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‘5‘ Relative survival represents the preferred framework for the analysis
6 of population cancer survival data. The aim is to model the survival
; probability associated to cancer in the absence of information about
9 the cause of death. Recent data linkage developments have allowed
10 for incorporating the place of residence into the population cancer
11 _ _ - : :
12 data bases; however, modeling this spatial information has received
13 little attention in the relative survival setting. We propose a flexible
14 : : .
15 parametric class of spatial excess hazard models (along with inference
16 tools), named “Relative Survival Spatial General Hazard” (RS-SGH),
1; that allows for the inclusion of fixed and spatial effects in both time-
19 level and hazard-level components. We illustrate the performance of
;? the proposed model using an extensive simulation study, and provide
22 guidelines about the interplay of sample size, censoring, and model
gi misspecification. We present a case study using real data from colon
25 cancer patients in England. This case study illustrates how a spatial
26 model can be used to identify geographical areas with low cancer
27 . . :
28 survival, as well as how to summarize such a model through marginal
29 survival quantities and spatial effects.
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1 Introduction

Survival analysis represents one of the main branches in Statistics,
which concerns the study of times-to-event, potentially subject to
censoring. The main quantity of interest in survival analysis is the
probability of survival beyond a specific time point, associated with either
the entire population under study or for subgroups of such a population.
The most relevant approaches for analyzing survival data are: (i) the
overall survival framework, which aims at analyzing all-cause mortality;
(11) the cause-specific survival framework, which incorporates information
about the cause of death; and (iii1) the relative survival framework, which
aims at quantifying the survival associated to a cause of death of interest
(such as cancer) in the absence of information about the cause of death.
In the context of cancer epidemiology, national and international health
agencies are interested in monitoring the survival probability of cancer
patients at the population level (Allemani et al. 2015). The preferred
approach for population-based cancer survival analysis is the “relative
survival” framework (Esteve et al. 1990; Perme et al. 2012).

The relative survival approach aims at estimating the survival (or
hazard) function associated to cancer, in the absence of reliable
information about the cause of death for the whole population (since
information about the cause of death is typically unreliable at the
population level). The main idea is to assume an additive decomposition

of the hazard function h(-) into two components, namely the hazard
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:
3 associated to other causes of death hq(-), and the hazard associated to
g cancer hg(-). The latter is typically referred to as the “excess hazard.” That
6 18,
7
: h(t;x) = holage +t) + hg(t;x), t > 0, (1)
10
11 where ¢ is the time measured from the date of diagnosis, “age” is
g age at diagnosis of cancer, and x € R? is the vector of available
14 covariates. Since ho(age +t) is unknown in practice, it is usually
12 estimated using the population hazard hp(age + t;z), which is obtained
17 from the life tables based on the characteristics z € R? C x. Depending
18 on the country, the available life tables may be stratified by age,
;g calendar year, sex, deprivation level, et cetera. Several excess hazard
21 models have been proposed using both parametric and nonparametric
;g estimation approaches (see Eletti et al. (2022) for a recent review).
24 The main quantity of interest in the relative survival framework is the
;g “net survival,” which 1s the survival associated to the excess hazard

27 Sn(t;x) = exp {— fot hg(r; X)dr}. The net survival only depends on the
excess hazard function. Thus, it is a useful quantity for comparing the

29
30 performance of cancer management between different populations since
g; it is not affected by differences in population mortality hazards. For that
33 reason, comparisons between different countries, regions, or periods of
34 time are based on the marginal net survival
35
36 1"
37 Sn(t) = — Sn(t; x;
57 N(E) = 25 D (i)
39
j? where {x;}", represents the covariates associated to the (sub-)population
42 of interest, such that m denotes the population size.
43
f’é The utilization of spatial information regarding the residence of cancer-
46 diagnosed patients may enable the identification of regional inequalities
47
48 , ,
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in cancer survival (Public Health England 2020; Exarchakou et al. 2018;
Quaresma et al. 2022). Furthermore, such information may facilitate the
1dentification of areas with low cancer survival, which can be be used to
inform policymaking aiming at improving cancer survival. Indeed, cancer
registry data may present a spatially dependent structure, as individuals
from adjacent neighborhoods are likely to share environmental and socio-
economical factors (Li and Ryan 2002). In that case, the individuals’
locations would act like a proxy for non-observed regional characteristics
(Zhou and Hanson 2018).

Spatial survival modeling has received a great deal of attention in the
overall survival framework. The main idea is usually to incorporate a
spatial term into a survival regression model (see Klein et al. (2014)
for a book-length review on classical survival models). For instance,
Li and Ryan (2002) propose adding a spatial frailty, modeled as a
zero-mean Gaussian process (GP), into a semiparametric Proportional
Hazard (PH) model. Banerjee et al. (2003b) fit a PH model with
spatially dependent random effects for geostatistical and lattice data.
Carlin and Banerjee (2003) propose a Bayesian semiparametric survival
model for spatio-temporal correlated data based on including generalized
multivariate conditionally autoregressive (MCAR) region-specific frailties
into a hazard regression model. Li et al. (2015) propose a normal
transformation model of the General Hazard (GH) model (Chen and
Jewell 2001, also known as Extended Hazard (EH) model). The spatial
variability is modeled through the covariance matrix of the normal
transformation. Zhou and Hanson (2018) propose a framework for fitting
PH, Proportional Odds (PO), and accelerated failure time (AFT) models,
accounting for different types of censoring, including random effects with
intrinsic conditionally autoregressive (ICAR) priors. Basak et al. (2022)
propose a semiprametric model for clustered interval-censored survival

data. In that case, the hazard function is written as a product of the baseline
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:
3 hazard component and a non-parametric component modeled as a soft
g Bayesian additive regression tree (SBART) that is used to incorporate the
6 possible clustering effects. Rubio and Drikvandi (2022) consider the GH
; structure with random effects at the cluster level; however, they do not
9 account for the spatial structure and limit their proposal to modeling the
:? clustering components.
12 In contrast, spatial survival models in the relative survival framework
12 have received less attention. For instance, Charvat et al. (2016) propose
15 a parametric frailty model for the excess hazard function using different
:? types of splines or parametric baseline hazards. However, the frailties
18 are assumed to be independent, thus only accounting for clustering but
;3 not for the spatial dependence. Cramb et al. (2016) propose a Bayesian
21 spatial frailty approach based on modeling the cumulative excess hazard
;; using splines, thus requiring a different interpretation for the estimated
24 effects. Their proposal does not include time-scale effects, and the frailties
25 are modeled using an ICAR normal distribution. This method was later
;? applied in Cramb et al. (2017). Finally, Eletti et al. (2022) propose a
28 link-based additive excess hazard model that allows for the inclusion
;g of non-linear effects, temporal-dependent effects, and spatial effects via

31 Markov random fields. In a slightly different vein, Yu and Tiwari (2012)

studied cure mixture models in the relative survival framework. They

gi adopted a mixture of three accelerated failure time models for the excess
gg hazard, with spatial frailties modeled using multivariate conditionally
37 autoregressive (MCAR) distributions.

;S In this paper, we introduce a general class of parametric spatial frailty
40 models for survival data under the relative survival framework. The basic
j; idea consists of adding spatial effects, at two levels (time and hazard),

43 into the General Hazard (GH) model (Etezadi-Amoli and Ciampi 1987,
Chen and Jewell 2001), which is a hazard structure that generalizes the

46 PH model, the accelerated failure time (AFT) model (Buckley and James
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1979), the accelerated hazard (AH) model (Chen and Wang 2000), and

others, as we will describe in Section 2.

To do so, we extend the existing approaches by modeling the
dependence structure through spatial smoothing methods, namely
Intrinsic Conditional Autoregressive (ICAR) and Besag-York-Mollié
(BYM?2) model priors. It also allows for incorporating fixed and spatial
effects at the time-scale and at the hazard scale without requiring
numerical integration. By taking such an approach, we can easily compute
credible intervals as a measure of uncertainty, and further investigate other
quantities of interest. For instance, similar to the discussion in Moraga
(2019), we can compute the relative exceedance probabilities, which
are useful for assessing unusual elevation in any function of the linear
predictor terms, such as the excess hazard, net survival, among others.
The term “relative” is important, since we are extending the concept of
exceedance probabilities to the relative survival framework. This quantity
also helps detecting high-risk areas based on the analysis of the spatial
random effects, as the possibly non-observed spatial heterogeneity is
captured by such components. The R (R Development Core Team 2022)
and STAN (Carpenter et al. 2017) scripts containing the implementation of
the examples presented here, as well as additional examples using real data
are available at https://github.com/avramaral/relative_

survival.

The remainder of this paper is organized as follows. Section 2
introduces notation and presents the proposed modeling approach. We also
discuss some particular sub-models of interest. We introduce two spatial
smoothing methods that account for non-observed spatial characteristics
and list all implemented models. In Section 3, we detail the inference
procedure and present a brief discussion on the prior distributions
specification for our class of models. In Section 4, we provide a

simulation study that illustrate the performance of our model under
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1
2
3 different scenarios, and present guidelines about the interplay of sample
4 . . . . . .
) size, censoring, and model misspecification. Section 5 presents a case
6 study that analyzes the variation of colon cancer survival for different
; geographic regions in England. Finally, in Section 6, we present a general
9 discussion, and comment on the limitations and possible extensions of our
10 work.
11
12
13 2 Spatial models
14
15 In this section, we introduce the proposed general model structure, and
1? discuss the particular models that can be derived from it. Also, we discuss
18 different spatial smoothing methods that can be used with our approach
;3 and list all possible modeling scenarios.
21
22 2.1 Excess hazard model
23 ) . .
24 Let us first introduce some notation. Let o;; € R, be a sample of times-
25 to-event, wherez = 1, ... rindicates the regionand j = 1, ..., n; denotes
26 g . . .
7 the individuals. Also, let ¢;; € R, be the right-censoring times, and ¢;; =
28 min{o;;, ¢;;} be the observed survival times. Let d;; = 1(0;; < ¢;;) be
;g the vital status indicators (that is, ;; = 1, if dead, and ¢;; = 0, if right-
31 censored or alive), and n = )/, n; be the total sample size across the r
;; regions. Let x;; € R? be the vector of available covariates. Similar to the
34 mixed effects survival regression model (for overall survival) proposed in
gg Rubio and Drikvandi (2022), we consider the excess hazard model
37 , ~ ~T - T T
38 he(t;xij | 0, 0, B,7, 1, wi) = ho(t exp{X;;a + @} | 0) exp{s;;v + x;;8 + ui},
39 (2)
40
41 . . .
P where ho(- | @) is the baseline excess hazard function, defined through
43 a flexible parametric distribution, 6 represents the corresponding
f’é distribution parameters, X;; play the role of hazard-level effects, x;; C x;;
46 represent the time-level effects, where x;; € R?, and o = (v, . ... ,aﬁ)T
47
48 , ,
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and 3 = (B4, ... ,Bp)T are the regression coefficients associated to X;;
and x;;, respectively. Additionally, s;; = (sile, . ,sijkT)T € R? and

vy =(7,-.-,7) ", where ¢ = Zle q;, such that ¢; is the dimension of
siji, and s, 1s the spline expansion of a (continuous) covariate x;;;. Lastly,
we assume that @ and u are independent, with @ = (@, ..., 4,)" ~ G and
u = (uy,...,u,)" ~ G, such that G’ and G are multivariate distributions
that account the spatial dependence among regions. The spatial models
used to define G and G will be introduced in Section 2.2. Thus, our
proposal can be seen as an extension of the MEGH model proposed in
Rubio and Drikvandi (2022) to the relative survival framework, but also

with the incorporation of spatial effects.

We will denote Model (2) as the RS-SGH (Relative Survival Spatial
General Hazard) model, and we will also consider eight particular sub-
models that might be useful for researchers and practitioners when fitting

this class of models. These alternative modeling approaches are described
in Table 3 (Appendix A).

Leté =(0",a",B",4")7, then the cumulative hazard function H (- |
x;j, &, U;, u;) associated with Model (1) can be written in the following

manner

t
H(t;x5 | & i, us) :/ h(C; x5 | &, Ty, u;)dC
0
= Hp(age,; + t;2i;) — Hp(age,;; z;;) + He(t; x5 | & @i, uq),

177

where Hp(-;2z;;) is the cumulative population hazard, and Hg(-;x;; |
€, U;,u;) is the cumulative excess hazard function. Moreover, the

cumulative excess hazard function can be written in closed-form as
t
HE(t;Xij ’ £>ai7ui) :/ hE(CQXz’j ’ E,ﬂi,ui)dc
0
= Hy(t exp{f(iTja +u;} | 0) eXp{X;;,B — iiTja + u; — U},

Prepared using sagej.cls .
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where Hy(- | @) is the cumulative baseline excess hazard.

We can now adapt the concept of individual net survival based on the
proposed spatial excess hazard model. The net survival, for a specific
covariate and conditional on model parameters, and random effects, can
be defined as

Sn(t:xij | & 1, ;) = exp{—Hg(t; X5 | &, s, u;) } (3)

Consequently, the region-specific net survival associated to the i-th region

1s defined as follows
1 & 3 -
Sni(t [ &) = — Z/ Sn(t; i | &, i, ui)dG (u;)dG (u;). (4)
n; =1 R2

Let us now discuss some specific choices for modeling the parametric
baseline hazard function hy(- | @). Since the Weibull baseline hazard is
the only choice that leads to a non-identifiable model (Chen and Jewell
2001), we will adopt distributions that do not belong to the Weibull
family. We will focus on 2-parameter and 3-parameter distribution that can
account for a variety of shapes. These include the Log-normal (LN), Log-
logistic (LL), Power Generalized Weibull (PGW), Gamma (GAM), and
Generalized Gamma (GG) distributions. In Web Appendix 1 (Supporting
Information), we specify all possible distributions for such a baseline
component.

Lastly, notice that, by setting hp(age,; + t; z;;) = 0, for all individuals
in all regions, we shift to the overall survival framework. Therefore, the
RS-SGH model generalizes several well-known modeling approaches in

different directions and under different frameworks.

2.2 Spatial effects

We aim at incorporating spatial effects in the excess hazard Model (2)

by incorporating the neighborhood structure into the distribution of the
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random effects @ = (7y,...,%,)' and u= (uy,...,u,)" . To this end,
we will define them based on two approaches: the Intrinsic Conditional
Autoregressive (ICAR) and Besag-York-Mollié (BYM2) models. To
formulate these models, we need to introduce the concept of adjacency
matrix. Briefly, given two regions k£ and [, we will say that £ and [
are neighbors (written k ~ [, with k # [) if those regions share any
boundary. Notice that if £ ~ [, then [ ~ k. However, a region will not be
its own neighbor. Based on this “neighbor operator” (~), we can define an
adjacency matrix A, such that ay; = 1, if k£ ~ [, and ay; = 0, otherwise.
The diagonal of A is defined as zero, that is diag(A) = 0. As a remark,
Freni-Sterrantino et al. (2018) present guidelines on how to adapt these
models if the corresponding spatial graph is disconnected. Additionally,
Morris et al. (2019) (Section 3.5) comment on how to implement these

extensions using STAN.

2.2.1 Intrinsic Conditional Autoregressive (ICAR) model For the
Intrinsic Conditional Autoregressive (ICAR) model, the conditional
distribution of u;, given all other random effects u;, such that [ # k (written
u_p),is

Zus

sEA 1

m(ug | u_y) = Normal N v |

where Ay and \; correspond to the neighbors and the number of neighbors
of region k, respectively, and 7, is the precision term. Besag (1974) proved
that the corresponding joint specification of u follows a multivariate
normal distribution with mean 0 and precision matrix Q = 7,(D — A),
where D is a (r x r) diagonal matrix with d; containing the number of
neighbors of £, and dy; = 0, Vk # [. Moreover, as shown in Besag et al.

(1991, 1995), the joint distribution of u as specified above can be further
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1
2
3 simplified to the following pairwise difference
4
5 r—1 Tu 9
6 m(u) < 7% expq —— Z(uk —w)” p. 5)
/ 2 kol
8
9 However, from Equation (5), one can notice that the joint distribution
10 . . . .
11 of u is non-identifiable (adding any constant to all elements of u does
12 not change the joint distribution). To overcome this issue, it suffices to
13 . . . . .
14 impose the constraint y , _, ux = 0. From a practical point of view, and
15 under the Bayesian framework, the approximate condition ) *, _, uy, &~ 01is
:? implemented instead, using a “soft sum-to-zero constraint”. That is, when
18 implementing the model, we assign a zero-mean prior distribution to the
;g mean of u with very small variance. Such an approach is recommended
21 by Morris et al. (2019), as the STAN’s Hamiltonian Monte Carlo sampler
;g runs faster under this setting. Finally, the same modeling procedure will
24 be adopted for u.
25
26 - )
27 2.2.2 Besag-York-Mollie (BYMZ2) model Alternatively, unstructured (or
;g non-spatial) random effects could be added, along with the structured

30 ICAR components, to the excess hazard Model (2). This approach
31 is known as a Besag-York-Mollié (BYM)-type model (Besag et al.

