san
was only the start.

	 ﻿ Patch f irst � 167

16
Patch first

In a community, opinions and misapprehensions run like wildfire.
From the very beginning of my research, it became clear that a lot of
developers in the Western world had a few beefs and tensions with
the Ruby core team in Japan. They often described it as ‘the Ruby
community in Japan’, but I’m pretty sure they meant the core team,
the people who work on developing the language. There were a lot
of things that only started to click when I got to Japan. The expect
ations that non-Japanese developers had about the governance of
Ruby and its community started to make less sense to me.

One of the expectations that fell apart was a linguistic one. I realised
that while a lot of people simply accepted English as the dominant
computing language, Japanese developers were clearly indicating that
although many things could be done in English, perhaps not all of it
should be. The second expectation that slowly crumbled was the notion
that open-source development should be the same ‘everywhere’ in the
world. More and more, ‘everywhere’ became equal to North America.
And if people in Japan had been clearly and manifestly inspired by
the free and open-source movement in America – they followed the
example of Seattle, as Matsuda-san told me – they also did things
differently. Not everything was wide open to the public, for example,
and the language core team remained a bit of a secretive group.

Trying to understand these miscommunications and tensions was
crucial to me. It was a way of combining the social and the technical
aspects of programming; a way of making them part of the same network
of socio-technical relationships.

‘What’s the name of the conference that they have in Japan?’ a
prominent American developer asked me.

168	 CODERSPEAK

We met over Zoom in early 2020 to chat about his story as
a programmer, as well as to consider the relationship between the
Japanese Ruby community and the American Ruby community. A few
Ruby devs had pointed out to me the tension that existed between these
two communities. One, in Japan, largely focused on Ruby; the other
largely focused on Rails.

‘Ruby Kaigi?’ I replied to his question about the conference.
‘Thank you. They absolutely refuse to have any sort of Rails talks.

Like that’s forbidden. I think it’s the purist mindset. I think that it’s pride
too. They’re the ones who are in charge of Ruby and so they want to keep
it in its purest form. We don’t really hear from them about how they’re
using Ruby. We just hear from them about how they’re improving Ruby.
On the flip side, in the States, we only hear about how they’re improving
Rails based on using it in production. It feels like with Ruby it’s very
closed.’

This was not an unusual complaint. But the American had not
finished.

‘It’s weird too that all of the Rails development is on GitHub – it’s
a very public group. On the other hand, Ruby has its own forum: I can’t
even recall off the top of my head what it’s called. It just doesn’t feel as
accessible. In some ways Rails has to pay a lot of kudos to Ruby because
Rails wouldn’t exist without Ruby – but then in some ways Ruby doesn’t
pay any kudos to Rails because they think the language would be
extremely popular if it weren’t for Rails.’

I can’t imagine many Western developers reaching out to random
Ruby developers in Japan; they would have very little reason to do
so. On the other hand, Ruby developers are quite involved in the
open-source community, so it is only natural to try and interact with Ruby
committers – i.e. the people on the core team. In any other open-source
project, you would normally go to GitHub to contribute and reach out
to code maintainers. However, the Ruby language has never really been
on GitHub. During our lunch in Asakusa, Matsuda-san told me that
‘actually, there was no issue tracker until 2006 or 2007, so we started
using Redmine’. This is the name of a free and open-source platform for
project management, created with Ruby on Rails in 2006. Redmine hosts
different language servers, one of which is the Ruby issue tracker.

‘Ruby 1.9 release manager, Yugui-san, she was the first female
Ruby committer,’ Matsuda-san continued. ‘She proposed to use some
system for tracking issues, and then she started the Ruby server on
Redmine. Before that there were only patches on the mailing-list. If Matz
liked it, he merged it. If the patch was incomplete, it was just abandoned.’

	 ﻿ Patch f irst � 169

‘Was there ever a discussion to move it to GitHub?’ I queried.
‘Yes, but some people didn’t like the commercial side of GitHub.

Even if they claim GitHub is not evil, some people think it’s a problem
that it belongs to a company.’

‘It’s a bit weird, right?’ I said. ‘GitHub hosts the majority of
open-source projects in the world, but GitHub itself is not open source.
What if GitHub decides to shut its services down?’

‘Exactly. Or what if the company is acquired by Microsoft? What
would happen then?’ He laughed and said, ‘I’m just glad that’s never
happened!’

We laughed. Microsoft acquired GitHub in 2021.
I had heard that story before, that time from Aaron Patterson when

we first chatted about his life as a developer in 2021. On that occasion
I also wanted to get his point of view on the relationship between non-
Japanese developers and the core team.

‘The reason I started studying Japanese,’ Aaron told me, ‘was
because at the time, in 2006, there wasn’t much English documentation
for Ruby online – but I still wanted to read the Japanese docs. I could read
the code, but I couldn’t read the documentation, couldn’t read the blog
posts, so I started studying.’

‘And is it still the case that a lot of discussions are all in Japanese?’
I asked him.

‘That used to be the case. It’s not true these days though. Every
language feature and conversation is done in English. All decisions are
made in English. Sometimes people will propose in Japanese and then
they’ll essentially translate it into English. The language barrier is still a
problem, though, because I’d say 80 per cent of the people on the Ruby
core team are based in Japan. And, I don’t know man, they just don’t use
English.’

‘How do you see that?’
‘For me it doesn’t matter, it’s fine. I speak Japanese.’ Aaron laughed,

then continued a bit more seriously. ‘I think there’s a few different things
here. One, there’s a language barrier which I think can be overcome; it’s
not as big a deal as people make it out to be because everybody speaks
a little bit. Everybody in Japan must learn English at school. The other
issue, though, is that we don’t use GitHub. I mean, we do, kind of. We
take pull requests on there, but any feature discussion happens on our
own thing, Redmine.’

‘Those two things together, though, can be an issue.’
‘Oh, totally, yeah. The combination is the problem. I suspect that

Westerners are afraid that they won’t be heard, because they’ve all heard

170	 CODERSPEAK

of this language barrier. But I think it’s more an issue of perception. The
other thing is that you got to register for this weird Redmine website
when everybody already has a GitHub account. And people are like “I
don’t want to do this, I don’t want to do this weird thing”. I think it’s a
combination of those things that makes a higher barrier to entry for folks
than exists with normal open-source projects.’

‘But is there a reason why Ruby is not fully on GitHub?’
‘Yeah, there is. The reason is that GitHub is not an open-source

project. That is the reason. We have some members of the Ruby core
team who are very enthusiastic about only using open-source software.
So they basically said, “If it’s on GitHub we won’t participate. We don’t
want to be on the core team”. And Matz doesn’t want to lose anybody
from the core team. He thinks it’s acceptable to stay on Redmine as long
as we keep contributors.’

There was something else I wanted to ask him, but I didn’t quite
know how to say it. So I did what any experienced researcher would do in
this situation and started babbling and talking nonsense. Aaron looked a
bit worried. Finally, I managed to put my thoughts into words.

‘About the language barrier and the difficulty in communicating
with the core team. Quite a few people have told me these stories of very
difficult and slow exchanges about an issue or a feature. And these people
have, let’s say, quite strong opinions about this relationship, how it is
very hard to get anything across. They feel like the core team is ignoring
the community, that they don’t care about the rest of the community.’

Aaron’s response was thoughtful. ‘I don’t think that’s fair,’ he
said. ‘Probably there is less discussion than people are used to. To flip
this around: if there’s an issue that’s in Japanese, I can read it, but I am
definitely less likely to add any comments because it’s not my native
language. I always have this thing in my head, “Do I really want to spend
time and effort in writing this comment? Does my comment actually
matter that much?” So I put myself off and I’m less likely to do it. I can
absolutely see that, on the flip side, if you know just a bit of English,
you might think the same. So it could be that this lack of comments is
perceived as not caring.’

‘But there is another thing, Aaron. I feel that there is this
expectation that everything needs to be in English – as if no other
language in the world existed.’

‘Some people do say that.’
‘Say what?’
‘Say that everyone in programming should learn English. I really

don’t understand why people say that. Yeah, English is so pervasive or

	 ﻿ Patch f irst � 171

whatever, like it’s so ubiquitous that people say “Oh, you should just do
it, you should just learn English”. But that’s like … You can’t tell people
what language to speak. That’s not … it’s not a thing.’

No, you can’t tell people what language to speak. And yet
it’s not easy to create non-English spaces. At Upstream there were
several developers who worked out of the Ukraine. Once they had a
meeting among themselves and didn’t invite any of the non-Ukrainian
developers. Later they shared what they discussed in the meeting with
everyone else, explaining that the only reason they had a separate
meeting was because they wanted to discuss something very technical
and complex, which they would have a hard time doing in English. ‘But
they work for an English company!’ a British developer grumbled to me
after that meeting. ‘How can they think that it’s OK to have a separate
meeting and not let anyone know? I’m sorry if you are offended by this,
Gui, but I just don’t think it’s acceptable to have a meeting in anything
other than English if you are working for an English company.’ But
what’s the big problem about having a meeting in Ukrainian if some
people feel that it would help to solve a technical problem the company
is facing?

A few months after my chat with Aaron, I met a developer called
Stacey in central London for a chat. We’d had a few conversations
online already, but this was the first time that we were meeting up face
to face. It was a good feeling; things were starting to open up and to
get back to the new/old (ab)normal. Stacey had been contributing to
a part of Ruby that was managed by a Ruby core team member. She
was furious about the difficulty in communicating and in getting things
across.

‘It’s very hard to work with the maintainer. He doesn’t reply to most
emails, doesn’t share any control of the project. I’m the second highest
committer and I don’t even have committer status to the project.’

‘How long have you been working on this?’
‘About a year, I think. I need to send every pull request as a general

contributor. I have no privileges, even though I’ve been working on this
for a long time. Then I need to beg for him to review it. It always takes a
few weeks.’

‘I can see you are very frustrated by this.’
‘Oh, hell, yes. I see this as a big problem of governance. The Ruby

core team is very closed; most developers on the team have full-time jobs
and only work on Ruby when they can. Matz is going to retire in two
years and there is no process in place for this. What are they going to do
then? Who is going to be in charge?’

172	 CODERSPEAK

Stacey kept using an expression, ‘there is no procedure on the
procedure’, to explain why it is very hard for non-Japanese developers to
become Ruby committers. For her it was clearly a big issue.