33 1991). However, as commented in Mahmood et al. (2022), such a
34 parameterization might present some shortcomings. For instance, a model
35 .
36 expressed based on such a convolution of the structured and unstructured
37 random effects may fail to fit, as one of the two components can account
;S for almost all observed variance (Morris et al. 2019). Also, it might be
40 difficult to set reasonable priors for the corresponding scale parameters
j; (Banerjee et al. 2003a). Aiming to avoid these issues, instead, the BYM?2
43 model is often used (Riebler et al. 2016).
f’é To formulate the BYM?2 model, the unstructured and structured random
46 effects (v = (vq,...,v,)" and s = (s1,...,s,)", respectively), can be
47
48 ) .
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written as

u=v+s=o(\/1—pv'+./ps"),

where o is the overall standard deviation, p € [0,1] determines the
proportion of the variance that comes from the structured random effects,
v* ~ Normal(0, L), such that I, is an (r x r) identity matrix, and s* is
the scaled ICAR model (Sgrbye and Rue 2017), such that Var(s;) =~ 1, Vi.

As before, similar reasoning is applied to define u in terms v and s.

2.2.3 1ID model One last alternative would be defining u and u purely
based on an “independent and identically distributed” (i.i.d.) model; that
is, u ~ Normal(0, 021,) and u ~ Normal(0,c2L,). This would be the
same including a clustering effect per region. Under the overall survival
framework, this idea has been explored by Rubio and Drikvandi (2022)
using likelihood inference, and we will also implement such a model
in a Bayesian setting. All implemented models for the possible baseline
hazard distributions, spatial random effects, and overall model structure

are detailed in Table 4 in Appendix B.

2.2.4 Point data model Although our focus is on employing areal
data to model spatial dependence, one might also be interested in
using latitude-longitude coordinates (if available) to determine a patient’s
location. In such cases, the spatial structure may be accounted for
by a model for point data. For instance, “penalized spline regression”
(Fahrmeir et al. 2013) is a popular method for spatial smoothing.
Alternatively, Diggle and Ribeiro (2007) proposed a geostatistical
framework to model the spatial correlation structure in the point data
while enabling rigorous statistical inference. For the latter, additional
assumptions about the sampling scheme can be made, e.g., “preferential

sampling” (Diggle et al. 2010)—with a non-stationary extension proposed
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by Amaral et al. (2023). Throughout this paper, we will employ the
methods described in Sections 2.2.1-2.2.3.

3 Inference

In this section, we introduce the inference procedure used for fitting
Model (1) with excess hazard given by Model (2). Also, we present some
guidelines for setting the prior distributions, and define a model selection

measure.

3.1 Likelihood function
Let D= {(tij,éij,xij,zij); 1= 1, e, andj = 1, ce ,ni} be the

observed data. In that case, the likelihood function for the vector of

unknown parameters can be written as proportional to

H H {hP(ageij + tiji 2i5) + he(tiy; x5 | €, U, ui)}éij X (6)

i=1 j=1

exp{—Hg(tij; X;j | &, U, u;)},

where hp(age;; + ti;; z;;) is obtained from the life tables. From Equation
(6), notice that the only term in the likelihood function that distinguishes
an overall survival model from a relative survival model is hp(age,;; +
tij; zij), therefore, by setting it to zero, we could also retrieve the overall
survival framework.

Nevertheless, as proved by Chen and Jewell (2001), the General Hazard
model (and thus, the RS-SHG model, as it extends the GH approach) is
non-identifiable if the baseline hazard in hg(t;;;x;; | €, @i, u;) is Weibull.
However, this scenario is not of concern since, if the true model is Weibull,
it means that a simpler model would fit the data well—see Rubio et al.
(2019) for further details. Furthermore, our capability to simultaneously

recover the two spatial structures in Equation (6) is noteworthy. As briefly
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demonstrated in Sections 4.3 and 5, we can estimate o, = 1/,/7, (and
oy = 1/4/T) for all proposed models. To do so, in practice, we must have
a certain number of uncensored observations per cluster (in addition to
avoiding the Weibull distribution when defining the baseline hazard). In
this case, there is an interplay between the number of individuals in each
region and the censoring rate in these areas.

The next section presents our prior elicitation strategy. Inference is
performed by sampling from the corresponding posterior distributions
based on the RStan’s implementation (STAN Development Team 2021)
of the Hamiltonian Monte Carlo algorithm (Betancourt and Girolami
2015).

3.2 Prior distributions

Although we acknowledge that other choices can be made, in this
section, we recommend some weakly informative priors for the model
parameters. For the linear fixed effects, we set a; ~ Normal(0, afyﬁ),
Vp, and f3, ~ Normal(0, 03 ), such that o7 and o3 are large enough
to reflect the vague prior information. On the other hand, for the non-
linear fixed effects, we adopted a novel choice of g-priors (Zellner
1986) that account for censoring; that is, letting Sy be the design matrix
associated with the spline basis expansion of the k-th covariate x;, and
defining M, = g,(S; Si) ™", we set v, ~ MVN(0, 02 M), where g, =
(n — (0.5 X (n — Nows))) /¢, nops corresponds to the number of uncensored
observations, and a?m ~ Half-Cauchy(0, 7, ), such that 7, > 0. In that
case, notice that g, accounts, to some extent, for the effective number of
observations—as the rescaled number of censored patients is subtracted
from the total number of collected data points.

In our setting, the g-priors can be seen as a type of shrinkage prior,
where the induced shrinkage is mild as we only include a few variables

in the models. Alternative prior specifications could have been employed
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:
3 to induce higher levels of shrinkage in place of the selected g-priors.
g However, in the context of our problem, we do not aim to induce higher
6 levels of shrinkage since there are only a few variables available at the
; population level, and all of these variables are typically relevant for cancer
9 survival. As an alternative, in the Bayesian smoothing literature, it is also
:? common to assign priors to the spline coefficients that enforce smoothness
12 between adjacent spline coefficients (similarly to what the ICAR model
13 does in the spatial setting). These priors typically take the form of random
:g walks or intrinsic Gaussian Markov random fields (Fahrmeir et al. 2013;
:? Rue and Held 2005).
:g Regarding the spatial smoothing distributions, for the ICAR model,
20 we set 7, ~ Gamma(d,,,0,,) (same for 7;), such that ., > 0 is a small
;; number. Although the Gamma distribution with such scale and shape
23 parameters is commonly found in the literature—mainly due to The BUGS
;g (Bayesian inference Using Gibbs Sampling) project implementation
26 (Lunn et al. 2009), we again emphasize that it is possible to use
;; other types of priors. For instance, Gelman (2006) suggests the usage
29 of a distribution from the half-¢ family for the variance parameter in
;? hierarchical models. Alternatively, the penalized complexity (PC) priors
32 (Simpson et al. 2017) could also be explored in our setting. In Section
;i 6, we briefly discuss possible extensions of our work concerning prior

35 elicitation. For the BYM2 model, we set o ~ Half-Normal(0, 1) and p ~
36 Beta(0.5,0.5) (both when defining u and 1), such that the latter is based

on the recommendations given by Morris et al. (2019). Finally, for each

38
39 of the baseline hazard distributions listed in Section 2.1, and based on the
j? parameterization given in Web Appendix 1 (Supporting Information), we
42 set the priors as follows
43
44 : 2 2
45 1. Log-normal: i ~ Normal(0,0}), where o7, is a large number, and
46 o ~ Half-Cauchy(0, 7,), with o, 7, > 0 (Rubio and Steel 2018).
47
48 , ,
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2. Log-logistic: as for the LN model, 1 ~ Normal(0, 02), where o7, is a
large number, and o ~ Half-Cauchy(0, 7,), with o7, 7, > 0.

3. Power Generalized Weibull: 7 ~ Half-Cauchy(0,7,), v~
Half-Cauchy(0,7,), and &k ~ Gamma(0.65, 1.83), with scale
parameters 7,, 7,, > 0. The prior specification for x has been proven
to be weakly informative (Dette et al. 2018; Alvares and Rubio
2021).

4. Gamma: 7 ~ Half-Cauchy(0, 7,)) and v ~ Half-Cauchy(0, 7,,), with
scale parameters 7,, 7, > 0.

5. Generalized Gamma: as for the PGW model, 7~
Half-Cauchy(0, 7,)), v ~ Half-Cauchy(0, 7,,), and £ ~ Gamma(0.65,

1.83), with scale parameters 7,, 7, > 0.

3.3 Model selection

To compare the fitted models, we will use a leave-one-out cross
validation (LOO CV) procedure; that is, we will use the likelihood
evaluated at the parameters’ posterior samples as a goodness-of-fit
measure. In particular, we will use the Pareto-smoothed importance
sampling (PSIS) implementation (Vehtari et al. 2017) and compute the
corresponding quantities using the 1oo package (Vehtari et al. 2022).
Under the Bayesian framework, the LOO estimate of out-of-sample

predictive fit will be computed as

elpdi oo = > D log[m(ti; | t-i)],

i=1 j=1

where 7(t;; | t_;;) is the LOO predictive density given t_;;, such that t_;
corresponds to the vector of all observed time points, except ¢;;. However,
instead of re-fitting the model n = >_._, n; times, m(t;; | t—;;) will be
approximately computed, V7, 7, using the PSIS technique. For the details,
the reader can refer to Vehtari et al. (2015) and Vehtari et al. (2017).
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:
2 Throughout this paper, we will denote such an estimate as E:/II;]'PSIS-LOO'
5 As a final remark, assuming well-specified and -fitted models, when
6 comparing different approaches, the larger a&lPSIS-LOO’ the better—as
; such a quantity sums over the posterior predictive model evaluated at a
9 new observation ¢;;, for each ¢ and j.
1
12 4 Simulation study
12 In this simulation section, we will assess the performance of our RS-
12 SGH model in three directions. First, we will evaluate our fitted models
17 with respect to their ability to recover the true net survival function, as
18 in Equation (3). For that case, we will analyze our models performance
;g based on different sample sizes, different censoring rates, and misspecified
21 distributions for the baseline hazard. Second, fixing all components but
;g the random effect structures, we will compare and select models based on
24 the elpdpgis 1 oo criterion, as in Section 3.3. Third, we will use our fitted
;g models to identify riskier areas based on the analysis of the spatial effects.
27 To do so, we will simulate data from the RS-SGH model as described in
;g Web Appendix 3 (Supporting Information).
30
31 4.1 Marginal quantities
;; Our first analysis concerns the estimation of marginal quantities, such
;‘5‘ as the net survival in Equation (3). From that equation, notice that we are
36 integrating out the effects of the spatial components; therefore, provided
37 the model is well fitted and for a sufficiently large sample size in all
;S regions, all random effect structures are expected to produce similar
40 results—as the random effects are assumed to be zero-mean for all models
j; in Section 2.2. In that case, we will benchmark our fitted spatial model
43 with respect to the true corresponding curves.
j: We will focus on analyzing the effect of (i) different sample sizes;
46 (i1) different censoring rates; and (ii1) misspecified distributions for the
47
48 , ,
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baseline hazard. In this regard, we will set the sample size to 200, 500,
1000, and 2000 patients, the censoring rate to 25% and 50%, and we
will simulate and fit Model (2) with the baseline hazard component
defined by the Log-normal (LN) and Power Generalized Weibull (PGW)
distributions. The simulation details are given in Appendix C. From that
section, note that the considered spatial structure is defined based on
the map of England, split into 9 regions (see Figure 7). This choice
is not arbitrary, as it is based on genuine epidemiological questions
about cancer survival and how the England territory is administrated.
Furthermore, for our simulation study, the number of regions was set to 9
to ensure that we can repeatedly fit the model based on Equation (6) within
“reasonable” computational time—the average fitting times are presented
in Table ST2, Supporting Information. For comparison, the fitting times
for Section 5, where a larger number of regions is considered (with also
more patients), are presented in Table ST10. Lastly, recall that there must
exist an interplay between the number of regions, censoring rate, and the
sample size. As shown by Rubio and Drikvandi (2022), we must have a
sufficiently large number of uncensored observations in each cluster to
correctly estimate the model parameters. As a final remark, all simulation
and fitting scenarios are listed in Table 1.

Table 1. All simulated scenarios for Section 4.1. “Data Generating model” refers to the model
assumed for the data generating procedure, and “Fitted model” is defined as per Table 4.

# | Data Generating model | Censoring rate | Sample size | Fitted model # | Data Generating model | Censoring rate | Sample size | Fitted model

01 RS-SGH LN ICAR 25% 200 RS-SGH LN ICAR 13 [ RS-SGH PGW ICAR 25% 200 RS-SGH LN ICAR
02| RS-SGHLN ICAR 25% 500 RS-SGH LN ICAR 14 | RS-SGH PGW ICAR 25% 500 RS-SGH LN ICAR
03| RS-SGHLN ICAR 25% 1000 RS-SGH LN ICAR 15| RS-SGH PGW ICAR 25% 1000 RS-SGH LN ICAR
04 RS-SGH LN ICAR 25% 2000 RS-SGH LN ICAR 16 [ RS-SGH PGW ICAR 25% 2000 RS-SGH LN ICAR
05| RS-SGHLN ICAR 25% 200 RS-SGH PGW ICAR | 17 | RS-SGH PGW ICAR 25% 200 RS-SGH PGW ICAR
06 | RS-SGH LN ICAR 25% 500 RS-SGH PGW ICAR | 18 | RS-SGH PGW ICAR 25% 500 RS-SGH PGW ICAR
07 RS-SGH LN ICAR 25% 1000 RS-SGH PGW ICAR | 19 | RS-SGH PGW ICAR 25% 1000 RS-SGH PGW ICAR
08 | RS-SGH LN ICAR 25% 2000 RS-SGH PGW ICAR | 20 | RS-SGH PGW ICAR 25% 2000 RS-SGH PGW ICAR
09 | RS-SGHLN ICAR 50% 200 RS-SGH LN ICAR 21 | RS-SGH PGW ICAR 50% 200 RS-SGH LN ICAR
10 | RS-SGHLN ICAR 50% 500 RS-SGH LN ICAR 22 | RS-SGH PGW ICAR 50% 500 RS-SGH LN ICAR
11 RS-SGH LN ICAR 50% 1000 RS-SGH LN ICAR 23 | RS-SGH PGW ICAR 50% 1000 RS-SGH LN ICAR
12| RS-SGHLNICAR 50% 2000 RS-SGH LN ICAR 24 | RS-SGH PGW ICAR 50% 500 RS-SGH LN ICAR

From Table 1, notice that we are not fitting the PGW distribution
model with 50% censoring rate. We did it in this way since we identified

that, for 3-parameter distributions (e.g., Power Generalized Weibull), it
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:
3 might be difficult to obtain well-mixed posterior chains for models fitted
g based on highly censored data sets. When generating the data, we will
6 simulate 100 data sets for each combination of sample size, censoring
; rate, and baseline hazard distribution. Next, for the fitting step, we will
9 write Model (2) using the same covariates as the selected ones for the
1? data generating scheme. Also, for the MCMC-based (Markov chain Monte
12 Carlo) code (implemented using RStan in the background) from Web
13 Appendix 2 (Supporting Information), we set the number of chains, the
12 number of iterations and the burn-in size as 4, 4000, and 2000, respectively
16 (after fitting the models, the chains for the posterior sampled values were
1; observed to be well mixed in all cases). Then, to assess the fitted models,
19 we will plot the estimated net survival curves (averaged over all regions)
;? along with an error measure defined as
22 A
23 Brror = / £(8) — F()ldt, )
24 T
25 A
26 where f is the true function, f is the corresponding estimated function,
;; and 7 = [t1, to] is the analyzed time interval.
;3 First, Figures 1 and 2 show the net survival curves and the corresponding
g; errors, as per Equation (7), in estimating the true functions for 7 = [0, 4],

33 respectively, for data generated from the RS-SGH LN ICAR model with

25% and 50% censoring rates for all sample sizes. In that case, we fit

35
36 the same model as the generating scheme; thus, here, we aim to assess
37 the impact of the censoring rate and the sample size when employing
38
39 such an approach. From these figures, we can see that our models
40 recover well the true net survival functions for a 25% censoring rate,
41 . . . .. .
47 with decreasing uncertainty as the sample size increases. In particular, we
43 observe reasonable results for a sample size larger than 500-1000 patients.
j: In a similar manner, for scenarios with 50% censoring rate, the estimates
46 get better as we increase the number of patients; however, if the sample
47
48 , ,
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size is too small (e.g., 200 patients), the observed bias (and the variability
represented in Figure 2) when estimating the net survival curves is larger
than before—although such a high censoring effect vanishes as the sample

size gets larger.
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Figure 1. True and estimated (along with a 95% equal-tailed credible interval) net survival
curves based on the fitted RS-SGH LN ICAR model. The data were generated from the same
model with 25% and 50% censoring rates and sample size set to 200, 500, 1000, and 2000
patients. Such estimates were obtained by averaging over the 100 simulated data sets and all
regions for each scenario (the corresponding uncertainty was computed based on the
percentiles for the curves that average the regions’ net survival).

Second, Figures 3 and 4 show similar plots to before, however, for
data generated from the RS-SGH LN ICAR and RS-SGH PGW ICAR
models with 25% censoring rate for all sample sizes. In these two cases,
the fitted models were RS-SGH PGW ICAR and RS-SGH LN ICAR,
respectively; that is, we are fitting misspecified models for the baseline
hazard component. From such figures, we can notice that misspecified
baseline hazard distributions do not seem to be an important issue if one
is solely interested in computing marginal quantities, as the net survival
curves. However, as mentioned before, depending on the censoring rate,

3-parameter distributions (e.g., PGW) might require larger samples to fit.
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13 Figure 2. Error in estimating the true net survival function based on the fitted RS-SGH LN
14 ICAR model. The data were generated from the same model with 25% and 50% censoring
15 rates and sample size set to 200, 500, 1000, and 2000 patients. The computed errors
16 aggregate the 100 simulated data sets and all regions for each scenario. The crosses ()
17 correspond to the boxplot values mean.
18
19 . . .
20 Lastly, Figures SF1, SF2, SF3, and SF4 (Supporting Information) show
21 the corresponding results for the remaining scenarios from Table 1.
22
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39 Figure 3. True and estimated (along with a 95% equal-tailed credible interval) net survival
curves based on the fitted RS-SGH PGW ICAR (first row) and RS-SGH LN (second row)
40 models. In these two cases, the data were generated from models RS-SGH LN ICAR (first
41 row) and RS-SGH PGW ICAR (second row), respectively, with 25% censoring rate and
42 sample size set to 200, 500, 1000, and 2000 patients. Such estimates were obtained by
43 averaging over the 100 simulated data sets and all regions for each scenario (the
a4 corresponding uncertainty was computed based on the percentiles for the curves that
45 average the regions’ net survival).
46
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Figure 4. Error in estimating the true net survival function based on the fitted RS-SGH PGW
ICAR and RS-SGH LN models. In these two cases, the data were generated from models
RS-SGH LN ICAR (four first boxes) and RS-SGH PGW ICAR (four last boxes), respectively,
with 25% censoring rate and sample size set to 200, 500, 1000, and 2000 patients. The
computed errors aggregate the 100 simulated data sets and all regions for each scenario.
The crosses (x) correspond to the boxplot values mean.

4.2 Random effects selection

In this section, we will analyze the role of the spatial effects in model
selection. That is, fixing all components but the random effects, we will
select the most appropriate model according the the estimated e/II;iPSIS-LOO'
To do so, we will, for the same data generating scenarios from Table 1 with
25% censoring rate, fit models with no random effects (RS-SGH), 1ID
random effects (RS-SGH IID), ICAR random effects (RS-SGH ICAR),
and BYM?2 random effects (RS-SGH BYM?2) with different distributions
for the baseline hazard component. Table ST3 (Supporting Information)
lists all considered combinations for data generation and model fitting.
Then, similarly to Section 4.1, we will rank the models for the 100
different simulated data sets in all scenarios.

After fitting all models (the ones that were not fitted yet in Section
4.1), we compute e/l&lPSIS_LOO (using the 1oo package) and compare such
estimated quantities for all equivalent scenarios. As a remark, when fitting
the models, all posterior chains were well mixed. Table 2 reports the
“best-model proportions” (i.e., the number of times, out of the 100 data

sets, that a model was selected based on the estimated elpdpg;s | o) for all
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1
2
3 scenarios with sample size set to 2000 patients. Tables ST4, ST5, and ST6
g (Supporting Information) report similar results, but based on the data sets
6 containing 200, 500, and 1000 patients, respectively.
7
8 —_—
9 Table 2. “Best-model proportions” for model selection based on the estimated elpdpgg op- IN
10 all scenarios, we assumed a 25% censoring rate and set the sample size to 2000 patients.
—I -I # | Data Generating model | Fitted model Best-model proportions | # | Data Generating model | Fitted model Best-model proportions

01 RS-SGH LN ICAR RS-SGH LN — 2% 09 | RS-SGH PGW ICAR | RS-SGH LN — 1%
12 02 RS-SGH LN ICAR RS-SGH LN IID 6% 10 | RS-SGH PGW ICAR | RS-SGH LN IID 79%

03 RS-SGH LN ICAR RS-SGH LN ICAR 51% 11 | RS-SGH PGW ICAR | RS-SGH LN ICAR 9%
13 04 RS-SGH LN ICAR RS-SGH LN BYM?2 41% 12 | RS-SGH PGW ICAR | RS-SGH LN BYM2 11%

05 RS-SGH LN ICAR RS-SGH PGW — 15% 13 | RS-SGH PGW ICAR | RS-SGH PGW — 7%
14 06 RS-SGH LN ICAR RS-SGH PGW IID 32% 14 | RS-SGH PGW ICAR | RS-SGH PGW IID 26%

07 RS-SGH LN ICAR RS-SGH PGW ICAR 28% 15| RS-SGH PGW ICAR | RS-SGH PGW ICAR 41%
15 08 RS-SGH LN ICAR RS-SGH PGW BYM2 25% 16 | RS-SGH PGW ICAR | RS-SGH PGW BYM2 26%
16
17
12 From Table 2 (and Tables ST4-ST6, Supporting Information), we can
20 see that models that account for some random effects structure were
21 selected more often in all scenarios (except for 200 patients, as in Table
22 . € .
23 ST4). Also, as the sample size increases (500 patients or more), not only
24 the models with spatial effects were selected with higher proportions, but
25
2% also the correct model (RS-SGH ICAR) was the most frequently selected
27 approach for some of the specified settings with generating model based
;S on the Log-normal distribution for the baseline hazard. On the contrary,
30 for the misspecified scenarios with generating scheme based on the Power
g ; Generalized Weibull distribution, the model with clustering effects seemed
33 to perform better than the competing approaches—as a reason for this
;‘5‘ to happen, recall that the Log-normal model might fail to recover the
36 PGW hazard shape; in that case, it is possible that the spatial structure
37 for the random effects gets suppressed by the error from the poorly
38
39 fitted fixed components and the IID model performs better. In that way,
40 under the assumption that the baseline hazard distribution can capture the
41 . .
47 corresponding hazard shape from the data, the employed model selection
43 approach seems to work well when selecting an appropriate random
f’é structure, provided that we have a minimum of 500-1000 data points (as
46 we also identified in Section 4.1).
47
48 , ,
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4.3 Spatial effects analysis

For the following analysis, we showcase the insights we can obtain from
the estimated spatial structure. For that, we will generate data from a
model with manually set spatial effects. In particular, we will simulate
data from the RS-SGH model with a Log-normal distribution for the
baseline hazard, such that ; = 0.65 and 0 = 1.15, as in Section 4.1. Also,
we will choose the covariates and set the corresponding coefficients as
in Appendix C. Lastly, we will set 1 = u = (2.0, 1.5, 1.0, 0.5, 0, —0.5,
—1.0, —1.5, —2.0)" for the 1-9 regions in England (as per Figure 7),
respectively. Then, for a data set with 10000 individuals and censoring
rate of 25%, we will fit the RS-SGH LN model, with no random effects
and with IID, ICAR, and BYM2 random structures, once, such that the
MCMC setting parameters will be defined as in Section 4.1, and analyze
the estimated spatial effects (if any) based on the corresponding posterior

distributions.

Similar to previous simulations, when fitting the models, all posterior
chains were well mixed. However, when comparing such approaches
according to the e/II;iPSIS-LOO criterion, the results pointed out to the ICAR
random structure as the most appropriate model—although the pairwise
differences between the ICAR model and the IID and BYM?2 models seem
to be non-significant, as shown in Table ST7 (Supporting Information).
The model with no spatial effects was ranked in the lowest position. This
means that, although we do need to account for non-observed spatial
heterogeneity, for such a large data set, all random structures captured well
the spatial effects. Figure 5 shows the true and estimated spatial effects
(at both time- and hazard-levels) for the ICAR random structure (Figures
SF5 and SF6, in Web Appendix 6 (Supporting Information), show the
corresponding maps for the IID and BYM?2 structures, respectively),
such that the plotted estimates were computed based on the mean of

the sample obtained from the corresponding random effect posterior
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1
2
3 distributions. The first thing we can observe from these maps is that
g we were able to recover the spatial effects reasonably well. Table ST8
6 (Supporting Information) shows the estimates for all RS-SGH LN ICAR
; model parameters along with a 95% equal-tail credible interval for the
9 same model (Tables ST8 also presents similar results for models RS-
:? SGH LN IID and RS-SGH LN BYM?2). Second, based on these estimates
12 only, we can study the geographical inequalities for different population
13 groups. That is, fixing all terms but u and u, the risk of dying is larger for
14 : .. : : .y .
15 patients who live in regions with positive estimates for the hazard-level
16 spatial effects. The time-level spatial effects have a similar interpretation,
17 . . .
18 but they have to be analyzed along with the baseline hazard shape; i.e.,
19 if ho(t;0) increases with ¢, then positive u;’s imply in riskier areas;
;? contrarily, if the baseline hazard is a decreasing function, a positive time-
22 level random effect decreases the risk of dying in 7, for patients with the
;i same characteristics, in comparison to other regions with smaller effects
25 of the same kind.
26
27 2.50
28
29 12
30
31 0
32
33 125
34
35 ’ s -2.50
36
37 Figure 5. Spatial effects for the RS-SGH LN ICAR model. Left panel: True spatial effects
38 ua=u=(2.0,1.5,1.0,0.50,-0.5 —1.0, —1.5, —2.O)T. Middle panel: Estimated time-level
39 spatial effects 1 = (1.86, 1.45,0.81,0.41,0.04, —0.69, —0.90, —1.33, —1.65) ' . Right panel:
Estimated hazard-level spatial effects u = (1.96, 1.54, 0.97, 0.53, 0.04, —0.45, —1.01,
40 —1.43, —2.15)7.
41
42
43 However, as suggested by Taylor (2017), analyzing the spatial effects as
j;' in Figure 5 ignores the precision of the estimates—recall that we would
46 be more precise in estimating u and u in regions with more patients.
47
48 _ ,
Prepared using sagej.cls .
49 https://mc.manuscriptcentral.com/smmr
50



coNO UL DA WN —

Statistical Methods in Medical Research Page 28 of 80

Amaral, Rubio, Rodriguez-Cortés, and Moraga 27

Alternatively, we could compute and analyze the relative exceedance
probability P(u; > c), for all < and some threshold ¢ (the same applies to
u;, V7). Under the Bayesian setting, such a probability can be estimated
based on the posterior sample for the spatial effects. This measure
quantifies the variability of the random effect estimate around c, but it
is also useful to assess unusual elevations in such a model component. For
instance, we might be interested in computing P(u; > 0), for all regions
1 (the same for w;, V7). This quantity can be used as a proxy for the risk
level to which a group of patients (defined by their geographical location)
is subjected, compared to the general population. Figures SF7, SF8, and
SF9 (Supporting Information) show the computed relative exceedance
probabilities for both time-level and hazard-level random effects, such that
the threshold ¢ = 0, for models RS-SGH LN ICAR, RS-SGH LN IID, and
RS-SGH LN BYM?2, respectively.

Lastly, we can also analyze the estimates for o, =1/,/7, (and
oz = 1//Ta) in all cases. Figures SF10, SF11, and SF12 (Supporting
Information) show the estimated posterior densities for such parameter
when fitting the RS-SGH LN model with ICAR, IID, and BYM2 random
effects, respectively. From these figures (and Table ST8), we can see that
the two spatial structures were simultaneously and successfully estimated.
As discussed in Section 3.1, if (i) we have enough uncensored patients in
each region and (ii) the baseline hazard does not belong to the Weibull

family, then we may estimate well the random effects.

5 Case study

In this section, we will analyze a data set that contains survival
information about male and female patients diagnosed with colon cancer
between 2015 and 2016 in England. Appendix D presents a complete
description of the data set. More specifically, we analyze the survival of

colon cancer patients in England with spatial structure defined in two
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different manners: (i) based on the administrative boundaries given by
the Government Office Regions (as per Figure 7) and (i1) based on the
health boundaries determined by the Cancer Alliances (Office for National
Statistics 2022). The main goal is assessing the impact of different
geographies when accounting for the possible spatial correlation in the
data.

For all scenarios, we know subject-specific prognostic factors, which
include age at diagnosis, sex, deprivation level, and cancer stage. The
population hazard term hp(agez-j + t;2;;) was determined based on the
life tables for England defined for the corresponding calendar year,
and stratified by age, sex, deprivation level (according to the computed
quintiles of such a score), and region of residence (Rachet et al.
2015; Inequalities in Cancer Outcomes Network 2022). Also, for all
models separately fitted for male and female individuals, we always
set the time-level linear predictor to age,; + u;, and the hazard-level
linear predictor to age,; b1+ 2522 ]lstageij (&) Br + deprivation,; Bk +1) +
u;, where ]lstageij(k), for 2 < k£ < K, is an indicator function for individuals
who belong to the k-th cancer tumour stage, and, as in Section 4, the u;
and u; components (if any) are defined as one of the (spatially dependent)
random structures introduced in Section 2.2. Finally, the variables “age”

and “deprivation” were standardized for numerical stability.

Given the setting we just described, we will fit Model (2) for 10,936
males and 9,586 females with a diagnosis of colon cancer in 2016 in
England. The linear predictor terms will be defined as mentioned above,
such that we have K = 4 levels for the cancer stage (“1” being early
stage and “4” late stage). Also, regarding the baseline hazard distributions
and the random effects, for each scenario we fit the following models:
RS-SGH LL ICAR, RS-SGH LL BYM2, RS-SGH LN ICAR, RS-SGH
LN BYM2, RS-SGH PGW ICAR, and RS-SGH PGW BYM?2, as per the
notation introduced in Table 4. We selected these models for two reasons.
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First, due to the computational cost associated with fitting them to such
a large data set (Table ST10, Supporting Information, shows the fitting
times for all cases), we decided to limit our investigation to models with
clinical motivation (in particular, models that present some underlying
spatial structure). Second, such models are flexible enough to cover many
different hazard shapes and possible spatially dependent random effects.
For the MCMC-based code, we set the number of chains, the number
of iterations and the burn-in size as 4, 10000, and 8000, respectively
(the posterior chains were well mixed in all cases, except for the RS-
SGH LL BYM2 model with male patients spatially distributed over the
Government Office Regions—see Table ST9, Supporting Information).
Next, the best model is selected according to the e/ll;iPSIS-LOO criterion,
as in Section 3.3. Lastly, the spatial structure is defined according to two
geographies: (1) the 9 Government Office Regions (GOR), as in Figure 7,
and (i1) the 19 Cancer Alliances Regions delimited during the calendar
year of 2016.

Considering these fitted models, Table ST9 (Supporting Information)
shows the selected model (according to the @PSIS-LOO criterion) for
each scenario. Thus, the following results are based on the highest-ranked
modeling alternatives. Then, we compute the net survival for ¢ = 1 and
3 years (along with the estimated 95% equal-tailed credible interval) for
all regions. Here, it is important mentioning how the uncertainty for this
quantity is being estimated; for each sampled vector of parameters &°,
where s is the index for the posterior sample, we determine the 2.5
and 97.5" percentiles of Sy (¢ | €°), for all ¢ and i, as per Equation
(4). Figure 6 shows the estimated net survival for the male and female
groups, the two different geographies, and t = 3 years; also, Figures SF13
and SF14 (Supporting Information) report the associated uncertainty.
Similarly, SF15, SF16, and SF17 (Supporting Information) present the
corresponding maps for ¢t = 1 year.
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1
2
3 Male/GOR (3rd year) Female/GOR (3rd year)
4 0.690 0.690
5
6 0.660 0.660
7
8 0.630 0.630
9 6 6
10
1 1 0.600 0.600
12 ,
13 ’ 0570 0.570
14 Male/Cancer Alliances (3rd year) Female/Cancer Alliances (3rd vear)
15 0.690 0.690
16
17 0.660 0.660
18
1 9 0.630 0.630
20 6 6
21
22 . + 0.600 0.600
23 _
24 ’ 0.570 0.570
25
26 Figure 6. Net survival point estimate for ¢t = 3 based on the (i: top-left panel) “Government
27 Office Regions” spatial structure with fitted model RS-SGH LN BYM2 for male patients, (ii:
top-right panel) “Government Office Regions” spatial structure with fitted model RS-SGH LN
28 BYM2 for female patients, (iii: bottom-left panel) “Cancer Alliances Regions” spatial structure
29 with fitted model RS-SGH LN BYM2 for male patients, and (iv: bottom-right panel) “Cancer
30 Alliances Regions” spatial structure with fitted model RS-SGH LN BYM2 for female patients.
31
32 _
33 From these figures, we can analyze (i) the rate of change for the net
;g survival estimates, (ii) the difference between the net survival for male
36 and female patients, and (ii1) the impact of the chosen administrative
37 boundaries when estimating the quantities of interest. Firstly, the net
38 . . . .
39 survival seems to decrease faster during the first years after diagnosis,
40 such that the corresponding estimates after 1 and 3 years of diagnosis
41 . . .
47 are, approximately, 0.75 and 0.63, respectively. Secondly, regarding the
43 differences between male and female patients, the female individuals are
:;’ shown to be slightly more likely of dying than men—this difference can
46 be seen in the maps for all follow-up time windows. Thirdly, analyzing
47
48 , .
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the England territory based on a finer resolution (e.g., Cancer Alliances
Regions) brings us more information if compared to the GOR-based
results. In particular, “South Yorkshire, Bassetlaw, North Derbyshire and
Hardwick” (as per Figure SF18 Supporting Information) shows a lower
(for the female group) estimated net survival than the other regions—
notice that, just by inspecting the GOR-based estimates, it would be
difficult to identify these locations, and practical implications (e.g.,

allocation of resources for medically underserved areas) could not happen.