‘It’s not clear how people can become contributors and it’s not clear
how this can become clear. There is no procedure on the procedure
to change how the core team includes new people. This is going to
kill the language one day. Eventually, people outside of Japan will
get fed up with this and start moving towards a different language.
The pace of change in the language is just too slow, too slow. The
core team needs to start including more things that people say,
more suggestions on how to improve the language, but there just
isn’t enough preoccupation on the core team on how this can be
done.’

The sands of time: how quickly should they move?
Stacey expressed expectations that developers have in the

open-source community: to be able to contribute to change and to do it
in a public forum; to see a relatively transparent process as to how things
can be modified. ‘The procedure of the procedure’, as she said. Yet there
are other things that perhaps set the Ruby Core Team slightly at odds
with some normal expectations in the open-source community. One
of them is the ‘once a committer, always a committer’ principle. ‘Now
we have about 100 Ruby committers all over the world,’ explains one
Ruby committer, ‘but the number of active members is much smaller. If
you become a Ruby committer, you can’t throw away the title of “Ruby
committer”.’1

Compare this to the way in which being a member of the Rails Core
Team works. There are always 20 people in the team: no more, no less.
A list contains the names of all current and past members, as well as
describing a way of contributing. Everything is on GitHub, as expected.
On the other hand, in the Ruby core team, there are more than 100
people on the team – and yet there is no list. No one really knows who
they are. Being a committer and being a member of the core team is a
different thing, but the difference is not explicit and it’s not procedural.
There is no formal distinction.

‘Other languages, like Go or Python, focus on only one way of doing
things,’ I told Stacey. ‘I mean, it’s a key cultural aspect of the Python
community, right?’

‘Yes. There is one preferred way of doing things.’

	 ﻿ Patch f irst � 173

‘And that’s different to what people in the Ruby community
emphasise, right? People always tell me that in Ruby you are free to do
it your own way.’

‘It is different, of course, but I think that after so many years the
community has found one way of doing certain things. And the core team
should take that on board! They should say “This is the way to do it and
we should prefer this way”, or something like that.’

When we talked, Stacey mentioned that she finds it very frustrating
that the Ruby core team doesn’t want to create tools to make Ruby
developers do things in one way. Very few tools like that are incorporated
in the standard library, and there isn’t a ‘correct’ way of doing things. She
feels that if we had that, Ruby developers could focus on other things
instead of having to create yet another way of doing the same thing.
Although Stacey was talking about ‘technical’ things, it seemed to me
that what she and others really want is for the core team to create a space
in which members of the community can steer the course of the language
a lot more. The path to become a committer, for instance, is not clear at
all. ‘There is no written rule,’ one of the oldest Ruby core team members
told me. And that infuriates some developers, who expect procedural
transparency and a roadmap to lead them there.

‘The core team’s lack of will to sponsor or to choose to make certain
things official is damaging to the community,’ Stacey continued, ‘because
people who worked on those projects don’t feel recognised – and also
because it creates strange situations. For example, we now have two
tools dealing with type checking: RBS and Sorbet. Instead of having only
one tool, we now have two. That’s very frustrating because now Rubyists
don’t know which one to use.’

When Stacey mentioned the problem of having too many tools
to choose from when using types in Ruby, I kept thinking that this was
probably what Matz intended. A way of being able to say ‘Yes, we’ve dealt
with the issue of static typing, like you asked’, but also of not endorsing
one particular solution and keeping the Ruby ecosystem multiple. In this
context, it makes sense that many procedural things remain murky; it’s a
way of avoiding the prescriptive culture of ‘this is the right thing’.

What seems to be a lack of attention, or a lack of care is, to me,
created by design. Some Ruby core team members do feel that the
community grew too much too quickly when Rails boomed; they are
quite happy to see it shrink back to a more manageable size. Unlike many
devs in the US, they don’t really worry about the Ruby community dying.
The multiple meet-ups attest to that. The fact that many programmers
in Japan keep going to meet-ups and to RubyKaigi even after they’ve

174	 CODERSPEAK

stopped writing Ruby also attests to that. They may have left the
language, but the community hasn’t left them. All of this became clearer
when I finally had a chat with Matz.

Note

1	 Sasada. ‘Introduction of MRI development culture’.

	 ﻿ Supreme be ings � 175

17
Supreme beings

There are no bullet trains that come near Matsue, the capital of Shimane
Prefecture in the island of Honshu. ‘When people from Tokyo come
here, they feel they are in another country,’ Hasumi-san, the organiser
of the local Ruby meet-up, told me. ‘They think they've gone abroad,’ he
concluded. Around 200,000 people live in Matsue. There are a couple of
airports nearby, one of which sits very close to Izumo-Taisha, the most
important Shinto shrine in Japan. It is set in the mountains that surround
the town of Izumo. Inside a special place within the temple itself resides
Okuninushi, a mythical god who helps people with their relationships. In
other Shinto shrines you bow twice and clap twice to pray for the gods,
but at Izumo-Taisha you must do this four times each. Two for you, two
for your partner.

The connection between Okuninushi and personal relationships
explains why the grounds of Izumo-Taisha are populated with incredibly
sweet statues of rabbits. As the story goes, Okuninushi helped a rabbit
to heal his wounds after a shark bite; the rabbit, in turn, predicted that
Okuninushi would be the one to marry a princess. Okuninushi does
indeed marry her, establishing the connection between the couple,
rabbits and marriages for eternity. At Izumo-Taisha the connection is also
set in stone, as the dozens of pairs of rabbit statues give the solemn shrine
an air of cuteness. Sacredness and cuteness: a unique combination,
perhaps, but one that would echo my conversation with Matsumoto-San,
the creator of the Ruby language.

Matsumoto-San and I met at the hotel where I was staying and
walked to a nearby cafe. The cafe was full in the early afternoon. The
coffee machine didn’t stop for a second and we waited for our coffees to
arrive. I didn’t want this chat to be any different than other conversations

176	 CODERSPEAK

I’d had with other Rubyists, so I asked him about his story and how
programming had started for him. First, however, I needed to clarify
something about his name. Given that Matsumoto is a very common
family name in Japan, I wanted to check whether I should be calling him
Yukihiro. Like many other things in the history of the Ruby community,
his name was also constructed by design.

‘Matsumoto-San, how did people start calling you Matz?’
‘Oh, I invented that. People outside of Japan don’t normally use

people’s last names like we do. They usually call each other by their first
name. And that would’ve been a problem.’

‘Why?’
‘Only my mother calls me Yukihiro.’
Matz’s parents converted to Christianity before he was born. Their

family is Mormon. In a country where most people don’t consider
themselves religious, being not only a Christian but also a Mormon
definitely singles you out. ‘I’m used to being a minority,’ he told me.
Matz started programming when he was 15. He was in the third grade of
junior high school. His father bought a computer from a company called
SHARP. It wasn’t very big, as he shows me with his hands: ‘about this big,
20 cm wide’. It had BASIC on it, one of the languages that wanted to make
programming closer to human languages. Matz started programming in
it, following the examples of a book that came with the computer. As he
told me with a slight grin,

‘Father bought the computer for himself, but I took the computer
away from him, and I played a lot. At the start, I felt both positive
and negative. From the positive side, I was very interested in the
computer because other kids’ toys are controllable, you know what
I mean? I used to play hoops, so I throw the hoops by myself and it
spun, but the computer moves by itself. It kind of makes a decision
based on what I taught him. I felt these computers are adorable,
like pets. That was my primary motivation as a programmer: those
computers are adorable.’

I wasn’t sure that most people would describe computers as adorable.
Much like the sacred rabbits at Izumo-Taisha, it seems that it is also
possible to find cuteness in technology.

‘At the same time, this computer was pretty limited,’ Matz
continued. ‘It has only 400 steps, 400 lines of code. Every variable has
length of one: $a, $b. All global. No local variables, no local functions.
I got kind of frustrated, but I never knew other languages. In a bookshop

	 ﻿ Supreme be ings � 177

I found Pascal. I read Pascal in the book, but I had no computer to run
Pascal. Back then, the compilers were so expensive. Probably 2,000 US
dollars, or even more expensive. You know, it was 40 years ago.’

Matz went on to learn Lisp, C and SmallTalk. He was fascinated by
the world of programming languages. Languages which were ‘designed
by humans, you know? Not like Japanese, or English, or Portuguese. We
don’t know who invented those languages, but BASIC, for example, was
designed by the professors at Dartmouth College. Pascal was designed
by Niklaus Wirth from Switzerland. Those languages were designed
by a specific person. If those languages are designed by people, with
intention, why not create my own programming language?’

‘It was my high school dream,’ Matz revealed. ‘But back then it
was the 80s, the early 80s. We didn’t have any internet; we didn’t have
any good materials. The only materials were for programming language
design and programming implementation, textbooks for university
lectures. Back then it was difficult for me, as a high school student from
a very small town. So I took my notebook and took down some ideas for
my programming language.’

‘You wrote it all down in a notebook?’
‘Yes.’
‘Do you still have that notebook?’
‘Actually, a few years ago, I went to my parents’ home and looked in

old boxes, but I couldn’t find it.’
I bet that book would’ve been adorable.
‘Then I went to university, majored in computer science, learned

a lot about computers and the programming. After I graduated from
university, I got hired as a computer programmer and spent a few years
there, learned a lot, and the skills. Finally I decided to create my own
programming language. For 10 years I had a dream of creating my own
programming language, and that small prototype gradually became
Ruby.’

‘Were you already here in Matsue?’
‘No, it was Hamamatsu City, Kanazawa prefecture, halfway

between Tokyo and Nagoya.’
‘When was this?’
‘It was 1993. A bit earlier that year, in 1991, 92, we had a very big

depression in Japanese economy and my project was cancelled. The
members of my team were scattered in many places, assigned to new
tasks. Only two were left behind to maintain the existing software. I
was one of them. But actually I had very few jobs assigned. Sometimes
the users of the software called me to say, “OK, I have an issue with

178	 CODERSPEAK

your application”. I would reply, “OK, reboot your PC”. That was all
I did.’

Turn it OFF and ON again. Even Matz had his days of IT crowd.
‘I had time,’ Matz explained. ‘I had loads of time because my

manager was assigned a task that was very important. He looked in on
us less often. I had my high school dream of creating my programming
language and it was probably time to start something. So, you know, the
bubble economy created Ruby.’

A significant amount of open-source projects get done because
managers are not constantly checking in on their employees. There
are several techniques one can develop, over time, to keep managers
away and, slowly but surely, to integrate open-source development as
part of your daily tasks. Technique number one might be: never ask for
more work. Let them think you’re still working on whatever it is you are
working on. Technique number two: be generous with the amount of
time you think a certain task might take. Two weeks is the least anything
should take. The bubble economy created Ruby, but also an absent,
laid-back manager.