Furthermore, given that the random effects play a major role in the
description of the results, Table ST11 (Supporting Information) shows the
estimated values (with reported uncertainty) of o, = 1/ \/Tu (same for o)
and p (same for p) for all highest-ranked BYM2 models. Additionally,
Figures SF19-SF22 show the estimated posterior densities of o, and oy
for the same models. From that table and figures, note that, first, the
uncertainty associated with the estimation of o, and o3 is not large.
This indicates that we did not encounter any identifiability issues when
recovering the underlying spatial structures. Second, the point estimates
for p and p are around 0.55 (with standard error around 0.35) for all
scenarios, which indicates that the proportion of the variance that comes
from the structured random effects is similar to the contribution from
the unstructured random effects. That is, the flexibility that comes with
the BYM2 structure seems to be important to correctly characterize the
variability that cannot be explained by the fixed effects, both in time- and
hazard-level.

We can also compute the net survival stratified by the categorical
variables; in this section, we will consider the “deprivation level” and
the “cancer stage” as the population strata. However, recall that the
deprivation level is a continuously defined score, thus, if we want to
aggregate the patients based on such information, we can compute its

quintiles and classify the individuals according to the obtained intervals. In
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:
3 that way, the deprivation score will have 5 levels (“1” being least deprived
g and “5” most deprived). As before, Figures SF23 and SF26 (Supporting
6 Information) show the estimated net survival maps, for ¢ = 3 years,
; stratified by the “deprivation level” and the “cancer stage,” respectively,
9 such that we plotted and compared the deprivation levels “1” (least
10

deprived level) and “5” (most deprived level), and the cancer stages “I, 2,
12 and 3” (early stages) and “4” (late stage). Figures SF24, SF25, SF27, and

13 SF28 (Supporting Information) report the associated uncertainty. Lastly,
14 : : : :

15 Figures SF29-SF34 Supporting Information) present the corresponding
16 maps for ¢t = 1 year.

17

18

1 9 . . .

20 Firstly, based on the figures for the estimated net survival curves
21 stratified by deprivation level, we can notice that, for all time points,
22 . . .
23 not only the estimates vary over space (with less homogeneous spatial
24 distribution when we consider the finer spatial resolution), but also the net
25 . . . N

2% survival for the different population strata decrease as the deprivation level
27 gets larger; in particular, patients with a deprivation score of 5 have higher
;g chances of dying than the least deprived group regardless of the time span,
30 gender, and the Government Office Region (or Cancer Alliance)—which
g; is likely to be associated with sub-optimal treatment strategies offered to

33 this group. Secondly, by analyzing the figures that show the net survival

estimates stratified by the cancer stage, we have similar conclusions,

35
36 that is, the net survival decrease as the patients are diagnosed with later
37 stages for the colon cancer. However, for this stratified analysis, we can
38 . . . .
39 notice a much larger difference in the chances of surviving between the
40 groups with cancer stages “1, 2, and 3” (early stages) and “4” (late stage),
41 . .
47 regardless of the other factors. In fact, when plotting the corresponding
43 net survival maps, we had to present the results in different scales for each
j: level of severity (as stressed in all figures captions); otherwise, the spatial
46 variability in each of these two groups would not be captured in the maps.
47
48 , ,
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This occurs since patients with stage 4-cancer are less likely to be cured

and, instead, only receive palliative care.

6 Discussion

In this work, we introduced the Relative Survival Spatial General
Hazard (RS-SGH) class of models that generalizes, under the relative
survival framework, other survival models. The proposed RS-SGH models
account for spatial random effects both in the time-level and hazard-level
components, such that these random structures can be modeled, among
other approaches, according to the ICAR or BYM2 smoothing priors.
The proposed class of models was implemented using R (R Development
Core Team 2022) and STAN (Carpenter et al. 2017) and made available
in a public repository, which allows for reproducibility of our research.
Web Appendix 2 (Supporting Information) provides an example on how
to use the scripts; in particular, Table ST1 lists all models that are
currently possible to implement. Also, regarding model selection, we
computed and used the @PSIS_LOO estimates (as per Section 3.3), and
tested its performance in Section 4.2. This work also contains other
minor contributions, such as (i) the prior distribution recommendations
(as per Section 3.2) for the model parameters and hyperparameters,
(i1) some guidelines about the sample size, baseline hazard distribution
misspecification, and censoring rate when fitting models of this kind
(as per Section 4.1), and (ii1) a simple extension of the ‘“exceedance
probability” idea to the computed (and interpreted) “relative exceedance
probabilities” (as per Section 4.3).

Aiming to validate the proposed model and inference tools, we
conducted a simulation study that analyzed the effects of the sample
size, censoring rate, and the baseline hazard distribution when estimating
the model parameters and recovering the net survival curves. In this

regard, the sample size and the censoring rate were shown to be the
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:
3 most important factors to control; for instance, in most cases, a minimum
g sample size of 500—1000 patients provided estimates with less variability
6 for the net survival curves. Also, higher censoring rates (e.g., 50%) with
; not large sample sizes (e.g., 200-500 patients) produced biased estimates
9 for this same quantity. In fact, for 3-parameter distributions (e.g., Power
1? Generalized Weibull), it might be difficult even to obtain well-mixed
12 posterior chains when fitting the model. However, the misspecification
13 of the baseline hazard distribution, provided that we have enough non-
12 censored observations and a model that can capture the true hazard shape,
16 had little impact in the estimation of marginal quantities. As part of
17 . . .
18 the simulation study, we also assessed the model selection performance
19 and the ability to recover the true spatial effects. Also, based on these
;? estimated random structures, we could compute the relative exceedance
22 probabilities, which are functions of the spatial effects that can be used,
;2 depending on the set threshold, to compare specific locations to the general
25 population with respect to their net survival. As a note, our simulation
;3 study was conducted based on a spatial graph defined by 9 regions. Hence,
28 it may be of interest to explore scenarios with a larger number of areas.
29
30 We have also presented a case study aiming at answering genuine
g ; questions of interest in cancer epidemiology. In particular, we found that a
33 finer spatial resolution brings us more important information about areas
;‘5‘ that present lower net survival than the overall country. Identifying these
36 locations 1is crucial as, based on such knowledge, decision-makers can
37 focus their resources on improving the lives of the vulnerable groups of
;S the population. Moreover, we have illustrated how to produce summaries
40 for subgroups of the population of interest, such as those defined by
j; “deprivation level” and ‘“cancer stage.” For the former, we have found
43 that most-deprived patients (deprivation level 5) exhibit lower chances
j: of survival compared to the least deprived groups. For the latter, patients
46 with late-stage cancer (stage 4) experience a significant reduction in their
47
48 , ,
49 Freparedusing sagefcls https://mc.manuscriptcentral.com/smmr
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survival prospects; in fact, as we have briefly mentioned in Section 5, in

most cases, these patients only receive palliative care.

The proposed methodology and results presented in this work can be
extended in different directions. Firstly, we could also include a time-
dependent component in Equation (2) that explains the non-observed
temporal variability associated to the year of diagnosis. Such an extension
could be mainly useful for studies that take individuals diagnosed over a
very large time window, as the treatment (thus, the chances of surviving)
is likely to improve in the long term. Secondly, in Section 5, when
modeling survival, it may be useful to simultaneously include spatial
information not only about the patients’ place of residence, but also about
their local of treatment. As pointed out by Quaresma et al. (2022), cancer
incidence depends on where you live (as this is related to deprivation, and
deprivation has a strong relationship with geographies), while survival
also depends on where you are treated (as it depends on the quality of
healthcare). Thus, future work might extend our model into this direction.
Thirdly, missing data is a prevalent problem in population studies. Thus, a
possible extension of our work consists of developing multiple imputation
strategies to account for missing data, while also accounting for spatial
variability. Fourthly, less common smoothing priors for describing the
possible spatial autocorrelations among regions could have been used;
for instance, the directed acyclic graph auto-regressive (DAGAR) model
(Dattaetal. 2019) is an alternative to the ICAR model that can also be used
for modeling other data structures (e.g., images and networks). However,
while still using the ICAR formulation, the PC priors can be employed
when specifying the precision parameters in the spatial random effects.
As discussed by Simpson et al. (2017) (and references therein), a Gamma
prior may not be the most suitable choice for this problem. Similarly,
PC priors may also be used in the context of the BYM2 model (Riebler
et al. 2016). Therefore, the implementation of such penalized complexity
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priors is a consideration for future work. Finally, the idea of incorporating
spatial (or spatio-temporal) random structures into the hazard model can
also be implemented in other survival modeling frameworks, such as the

competing risks models, cure models, and overall survival models.
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A Sub-models based on the RS-SGH approach

Table 3 shows eight possible sub-models that can be derived from the
Relative Survival Spatial General Hazard (RS-SGH) model and that we
believe are useful for researchers and practitioners working with survival
data.

Table 3. Eight simpler models based on the Relative Survival Spatial General Hazard
(RS-SGH) modeling approach. The “Description” column refers to the corresponding terms in
Equation (2).

Name Description | Name Description
RS-SGH-I u=20 RS-GH u=u=20
RS-SGH-II u=u RS-PH |a=u=0,a=0
RS-SPH u=0,a=0 | RS-AFT | u=u=0,aa=0
RS-SAFT |a=u,a=08|RS-AH |u=u=0,8=0

B Implemented models

Referring back to Model (2) (and all variations from Table 3) and
assuming a parametric form for the baseline hazard function given by the
models listed in Section 2.1, and considering all possible structures for
the random effects defined in Section 2.2, we can enumerate at least 95
models to choose from. Table 4 lists all possible models.

The code, available on https://github.com/avramaral/
relative_survival, implements all such models, and the fitting
procedure, using RStan (STAN Development Team 2021) in the
background, can be performed as in Web Appendix 2. In that section,
we provide the code snippet that can be used for fitting Model (2) for
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Table 4. All implemented models. The “Dist.” column refers to the possible distributions for
the baseline hazard function, “Model” refers to the implemented excess hazard models—as
per Table (3), and “R.E.” refers to the spatially structured (and unstructured) random effects

described in Section 2.2.

# | Dist. | Model R.E. # | Dist. | Model R.E. # | Dist. | Model R.E. # | Dist. | Model R.E. # | Dist. | Model R.E.
01 | LN [ RS-SGH BYM2 |20 | LL [RS-SGH BYM2 | 39 [ PGW | RS-SGH BYM2 | 58 [ GAM | RS-SGH BYM2 [ 77 | GG | RS-SGH BYM2
02 | LN [ RS-SGH ICAR |21 | LL [RS-SGH ICAR | 40 [ PGW | RS-SGH ICAR | 59 [ GAM | RS-SGH ICAR | 78 | GG | RS-SGH ICAR
03 | LN | RS-SGH 1ID 22 | LL | RS-SGH 11D 41 | PGW | RS-SGH 11D 60 | GAM | RS-SGH 1D 79 | GG | RS-SGH 1ID
04 | LN | RS-SGH-I | BYM2 | 23 | LL | RS-SGH-I | BYM2 | 42 | PGW | RS-SGH-I | BYM2 | 61 | GAM | RS-SGH-I | BYM2 | 80 | GG | RS-SGH-I | BYM2
05| LN | RS-SGH-I | ICAR |24 | LL |RS-SGH-I | ICAR |43 [ PGW | RS-SGH-I | ICAR |62 | GAM [ RS-SGH-I | ICAR |81 | GG | RS-SGH-I | ICAR
06 | LN [ RS-SGH-I | IID 25| LL [ RS-SGH-I | IID 44 | PGW | RS-SGH-I | IID 63 | GAM | RS-SGH-I | IID 82| GG | RS-SGH-I | IID
07 | LN [ RS-SGH-IT [ BYM2 | 26 | LL | RS-SGH-II | BYM2 | 45 | PGW | RS-SGH-IT [ BYM2 | 64 | GAM | RS-SGH-II | BYM2 | 83 | GG | RS-SGH-II | BYM2
08 | LN [ RS-SGH-II [ ICAR |27 | LL | RS-SGH-II | ICAR | 46 | PGW | RS-SGH-II [ ICAR | 65 | GAM | RS-SGH-II | ICAR | 84 | GG | RS-SGH-II | ICAR
09 | LN [ RS-SGH-II | ID 28 | LL [ RS-SGH-II | ID 47 | PGW | RS-SGH-II | ID 66 | GAM | RS-SGH-II | ID 85| GG | RS-SGH-II | IID
10 | LN | RS-SPH BYM2 |29 | LL |RS-SPH BYM2 | 48 [ PGW | RS-SPH BYM2 | 67 [ GAM | RS-SPH BYM2 | 86 | GG | RS-SPH BYM2
11| LN | RS-SPH ICAR | 30| LL |RS-SPH ICAR | 49 [ PGW | RS-SPH ICAR | 68 [ GAM | RS-SPH ICAR |87 | GG | RS-SPH ICAR
12 | LN | RS-SPG 1ID 31| LL | RS-SPH 1D 50 | PGW | RS-SPH 1D 69 | GAM | RS-SPG 1ID 88 | GG | RS-SPG 1ID
13 LN | RS-SAFT |BYM2 |32 | LL [RS-SAFT | BYM2 |51 | PGW | RS-SAFT | BYM2 | 70 | GAM | RS-SAFT | BYM2 | 89 | GG | RS-SAFT | BYM2
14 [ LN | RS-SAFT |ICAR |33 | LL [ RS-SAFT |ICAR | 52| PGW | RS-SAFT |ICAR |71 | GAM | RS-SAFT | ICAR |90 | GG | RS-SAFT [ICAR
15| LN | RS-SAFT | IID 34| LL [ RS-SAFT | IID 53 | PGW | RS-SAFT | IID 72 | GAM | RS-SAFT | IID 91 | GG [ RS-SAFT | IID

16 [ LN | RS-GH — 35| LL [RS-GH — 54 | PGW | RS-GH — 73 | GAM | RS-GH — 92| GG [ RS-GH —
17 [ LN | RS-PH — 36 | LL | RS-PH — 55| PGW | RS-PH — 74 | GAM | RS-PH — 93 | GG | RS-PH —
18 [ LN | RS-AFT — 37 | LL | RS-AFT — 56 | PGW | RS-AFT — 75 | GAM [ RS-AFT — 94 | GG | RS-AFT —

19 [ LN | RS-AH 38 | LL | RS-AH 57 | PGW | RS-AH 76 | GAM | RS-AH 95 | GG | RS-AH

an example based on observed leukemia-diagnosed patients (Henderson
et al. 2002).

C Simulation details

The covariates for the simulated data will be based on the lung cancer
estimates in London, obtained (and implemented in the SimLT package)
by Rubio (2022). In particular, we will generate synthetic data for n
patients—0.5n male and 0.5n female patients, such that we will have
information about the “date of diagnosis,” “deprivation level” (1 to 5,
where 1 is “least deprived” and 5 1s “most deprived”), “region” (9 regions
of England, as per Figure 7), and “age.” Based on it, and given the life
tables for England (for the corresponding period), we can simulate the

survival times tfj associated to the population hazard.

Next, we can simulate the survival times tfj associated to the excess

hazard with parameters that we detail now. The excess hazard model was
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Figure 7. Map of England divided into the 1-9 Government Office Regions, namely, North
East, North West, Yorkshire and The Humber, East Midlands, West Midlands, East of
England, London, South East, and South West, respectively.

defined as follows

he(t;xi; | 0, «, B, Ui, u;) = ho(texp{age;;a + u;} | 0)x

5
exp § age; /51 + Z Laep,, (k) O + s€Xij 06 + wi ¢
k=2
where /8 = (/817/827/837/847557/86)T and Xij =

(a4, Laep,;(2), Laep,,(3)> Laep,(4): Lepy;5), 5Xi) | such  that - Taep,; ),
for 2 < k <5, is an indicator function for individuals who belong
to the k-th deprivation level group (notice that “deprivation level 17
is our reference class). For LN baseline hazard distribution, we set
the parameters, according to the parameterization in Web Appendix 1
(Supporting Information), as ¢ = 0.65 and o = 1.15; and for the PGW,
we set them as 1 = 0.5, ¥ = 3.75, and K = 8. The true coefficients were
a=1.0and 8= (1.0,-1.0,—1.0,—1.0, —1.0,2.0) T in all cases. For the
spatial effects, we set both u and u as following the ICAR model with
Ta = T = 10. Finally, for the excess hazard simulated survival times, we
apply two sources of censoring: 1) 1.5-year (50% censoring rate) and

4-year (25% censoring rate) administrative censoring for all individuals
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1
2
3 (that corresponds to the end of the study), and 2) a random censoring given
g by an Exponential(rate = 0.01) model (that represents the individuals
6 who, for any reason, dropped the study). The final survival times were set
; as t;; = min(tfj, tfj), Vi, j, with the corresponding censoring indicators.
9
1? D Data description for Applications
12 For Section 5, we obtained information on all adult (aged 15-99
13
14 years) colon cancer patients (International Classification of Diseases for
15 Oncology, third edition, ICD-O-3 codes 18.0-18.9) diagnosed in England
1? between 2015 and 2016, such that we extracted the data from the

18 National Cancer Registration and Analysis Service (NCRAS) data base
linked to Hospital Episode Statistics (HES), including basic information

5(1) on patient, tumour characteristics, and area of residence. All patients
;g were followed up to update their vital status until 31 December 2018.
24 The data variables available for analysis were sex, age at diagnosis,
;g follow-up time (measured in years from diagnosis), vital status indicator
27 (dead or censored as alive at the end of follow-up), Government Office
28 Region (GOR) of residence at diagnosis, Cancer Alliance of residence at
;g diagnosis, deprivation score (based on the Income Domain scores of the

31 2011 Indices of Multiple Deprivation, IMD), deprivation category (defined
according to the quintiles of the IMD Income Domain scores distribution,
34 such that “1” is the least deprived group and “2, 3, 4, 57 are the most
deprived groups), and colon cancer stage at diagnosis (“1”” being localised

37 cancer stage, and ‘2, 3, 4” corresponding to the metastatic cancer stage).
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Web Appendix 1 Baseline distributions

Below, we detail the chosen distributions for the baseline function hg(+). In particular, we define
the Log-normal (LN), Log-logistic (LL), Power Generalized Weibull (PGW), Gamma (GAM), and Gen-
eralized Gamma (GGQG) distributions. For each distribution, the probability density function f(-), hazard
function A(-), cumulative hazard function H(-), and survival function S(-) are specified as in the following

sections.

Log-normal distribution

ft0)= ta\iﬁexp{—W}, for t > 0,

(%) o ("52)
(t10) = —tog (1 (20 ana
S(t|6)=1- <1°g(t)> 7

where 6 = (u,02), such that 4 € R and 02 > 0, ¢(-) is the probability density function of the standard

h(t | @) =

Normal distribution, and ®(-) is the cumulative distribution function of the standard Normal distribution.

Log-logistic distribution

log(t)—p
f(t19) = ¥
g (log((tr)—u)
ey

(e 6) = 1og (1-6 (*H0=1) ) ana

g

S(t\e)zl—G(M)

g

, fort >0,

where @ = (u,0), such that p € R and o > 0, g(t) = exp{—t}(1 + exp{—t})~2, and G(t) = (1 +

exp{—t})~".
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Power Generalized Weibull distribution

= e (= (8)) i 0 () oo
w10y =1+ (1+(£)) "
soin-enfi- (- (2))'}

where 6 = (n,v, k), such that > 0 is a scale parameter and v, k > 0 are shape parameters.

= |-

|-

Gamma distribution

f(t|0):F —t"" 1exp{ }7f01rt>07
v exp{—%
h(t|0) =
F(u ( %
( z
'
H(t|0)=—1log Tw) , and

S(t | 8) —1—7(V)%

where 8 = (n,v), such that > 0 is a scale parameter and v > 0 is a shape parameter, I'(-) is gamma

function, and ~(-,-) is the lower incomplete gamma function.

Generalized Gamma distribution

ﬂtle):wﬂ)ﬁ”tu_ p{ <3> },fort>0,
h(t] )= - exp{ (%) }n

@ - (:G))]
(5.6))

H(t|6)=—1log|1- ( )

.

5(t|9):1,M

Ilt

, and

ESN

~——

1
U

(%)

—
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where @ = (n,v, k), such that n > 0 is a scale parameter and v,k > 0 are shape parameters, I'(-) is
gamma function, and ~(-,-) is the lower incomplete gamma function.

From a practical point of view, it might be useful to use that F(¢ | n,v,x) = G(t" | n*, (v/K)),

oONOULDh WN =

such that F'(-) is the cumulative distribution function (CDF) of the Generalized Gamma distribution (as
9 defined above), and G(t | n,v) is the CDF of the Gamma distribution with scale and shape parameters
1 given by 71 and v, respectively.
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Web Appendix 2 Code snippet

As an example, we will fit the RS-SGH model for leukemia-diagnosed patients (Henderson et al.,

2002), such that the excess hazard component will be given by the following expression
hi(t;xij | 0,a, 8,1, u;) = ho(texp{age;jo + @} | 0) exp {age;; 81 + wheij B2 + sexi; B3 + dep;; 81 + ui |,

where  collects the corresponding distribution parameters, 3 = (81, B2, 43, 34) " and Xij = (ageij, wbe;j,

sex;j, depij)—r, such that “wbc” stands for “white blood count,” and “dep” corresponds to the Townsend
Score (a index of social deprivation, such that higher values indicates less affluent areas). The baseline
hazard ho(-|@) will be specified according to a log-normal distribution, and the random effects @ and u
will follow the ICAR model.

Based on the code from this repository (https://github.com/avramaral/relative_survival),

we can fit such a model as follows:

source("header.R") # load libraries and needed functions
data <- readRDS(file = "DATA/leuk.rds") # load the "leukemia" data

# Optional
data$age <- scale(data$age)
data$wbc <- scale(data$wbc)

data$dep <- scale(data$dep)

map <- readRDS(file = "DATA/nwengland_map.rds") # load the England map
adj_info <- adj_list(map = map) # create an object with information about the neighborhood

structure

model <- "LN_ABST"
dist <- gsub(pattern = "_", replacement = "", x = substring(text = model, first = c(1, 4), last

= c(3, 7))[1]) # extract the distribution code from "model"

n " "

d <- data_stan(data = data, model = model, cov.tilde = c("age"), cov = c("age", "wbc", "sex",
"dep"), nonlinear = c(), adj_info = adj_info) # create the data object
m <- compile_model(model = model) # compile the Stan model

r <- fit_stan(mod = m, data = d) # fit the model

From the above code, notice that the variable model specifies the fitted model. In particular, we can set
it as XXXVYZZ, where XXX specifies the model for the baseline term (the options are LN_, LL_, PGW, GAM,
and GG-, such that they correspond to the LN, LL, PGW, Gamma, and GG distributions, respectively),
YY specifies the structure for the fixed coefficients (these two characters refer to the vector of coefficients
in the time-level and hazard-level components, respectively, such that the allowed combinations are listed

in the models.R file), and ZZ specifies the possibly different random effects structures for @ and u,

https://mc.manuscriptcentral.com/smmr
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respectively (the letters C and D refer to the IID model, S and T refer to the ICAR model, and Y and Z
refer to the BYM2 model. If one does not want to include the random effects structure in either time- or
hazard-level components, they can set the corresponding character as X). Table ST1 lists all implemented

models (along with the model codes).

Web Table ST1: All implemented models with the corresponding model code. For each of the RS-SGH,
RS-SGH-I, RS-SGH-II, RS-SPH, RS-SAFT, RS-GH, RS-PH, RS-AFT, and RS-AH models, we specify

the baseline hazard distribution, and the random effects structure.

# | Model Code | # | Model Code | # | Model Code # | Model Code # | Model Code

01 | RS-SGH LN BYM2 LN_ABYZ | 20 | RS-SGH LL BYM2 LL-ABYZ | 39 | RS-SGH PGW BYM2 PGWABYZ | 58 | -SGH Gamma BYM2 GAMABYZ | 77 | RS-SGH GG BYM2 GG.ABYZ
02 GH LN ICAR LN.ABST | 21 SGH LL ICAR LLABST | 40 H PGW ICAR PGWABST | 59 GH Gamma ICAR GAMABST | 78 | RS-SGH GG ICAR GG.ABST
03 GH LN 1ID LN.ABCD | 22 SGH LL 11D LL_ABCD | 41 H PGW 1ID PGWABCD | 60 GH Gamma 11D GAMABCD | 79 | RS-SGH GG IID GG.ABCD
04 GH-I LN BYM2 | LN_ABXZ | 23 | RS-SGH-I LL BYM2 | LL_ABXZ | 42 H-I PGW BYM2 | PGWABXZ | 61 | RS-SGH-I Gamma BYM2 | GAMABXZ | 80 | RS-SGH-I GG BYM2 | GG.ABXZ

05 [ RS-SGH-I LN ICAR LN_ABXT | 24 | RS-SGH-I LL ICAR LL_ABXT | 43 H-I PGW ICAR PGWABXT | 62 | RS-SGH-I Gamma ICAR GAMABXT | 81 | RS-SGH-I GG ICAR GG.ABXT
06 | RS-SGH-I LN 11D LN_ABXD [ 25 | RS-SGH-I LL IID LL_ABXD | 44 | RS-SGH-1 PGW I1ID PGWABXD | 63 | RS-SGH-I Gamma IID GAMABXD | 82 | RS-SGH-I GG IID GG_ABXD
07 | RS-SGH-IT LN BYM2 | LN_ABYY | 26 | RS-SGH-IT LL BYM2 | LL_ABYY | 45 | RS-SGH-IT PGW BYM2 | PGWABYY | 64 | RS-SGH-IT Gamma BYM2 | GAMABYY | 83 | RS-SGH-II GG BYM2 | GG_ABYY
08 | RS-SGH-IT LN ICAR | LN.ABSS | 27 | RS-SGH-IT LL ICAR | LL.ABSS | 46 | RS-SGH-IT PGW ICAR | PGWABSS | 65 | RS-SGH-IT Gamma ICAR | GAMABSS | 84 [ RS-SGH-IT GG ICAR | GG.ABSS
09 | RS-SGH-IT LN 1ID LN.ABCC | 28 | RS-SGH-II LL IID LL.ABCC | 47 H-1T PGW TID PGWABCC | 66 GH-IT Gamma ITD GAMABCC | 85 S-SGH-IT GG 11D GG.ABCC
10 [ RS-SPH LN BYM2 LN.XBXZ | 29 SPH LL BYM2 LLXBXZ | 48 H PGW BYM2 PGWXBXZ | 67 PH Gamma BYM2 GAMXBXZ | 86 S-SPH GG BYM2 GG.XBXZ
11 | RS-SPH LN ICAR LN.XBXT | 30 SPH LL ICAR LLXBXT | 49 H PGW ICAR PGWXBXT | 68 | RS-SPH Gamma ICAR GAMXBXT | 87 S-SPH GG ICAR GGXBXT
12 | RS-SPH LN IID LN.XBXD | 31 SPH LL 11D LLXBXD | 50 | RS-SPH PGW IID PGWXBXD | 69 | RS-SPH Gamma IID GAMXBXD | 88 | RS-SPH GG IID GG.XBXD
13 | RS-SAFT LN BYM2 | LN_AAYY | 32 | RS-SAFT LL BYM2 | LL_AAYY | 51 | RS-SAFT PGW BYM2 PGWAAYY | 70 | RS-SAFT Gamma BYM2 GAMAAYY [ 89 [ RS-SAFT GG BYM2 GG-AAYY

LN ICAR | LN.AASS | 33 | RS-SAFT LL ICAR | LL_AASS | 52 £ PGWAASS | 71 | RS-SAFT Gamma ICAR | GAMAASS | 90 | RS-SAFT GG ICAR | GG_AASS

15 T LN 1D LN.AACC | 34 | RS-SAFT LL 11D LL.AACC | 53 FT PGW TID PGWAACC | 72 | RS-SAFT Gamma ITD GAMAACC | 91 | RS-SAFT GG ITD GG.AACC
16 LN LN.ABXX | 35 | RS-GH LL LL-ABXX | 54 | RS-GH PGW PGWABXX [ 73 | RS-GH Gamma GAMABXX | 92 | RS-GH GG GG-ABXX
17 LN.XBXX | 36 | RS-PH LL LLXBXX | 55 | RS-PH PGW PGWXBXX [ 74 | RS-PH Gamma GAMXBXX | 93 | RS-PH GG GGXBXX
18 | RS-AFT LN LN_AAXX | 37 | RS-AFT LL LL_AAXX | 56 | RS-AFT PGW PGWAAXX [ 75 | RS-AFT Gamma GAMAAXX | 94 | RS-AFT GG GG.AAXX
19 | RS-AH LN — LN_AXXX | 38 | RS-AH LL — LLAXXX | 57 | RS-AH PGW — PGWAXXX | 76 | RS-AH Gamma — GAMAXXX | 95 | RS-AH GG — GG.AXXX
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Web Appendix 3 RS-SGH data simulation

In this section, we will see how to simulate the survival data from the Relative Survival Spatial
General Hazard (RS-SGH) model. To do so, first, we have to simulate the survival times tfj associated
to the population hazard, and second, we have to simulate the survival times t;-Ej that corresponds to the
excess hazard model. Then, at the end, all we have to do is setting ¢;; = min{tfj7 tg} Also, throughout
this section, we will assume known covariates for all individuals and life table for the corresponding region

and time-window. To simulate (colon and lung) cancer-related covariates in England, one can refer, for

example, to Rubio (2022).

P
35

To simulate t;., notice that the problem boils down to simulating from a piecewise constant
hazard model, as this is often the information we have available from the life tables. Finally, recall that
this is equivalent to simulate from a piecewise exponential (piecewise constant rate) distribution. The
rsim.pwexp() function from the SimLT package (Rubio, 2022) implements such a procedure.

Secondly, we will simulate the survival times associated to the excess hazard model. To do so,
we will rely on the Probability Integral Transform (PIT). Here, the idea is simulating z ~ Uniform(0, 1),

and apply the PIT for the corresponding survival model. This means solving Equation (1) for t%:
SN (tys xij | &gy ui) = exp{—Hg(tij; xij | € @, wi)} = (1 — 2), (1)

where £ = (BT7 al, BT,'VT)T, and 6 collects the corresponding distribution parameters. To do so, we

can proceed as follows,

exp {—Hg(t};;xij | & ii,ui)} = (1 - 2)
= exp{—HO(t;Ej exp{f(:ja +a;}]0) exp{x;rj — i;;a + u; — ﬂl}} =(1-2)

= So(tF exp{Xj e + @7} | O)PTRGA—Fetuimii} — (1 _ ).

This implies that

— 1 - Fy(tf exp{x]/a + 1} | 0) = ex
oty exp{Xy; i119) P exp{x/;8 — X0 +u; — u;}

log(1 — 2) }

log(1 — 2) . B )
eXP{exp{XiTj,B—iiTja+ui_ai} o ij eXP{X”a-i-u }16)
. log(1 — 2) ) )
1 . )
- FQ 1—exp{exp{xgﬁ—iyja+ui _ﬂi} ’0 _tij exp{xija+ui},

such that Fj; '(-;@) is the quantile function for the baseline hazard model. Lastly,

B _ Fyt [1 — exp {log(l —2) exp{f(;;a — X;-'—jﬁ + Uy — ul}} \ 9} .
* tij exp{f(;;a + ﬂz}

E

As mentioned before, once we have simulated t% and ¢;;, we simply set t;; = min (¢} t?j), Vi, j.

ijo
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Web Appendix 4 Analysis of marginal quantities (Simulation)

This section presents complementary results for Section 4.1. Table ST2 shows the computational
cost for fitting the models. Figures SF1 and SF3 show the estimated and true net survival curves for

different scenarios, and SF2 and SF4 plot the corresponding errors based on these simulated data sets.

Web Table ST2: Fitting time for all simulated scenarios for Section 4.1. “Fitting time (sec.)” presents
the average time (in seconds) to fit the corresponding model based on the 100 simulated data sets for
each scenario. The models were fitted on a Intel-Xeon Gold 6230R CPU at 2.10 Ghz.