‘Whenever I’m programming Ruby,’ I said to Matz, ‘one of things
that I like the most are blocks. They feel kind of like home. Does that
make sense to you? Where did the idea to use blocks came from?’

Matz’s answer was quite involved; I had to concentrate on his reply.

‘Blocks came from the Lisp high-order functions. I like LISP very
much. In my university time LISP has some functions, like the map
functions, that apply the function to the list by which that function
is called, with each element of the list. This was my first inspiration.
The second inspiration was the language called CLU, from MIT,
which was invented in the 70s. It has the feature of iterators. In
CLU you can call some special function and iterate from the full
statement. In iterator, you can call the statement named “yield”,
which is inherited from CLU to Ruby. That element is assigned to
the loop variable, then the block is executed for more than one time,
or something like that. That pattern is sort of like Ruby. I combined
those two, the high-order function in LISP and the iterator in CLU,
and came up with this idea of the block. The block is rather like a
high-order function, but it works like the CLU iterator. However, the
block is not limited to the loop function. The blocks can be used in
anything, such as specifying callback or the scope of a DSL. Relaxing
the limitations of the iterator opened a broader application to that
kind of block abstraction.’

	 ﻿ Supreme be ings � 179

A Ruby block is a pattern. It’s what you used to sort your card deck.

card_deck.each do |card|
	 hearts.push(card) if card.suit == ‘Hearts’
	 clubs.push(card) if card.suit == ‘Clubs’
end

The Ruby block is everywhere: it’s the quintessential structure of the
language. It’s even hidden inside Ruby’s obfuscated ‘symbol to proc’
function, which translates the block structure into the ancient and
enigmatic ampersand (&). In their minds Rubyists know that whenever
they need it, the block will be there. As a pattern, the block is very
appealing. It helps you to focus your attention; it also gives you a sense of
tranquillity. Whatever you do, you know that between those two words,
from the do to the end, nothing else matters. The block is the program-
mable bridge that translates your thoughts into code.

Matz has highlighted, time and again, how blocks became the
master tool in every Rubyist tool set. It is the tool that rules them
all; the tool that allows you to do, essentially, whatever you want. It
created within the community this sense of being able to adapt and to
change Ruby, to make it bespoke to their needs. In 2019 Matz and two
other Ruby core team members went to a Japanese company’s office
in Bristol. A hackathon followed, in which developers tried to patch
Ruby, and people submitted a PR at the end of the day. TenderLove, of
course, submitted a joke PR. In a blog post about that event, Noah Gibbs
writes that ‘Matz feels that blocks are the greatest invention of Ruby (I
agree.)’.

Our coffees finally arrived, but Matz’s phone rang suddenly. He
answered, quickly hung up after a minute or two and apologised.

‘What was I saying?’ he asked.
‘I think you were about to tell a story,’ I replied.
‘It’s a kind of silly story. I was Ruby’s release manager until 10 or

15 years ago. But I’m not really good at releasing or managing things.
Soon after I made a release, we found out that I had forgotten some
important files. Files that needed to be in that package, or something
like that.’ Matz constantly adds ‘or something like that’ at the end of
his sentences. It makes him sound as though he does’t know what he
is talking about. Which in this case might be true, given that other
developers admit that he was a terrible release manager.

‘A few days later we have to release an even newer version or
something like that,’ Matz went on. ‘But meanwhile I had been fired by

180	 CODERSPEAK

the other core members as a release manager because I was doing a bad
job. And then a few years later, I wanted to commit something to Ruby,
but I forgot to check if the committed code had compiled well and it
had some errors. So some core team members complained to me and
said “OK, if you do these things, I will remove the commit bit from you”.
That’s a kind of silly story, but, you know, we make decisions that are
committed as a core team or even a creator – but it is a decision. We have
reasons before each decision and the core team values each decision and
each reason. So I can’t just say “OK, I am the creator, this is my language,
I will do whatever I want”. Even I can be removed from the community.’

‘Yes but, on the other hand, you did create the language. So what
happens when someone changes something in a way that you don’t like?’

‘That could happen. But first they must persuade me. In the past,
they have succeeded several times. But it’s OK because I’m a person, and
I don’t feel sad.’

‘But what about the recent changes about types? I know you don’t
like types, you’ve said it publicly before. You didn’t create Ruby to be
statically typed. How does that make you feel?’

‘Oh difficult, you know.’ Matz embarked on what would be a long
explanation, with three separate points, on how he’s not very happy
about the whole thing. Types were not his type. ‘I love seeing creative
things for Ruby, but at the same time I must look at programming for the
long time future. I’m a long time user of static typing.’

I was startled. ‘What do you mean?’
‘Well, I’ve been writing C my whole life. I understand the benefits

of static typing. For me, it’s OK to talk about static typing in Ruby. I
understand the desire to get the benefit from static typing for Ruby. But
at the same time, adding type declarations like other languages, PHP and
Python, could change the feel of the language, you know, the feeling of
programming, so I refuse to add type declarations’.

‘The first reason is that it would change the feeling of programming
in Ruby. The second reason is more about the community. In other
programming languages, we see the “typing police”. We would start to
see the typing police in the community: “OK, your gem does not have
type declarations. You have to have type declarations as a gem.” And
that’s kind of forceful, you know. It’s kind of bad for the community, I
think’.

‘The third reason is that, in the history of programming,
programming evolves in decades. Maybe 10, 15 years ago, dynamic
programming, such as PHP, Python, Ruby and Perl, was very popular.
And then 20 years before that, the most popular programming was C,

	 ﻿ Supreme be ings � 181

C++ and Pascal, you know, static type programming. Then even more
years ago, SmallTalk was popular and had no static typing.’

Matz took a sip of coffee and went on. ‘The dynamic and static, it
goes like this, like a pendulum. Thinking about the future, maybe in 10
or 20 years, we might have the languages without type declaration. The
compilers are very smart and they guess the intention of the programmers
and they have code completion; maybe they even have error detection
without type declaration. If this kind of future comes, we would not be
able to go into that camp because we already have type declarations,’
he explained. ‘We want to keep Ruby for that distant future, not for the,
you know, the present time benefit. It’s like a longer-term view based
on what’s happened in the past. And how it kind of fluctuates. Maybe
20 years later we will have better compilers without type declaration
because the pendulum goes the opposite way. And I want to keep Ruby
for that distant future.’

What Matz was saying was exactly what Neil had told me in
Brighton a few months before. Matz is, basically, a C programmer and
he knows about types. For the sake of future-proofing Ruby, he is not
very happy about the request to add types. On top of that, however, there
was also something else, perhaps something more important, which he
described as ‘the feel of Ruby’.

‘But what is the feel of the language that you want to keep for the
future?’ I asked.

‘Being concise. Ruby programs can be concise and as small as
possible. That makes you productive; it makes you feel like a strong
programmer. That is the feel, I think. For example, in 2004, creating web
applications with a website was a major task. It took days or even weeks,
but DHH showed, you know, it’s a matter of 15 minutes. That feeling is
Ruby, I think.’

The myth of the blog all over again. Rails had had a major impact in
Japan as well. DHH’s talk was an event that changed the Ruby community
forever. When Matz described his relationship with his first computer, he
compared it to his other toys. He had some control over the computer, as
he did with other toys, but not full control. Something similar happened
with the community. He had some control over it, but not full control.

‘Soon after I released Ruby, 200 members joined the mailing list
and some people start talking about Ruby, even outside of Japan.
People were asking me some questions about documentation in
English because, at the early stages, most of the documentation
was in Japanese so it kind of got out of control. And then there’s

182	 CODERSPEAK

the book writing and organising conferences and that’s kind of out
of my control too. And then people are forming the community, it’s
getting bigger and bigger, and then some years later Ruby on Rails
came along. Then, you know, the size of the communities kind of
exploded. That’s far beyond my expectations.’

‘I wanted to ask you something a little bit more personal, Matz, if I may.
It’s about religion.’

‘It’s OK, we can talk about that. My parents converted to Christianity
some 50 years ago. I was born into a Christian family. Almost all my life
I’ve been a Christian, a minority,’ he said.

‘I can imagine that might not have been easy.’
‘I was probably the only Christian in my school. Most people in

Japan visit temples or shrines for sightseeing. They want to experience
a religious atmosphere, but they probably don’t have the belief in their
heart. If you ask most people, they don’t believe in religion, they don’t
believe in God. Most Japanese people don’t deny the existence of the
Supreme Being, but they don’t strongly believe in this either. That’s a big
difference. Being a believer changes a lot.’

Technology and religion are not topics that usually go together,
and I was surprised to hear a major computer scientist talk about his
beliefs in a Supreme Being. Matz was frank and honest. It was clear
to me, at that moment, that religion might be one of the reasons why
Rubyists describe Matz as ‘nice’. I wondered how much of his religious
background influenced his view of the community.

‘My religion has its own community,’ he told me. ‘We have congre-
gations and church members, all with very different backgrounds. Like
the Ruby community, we sometimes see conflicts and misunderstand-
ings. Both have complex relationships, even though people try to be
good. That’s a similarity between them, and I’ve learned a lot from the
religious community on how to handle that.’

‘I spend most of my time as a programmer,’ Matz went on. ‘I talk to
technology people, I work with computers, and with the people behind
the computer. In the Ruby community, I’m the kind of leader. I have a
position that I can say whatever I want to. I’m in a strong position in the
community. But in the religious community, they don’t care about that.
They don’t care about me being the leader of the other community. No.
I’m just a normal member. And that humbles me. Sometimes a member
of the Ruby community admires me, and I understand that I’m a very
important person in the Ruby community. However, I’m also a mere
human. Being a mere human is a kind of an important balance to me.

	 ﻿ Supreme be ings � 183

That kind of balance is pretty important, to act as a good member of the
community, so that I can avoid being a dictator.’

Matz explained to me that his congregation had influenced him
to try and be a good person, a good leader, a good member of the
community. And that behaviour results from the difference in how he is
positioned within each community. He is the leader of one; he is nothing
but a member of the other. So he is not only a benevolent dictator, but
a humble and religious one. A tamed dictator who has been put in place
by the Supreme Being. A believer. And a believer in technology as well.
One who finds cuteness in a computer. One who is OK with Ruby being
a small community.