# | Data Generating model | Cens. rate | Sample size | Fitted model Fitting time (sec.) | # | Data Generating model | Cens. rate | Sample size | Fitted model Fitting time (sec.)
0T | RS-SGH LN ICAR 25% 200 RS-SGH LN ICAR ]16.46 13 | RS-SGH PQW ICAR 25% 200 RS-SGH LN ICAR 639.69
02 | RS-SGH LN ICAR 25% 500 RS-SGH LN ICAR 1269.51 14 | RS-SGH PGW ICAR 25% 500 RS-SGH LN ICAR 988.41
03| RS-SGH LN ICAR 25% 1000 RS-SGH LN ICAR 1873.57 15 | RS-SGH PGW ICAR 25% 1000 RS-SGH LN ICAR 1600.08
04 | RS-SGH LN ICAR. 25% 2000 RS-SGH LN ICAR 2612.08 16 | RS-SGH PGW ICAR 25% 2000 RS-SGH LN ICAR 2198.06
05 | RS-SGH LN ICAR 25% 200 RS-SGH PGW ICAR 1139.31 17 | RS-SGH PQGW ICAR 5% 200 RS-SGH PGW ICAR jI8.25
06 | RS-SGH LN ICAR 25% 500 RS-SGH PGW ICAR 1849.68 18 GH PGW ICAR 25% 500 RS-SGH PGW ICAR 1271.65
07 | RS-SGH LN ICAR 25% 1000 RS-SGH PGW ICAR 2618.80 19 | RS-SGH PGW ICAR 25% 1000 RS-SGH PGW ICAR 1989.32
08 | RS-SGH LN ICAR. 25% 2000 RS-SGH PGW ICAR 3535.60 20 | RS-SGH PGW ICAR 25% 2000 RS-SGH PGW ICAR 2374.49
09 | RS-SGH LN ICAR 50% 200 RS-SGH LN ICAR 908.27 21 | RS-SGH PGW ICAR 50% 200 RS-SGH LN ICAR 674.08
10 | RS-SGH LN ICAR 50% 500 RS-SGH LN ICAR 1391.55 22 GH PGW ICAR 50% 500 RS-SGH LN ICAR 1039.07
11| RSSGHLNICAR 50% 1000 RS-SGH LN ICAR 2016.23 23 GH PGW ICAR 50% 1000 RS-SGH LN ICAR 1654.65
12| RS-SGH LN ICAR 50% 2000 RS-SGH LN ICAR 2730.82 24 GH PGW ICAR 50% 500 RS-SGH LN ICAR 2314.54
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— ] — ] — — ]
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Web Figure SF1: True and estimated (along with a 95% equal-tailed credible interval) net survival
curves based on the fitted RS-SGH LN ICAR model. The data were generated from the RS-SGH PGW
ICAR model with 50% censoring rate and sample size set to 200, 500, 1000, and 2000 patients. Such
estimates were obtained by averaging over the 100 simulated data sets and all regions for each scenario
(the corresponding uncertainty was computed based on the percentiles for the curves that average the

regions’ net survival).
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Web Figure SF2: Error in estimating the true net survival function based on the fitted RS-SGH LN
ICAR model. The data were generated from the RS-SGH PGW ICAR model with 50% censoring rate
and sample size set to 200, 500, 1000, and 2000 patients. The computed errors aggregate the 100 simulated

data sets and all regions for each scenario. The crosses (x) correspond to the boxplot values mean.
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Web Figure SF3: True and estimated (along with a 95% equal-tailed credible interval) net survival curves
based on the fitted RS-SGH PGW ICAR model. The data were generated from the same model with 25%
censoring rate and sample size set to 200, 500, 1000, and 2000 patients. Such estimates were obtained by
averaging over the 100 simulated data sets and all regions for each scenario (the corresponding uncertainty

was computed based on the percentiles for the curves that average the regions’ net survival).

o™
e
£ °
i a o
=5 S
wn -
e} 1
o H
& ~ | o
o O | : i - °
S X | : BE
a — = | | .
od  —= - - — T
T T T T
200 500 1000 2000

Web Figure SF4: Error in estimating the true net survival function based on the fitted RS-SGH PGW
ICAR model. The data were generated from the same model with 25% censoring rate and sample size
set to 200, 500, 1000, and 2000 patients. The computed errors aggregate the 100 simulated data sets and

all regions for each scenario. The crosses (x) correspond to the boxplot values mean.
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Web Appendix 5 Model selection (Simulation)

which we will simulate data and fit the corresponding model.

This section presents complementary material for Section 4.2. Table ST3 lists all scenarios for

Then, based on such results, we will

compare the equivalent scenarios with respect to the estimated eTp\dpSIS,LOO. Also, tables ST4, ST5,

and ST6 report the “best-model proportions” for all scenarios with sample size set to 200, 500, and 1000

patients, respectively.

Web Table ST3: All simulated scenarios for Section 4.2. “Data Generating model” refers to the model

assumed for the data generating procedure, and “Fitted model” defines the baseline hazard distribution

and the random effects structure. For all scenarios, the censoring rate is assumed to be 25%.

# | Data Generating model | Sample size | Fitted model # | Data Generating model | Sample size | Fitted model

01 RS-SGH LN ICAR 200 RS-SGH LN — 33 | RS-SGH PGW ICAR 200 RS-SGH LN —

02 RS-SGH LN ICAR 500 RS-SGH LN — 34 | RS-SGH PGW ICAR 500 RS-SGH LN —

03 RS-SGH LN ICAR 1000 RS-SGH LN — 35 | RS-SGH PGW ICAR 1000 RS-SGH LN —

04 RS-SGH LN ICAR 2000 RS-SGH LN 36 | RS-SGH PGW ICAR 2000 RS-SGH LN

05 RS-SGH LN ICAR 200 RS-SGH LN IID 37 | RS-SGH PGW ICAR 200 RS-SGH LN IID

06 RS-SGH LN ICAR 500 RS-SGH LN IID 38 | RS-SGH PGW ICAR 500 RS-SGH LN IID

07 RS-SGH LN ICAR 1000 RS-SGH LN IID 39 | RS-SGH PGW ICAR 1000 RS-SGH LN IID

08 RS-SGH LN ICAR 2000 RS-SGH LN IID 40 | RS-SGH PGW ICAR 2000 RS-SGH LN IID

09 RS-SGH LN ICAR 200 RS-SGH LN ICAR 41 | RS-SGH PGW ICAR 200 RS-SGH LN ICAR

10 RS-SGH LN ICAR 500 RS-SGH LN ICAR 42 | RS-SGH PGW ICAR 500 RS-SGH LN ICAR

11 RS-SGH LN ICAR 1000 RS-SGH LN ICAR 43 | RS-SGH PGW ICAR 1000 RS-SGH LN ICAR

12 RS-SGH LN ICAR 2000 RS-SGH LN ICAR 44 | RS-SGH PGW ICAR 500 RS-SGH LN ICAR

13 RS-SGH LN ICAR 200 RS-SGH LN BYM2 45 | RS-SGH PGW ICAR 200 RS-SGH LN BYM2
14 RS-SGH LN ICAR 500 RS-SGH LN BYM2 46 | RS-SGH PGW ICAR 500 RS-SGH LN BYM2
15 RS-SGH LN ICAR 1000 RS-SGH LN BYM2 47 | RS-SGH PGW ICAR 1000 RS-SGH LN BYM2
16 RS-SGH LN ICAR 2000 RS-SGH LN BYM?2 48 | RS-SGH PGW ICAR 2000 RS-SGH LN BYM2
17 RS-SGH LN ICAR 200 RS-SGH PGW — 49 | RS-SGH PGW ICAR 200 RS-SGH PGW —

18 RS-SGH LN ICAR 500 RS-SGH PGW — 50 | RS-SGH PGW ICAR 500 RS-SGH PGW —

19 RS-SGH LN ICAR 1000 RS-SGH PGW — 51 | RS-SGH PGW ICAR 1000 RS-SGH PGW —

20 RS-SGH LN ICAR 2000 RS-SGH PGW 52 | RS-SGH PGW ICAR 2000 RS-SGH PGW

21 RS-SGH LN ICAR 200 RS-SGH PGW IID 53 | RS-SGH PGW ICAR 200 RS-SGH PGW IID

22 RS-SGH LN ICAR 500 RS-SGH PGW IID 54 | RS-SGH PGW ICAR 500 RS-SGH PGW IID

23 RS-SGH LN ICAR 1000 RS-SGH PGW IID 55 | RS-SGH PGW ICAR 1000 RS-SGH PGW IID

24 RS-SGH LN ICAR 2000 RS-SGH PGW IID 56 | RS-SGH PGW ICAR 500 RS-SGH PGW IID

25 RS-SGH LN ICAR 200 RS-SGH PGW ICAR | 57 | RS-SGH PGW ICAR 200 RS-SGH PGW ICAR
26 RS-SGH LN ICAR 500 RS-SGH PGW ICAR | 58 | RS-SGH PGW ICAR 500 RS-SGH PGW ICAR
27 RS-SGH LN ICAR 1000 RS-SGH PGW ICAR | 59 | RS-SGH PGW ICAR 1000 RS-SGH PGW ICAR
28 RS-SGH LN ICAR 2000 RS-SGH PGW ICAR | 60 | RS-SGH PGW ICAR 2000 RS-SGH PGW ICAR
29 RS-SGH LN ICAR 200 RS-SGH PGW BYM2 | 61 | RS-SGH PGW ICAR 200 RS-SGH PGW BYM2
30 RS-SGH LN ICAR 500 RS-SGH PGW BYM2 | 62 | RS-SGH PGW ICAR 500 RS-SGH PGW BYM2
31 RS-SGH LN ICAR 1000 RS-SGH PGW BYM2 | 63 | RS-SGH PGW ICAR 1000 RS-SGH PGW BYM2
32 RS-SGH LN ICAR 2000 RS-SGH PGW BYM2 | 64 | RS-SGH PGW ICAR 2000 RS-SGH PGW BYM2

Web Table ST4: “Best-model proportions” for model selection based on the estimated GTp\dPSIS-LOO' In

all scenarios, we assumed a 25% censoring rate and set the sample size to 200 patients.

#

Data Generating model

Fitted model

Best-model proportions

Data Generating model

Fitted model

Best-model proportions

01
02
03
04

RS-SGH LN ICAR
RS-SGH LN ICAR
RS-SGH LN ICAR
RS-SGH LN ICAR

RS-SGH LN —
RS-SGH LN IID
RS-SGH LN ICAR
RS-SGH LN BYM2

30%

™%
22%
41%

RS-SGH PGW ICAR
RS-SGH PGW ICAR
RS-SGH PGW ICAR
RS-SGH PGW ICAR

RS-SGH LN —
RS-SGH LN IID
RS-SGH LN ICAR
RS-SGH LN BYM2

26%

8%
24%
42%

05
06
07
08

RS-SGH LN ICAR
RS-SGH LN ICAR
RS-SGH LN ICAR
RS-SGH LN ICAR

RS-SGH PGW —
RS-SGH PGW 11D
RS-SGH PGW ICAR
RS-SGH PGW BYM2
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32%
22%
24%
22%

RS-SGH PGW ICAR
RS-SGH PGW ICAR
RS-SGH PGW ICAR
RS-SGH PGW ICAR

RS-SGH PGW —
RS-SGH PGW 11D
RS-SGH PGW ICAR
RS-SGH PGW BYM2

30%
21%
25%
24%
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Web Table ST5: “Best-model proportions” for model selection based on the estimated eTI;lPSIS_LOO. In

all scenarios, we assumed a 25% censoring rate and set the sample size to 500 patients.

Statistical Methods in Medical Research

# | Data Generating model | Fitted model Best-model proportions | # | Data Generating model | Fitted model Best-model proportions
01 RS-SGH LN ICAR RS-SGH LN 18% 09 | RS-SGH PGW ICAR | RS-SGH LN 10%
02 RS-SGH LN ICAR RS-SGH LN IID 3% 10 | RS-SGH PGW ICAR | RS-SGH LN IID 20%
03 RS-SGH LN ICAR RS-SGH LN ICAR 32% 11 | RS-SGH PGW ICAR | RS-SGH LN ICAR 23%
04 RS-SGH LN ICAR RS-SGH LN BYM2 A% 12 | RS-SGH PGW ICAR | RS-SGH LN BYM2 A7%
05 RS-SGH LN ICAR RS-SGH PGW — 24% 13 | RS-SGH PGW ICAR | RS-SGH PGW — 16%
06 RS-SGH LN ICAR RS-SGH PGW IID 23% 14 | RS-SGH PGW ICAR | RS-SGH PGW IID 22%
07 RS-SGH LN ICAR RS-SGH PGW ICAR 29% 15 | RS-SGH PGW ICAR | RS-SGH PGW ICAR 30%
08 RS-SGH LN ICAR RS-SGH PGW BYM2 24% 16 | RS-SGH PGW ICAR | RS-SGH PGW BYM2 32%

Web Table ST6: “Best-model proportions” for model selection based on the estimated e/l-P;IPSIS-LOO' In

all scenarios, we assumed a 25% censoring rate and set the sample size to 1,000 patients.

# | Data Generating model | Fitted model Best-model proportions | # | Data Generating model | Fitted model Best-model proportions
01 RS-SGH LN ICAR RS-SGH LN — 4% 09 | RS-SGH PGW ICAR | RS-SGH LN — 1%
02 RS-SGH LN ICAR RS-SGH LN IID 8% 10 | RS-SGH PGW ICAR | RS-SGH LN IID 35%
03 RS-SGH LN ICAR RS-SGH LN ICAR 47% 11 | RS-SGH PGW ICAR | RS-SGH LN ICAR 18%
04 RS-SGH LN ICAR RS-SGH LN BYM2 41% 12 | RS-SGH PGW ICAR | RS-SGH LN BYM2 46%
05 RS-SGH LN ICAR RS-SGH PGW 14% 13 | RS-SGH PGW ICAR | RS-SGH PGW 3%
06 RS-SGH LN ICAR RS-SGH PGW IID 5% 14 | RS-SGH PGW ICAR | RS-SGH PGW IID 18%
07 RS-SGH LN ICAR RS-SGH PGW ICAR 36% 15 | RS-SGH PGW ICAR | RS-SGH PGW ICAR 49%
08 RS-SGH LN ICAR RS-SGH PGW BYM2 45% 16 | RS-SGH PGW ICAR | RS-SGH PGW BYM2 30%
10
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Web Appendix 6 Analysis of the spatial effects (Simulation)

This section presents complementary results for Section 4.3. In Figures SF5 and SF6, we plot
the true and estimated spatial effects for models RS-SGH LN IID and RS-SGH LN BYM2, respectively.
Similarly, Table ST8 show all estimated parameters (with a 95% equal-tail credible interval) for models
RS-SGH LN IID, RS-SGH LN ICAR, and RS-SGH LN BYM2. Moreover, Figures SF7, SF8, and SF9
present the estimated relative exceedance probabilities for the same models as before. Lastly, Figures
SF10, SF11, and SF12, show the estimated posterior of o, = 1/,/7, (same for oz = 1/,/73) for the
ICAR, IID, and BYM2 random effects, respectively, when fitting the RS-SGH LN model.

Web Table ST7: Results for the competing models in Section 4.3 according to the ap\dPSIS_LOO. The
eTp\dPSIS-LOO difference (with standard error) represents the pairwise difference between the others models
and the reference model (RS-SGH LN ICAR).

Model | RS-SGH LN ICAR | RS-SGH LN IID | RS-SGH LN BYM2 | RS-SGH LN
elpdpgys.1.o0 difference (SE) | 0.0 (0.0) | -01(12) | 0.3 (0.5) | -3187.7 (67.6)

2.50
1.25
0
. ! ) ; . ; -1.25
» » »

-2.50

Web Figure SF5: Spatial effects for the RS-SGH LN IID model presented in Section 4.3. Left panel:
True spatial effects 1 = u = (2.0, 1.5, 1.0, 0.5, 0, —0.5, —1.0, —1.5, —2.0) . Middle panel: Estimated
time-level spatial effects . = (1.94, 1.54, 0.90, 0.52, 0.15, —0.56, —0.78, —1.23, —1.51)T. Right panel:
Estimated hazard-level spatial effects u = (1.86, 1.44, 0.86, 0.43, —0.07, —0.56, —1.12, —1.54, —2.27)T.
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Web Figure SF6: Spatial effects for the RS-SGH LN BYM2 model presented in Section 4.3. Left panel:
True spatial effects 1 = u = (2.0, 1.5, 1.0, 0.5, 0, —0.5, —1.0, —1.5, —2.0) . Middle panel: Estimated
time-level spatial effects @ = (1.90, 1.49, 0.85, 0.46, 0.09, —0.63, —0.85, —1.29, —1.59)T. Right panel:
Estimated hazard-level spatial effects u = (1.91, 1.49, 0.91, 0.48, —0.01, —0.51, —1.07, —1.49, —2.21)T.

11
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Web Table ST8: Estimated parameters (with standard deviation and a 95% equal-tail credible interval)
for the RS-SGH LN model with IID, ICAR, and BYM2 random effects, presented in the simulation study

(Section 4.3).