‘Japan is not a country where most people are religious,’ Matz
acknowledged. ‘The people are inspired by Buddhism a little bit, maybe
they have a membership in the Buddhist temple, but they’re not very
enthusiastic about religion. And for a Christian, especially the Christian
Mormon – we prefer to call it Vida, but anyway – we are a minority. In
Japan we are very, very, very much a minority.’

‘So, you really understand what it feels like to be a minority?’
‘I’ve been a minority for all my life. And I’ve learned not to be afraid

of being a minority. In the beginning, probably no one knows about
Ruby. No one knew about Ruby until Rails. Very few people used Ruby
for their jobs. But then there was the Rails boom in 2012 or something.
And the community grew a lot. And now people come to say that Ruby
community is decreasing. That Ruby is dead. But we are not dead. Ruby
is just going back to being a minority again. For me, that is quite OK. The
minority is kind of, you know, part of myself.’

	 ﻿ The end � 185

18
The end

‘I am tired of hearing that Ruby is dead,’ someone posted on Reddit in
2020.1 The post mentioned an article that pinpointed the beginning
of Ruby’s decline to between 2015 and 2016. If you were around the
community at that time, you know that that was when Node came round.
Node, the JavaScript back-end, was the straw that almost broke Ruby’s
back. It was the moment when a lot of people left the community. A Ruby
developer told me that

When JavaScript developers really started trusting Node, that’s
when we started losing people. Suddenly people didn’t need to
know JavaScript and a back-end language like Ruby: they could
just use JavaScript for both.

By then JavaScript had already dominated front-end technologies; now
it was conquering back-end ones too. Suddenly, you didn’t need to know
two languages to work on a web application. It was a stark reminder that
code doesn’t last forever.

I was on holiday in August 2020 when my phone started to beep.
‘Hi everyone,’ started a message from Amina, an engineer at

Upstream. ‘This is a group to talk about the redundancies at Upstream.’
‘Oh, God,’ I thought.
‘As most of you know,’ the message continued, ‘a few of us have

been let go. You might not have received any communication yet.
Redundancies, again!!!’

I panicked and started checking my email, but there was nothing
there. Maybe they were waiting for me to come back? Surely that would

186	 CODERSPEAK

be a bit cruel? God knows what people might think. I was only a junior
developer, so definitely in the firing line. Trying to move away from the
panic, I reached out to Charles via WhatsApp to see what was going on.

‘Hey Charles, I just heard about redundancies.’
‘Hey Gui. Yeah, it’s crap, but I’ll be all right.’
‘Wait, you’ve been let go?’
‘Yes.’
‘Shit, sorry to hear that.’
‘Oh, it’s fine. I’ll be fine. I’m worried about other people.’
‘Like?’
‘I’m worried about Shazia really. She’s only been with us for six

months. And it was her first job. It will be hard for her to get another job
so soon.’

‘You think?’
‘I think so. The second job is harder than the first one. Especially if

you need to explain why you were made redundant so soon.’
‘I hope she’ll be OK. Are you OK?’
‘I wasn’t expecting it, but I’m going to be OK. I’ll find something

else.’
Charles had worked at Upstream for four years. He was the principal

engineer. He knew everything about the codebase, he knew everyone in
the company. I honestly thought he would be devastated.

‘Charles, do you know if I have been made redundant?’ I texted
him.

‘Have you been contacted by anyone?’
‘No.’
‘I wouldn’t worry about it, then.’
‘But what if they are waiting for me to come back from holidays?’
We stopped texting for a while. I went to sleep without any

certainty. Not a great night. The next morning I found Ivan on Slack and
asked him to call me when he had a chance. He was the CTO – he had to
know something.

‘Hey Gui,’ Ivan sounded a bit too cheerful on the phone.
‘Hi … how are you?’
‘Good. You?’
Well …’
‘So, you’ve heard, hm?’
‘I have.’
‘Who from?’
What a weird question. I mumbled something but didn’t say

anything about the WhatsApp group.

	 ﻿ The end � 187

‘Ivan, have I been made redundant as well?’
‘No. Don’t worry, you’re good for now.’
‘For now?!?!?’ I thought – but again didn’t say anything.
‘The fact is,’ Ivan continued, ‘you are, how can I put it, you are very

cheap.’
What was that supposed to mean?
‘You are quite efficient, so you are very cheap for what you do.’
Weird, again. Very cheap for what I do? Is that supposed to be a

compliment? Should I be asking for a pay rise?
‘Yeah, that’s it. You’re still here. Have a good rest of your holidays

and I’ll see you when you get back. Bye!’
After the call, I followed the chat on the WhatsApp redundancy

group. It turned out that some 20 per cent of the company had been
let go. Proportionally, the tech team was the most affected. The higher
salaries of the team, compared to the rest of the company, made it the
most logical place to cut. The redundancies also included some of the
outsourced devs from Ukraine. The general feeling in the WhatsApp
group was one of doubt about the company’s future. People wondered
if periodic redundancies such as this would become a feature, not a bug.
After all, this was the third round of redundancies in three years, always
in August, after the (now) traditional slump in sales during the summer.

Upstream’s mission was to tackle climate change in the food retail
sector. The majority of the developers in the company not only believed
in this mission, but they had also joined the company because of it.
People like Charles, Akira and Shazia. People like me.

‘I mean, so much for trying to change the system, right?’ Marie told
me on a call a few weeks after the redundancies. She was also ‘still there’,
but was getting more and more pissed off with the way things were
going. ‘It’s a bad omen,’ she continued, ‘when you start making people
redundant regularly. There’s clearly something going wrong.’

‘It sounds like we’re veering towards the end,’ I added.
‘All of that code, just dead!’ Marie cried.
A cry that echoed the Ruby community’s doubts about the longevity

of their language. I never thought about code that way, about the
possibilities of code no longer being used, of code eventually dying.
There are old and recent articles on Quora, posts on dev.to and even
an article on Forbes wondering if Ruby is dead or dying. In 2010 one of
these questions got a reply saying that ‘Ruby on Rails was a Hype. That
means a lot of people jumped on the bandwagon because that is what
they do: jumping on bandwagons (for a living).’2 This response went
on to explain the influence of Rails and Ruby in other frameworks and

188	 CODERSPEAK

languages, before concluding on a happier note: ‘Rails is not just hype.
It is a fantastic framework. With a still very active community around it’.

Reflecting on this question years later, the author of the answer
writes that large software companies that chose Ruby are all from the
2000s.3 Companies like Upstream. A historian of computing wrote that
‘people seem to have an inordinate amount of interest in whether or not
Ruby (and Ruby on Rails) are dying’. Certainly ten years is a long time to
be dying. Ruby (and Rails) peaked around 2012 and has been in slow but
steady decline ever since.

What does it really mean to say that a programming language is
‘dying’? FORTRAN, created in 1958, is definitely not a popular language
any more. You wouldn’t recommend it to a programmer today. For a
newbie, FORTRAN died a long time ago. Still, there are jobs in the aviation
and nuclear industries that still hire FORTRAN developers. As John, a
FORTRAN programmer I met at University College London (UCL), said
to me: ‘Just remember, every time you watch the weather forecast in the
news, it’s FORTRAN code running them.’ In other words, FORTRAN may
have ‘died’ a long time ago, but it’s still around.

More than a question of ‘should I learn this tech or not?’, tales about
dying languages and frameworks are just stories that programmers like
to tell. Horror stories. Stories they tell around the campfire. Moments
in which they share passages from their favourite books: ‘The death of
a programmer’ by Donald Knuth or ‘Haskellstein’ by Sandi Metz. The
sort of books programmers should be writing. To be tired of hearing
that some technology is dead, like that Reddit thread, might just mean
that the community has moved on to something else. ‘Ruby isn’t dying,’
wrote someone on that thread. ‘It’s maturing. It’s just not the poster child
for web development any more, and that’s OK.’ Maturity is a big word
in the Ruby community these days. Depending on who you talk too, it
means things like ‘we like types now’ or ‘we should focus on speed’ or ‘it’s
not a community of hobbyists any more’. Whatever the specific point, it
certainly signals that Ruby has reached a plateau. A plateau on which
Ruby and Rails coalesced to create a community that settled down. It
found a nice house in the computational suburbs and had a couple of
children processors.

‘The Ruby community was not destined to be enormous, really,’
Noah Gibbs told me during one of our chats. He had long hair and beard,
a dark grey velvet robe and a podcaster microphone. It looked as if Noah
was adapting quite well to a life with three kids and a partner in a country
that he recently moved to. ‘The Ruby community was never going to be

	 ﻿ The end � 189

huge,’ he continued. ‘Truly, too many things that it does are too weird –
not just in the sense of not being like other programming languages, but
in the sense that there are good reasons other programming languages
don’t do it that way.’

‘What do you mean?’
‘It’s so weird to me talking to people who have really only written

Ruby. Ruby is a mature enough, large enough community at this point
that I can talk to people that have never programmed in anything else.’

‘Why is it so weird?’
‘I’m an old guy. I’ve been through a lot of different languages. I did a

lot of C. And I love Ruby, it’s wonderful. But it will always feel a bit weird,
because I remember all these other things.’

‘And Ruby is not like those other languages …’
‘Oh not, not at all. I mean, programming is programming is

programming. It’s all the same. But that said, Ruby is very weird.’
‘Give me an example, Noah.’
‘When I’m talking to these young Ruby people and I say, “What we

do around here, where we dynamically generate a whole set of classes
shaped like your database by reading your database schema and then
just dumping it into your program, there are lots of Java people that
would tell you that’s insane”. And people who have never done anything
but Ruby go, “What, really? Doesn’t everybody do that?” No, my sweet
summer child, everyone does not do that.’

I left Upstream in July 2021. It was time to end the research fieldwork
period. It was also a month before the next predicted round of redundan-
cies, which fortunately didn’t happen that year. It was hard to leave. I
immediately missed coding with the people who I’d been coding with for
such a long time. But I now had to focus on writing. I kept in touch with
a few of the developers who had left Upstream in the past year or so, and
also with the ones who stayed. A few of them were part of the book club,
which eventually transitioned from a solidarity group among Upstream
developers into a brilliant group of friends.

A little more than a year after that round of redundancies in the
summer of 2020, Upstream closed shop. Jean and Lindsay were still
working there and were a bit shocked. They’d stuck around until the
end.

‘It’s not great,’ Jean told me, ‘to see all that code just never being used
again.’

‘Well, we did get paid to write it,’ I replied.

190	 CODERSPEAK

‘Sure we did. But it’s still a bit strange. To think that suddenly the
machines have been turned off and it just doesn’t run any more.’

‘I still have the app on my phone though.’
‘Can you buy anything with it?’
‘Nope.’
‘Precisely my point. Code is just code if it keeps running, otherwise

it’s just … it’s just, I don’t know.’
Weird or not weird, many companies have chosen Ruby as their

language. A language that started out as a hobbyist language, that
developers used on their side projects. Then Rails came and used all
the meta-programming possible to make the community grow, expand,
to inspire companies to use it. Slowly the weird and useless side of
hobbyist Ruby started to die down. It matured, evolved into a language
community that needs to be aware of efficiency. Many companies
did, and still do, rely on Ruby to function. Many of them are massive,
important companies in the web’s ecosystem. Companies that use Ruby,
every day. And that code still needs maintaining – at least until it doesn’t.

Is coderspeak still a language if no one is there to speak it?

Notes

1	 veravash. ‘I am tired of hearing that Ruby is dead’.
2	 iljkj. ‘Is ruby on rails (or at least the community) dying?’
3	 berkes. ‘The waning of Ruby and Rails’.

	 ﻿ Glossary � 191

Glossary

Active-support ‘Active Support is a collection of utility classes and
standard library extensions that were found useful for the Rails
framework. These additions reside in this package so they can be loaded
as needed in Ruby projects outside of Rails.’1

back-end The data layer of an application, where the logic and the
operational aspects reside. Always hidden from the user, it manipulates
data, makes calls to external applications and packages all the information
needed for the presentation layer, the front-end. Sometimes spelled as
back end or backend.

BASIC Beginner’s All-purpose Symbolic Instruction Code, created at
Dartmouth College in 1964. Very influential and extremely important
in popularising microcomputers in the 1970s. The British Broadcasting
Corporation (BBC) had its own version of it.

C Perhaps the most influential programming language of all time.
Denis Ritchie created it in 1972 while working at Bell Labs. The C
Programming Language, a book written by Ritchie and Brian Kernighan
in 1978, set the standards on how to write user manuals for computing
languages.

C++ C with classes.

COBOL Computer-Business Orientated Language, created in 1959,
partly based on FLOW-MATIC.

Elixir The most famous language to emerge from the Ruby community,
Elixir is the brainchild of José Valim. After making massive contributions
to Rails, José created a new language on top of Erlang – the programming
language devised by the telephone company Ericsson. It’s a concurrent,
fast and reliable modern programming language.

FLOW-MATIC A language to process data. It was directly inspired by the
English language and designed by Grace Hopper in 1955.

192	 CODERSPEAK

FORTRAN Also known as ‘Formula Translating System’, FORTRAN
appeared in 1957 at the offices of the International Business Machines
Corporation (IBM). FORTRAN is said to be the language that started the
whole business of thinking about programming as some sort of magic or
devious art.

front-end User-facing, presentation layer of an application; the actual
interface that a user interacts with by clicking, touching, typing or
dragging. Usually connected to a back-end. Sometimes spelled as front
end or frontend.

Go Programming language created by Robert Griesemer, Rob Pike
and Ken Thompson in 2009 while working at Google. Looks like the C
programming language, but deals better with memory management.
Often referred to as Golang.

Java A programming language, consistently ranked as one of
the most popular for the past 20 years. A nightmare to write in,
according to many Rubyists who abandoned it in the early 2000s.
High performance.

JavaScript It is said that JavaScript is the most ubiquitous
programming language on the internet. It first appeared in 1995 as a
way of injecting programming logic into webpages that had previously
mostly used HTML and CSS. Designed by Brendan Eich while working
at Netscape – one of the earliest internet browsers.

keyword Words that a programming language reserves for itself, for
instance ‘true’, ‘false’, ‘class’ or ‘fun’. A program cannot use those words
for anything other than their intended original meaning.

Kotlin A language that wishes to be the new Java. Chosen by Google as
the preferred language for the development of Android applications, it
has consistently gained a lot of traction.

library, software library A bundle of computer code that can be used by
other computer programs. It is composed in a versatile way so that many
different and unrelated programs can use it. For instance, a library that
has code to manipulate images can be used by various social media appli-
cations. A library is often bound to a specific programming language,
such as Ruby, C, Swift, etc.

	 ﻿ Glossary � 193

Lisp LIS(t) P(rocessing) Not just a language, but a family of them. First
appeared in 1960 and has influenced everything in computing ever since.
Loads of brackets everywhere. People say that once you’ve learned L, the
world makes more sense.

make Created by Stuart Feldman in 1976 at Bell Labs, make is a tool to
build an executable program from source code.

Perl High-level, general purpose programming language. Loved by
hackers for its capacity to be very synthetical. First released in 1987.
Larry Wall, the language’s designer and developer, has been a huge
influence in how to steer programming communities.

Php As of July 2023, ‘php is used by 77.5 per cent of all the websites
whose server-side programming language we know’.2

proc A proc is short for ‘Procedure’ – meaning a record that stores a
function together with an environment. This record can be sent to other
functions, where it can be executed. It originated in the Lisp language,
based on Alonzo Church’s lambda calculus.

Python Ruby’s archrival programming language, created by Guido Van
Rossum. He calls himself ‘Python’s Benevolent Dictator for Life’ – an
influential ‘style’ of community governance in which a big man makes
most decisions or has veto power on everything but doesn’t often exercise
it. A big chasm almost split its community in two when version 3 of the
language came out: it almost killed the language. Like Ruby, Python has
an approachable syntax.

Rails Ruby on Rails (usually shortened to just ‘Rails’) is a web framework
built with Ruby. It provides tools and commands to help you build appli-
cations that will have their main interface on the internet.

React A collection of software libraries used to create user interfaces. It is
written in JavaScript and it is, currently (2023), one of the most common
web frameworks used to build applications on the internet. Sponsored
and developed by Meta (the Facebook company).

Slack A modern messaging app, fruit of Silicon Valley. It should’ve
replaced emails, a bit like CDs should’ve replaced vinyl. CDs are not here
any more, so there you go.

194	 CODERSPEAK

Smalltalk Created by a team of visionaries working at the Xerox Palo
Alto Research Centre in 1972. Truly object-oriented.

SQL Structured Query Language, the main language used for querying
databases. SQL was invented in the early 1970s.

Swift Designed by Apple and released in 2014, Swift is one of the
youngest languages to have dominated the world of apps. It replaced
Objective-C in the development of applications for the family of iOS
devices such as the iPhone and the iPad.

web framework A collection of software libraries that provides an
easy to use and systematised way of building an application to run on a
browser. It allows programmers to get something up and running very
quickly.

Notes

1	 Active-Support. ‘README.rdoc’.
2	 W3Usage. ‘Php Usage’.

	 ﻿ Bi bl iography � 195

Bibliography

_why the lucky stiff. ‘why’s (poignant) guide to Ruby’. Brighton: Consonance Press, 2020.
_why the lucky stiff. ‘Time.now.is_a? MagicTime’. Accessed on 31 October 2022. https://www.

youtube.com/watch?v=HNsQxI2PdAI.
_why the lucky stiff. ‘why’s (poignant) guide to Ruby, chapter Six: Downtown’. 18 May 2005.

Accessed on 31 October 2022. https://web.archive.org/web/20160625111758/http://
rubyforge.org/pipermail/poignant-stiffs/2005-May.txt.

/DATA. Developer Nation Report 2020. 11 October 2020. Accessed 31 October 2022. https://
www.developernation.net/developer-reports/de20.

Active-Support. ‘README.rdoc’. Accessed on 31 October 2022. https://github.com/rails/rails/
tree/main/activesupport.

Amrute, Sareeta. Encoding Race, Encoding Class: Indian IT workers in Berlin. Durham, NC: Duke
University Press, 2016.

Arbox. ‘NLP-with-Ruby’. Accessed on 31 October 2022. https://github.com/arbox/nlp-with-ruby.
Austin, J. L. How to Do Things with Words. Oxford: Clarendon Press, 1962.
berkes. ‘The waning of Ruby and Rails’. Accessed on 31 October 2022. https://berk.e​s​/​

2022/03/08/the-waning-of-ruby-and-rails/.
Black, Maurice. ‘The art of computer programming’. PhD thesis. University of Michigan, 2001.
Butler, Judith. Gender Trouble: Feminism and the subversion of identity. New York: Routledge, 1990.
Ceruzzi, Paul. Computing: A concise history. Cambridge, MA: MIT Press, 2012.
Coleman, Gabriella. Coding Freedom: The ethics and aesthetics of hacking. Princeton, NJ: Princeton

University Press, 2013.
Coleman, Gabriella and Alex Golub. ‘Hacker practice: Moral genres and the cultural articulation

of liberalism’, Anthropological Theory 8 (3) (2008): 255–77. Accessed on 31 October 2022.
doi:10.1177/1463499608093814.

Conway, Melvin. ‘How do committees invent?’, Datamation 14 (5) (1968): 28–31.
Elmendorf, Dirk. ‘RubyGems’, Linux Journal, 27 May 2006. Accessed on 31 October 2022. https://

www.linuxjournal.com/article/8967.
Endoh, Yusuke (mame). ‘Quine Relay’. Accessed on 31 October 2022. https://github.com/mame/

quine-relay.
Esmenger, Nathan. ‘Making programming masculine’. In Gender Codes: Why women are leaving

computing, edited by Thomas J. Misa, 115–41. Hoboken, NJ: The IEEE Computer Society,
2010.

Esolangs. ‘Piet’. Accessed on 31 October 2022. https://esolangs.org/wiki/Piet.
Famished-Tiger. ‘Rley’. Accessed on 31 October 2022. https://github.com/famished-tiger/Rley.
Flanagan, David and Yukihiro Matsumoto. The Ruby Programming Language. Sebastopol, CA:

O’Reilly, 2008.
Fowler, Martin. ‘Microservices. A definition of this new architectural term’, 25 March 2014.