Random Effect | Parameter | Mean | SD | 95% equal-tail CI | Parameter | Mean | SD | 95% equal-tail CI

Statistical Methods in Medical Research

11D o 083003 ( 0.76; 0.90) Bs —0.96 | 0.04 | (—1.04; —0.87)
11D By 0.88 | 0.02 | ( 0.85 0091) Be 1.98 | 0.03 | ( 1.92; 2.05)
11D Ba —0.90 | 0.05 | (—0.93; —0.81) " 0.55 | 0.36 | (—0.14; 1.27)
11D B3 —0.97 | 0.05 | (—1.06; —0.88) o 1.15 | 0.05 | ( 1.06; 1.25)
11D B —0.97 | 0.04 | (—1.06; —0.88) — — | — —

11D iy 194 [ 036 | ( 1.26; 2.68) w 1.86 | 0.36 | ( 1.17; 2.59)
11D i 154 [ 035 | ( 0.86; 2.26) us 144 | 036 | ( 0.75; 2.17)
11D i 0.90 | 0.36 | ( 0.22; 1.63) us 0.86 | 0.36 | ( 0.17; 1.59)
11D iy 052 | 036 | (—0.17; 1.26) uy 043 | 0.36 | (—0.26; 1.16)
11D i 0.15 | 0.36 | (—0.55; 0.89) us —0.07 | 0.36 | (—0.75; 0.67)
11D iig —0.56 | 0.37 | (—1.27; 0.19) ug ~0.56 | 0.36 | (—1.26; 0.16)
11D iy —0.78 | 0.37 | (—1.50; —0.02) uy ~1.12 | 0.36 | (—1.81; —0.39)
11D i ~1.23 [ 037 | (—1.93; —0.49) ug —1.54 | 036 | (—2.24; —0.81)
11D i ~1.51 | 040 | (—2.31; —0.71) ug —2.27 | 037 | (—2.97; —1.52)
ICAR a 084003 ] ( 0.77; 001 Bs —0.97 [ 0.04 | (—1.05; —0.88)
ICAR B 0.88 | 0.02 | ( 0.85 0.91) Bs 1.99 | 0.03 | ( 1.92; 2.05)
ICAR Ba ~0.91 | 0.05 | (—1.00; —0.82) n 0.65 | 0.04 | ( 0.57; 0.74)
ICAR Bs ~0.98 | 0.04 | (—1.07; —0.89) o 1211002 | ( 1.18; 1.25)
ICAR Bs —0.98 | 0.04 | (—1.07; —0.89) — — | — —

ICAR iy 1.86 [ 0.09 | ( 1.69; 2.04) U 1.96 | 0.04 | ( 1.89; 2.04)
ICAR i 145 [ 007 | ( 1.32; 1.58) uy 154 | 0.03 | ( 1.48; 1.60)
ICAR i 0.81 | 0.08 | ( 0.66; 0.97) us 0.97 | 0.03 | ( 0.90; 1.03)
ICAR iy 041 | 0.09 | ( 023 0.60) uy 053 | 0.04 | ( 0.46; 0.61)
ICAR i 0.04 | 010 | (—0.15 0.23) us 0.04 | 0.04 | (—0.04; 0.11)
ICAR iig —0.69 | 0.10 | (—0.88; —0.49) ug 045 | 0.04 | (—0.53; —0.37)
ICAR iy —0.90 | 0.12 | (—1.14; —0.65) uy —1.01 | 0.05 | (—1.10; —0.91)
ICAR i —1.33 [ 0.11 | (=1.55; —1.11) ug 143 [ 0.05 | (—1.52; —1.34)
ICAR i —1.65 | 0.19 | (—2.01; —1.28) ug —2.15 | 0.07 | (—2.29; —2.01)
BYM2 o 083003 ] ( 0.77; 0.90) Bs —0.96 | 0.04 | (—1.04; —0.88)
BYM2 By 0.88 | 0.02 | ( 0.85 0.91) Be 1.99 | 0.03 | ( 1.92; 2.05)
BYM2 Ba —0.91 | 0.05 | (—1.00; —0.82) " 0.60 | 0.12 | ( 0.32 0.81)
BYM2 Bs —0.97 | 0.05 | (—1.06; —0.88) o 118 | 0.04 | ( 1.10; 1.26)
BYM2 B —0.98 | 0.04 | (—1.06; —0.89) — — | — —

BYM2 K 081|022 | ( 020; 1.00) P 082|021 | ( 022 1.00)
BYM2 iy 1.90 [ 0.14 | ( 1.66; 2.20) u 191 | 012 | ( 1.63; 2.12)
BYM2 i 149 [ 013 | ( 1.27; 1.78) us 149 | 012 | ( 1.21; 1.70)
BYM2 i3 085|013 | ( 0.61; 1.14) us 091 | 012 | ( 0.63; 1.12)
BYM2 iy 046 | 014 | ( 021; 0.78) uy 048 | 0.12 | ( 0.19; 0.69)
BYM2 i 0.09 | 0.15 | (—0.18; 0.41) us 0.01 | 0.12 | (—0.30; 0.20)
BYM2 iig —0.63 | 0.16 | (—0.91; —0.29) ug —0.51 | 0.13 | (—0.80; —0.29)
BYM2 iy —0.85 | 0.17 | (—1.16; —0.48) uy ~1.07 | 0.13 | (—1.37; —0.85)
BYM2 iis ~1.29 [ 0.16 | (—1.57; —0.95) us 149 | 013 | (—1.79; —1.27)
BYM2 i ~1.59 | 022 | (—2.01; —1.14) ug —221 | 0.14 | (—2.54; —1.97)
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14 0.00

15

16 Web Figure SF7: Relative exceedance probability for the RS-SGH LN ICAR model presented in Section
17 4.3. Left panel: Estimated time-level relative exceedance probabilities f(t) = (1, 1, 1, 1, 0.654750, 0,
18 0, 0, 0)7, such that f(@;) = P(@#i; > 0), Vi. Right panel: Estimated hazard-level relative exceedance
;(9) probabilities f(u) = (1, 1, 1, 1, 0.841625, 0, 0, 0, 0) T, such that f(u;) = P(u; > 0), Vi.
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35 Web Figure SF8: Relative exceedance probability for the RS-SGH LN IID model presented in Section
36 4.3. Left panel: Estimated time-level relative exceedance probabilities f(@) = (1, 1, 0.992375, 0.932875,
37 0.663250, 0.061500, 0.023125, 0.001375, 0.000375) T, such that f(@;) = P(d@; > 0), Vi. Right panel:
;g Estimated hazard-level relative exceedance probabilities f(u) = (1, 1, 0.990875, 0.889750, 0.422500,
e 0.060500, 0.001625, 0, 0)T, such that f(u;) = P(u; > 0), Vi.
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55 Web Figure SF9: Relative exceedance probability for the RS-SGH LN BYM2 model presented in Section
56 4.3. Left panel: Estimated time-level relative exceedance probabilities f(u) = (1, 1, 1, 0.998875, 0.715125,
57 0.001125, 0.000125, 0, 0)T, such that f(@;) = P(@; > 0), Vi. Right panel: Estimated hazard-level
gg relative exceedance probabilities f(u) = (1, 1, 1, 0.997375, 0.523250, 0.000125, 0, 0, 0)7, such that

60 f(ui) = P(u; > 0), Vi.
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Tau
Hazard-level Time-level

: Chain

0 1 2 3 4 5 0 1 2 3 4 5 -1
Sigma -2

Hazard-level Time-level -3
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Web Figure SF10: Estimated posterior densities for 7, (as it appears in the hazard-level component)
and 75 (as it appears in the time-level component) for the ICAR random effects when fitting the RS-
SGH LN model. However, aiming to make these results comparable with the estimates showed in Figures
SF11 and SF12 (IID and BYM2 random effects, respectively), we also display the estimated posterior
density for o, = 1//7, and o5 = 1//75. The curves are plotted separately for each posterior chain.
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Chain

26 Web Figure SF11: Estimated posterior densities for o, (as it appears in the hazard-level component)
27 and o (as it appears in the time-level component) for the ITD random effects when fitting the RS-SGH

28 LN model. The curves are plotted separately for each posterior chain.

37 Hazard-level Time-level

55 Web Figure SF12: Estimated posterior densities for o, (as it appears in the hazard-level component)
and o4 (as it appears in the time-level component) for the BYM2 random effects when fitting the RS-
58 SGH LN model. The curves are plotted separately for each posterior chain.
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Web Appendix 7 Case study

This section presents complementary results for Section 5. Table ST9 shows the ranked models
(according to the eTI;iPSIS-LOO criterion), Table ST10 displays the fitting time for all models, and Table
ST11 presents the estimated hyperparameters of the random effects for the highest-ranked BYM2 models
in the first case study. Figures SF13 and SF14 report the uncertainty for the estimated net survival,
such that ¢ = 3 years. Figures SF15, SF16, and SF17 present similar results (including the net survival
point estimate), however, for t = 1 year. Figures SF23, SF24, SF25, SF29, SF30 and SF31 report the
net survival estimates with data stratified by “deprivation level,” and Figures SF26, SF27, SF28, SF32,
SF33, and SF34 report equivalent results with data stratified by “cancer stage.” Lastly, Figure SF18

shows the England map according to the Cancer Alliance Regions.

Web Table ST9: Results for the competing models in Section 5 according to the GTp\dPSIS-LOO' The
@PSIS_LOO difference (with standard error) represents the pairwise difference between the others mod-
els and the reference model. The “Geography 01” refers to the Government Office Regions and the
“Geography 02” refers to the Cancer Alliances Regions in 2016. The strikethrotgh scenario corresponds

to the fitted model for which we did not observe well mixed posterior chains.

Sex | Geography | Model elpdpsis.oo diff. (SE) | Sex | Geography | Model elpdpgis.Loo diff. (SE)
Male 01 RS-SGH LN BYM2 0.0 (_0.0) TFemale 01 RS-SGH LN BYM2 0.0 (0.0)
Male 01 RS-SGH LN ICAR 14 ( 14) Female 01 RS-SGH LN ICAR 0.3 (1.4)
Male 01 RS-SGH PGW ICAR -14.6 ( 3.6) Female 01 RS-SGH LL BYM2 -9.8 (4.0)
Male 01 RS-SGH PGW BYM2 19.7 ( 5.4) Female 01 RS-SGH PGW BYM2 9.8 (2.4)
Male 01 RS-SGH LL ICAR 246 ( 6.5) Female 01 RS-SGH PGW ICAR -20.6 (3.5)
Male 01 RS-SCHEE-BYM2 2428435760} Female 01 RS-SGH LL ICAR -42.0 (5.8)
Male 02 RS-SGH LN BYM2 0.0 (0.0) TFemale 02 RS-SGH LN BYM2 0.0 (0.0)
Male 02 RS-SGH LN ICAR 2.1 (1.8) Female 02 RS-SGH LN ICAR 2.5 (1.8)
Male 02 RS-SGH PGW ICAR -15.4 (3.8) Female 02 RS-SGH PGW BYM?2 9.9 (2.3)
Male 02 RS-SGH PGW BYM2 -16.0 (4.6) Female 02 RS-SGH PGW ICAR -12.0 (3.0)
Male 02 RS-SGH LL BYM2 -23.3 (6.3) Female 02 RS-SGH LL BYM2 -41.6 (6.0)
Male 02 RS-SGH LN ICAR -25.2 (6.6) Female 02 RS-SGH LL ICAR -44.2 (6.2)

Web Table ST10: Fitting time for all models in Section 5. “Fitting time (sec.)” presents the time (in
seconds) to fit the corresponding model. The models are ordered as in Table ST9. The models were fitted
on a AMD EPYC 7402 CPU at 2.8 Ghz.

Sex | Patients’ location | Model Fitting time (sec.) Sex Patients’ location | Model Fitting time (sec.)
Male 01 RS-SGH LN BYM2 70950.50 Female 01 RS-SGH LN BYM2 63060.69
Male 01 RS-SGH LN ICAR 24974.23 Female 01 RS-SGH LN ICAR 27092.05
Male 01 RS-SGH PGW ICAR 35546.03 Female 01 RS-SGH LI, BYM2 143318.70
Male 01 RS-SGH PGW BYM2 134614.80 Female 01 RS-SGH PGW BYM2 83139.05
Male 01 RS-SGH LL ICAR 77084.76 Female 01 RS-SGH PGW ICAR 44532.04
Male 01 RS-SGH LL BYM2 154491.00 Female 01 RS-SGH LL ICAR 158862.70
Male 02 RS-SGH LN BYM2 52695.24 Female 02 RS-SGH LN BYM2 45791.73
Male 02 RS-SGH LN ICAR 15219.16 Female 02 RS-SGH LN ICAR 14379.65
Male 02 RS-SGH PGW ICAR 21843.38 Female 02 RS-SGH PGW BYM2 60938.90
Male 02 RS-SGH PGW BYM2 68693.83 Female 02 RS-SGH PGW ICAR 17720.56
Male 02 RS-SGH LL BYM2 113003.30 Female 02 RS-SGH LL BYM2 99978.17
Male 02 RS-SGH LN ICAR 44572.72 Female 02 RS-SGH LL ICAR 38042.61
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1

2

3

4

5

6

; Web Table ST11: Estimated parameters (with standard deviation and a 95% equal-tail credible interval)

9 for the highest-ranked BYM2 models in Section 5. We reported o, = 1//7, (and 0z = 1//7z) and p

10 (and p). The “Geography 01” refers to the Government Office Regions and the “Geography 02” refers to

n the Cancer Alliances Regions in 2016.

12

13 Sex Geography | Model Parameter | Mean | SD | 95% equal-tail CI | Parameter | Mean | SD | 95% equal-tail CI

14 Male 01 RS-SGH LN BYM2 o2 0.09 | 0.07 (0.00; 0.26) 0w 0.03 | 0.03 (0.00; 0.09)
Male 01 RS-SGH LN BYM?2 i 0.53 | 0.35 (0.00; 1.00) P 0.52 | 0.36 (0.00; 1.00)

15 Male 02 RS-SGH LN BYM?2 oa 0.08 | 0.06 (0.00; 0.23) ou 0.04 | 0.03 (0.00; 0.11)

16 Male 02 RS-SGH LN BYM?2 i 0.49 | 0.35 (0.00; 1.00) P 0.46 | 0.35 (0.00; 1.00)

17 Female 01 RS-SGH LN BYM?2 oa 0.13 | 0.11 (0.01; 0.41) ou 0.04 | 0.03 (0.00; 0.13)
Female 01 RS-SGH LN BYM?2 P 0.52 | 0.35 (0.00; 1.00) P 052 | 0.35 (0.00; 1.00)

18 Female 02 RS-SGH LN BYM?2 oa 0.09 | 0.07 (0.00; 0.26) ou 0.03 | 0.03 (0.00; 0.09)

19 Female 02 RS-SGH LN BYM?2 P 0.53 | 0.35 (0.00; 1.00) P 0.52 | 0.36 (0.00; 1.00)

20

21

22

23

24

25

26

27

28

29 Male/GOR (3rd year) Female/GOR (3rd year)

30 0.670 0.670

31

32 0.640 0.640

33

34 0.610 0.610

35

36 0.580 0.580

37

38 0.550 0.550

39 Male/Cancer Alliances (3rd year) Female/Cancer Alliances (3rd year)

40 0.670 0.670

41

42 0.640 0.640

43

44 0.610 0.610

45

46 0.580 0.580

47

48 0.550 0.550

49

50 Web Figure SF13: 2.5'® net survival percentile for t = 3 based on the (i: top-left panel) “Government

51 Office Regions” (GOR) spatial structure with fitted model RS-SGH LN BYM2 for male patients, (ii: top-

:; right panel) “Government Office Regions” (GOR) spatial structure with fitted model RS-SGH LN BYM?2

54 for female patients, (iii: bottom-left panel) “Cancer Alliances Regions” spatial structure with fitted model

55 RS-SGH LN BYM2 for male patients, and (iv: bottom-right panel) “Cancer Alliances Regions” spatial

56 structure with fitted model RS-SGH LN BYM2 for female patients.

57

58

59

60
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Male/GOR (3rd year) Female/GOR (3rd year)
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Web Figure SF14: 97.5'" net survival percentile for ¢ = 3 based on the (i: top-left panel) “Government
Office Regions” (GOR) spatial structure with fitted model RS-SGH LN BYM2 for male patients, (ii: top-
right panel) “Government Office Regions” (GOR) spatial structure with fitted model RS-SGH LN BYM?2
for female patients, (iii: bottom-left panel) “Cancer Alliances Regions” spatial structure with fitted model
RS-SGH LN BYM2 for male patients, and (iv: bottom-right panel) “Cancer Alliances Regions” spatial
structure with fitted model RS-SGH LN BYM2 for female patients.