Accessed on 31 October 2022. https://martinfowler.com/articles/microservices.html.
Fowler, Martin. ‘Rake’, 25 March 2014. Accessed on 31 October 2022. https://martinfowler.com/

articles/rake.html.
Fowler, Martin. Refactoring: Improving the design of existing code (2nd edition). Boston, MA:

Addison-Wesley, 2018.
Graham, Paul. Hackers & Painters: Big ideas from the computer age. Sebastopol, CA: O’Reilly Media,

2010.
Gregory, Chris. Gifts and Commodities. Chicago, IL: Hau Books, 2015.
Grimm, Avdi. ‘Confident Ruby’. Author’s edition, 2013.
Heinemeier-Henson, David. ‘Ruby on Rails demo’, 8 November 2005. Accessed on 31 October

2022. https://www.youtube.com/watch?v=Gzj723LkRJY.
Heurich, Guilherme Orlandini. ‘Language Automata: The pervasiveness of English in computer

programming’, unpublished.

https://www.youtube.com/watch?v=HNsQxI2PdAI
https://www.youtube.com/watch?v=HNsQxI2PdAI
https://web.archive.org/web/20160625111758/http://rubyforge.org/pipermail/poignant-stiffs/2005-May.txt
https://web.archive.org/web/20160625111758/http://rubyforge.org/pipermail/poignant-stiffs/2005-May.txt
https://www.developernation.net/developer-reports/de20
https://www.developernation.net/developer-reports/de20
https://github.com/rails/rails/tree/main/activesupport
https://github.com/rails/rails/tree/main/activesupport
https://github.com/arbox/nlp-with-ruby
https://berk.es/2022/03/08/the-waning-of-ruby-and-rails/
https://berk.es/2022/03/08/the-waning-of-ruby-and-rails/
https://www.linuxjournal.com/article/8967
https://www.linuxjournal.com/article/8967
https://github.com/mame/quine-relay
https://github.com/mame/quine-relay
https://esolangs.org/wiki/Piet
https://github.com/famished-tiger/Rley
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/rake.html
https://martinfowler.com/articles/rake.html
https://www.youtube.com/watch?v=Gzj723LkRJY

196	 CODERSPEAK

Heurich, Guilherme Orlandini. ‘Your random Chomsky’, Accessed on 31 October 2022. https://
your-random-chomsky.herokuapp.com/.

Hicks, Mar. Programming Inequality: How Britain discarded women technologists and lost its edge in
computing. Cambridge, MA: MIT Press, 2018.

Himanen, Peka. The Hacker Ethic and the Spirit of the Information Age. New York: Penguin, 2001.
Hoff, Todd. ‘LinkedIn Moved From Rails to Node’, 4 October 2012. Accessed on 31 October 2022.

http://highscalability.com/blog/2012/10/4/linkedin-moved-from-rails-to-node-27-servers-
cut-and-up-to-2.html.

Hopper, Grace. ‘Keynote address at the Association for Computing Machinery SIG PLAN
History of Programming Languages (HOPL) conference (1978)’. In History of Programming
Languages, edited by Richard L. Wexelblat. New York: Academic Press, 1981.

iljkj. ‘Is ruby on rails (or at least the community) dying?’ Accessed on 31 October 2022.
https://stackoverflow.com/questions/3794270/is-ruby​-on​-rai​ls​-or​-at​-lea​st​-the​-comm​unity​-​
d​ying/3794316#3794316.

INTERCAL. Accessed on 31 October 2022. https://en.wikipedia.org/wiki/INTERCAL.
IRC. ‘14 May 2013 logs’. Accessed on 31 October 2022. https://viewsourcecode.org/why/

CLOSURE/ircLog.html.
Irvine, Judith and Susan Gal. Signs of Difference: Language and ideology in social life. Cambridge:

Cambridge University Press, 2019.
Ishitsuka, Keiju. ‘[ruby-dev:5173] Re: to_i,to_s の素朴な疑問’, 12 February 1999. Accessed on

31 October 2022. https://web.archive.org/web/20220516231050/http://blade.nagaokaut.
ac.jp/cgi-bin/scat.rb/ruby/ruby-dev/5173.

Jargon File. Accessed on 31 October 2022. https://www.catb.org/jargon/.
Kernighan, Brian. UNIX: A history and a memoir. Kindle Direct Publishing, 2020.
Kittler, Friedrich. ‘There is no software’. In The Truth of the Technological World: Essays on the

genealogy of presence, edited by Friedrich Kittler, 219–29. Stanford, CA: Stanford University
Press, 1992.

Knuth, Donald. ‘Computer programming as an art’. 1974 Turing Award Lecture, Communications
of the ACM 17 (12) (1974), 667–73.

Knuth, Donald. ‘Literate programming’, The Computer Journal 27, 1984.
Kroskrity, Paul. ‘Language ideologies’. In A Companion to Linguistic Anthropology, edited by

Alessandro Duranti, 496–517. Malden, MA & Oxford: Blackwell, 2004.
Kurtz, Thomas. ‘BASIC’. In History of Programming Languages, edited by Richard L. Wexelblat.

New York: Academic Press, 1981.
Lawrence, Halcyon. ‘Siri disciplines’. In Your Computer Is On Fire, edited by Thomas S. Mullaney,

Benjamin Peters, Mar Hicks and Kavita Phillip. Cambridge, MA: MIT Press, 2021.
Levy, Steven. Hackers: Heroes of the computer revolution. Penguin: London, 1998.
Lowrey, Annie. ‘What happened when one of the world’s most unusual, and beloved,

computer programmers disappeared?’, Slate, 15 March 2012. Accessed on 31 October
2022. http://www.slate.com/articles/technology/technology/2012/03/ruby_ruby_on_
rails_and__why_the_disappearance_of_one_of_the_world_s_most_beloved_computer_
programmers_.html?via=gdpr-consent&Via=gdpr-consent#return.

LRUG. ‘January 2020 meeting’. Accessed on 31 October 2022. https://lrug.org/mee​tin​gs​/​20​20​/​
#january-2020-meeting.

Marino, Mark. FLOW-MATIC. Critical Code Studies. Cambridge, MA: MIT Press, 2020.
Martin, Robert. Clean Code. Upper Saddle River, NJ: O’Reilly, 2009.
Matz, Yukihiro Matsumoto. ‘[ruby-talk:00382] Re: history of ruby’, 4 June 1999. Accessed 31

October 2022. https://web.archive.org/web/20220516220808/http://blade.nagaokaut.
ac.jp/cgi-bin/scat.rb/ruby/ruby-talk/382.

Matz, Yukihiro Matsumoto. ‘The man who gave us Ruby’, interview, June 2002. Accessed 31
October 2022. https://www.japaninc.com/article.php?articleID=828.

Matsumoto, Yukihiro. ‘Treating code as an essay’. In Beautiful Code: Leading programmers
explain how they think, edited by Andy Oram and Greg Wilson, 477–81. Sebastopol, CA:
O’Reilly, 2008.

Mauss, Marcel. The Gift: The form and reason for exchange in archaic societies. Routledge: London,
1990.

McPherson, Tara. ‘U.S. operating systems at mid-century’. In Race after the Internet, edited by Lisa
Nakamura and Peter Chow-White. London: Routledge, 2012.

https://your-random-chomsky.herokuapp.com/
https://your-random-chomsky.herokuapp.com/
http://highscalability.com/blog/2012/10/4/linkedin-moved-from-rails-to-node-27-servers-cut-and-up-to-2.html
http://highscalability.com/blog/2012/10/4/linkedin-moved-from-rails-to-node-27-servers-cut-and-up-to-2.html
https://stackoverflow.com/questions/3794270/is-ruby-on-rails-or-at-least-the-community-dying/3794316#3794316
https://stackoverflow.com/questions/3794270/is-ruby-on-rails-or-at-least-the-community-dying/3794316#3794316
https://en.wikipedia.org/wiki/INTERCAL
https://viewsourcecode.org/why/CLOSURE/ircLog.html
https://viewsourcecode.org/why/CLOSURE/ircLog.html
https://web.archive.org/web/20220516231050/http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-dev/5173
https://web.archive.org/web/20220516231050/http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-dev/5173
https://www.catb.org/jargon/
http://www.slate.com/articles/technology/technology/2012/03/ruby_ruby_on_rails_and__why_the_disappearance_of_one_of_the_world_s_most_beloved_computer_programmers_.html?via=gdpr-consent&Via=gdpr-consent#return
http://www.slate.com/articles/technology/technology/2012/03/ruby_ruby_on_rails_and__why_the_disappearance_of_one_of_the_world_s_most_beloved_computer_programmers_.html?via=gdpr-consent&Via=gdpr-consent#return
http://www.slate.com/articles/technology/technology/2012/03/ruby_ruby_on_rails_and__why_the_disappearance_of_one_of_the_world_s_most_beloved_computer_programmers_.html?via=gdpr-consent&Via=gdpr-consent#return
https://lrug.org/meetings/2020/#january-2020-meeting
https://lrug.org/meetings/2020/#january-2020-meeting
https://web.archive.org/web/20220516220808/http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-talk/382
https://web.archive.org/web/20220516220808/http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-talk/382
https://www.japaninc.com/article.php?articleID=828

	 ﻿ Bi bl iography � 197

Metz, Sandi, Katrina Owen and T. J. Stankus. 99 Bottles of OOP: A practical guide to object-oriented
design. Durham, NC: Potato Canyon Software, 2020.

Montfort, Nick. ‘Obfuscated code’. In Software Studies: A lexicon, edited by Matthew Fuller.
Cambridge, MA: MIT Press, 2008.

Nasser, Ramsey. ‘A personal computer for children of all cultures’, Decolonising the Digital:
Technology as Cultural Practice, 21–36. Sydney: Tactical Space Lab, 2018.

 Nasser, Ramsey. ‘The قلب Programming Language’. Accessed on 31 October 2022. https://github.
com/nasser/—.

O’Reilly, Tim. What Is Web 2.0. Accessed on 31 October 2022.
Perry, Grayson. The Descent of Man. London: Penguin, 2012.
Petzold, Charles. Code: The hidden language of computer hardware and software. Washington, DC:

Microsoft, 2000.
Petzold, Charles. The Annotated Turing. London: Wiley, 2008.
Petzold, Charles. ‘On-the-fly code generation for image processing’. In Beautiful Code: Leading

programmers explain how they think, edited by Andy Oram and Greg Wilson. Sebastopol, CA:
O’Reilly, 2008.

Quetteville, Harry de. ‘Teaching tech: How coding moved from the bedroom to the classroom’,
The Telegraph, 20 March 2018. Accessed 31 October 2022. https://www.telegraph.co.uk/
technology/teaching-tech/.

Rails. ‘Add Symbol#to_proc, which allows for, e.g. [:foo, :bar].map(&:to_s)’. Accessed on 31
October 2022. https://github.com/rails/rails/commit/69bf71f5e9b537f88acc0d4492a0573
36e7305d1.

Raymond, Eric S. The Cathedral and the Bazaar: Musings on Linux and open source by an
accidental revolutionary. Sebastopol, CA: O’Reilly Media, 1999.

Remington Rand Univac Corporation. ‘Introducing a new language for automatic programming:
UNIVAC FLOW-MATIC’, brochure, 1957. Accessed on 31 October 2022. http://archive.computer​
history.org/resources/text/Remington_Rand/Univac.Flowmatic.1957.102646140.pdf.

Ruby World Conference. RWC2020 基調講演 2, David Heinemeier Hanson 英語. 9 February 2021.
Accessed on 31 October 2022. https://www.youtube.com/watch?v=QycKZT0Spfg.

Ruby. ‘object.c (sym_to_proc): imported Symbol#to_proc from ActiveSupprot’. Accessed on 31
October 2022. https://github.com/ruby/ruby/commit/ac4d6​ddfa3219c212d2865ed600a0
ab568d5f0b5.

Rubygems. ‘Stats’. Accessed on 31 October 2022. https://rubygems.org/stats.
Rubygems. ‘Rake-versions’. Accessed on 31 October 2022. https://rubygems.org/gems/rake/

versions.
Sammet, Jean. ‘General views on COBOL’, Annual Review in Automatic Programming 2 (1961),

345–9.
Sammet, Jean. ‘History of IBM’s technical contributions to high level programming languages’,

IBM Journal of Research and Development, 25 (5) (1981), 520–34.
Sasada, Koichi. ‘Introduction of MRI development culture’, Ruby Hack Challenge. Accessed on 31

October 2022. https://github.com/ko1/rubyhackchallenge/blob/master/EN/1_cult​ure.md.
Schierbeck, Daniel. ‘Symbol#to_proc is just so beautiful’, (a) Ruby-talk mailing list, 20 April 2006.

Accessed on 31 October 2022. https://web.archive.org/web/20220516104938/http://
blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-talk/189423.

Schierbeck, Daniel. ‘Symbol#to_proc is just so beautiful’, (b) Ruby-talk mailing list, 20 April 2006.
Accessed on 31 October 2022. https://web.archive.org/web/20200814190729/http://
blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-talk/189468.

Schneem, Richard. ‘The room where it happens: How Rails gets made’, blog post. Accessed
on 31 October 2022. https://schneems.com/2021/05/12/the​-ro​om​-wh​ere​-it​-hap​pens​-​h​
ow-rails-gets-made/.

Schultz, Eric. ‘The effect of last week on Ruby on Rails’, Ruby on Rails discussion. Accessed on
31 October 2022. https://discuss.rubyonrails.org/t/effect-of-the-last-week-on-rub​y-on-​r​
ails/77702.

Schwaderer, Nick (@schwad_rb). Accessed on 31 October 2022. https://twitter.com/schwad_rb/
status/1520021704847855617.

Shepelev, Victor (@zverok). ‘A long rant about Ruby, its value, its innovations and its (sad)
fate’, 25 February 2021. Accessed on 31 October 2022. https://twitter.com/zverok/status/​
1365014133180141578.

https://github.com/nasser/-
https://github.com/nasser/-
https://www.telegraph.co.uk/technology/teaching-tech/
https://www.telegraph.co.uk/technology/teaching-tech/
https://github.com/rails/rails/commit/69bf71f5e9b537f88acc0d4492a057336e7305d1
https://github.com/rails/rails/commit/69bf71f5e9b537f88acc0d4492a057336e7305d1
http://archive.computerhistory.org/resources/text/Remington_Rand/Univac.Flowmatic.1957.102646140.pdf
http://archive.computerhistory.org/resources/text/Remington_Rand/Univac.Flowmatic.1957.102646140.pdf
https://www.youtube.com/watch?v=QycKZT0Spfg
https://github.com/ruby/ruby/commit/ac4d6ddfa3219c212d2865ed600a0ab568d5f0b5
https://github.com/ruby/ruby/commit/ac4d6ddfa3219c212d2865ed600a0ab568d5f0b5
https://rubygems.org/stats
https://rubygems.org/gems/rake/versions
https://rubygems.org/gems/rake/versions
https://github.com/ko1/rubyhackchallenge/blob/master/EN/1_culture.md
https://web.archive.org/web/20220516104938/http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-talk/189423
https://web.archive.org/web/20220516104938/http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-talk/189423
https://web.archive.org/web/20200814190729/http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-talk/189468
https://web.archive.org/web/20200814190729/http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-talk/189468
https://schneems.com/2021/05/12/the-room-where-it-happens-how-rails-gets-made/
https://schneems.com/2021/05/12/the-room-where-it-happens-how-rails-gets-made/
https://discuss.rubyonrails.org/t/effect-of-the-last-week-on-ruby-on-rails/77702
https://discuss.rubyonrails.org/t/effect-of-the-last-week-on-ruby-on-rails/77702
https://twitter.com/schwad_rb/status/1520021704847855617
https://twitter.com/schwad_rb/status/1520021704847855617
https://twitter.com/zverok/status/1365014133180141578
https://twitter.com/zverok/status/1365014133180141578

198	 CODERSPEAK

Silverstein, Michael. ‘Shifters, linguistic categories and cultural description’. In Meaning in
Anthropology, edited by Keith H. Basso and Henry A. Selby, 11–55. Albuquerque, NM:
University of New Mexico Press, 1976.

Stanton, Andrea. ‘Broken Is Word’. In Your Computer Is On Fire, edited by Thomas S. Mullaney,
Benjamin Peters, Mar Hicks and Kavita Phillip. Cambridge, MA: MIT Press, 2021.

Star, Susan Leigh. ‘The structure of ill-structured solutions: Boundary objects and heterogeneous
distributed problem solving’. In Distributed Artificial Intelligence, edited by Les Gasser and
Michael N. Huhns. London: Pitman Publishing, 1998.

Steele, Murray. ‘Stegosaurus’. Accessed on 31 October 2022. https://github.com/h-lame/​
steg​osaurus.

steveklabnik. ‘CLOSURE’. Accessed on 31 October 2022. https://github.com/steveklabnik/​
CLO​SURE/tree/master/PDF.

Strathern, Marilyn. The Gender of the Gift: Problems with women and problems with society in
Melanesia. London: University of California Press, 1990.

Susser, John. ‘Symbol to Proc shorthand’. Has Many Through Blog. Accessed on 31 October 2022.
https://web.archive.org/web/20061222213756/http://blog.hasmanythrough.com:80/​
arti​cles/read/8.

Takhteyev, Yuri. ‘Open source, open world: Where free software came from – and where it’s going’,
Foreign Affairs, 13 September 2022. Accessed on 31 October 2022. https://www.foreign​
af​fairs.com/world/open-source-open-world.

Temkin, Daniel. ‘Esoteric programming languages’, UCL Centre for Digital Anthropology Workshop
on the Limits of Programming Languages. https://youtu.be/JUX1NoTyqI0.

Tomasello, Michael. The Cultural Origins of Human Cognition. Cambridge, MA: Harvard
University Press, 2001.

Torvalds, Linus. Just for Fun: The story of an accidental revolutionary. New York: HarperBus, 2011.
Triplett, Kevin. ‘Why The Lucky Stiff Documentary’. Accessed on 31 October 2022. https://www.

youtube.com/watch?v=64anPPVUw5U.
Turing, Alan. ‘On computable numbers, with an application to the Entscheidungsproblem’,

Proceedings of the London Mathematical Society 2, 42 (1) (1937): 230–65.
Turing, Alan. ‘Computing machinery and intelligence’, Mind 49 (236) (1950): 433–60.
Turkle, Sherry. The Second Self: Computers and the human spirit. Cambridge, MA: MIT Press, 1984.
Venners, Bill. ‘A conversation with Yukihiro Matsumoto’, Part III. 22 December 2003. Accessed on

31 October 2022. https://www.artima.com/articles/blocks-and-closures-in-ruby.
veravash. ‘I am tired of hearing that Ruby is dead’. Accessed on 31 October 2022. https://www.

reddit.com/r/ruby/comments/hp3yar/i_am_tired_of_hearing_that_ruby_is_dead/.
Visser, Sander. ‘What tutorials would make a non-developer think you’re a magician?’, 3

November 2017. Accessed on 31 October 2022. https://dev.to/sanderfish/what-tutor​ial-​
w​ould-make-a-non-developer-think-youre-a-magician-4lh.

Wall, Larry. ‘Larry Wall: Why Perl is like a human language’. Accessed on 31 October 2022. https://
www.youtube.com/watch?v=ju1IMxGSuNE.

Weirich, Jim. ‘DSL Definition’, Rake. Accessed on 31 October 2022. https://github.com/ruby/
rake/blob/master/lib/rake/dsl_definition.rb.

Weirich, Jim. ‘Glossary’, Rake. Accessed on 31 October 2022. https://github.com/ruby/rake/blob/
master/doc/glossary.rdoc.

Weirich, Jim. ‘Rational’, Rake. Accessed on 31 October 2022. https://github.com/ruby/rake/blob/
master/doc/rational.rdoc.

Wikipedia. “Universally unique identifier’. Accessed on 31 October 2022. https://en.wikipedia.
org/wiki/Universally_unique_identifier.

Wikipedia. ‘We can do it!’. Accessed on 31 October 2022. https://en.wikipedia.org/wiki/We_​
Can_Do_It!.

W3Usage. ‘Php usage’. Accessed on 17 July 2023. https://w3techs.com/technologies/details/
pl-php.