Male/GOR (1st year) Female/GOR (1st year)
0.800 0.800
0.775 0.775
0.750 0.750
. : 0.725 . : 0.725
» »
0.700 0.700
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Web Figure SF15: Net survival point estimate for ¢ = 1 based on the (i: top-left panel) “Government
Office Regions” (GOR) spatial structure with fitted model RS-SGH LN BYM2 for male patients, (ii: top-
right panel) “Government Office Regions” (GOR) spatial structure with fitted model RS-SGH LN BYM?2
for female patients, (iii: bottom-left panel) “Cancer Alliances Regions” spatial structure with fitted model
RS-SGH LN BYM2 for male patients, and (iv: bottom-right panel) “Cancer Alliances Regions” spatial
structure with fitted model RS-SGH LN BYM2 for female patients.
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Web Figure SF16: 2.5 net survival percentile for ¢ = 1 based on the (i: top-left panel) “Government
Office Regions” (GOR) spatial structure with fitted model RS-SGH LN BYM2 for male patients, (ii: top-
right panel) “Government Office Regions” (GOR) spatial structure with fitted model RS-SGH LN BYM?2
for female patients, (iii: bottom-left panel) “Cancer Alliances Regions” spatial structure with fitted model
RS-SGH LN BYM2 for male patients, and (iv: bottom-right panel) “Cancer Alliances Regions” spatial
structure with fitted model RS-SGH LN BYM2 for female patients.

0.820

0.760

0.730

0.700

0.820

0.760

0.730

0.700

Web Figure SF17: 97.5'" net survival percentile for ¢+ = 1 based on the (i: top-left panel) “Government
Office Regions” (GOR) spatial structure with fitted model RS-SGH LN BYM2 for male patients, (ii: top-
right panel) “Government Office Regions” (GOR) spatial structure with fitted model RS-SGH LN BYM?2
for female patients, (iii: bottom-left panel) “Cancer Alliances Regions” spatial structure with fitted model
RS-SGH LN BYM2 for male patients, and (iv: bottom-right panel) “Cancer Alliances Regions” spatial
structure with fitted model RS-SGH LN BYM2 for female patients.
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Web Figure SF18: Map of England divided into the 1-19 Cancer Alliances Regions, namely, West York-
shire, “Humber, Coast and Vale,” “Cheshire and Merseyside,” “South Yorkshire, Bassetlaw, North Der-
byshire and Hardwick,” West Midlands, East Midlands, East of England, South East London, “Kent
and Medway,” “Surrey and Sussex,” Thames Valley, Peninsula, “Somerset, Wiltshire, Avon and Glouces-
tershire,” Wessex, “North East and Cumbria,” “Lancashire and South Cumbria,” “National Cancer
Vanguard: Greater Manchester,” “National Cancer Vanguard: North Central and North East London,”
and “National Cancer Vanguard: North West and South West London,” respectively.

Male, Geo 01, RS-SGH LN BYM2

Hazard-level Time-level

J

0 0.125 0.25 0.375 05 0 0125 025 0375 05

Web Figure SF19: Estimated posterior densities for o, (as it appears in the hazard-level component)
and oy (as it appears in the time-level component) for the BYM2 random effects when fitting the RS-
SGH LN model for male patients based on the “Government Office Regions” (“Geo 01”7). The curves are

plotted separately for each posterior chain.
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Male, Geo 02, RS-SGH LN BYM?2

Hazard-level Time-level

oONOULDh WN =

19
20
21

22 0 0.125 025 0375 05 0 0125 025 0375 05

25 Web Figure SF20: Estimated posterior densities for o, (as it appears in the hazard-level component)
and oz (as it appears in the time-level component) for the BYM2 random effects when fitting the
RS-SGH LN model for male patients based on the “Cancer Alliances Regions in 2016” (“Geo 02”). The

29 curves are plotted separately for each posterior chain.

35 Female, Geo 01, RS-SGH LN BYM2

36 Hazard-level Time-level

49
50

55 0 0125 025 0375 05 0 0125 025 0375 05

Web Figure SF21: Estimated posterior densities for o, (as it appears in the hazard-level component)
56 and oy (as it appears in the time-level component) for the BYM2 random effects when fitting the RS-
57 SGH LN model for female patients based on the “Government Office Regions” (“Geo 017). The curves

are plotted separately for each posterior chain.
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Female, Geo 02, RS-SGH LN BYM?2

Hazard-level

Time-level

Ny

0 0.125  0.25

0.375 0.5 0 0.125 025 0375 05

Web Figure SF22: Estimated posterior densities for o, (as it appears in the hazard-level component)

and oy (as it appears in the time-level component) for the BYM2 random effects when fitting the RS-
SGH LN model for female patients based on the “Cancer Alliances Regions in 2016” (“Geo 027). The

curves are plotted separately for each posterior chain.
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1

2

3

4 Male/GOR/Least Deprived (3rd year) Female/GOR/Least Deprived (3rd year)

2 0.76 0.76

7

8 0.70 0.70

9

10 0.64 0.64

11

12 0.58 0.58

13

14 , ,

15 0.52 0.52

16 Male/GOR/Most Deprived (3rd year) Female/GOR/Most Deprived (3rd year)

17 0.76 0.76

18

19 0.70 0.70

20

21 0.64 0.64

22

23

24 0.58 0.58

25

26 ’ 052 0.52

27 Male/CAR/Least Deprived (3rd year) Female/CAR/Least Deprived (3rd year)

28 0.76 0.76

29

30 0.70 0.70

31

32

33 0.64 0.64

34

35 0.58 0.58

36

37 ’ 052 * 0.52

38 Male/CAR/Most Deprived (3rd year) Female/CAR/Most Deprived (3rd year)

ig 0.76 0.76

41

42 0.70 0.70

43

44 0.64 0.64

45

46 . 0.58 . 0.58

47

48 ’ 052 0.52

49 ). 2.

:? Web Figure SF23: “Deprivation level” (“1” being least deprived and “5” most deprived) stratified net
52 survival point estimate for ¢ = 3 based on the (i: top-left maps) “Government Office Regions” (GOR)
53 spatial structure with fitted model RS-SGH LN BYM2 for male patients, (ii: top-right maps) “Govern-
54 ment Office Regions” (GOR) spatial structure with fitted model RS-SGH LN BYM2 for female patients,
22 (iii: bottom-left maps) “Cancer Alliances Regions” (CAR) spatial structure with fitted model RS-SGH
57 LN BYM2 for male patients, and (iv: bottom-right maps) “Cancer Alliances Regions” (CAR) spatial
58 structure with fitted model RS-SGH LN BYM2 for female patients. For each panel, the upper map
59 represents the least deprived level, and the lower map represents the most deprived level.
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Male/GOR/Least Deprived (3rd year) Female/GOR/Least Deprived (3rd year)
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Web Figure SF24: “Deprivation level” (“1” being least deprived and “5” most deprived) stratified 2.5 net
survival percentile for ¢ = 3 based on the (i: top-left maps) “Government Office Regions” (GOR) spatial
structure with fitted model RS-SGH LN BYM2 for male patients, (ii: top-right maps) “Government Office
Regions” (GOR) spatial structure with fitted model RS-SGH LN BYM2 for female patients, (iii: bottom-
left maps) “Cancer Alliances Regions” (CAR) spatial structure with fitted model RS-SGH LN BYM?2
for male patients, and (iv: bottom-right maps) “Cancer Alliances Regions” (CAR) spatial structure with
fitted model RS-SGH LN BYM2 for female patients. For each panel, the upper map represents the least

deprived level, and the lower map represents the most deprived level.
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Male/GOR/Least Deprived (3rd year) rmnz\lc/GOR/lra.s*t Deprived (3rd year)
0.78] 0.78
0.72] 0.72
0.66/ 0.66
0.60 0.60
0.54] 0.54
Male/GOR/Most Deprived (3rd year)
0.78 0.78
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’ 054 * 0.54
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Web Figure SF25: “Deprivation level” (“1” being least deprived and “5” most deprived) stratified 97.5"
net survival percentile for ¢ = 3 based on the (i: top-left maps) “Government Office Regions”
spatial structure with fitted model RS-SGH LN BYM2 for male patients, (ii: top-right maps) “Govern-
ment Office Regions” (GOR) spatial structure with fitted model RS-SGH LN BYM2 for female patients,
(iii: bottom-left maps) “Cancer Alliances Regions” (CAR) spatial structure with fitted model RS-SGH
LN BYM2 for male patients, and (iv: bottom-right maps) “Cancer Alliances Regions” (CAR) spatial
structure with fitted model RS-SGH LN BYM?2 for female patients.

represents the least deprived level, and the lower map represents the most deprived level.
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Male/GOR/Least Severe (3rd year) Female/GOR/Least Severe (3rd year)
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Web Figure SF26: “Cancer stage” (“l, 2, and 3” being least severe and “4” most severe) stratified
net survival point estimate for ¢ = 3 based on the (i: top-left maps) “Government Office Regions”
(GOR) spatial structure with fitted model RS-SGH LN BYM2 for male patients, (ii: top-right maps)
“Government Office Regions” (GOR) spatial structure with fitted model RS-SGH LN BYM2 for female
patients, (iii: bottom-left maps) “Cancer Alliances Regions” (CAR) spatial structure with fitted model
RS-SGH LN BYM2 for male patients, and (iv: bottom-right maps) “Cancer Alliances Regions” (CAR)
spatial structure with fitted model RS-SGH LN BYM2 for female patients. For each panel, the upper
map represents the least severe level, and the lower map represents the most severe level. Important:
different from all other analyses, notice that the maps for different cancer stages are plotted in different

scales.
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Male/GOR/Least Severe (3rd year) Female/GOR/Least Severe (3rd year)

0.84] 0.84

0.82] 0.82

0.80 0.80

0.78 0.78

’ 0.76 0.76
Male/GOR/Most Severe (3rd year) Female/GOR/Most Severe (3rd year)

0.20! 0.20

0.17 0.17

0.14 0.14

0.11 . 0.11

’ .08 * 0.08
Male/CAR/Least Severe (3rd year) Female/CAR/Least Severe (3rd year)

0.84 0.84

0.82 0.82

0.80 0.80

0.78] 0.78

’ 016 7 0.76
Male/CAR/Most Severe (3rd year) Female/CAR/Most Severe (3rd year)

0.201 0.20

0.17 0.17

0.14 0.14

0.11 . 0.11

0.08 7 0.08

Web Figure SF27: “Cancer stage” (“l, 2, and 3” being least severe and “4” most severe) stratified
2.5"™" net survival percentile for £ = 3 based on the (i: top-left maps) “Government Office Regions”
(GOR) spatial structure with fitted model RS-SGH LN BYM2 for male patients, (ii: top-right maps)
“Government Office Regions” (GOR) spatial structure with fitted model RS-SGH LN BYM2 for female
patients, (iii: bottom-left maps) “Cancer Alliances Regions” (CAR) spatial structure with fitted model
RS-SGH LN BYM2 for male patients, and (iv: bottom-right maps) “Cancer Alliances Regions” (CAR)
spatial structure with fitted model RS-SGH LN BYM2 for female patients. For each panel, the upper
map represents the least severe level, and the lower map represents the most severe level. Important:
different from all other analyses, notice that the maps for different cancer stages are plotted in different

scales.
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Web Figure SF28: “Cancer stage” (“l, 2, and 3” being least severe and “4” most severe) stratified
97.5t" net survival percentile for t = 3 based on the (i: top-left maps) “Government Office Regions”
(GOR) spatial structure with fitted model RS-SGH LN BYM2 for male patients, (ii: top-right maps)
“Government Office Regions” (GOR) spatial structure with fitted model RS-SGH LN BYM2 for female
patients, (iii: bottom-left maps) “Cancer Alliances Regions” (CAR) spatial structure with fitted model
RS-SGH LN BYM2 for male patients, and (iv: bottom-right maps) “Cancer Alliances Regions” (CAR)
spatial structure with fitted model RS-SGH LN BYM2 for female patients. For each panel, the upper
map represents the least severe level, and the lower map represents the most severe level. Important:
different from all other analyses, notice that the maps for different cancer stages are plotted in different

scales.
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:? Web Figure SF29: “Deprivation level” (“1” being least deprived and “5” most deprived) stratified net
52 survival point estimate for ¢ = 1 based on the (i: top-left maps) “Government Office Regions” (GOR)
53 spatial structure with fitted model RS-SGH LN BYM2 for male patients, (ii: top-right maps) “Govern-
54 ment Office Regions” (GOR) spatial structure with fitted model RS-SGH LN BYM2 for female patients,
22 (iii: bottom-left maps) “Cancer Alliances Regions” (CAR) spatial structure with fitted model RS-SGH
57 LN BYM2 for male patients, and (iv: bottom-right maps) “Cancer Alliances Regions” (CAR) spatial
58 structure with fitted model RS-SGH LN BYM2 for female patients. For each panel, the upper map
59 represents the least deprived level, and the lower map represents the most deprived level.
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Web Figure SF30: “Deprivation level” (“1” being least deprived and “5” most deprived) stratified 2.5 net
survival percentile for ¢ = 1 based on the (i: top-left maps) “Government Office Regions” (GOR) spatial
structure with fitted model RS-SGH LN BYM2 for male patients, (ii: top-right maps) “Government Office
Regions” (GOR) spatial structure with fitted model RS-SGH LN BYM2 for female patients, (iii: bottom-
left maps) “Cancer Alliances Regions” (CAR) spatial structure with fitted model RS-SGH LN BYM?2
for male patients, and (iv: bottom-right maps) “Cancer Alliances Regions” (CAR) spatial structure with
fitted model RS-SGH LN BYM2 for female patients. For each panel, the upper map represents the least

deprived level, and the lower map represents the most deprived level.
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:? Web Figure SF31: “Deprivation level” (“1” being least deprived and “5” most deprived) stratified 97.5"
52 net survival percentile for ¢ = 1 based on the (i: top-left maps) “Government Office Regions” (GOR)
53 spatial structure with fitted model RS-SGH LN BYM2 for male patients, (ii: top-right maps) “Govern-
54 ment Office Regions” (GOR) spatial structure with fitted model RS-SGH LN BYM2 for female patients,
22 (iii: bottom-left maps) “Cancer Alliances Regions” (CAR) spatial structure with fitted model RS-SGH
57 LN BYM2 for male patients, and (iv: bottom-right maps) “Cancer Alliances Regions” (CAR) spatial
58 structure with fitted model RS-SGH LN BYM2 for female patients. For each panel, the upper map
59 represents the least deprived level, and the lower map represents the most deprived level.
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Web Figure SF32: “Cancer stage” (“l, 2, and 3” being least severe and “4” most severe) stratified
net survival point estimate for ¢ = 1 based on the (i
(GOR) spatial structure with fitted model RS-SGH LN BYM2 for male patients, (ii: top-right maps)
“Government Office Regions” (GOR) spatial structure with fitted model RS-SGH LN BYM2 for female
patients, (iii: bottom-left maps) “Cancer Alliances Regions” (CAR) spatial structure with fitted model
RS-SGH LN BYM2 for male patients, and (iv: bottom-right maps) “Cancer Alliances Regions” (CAR)
spatial structure with fitted model RS-SGH LN BYM2 for female patients. For each panel, the upper
map represents the least severe level, and the lower map represents the most severe level. Important:

different from all other analyses, notice that the maps for different cancer stages are plotted in different

scales.
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Web Figure SF33: “Cancer stage” (“l, 2, and 3” being least severe and “4” most severe) stratified
2.5"™" net survival percentile for £ = 1 based on the (i: top-left maps) “Government Office Regions”
(GOR) spatial structure with fitted model RS-SGH LN BYM2 for male patients, (ii: top-right maps)
“Government Office Regions” (GOR) spatial structure with fitted model RS-SGH LN BYM2 for female
patients, (iii: bottom-left maps) “Cancer Alliances Regions” (CAR) spatial structure with fitted model
RS-SGH LN BYM2 for male patients, and (iv: bottom-right maps) “Cancer Alliances Regions” (CAR)
spatial structure with fitted model RS-SGH LN BYM2 for female patients. For each panel, the upper
map represents the least severe level, and the lower map represents the most severe level. Important:
different from all other analyses, notice that the maps for different cancer stages are plotted in different

scales.
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Web Figure SF34: “Cancer stage” (“l, 2, and 3” being least severe and “4” most severe) stratified
97.5t" net survival percentile for t = 1 based on the (i: top-left maps) “Government Office Regions”
(GOR) spatial structure with fitted model RS-SGH LN BYM2 for male patients, (ii: top-right maps)
“Government Office Regions” (GOR) spatial structure with fitted model RS-SGH LN BYM2 for female
patients, (iii: bottom-left maps) “Cancer Alliances Regions” (CAR) spatial structure with fitted model
RS-SGH LN BYM2 for male patients, and (iv: bottom-right maps) “Cancer Alliances Regions” (CAR)
spatial structure with fitted model RS-SGH LN BYM2 for female patients. For each panel, the upper
map represents the least severe level, and the lower map represents the most severe level. Important:
different from all other analyses, notice that the maps for different cancer stages are plotted in different

scales.
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