XKCD. ‘How standards proliferate’. Accessed on 31 October 2022. https://xkcd.com/927/.

https://github.com/h-lame/stegosaurus
https://github.com/h-lame/stegosaurus
https://github.com/steveklabnik/CLOSURE/tree/master/PDF
https://github.com/steveklabnik/CLOSURE/tree/master/PDF
https://web.archive.org/web/20061222213756/http://blog.hasmanythrough.com:80/articles/read/8
https://web.archive.org/web/20061222213756/http://blog.hasmanythrough.com:80/articles/read/8
https://www.foreignaffairs.com/world/open-source-open-world
https://www.foreignaffairs.com/world/open-source-open-world
https://youtu.be/JUX1NoTyqI0
https://www.youtube.com/watch?v=64anPPVUw5U
https://www.youtube.com/watch?v=64anPPVUw5U
https://www.artima.com/articles/blocks-and-closures-in-ruby
https://www.reddit.com/r/ruby/comments/hp3yar/i_am_tired_of_hearing_that_ruby_is_dead/
https://www.reddit.com/r/ruby/comments/hp3yar/i_am_tired_of_hearing_that_ruby_is_dead/
https://dev.to/sanderfish/what-tutorial-would-make-a-non-developer-think-youre-a-magician-4lh
https://dev.to/sanderfish/what-tutorial-would-make-a-non-developer-think-youre-a-magician-4lh
https://www.youtube.com/watch?v=ju1IMxGSuNE
https://www.youtube.com/watch?v=ju1IMxGSuNE
https://github.com/ruby/rake/blob/master/lib/rake/dsl_definition.rb
https://github.com/ruby/rake/blob/master/lib/rake/dsl_definition.rb
https://github.com/ruby/rake/blob/master/doc/glossary.rdoc
https://github.com/ruby/rake/blob/master/doc/glossary.rdoc
https://github.com/ruby/rake/blob/master/doc/rational.rdoc
https://github.com/ruby/rake/blob/master/doc/rational.rdoc
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/We_Can_Do_It
https://en.wikipedia.org/wiki/We_Can_Do_It
https://w3techs.com/technologies/details/pl-php
https://w3techs.com/technologies/details/pl-php
https://xkcd.com/927/

	 ﻿ Index � 199

Index

68, 81 – 2 ,(alb) قلب﻿
Amrute, Sareeta, 56
anthropology

ethnographic method, 4, 98
and free software, 21–2
influence in programming

culture, 24–7
linguistic, 79–81
and programming, 4

basecamp debacle, 39–40

BASIC, 70
appeal to non-programmers, 72–4
influence on Matz, 176

benevolent dictator
Matz, 182–3
Van Rossum, Guido, 193

binary
information, 53–4
machine language, 69, 75
as a model for language structure,

80
non–binary, 127, 135–7

block
core Ruby function, 178–9
as a cultural pattern, 179
as a metaphor for community, 40
and multiplicity, 37
programming structure, 1–3, 11,

92, 114–15
blame culture, 137–8

C, 120, 177, 191
in esoteric programming, 122
and Rake 91
resilience over time, 148, 180–1
Ruby internals, 157
and types, 189
and why the lucky stiff, 99

C++, 34, 56, 91, 181
COBOL, 59–60, 70–3

code ossification. See software, tight
coupling and ‘entanglement’
of code

coderspeak, 70, 75
coding communities

in corporations, 35, 37
in native languages, 164–5
and programming language

development, 69, 181–2
and reciprocity, 24–6, 36–7
and the Ruby core team. See Ruby

core team
Coleman, Gabriella, 21, 27
communication, 51–2, 59–60

problems, 53–4, 145–6
Conway’s law, 59–60

databases, 53–5
diversity

in programming conferences,
163–4

tech, 135
workplace, 133–5

domain–specific languages
(DSLs)

and meta–programming,
82–3

and Rake, 90–2
in Ruby, 95

encoding, 48–9, 68
English dominance

in computing, 35, 37, 67–9, 81,
158–9, 167, 169–71

in programming language design,
70

esoteric programming languages,
122–3

INTERCAL, 122
International Obfuscated C Code

Contest (IOCCC), 122–3

200	 CODERSPEAK

feminisation of labour, 126–7
FLOW–MATIC, 70–4
FORTRAN, 70–1, 188
Free Software International Forum,

23, 31

gender
gatekeeping, 138–9
male dominance in computing,

128–31
male gaze, 127
normativity, 130–3
paternalism, 151
proper programmers, 16
and race in programming, 15
in technical writing, 135–6

gift economy, 24–6
Github. See open–source

repositories

hacking
culture, 23–4
as technical prowess, 157–8, 161,

163–4
Heinemeier Hansson, David, 31, 37–8

influence in the Japanese Ruby
community, 158–9, 163, 181

impostor syndrome. See
programming and impostor
syndrome

Java, 34, 50, 136, 189
limitations, 36, 158, 164
and paternalism, 151
post traumatic Java disorder,

14–15

Kafka
and communication, 61–2
messaging system, 60

Kelty, Chris, 26, 28

language
Chomskyian approach to, 79–80
and embarrassment, 69, 78
functions of, 77
ideologies of, 78–9, 81–2, 84, 146

and pretence, 74
in programming, 67–76
as social practice, 77, 81–2
theory and computer science,

79–80
users vs developers, 163

licenses. See software and licensing
LINUX, 19

in Brazil, 23
community, 37
and FreeBSD, 157
impact in open–source

development, 20–3

make
software tooling, 14, 90–2

maturity. See Ruby, maturity of the
community

Matz, 40, 147
approach to software patches,

168–9
beauty in code, 117–18
creating Ruby, 178
focus on the human programmer,

68–9
optimizing for happiness, 74,

92–5
relationship with committers, 170
and religion, 176–7, 182–3
role in the community, 2–3, 171–3
and Ruby philosophy, 37, 69, 74,

92
on types, 148–9, 152, 180–2

Mauss, Marcel
critique of utilitarianism, 25, 27
echoes in software communities,

36
logic of gift exchange, 24–6

meta–programming
definition, 99–100
example, 82–4
and human languages, 78, 81
as the meaning of programming,

104
in Ruby and Rails, 31, 84, 95, 190
and why the lucky stiff, 99–100,

104
minority. See Matz and religion

	 ﻿ Index � 201

monolith (software)
carving metaphors, 45
growing pains, 45
and microservices, 55–7
ossifies code, 46–7
and software idealism, 43, 47,

51, 53
Upstream’s API, 44, 51

myth
anthropological definition, 31, 41
in programming, 32–33, 158–9,

181

naming
names, 15, 49, 60
obfuscation, 122
the problem of identification

(IDs), 48–50
Nasser, Ramsey, 81

object–orientation
and language design, 70
in programming languages, 2,

14–15, 114
open–source software development,

16, 158, 162–3, 177
diversity in, 167
expectations from contributors,

172
and language barriers, 35–37,

168–71
and reciprocity, 24–26
repositories, 168–9
role in creating coding

communities, 2–3
Web 2.0, 33

optimizing for happiness. See
programming, happiness

O’Reilly, Tim
and Web 2.0, 20

outsourcing. See programming,
outsourcing

pair programming, 113
programming

as art, 118–120
boundaries, 50–2, 73
happiness, 3, 84, 87, 92–3, 117

humour, 15, 50
impostor syndrome, 13, 55, 112–13
and individual freedom, 151
myths, 173, 181
and normativity, 139–140
and organisational structures,

59–60
outsourcing, 67
translating thoughts into code,

70–1, 74–5, 179
patterns, 110
and playfulness, 97–8, 123
obfuscate code, 122
as social practice, 122–4, 181

programming languages
compiled x dynamic, 147–8
death, 188. See also programming

myths
design, 70–2, 75, 177
social aspects. See language as

social practice
programming literature, 114
proper developers. See

programming and normativity

rake tasks, 89–90
Raymond, Eric, 20, 23–4, 28
research

fieldwork, 5
methodology, 3–5, 98, 140, 147
and positionality, 15–16

Ruby
beginnings, 177–8
building the Web, 34–5
conferences and meet–ups, 155,

157, 159–162
committers, 163, 171–3
community, 11, 15, 38–40, 158,

168, 176
core team, 163, 167–170, 173, 180
is dead, 183, 185, 187–9
ethos vs Python, 172–3
and happiness. See programming

and happiness
is made of clay, 38–9
maturity of the community, 152,

188
and multiplicity, 37–8, 91, 173

202	 CODERSPEAK

Ruby (cont.)
origin of the name, 2
philosophy, 2–3, 37, 70–1, 73
weirdness, 87–8, 99, 152, 189

RubyKaigi. See Ruby conferences
Ruby on Rails, 10–12, 44, 157

dominance in the Ruby
community, 16, 38–41

as a foundational myth, 31, 41, 181
a way into Ruby, 32–3, 38, 157

Seaton, Chris, 84, 93–5
Sinatra (web framework), 11
Shinto shrines, 155–7, 175
socio–technical relations, 167–8
software

architecture, 45–51, 59, 68
and boundaries, 47
concepts, 59–60, 77, 87
effect on people, 78–80
‘entanglement’ of code, 45–7
free and open–source, 19–28
and liberalism, 21, 28
and licensing, 19, 27–8
meaning in software, 115–16
packages and libraries, 90
tight coupling, 40, 55

Spree
as open-source software, 24, 28
philosophy, 45
and product IDs, 47–50, 54–5, 61–2
role in Upstream,16, 44–45, 55

SQL
Database query example, 54–5

Stallman, Richard, 22, 27–8
symbol to proc

as an example of beautiful code,
118–123

and the ruby block, 179

Torvalds, Linus, 20
types (programming)

definition, 147–8
duck typing, 149–150
and lack of programming

freedom, 151–3,180
and maturity of the Ruby

community, 188

perception over time, 148
in Ruby, 180–1

UNIX
in open–source, 20
philosophy of modularity, 50–1, 90
and time, 145

Upstream
fieldwork, 5
importance of open–source

software, 24, 28. See also
open–source software

interview, 9–12
relevance as a case study, 16, 47
development the API, 44–5, 60
book club, 109–15, 117–18,

133–141
ecology of applications, 60
the problem of IDs, 49–50
redundancies, 185–7, 189
and Web 2.0, 40–1
welcoming environment,

111–12. See also programming,
impostor syndrome

Wall, Larry
approaches to language design, 69
and community philosophy, 73

Web 2.0
blogging, 41
rebranding of the web, 20
and web applications, 33–4

why the lucky stiff
anti-corporate stance, 101
definition of coderspeak, 75
disappearance, 101–2
influence on the development of

Rake, 93
on meta-programming. See meta-

programming, and why the
lucky stiff

poignant guide to Ruby, 99–100,
104

World Social Forum (WSF)
as opposed to the World

Economic Forum, 23
influence in the development of

Rails, 31–2

	Cover
	Half Title
	Title Page
	Copyright
	Contents
	Acknowledgements
	Introduction
	Notes

	Part I: Open source
	1 Principal engineer
	Notes

	2 Open source
	Notes

	3 The myth of Rails
	Notes

	4 Half-broken monoliths
	Notes

	5 A new service
	Notes

	Part II: Meta languages
	6 Language dreams
	Notes

	7 Meta-programming
	Notes

	8 Happy programmers
	Notes

	9 Chunky bacon
	Notes

	Part III: Beyond binaries
	10 Learning to see
	Note

	11 Beautiful code
	Notes

	12 Computing gender
	Notes

	13 Proper programmers
	Notes

	Part IV: Tokyo days
	14 Not my type
	15 After the rain
	16 Patch first
	Note

	17 Supreme beings
	18 The end
	Notes

	Glossary
	Notes

	Bibliography
	Index

