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We propose a new design heuristic to
tackle combinatorial optimisation prob-
lems, inspired by Hamiltonians for opti-
mal state-transfer. The result is a rapid
approximate optimisation algorithm. We
provide numerical evidence of the success
of this new design heuristic. We find this
approach results in a better approxima-
tion ratio than the Quantum Approximate
Optimisation Algorithm at lowest depth
for the majority of problem instances con-
sidered, while utilising comparable re-
sources. This opens the door to investi-
gating new approaches for tackling com-
binatorial optimisation problems, distinct
from adiabatic-influenced approaches.

1 Introduction
In a combinatorial optimisation problem,
such as MAX-CUT or the TRAVELLING-
SALESPERSON [1], the aim is to evolve from
some initial state to a final state that encodes the
solution to the optimisation problem. One ap-
proach might be to evolve adiabatically, encoding
each of the initial and final states as the ground
state of some Hamiltonian and interpolating
sufficiently slowly between them. In practice this
approach is limited by the minimum spectral
gap of the interpolating Hamiltonian [2, 3].
This approach is known as adiabatic quantum
optimisation (AQO) [4–8].

In the absence of mature hardware, AQO has
relied on the adiabatic principle as a guiding de-
sign tenet. In turn AQO has lead to Quantum
Annealing (QA). Similar to AQO, QA attempts
to interpolate continuously between the initial
and final Hamiltonians. QA denotes a broader
Robert J. Banks: robert.banks.20@ucl.ac.uk

approach than AQO to find (or approximate) the
solution of the optimisation problem. This could
include: thermal effects [9]; intentionally operat-
ing diabatically [10–12]; or adding new terms to
the Hamiltonian [13–18]. QA has gone on to help
inspire a number of other approaches, such as:
the gate-based Quantum Approximate Optimi-
sation Algorithm (QAOA) [19]; continuous-time
quantum walks (QW) for optimisation [20, 21];
and combinations of different approaches [22, 23].
In short, the adiabatic principle has been a suc-
cessful design-principle for developing new heuris-
tic quantum algorithms for optimisation.

An alternative approach for evolving from an
initial state to the final state might be via Hamil-
tonians for optimal state transfer [24]. These are
Hamiltonians that transfer the system from the
initial state to the final state in the shortest possi-
ble time. In this paper we use these Hamiltonians
as our underlying design principle. Such Hamil-
tonians typically require knowledge of the final
state (i.e., the solution to the optimisation prob-
lem). In the absence of this information we there-
fore focus on how the behaviour of these Hamilto-
nians might be approximated to find approximate
solutions to optimisation problems. The result is
a rapid continuous-time approach, with a single
variational parameter.

The framework of this paper is as follows: Sec-
tions 2, 3, and 4 introduce the requisite back-
ground material and introduce the Hamiltonians
considered in the rest of the paper (Sec. 3). Sec-
tions 5, 6, and 7 provide analytical and numerical
evidence for the performance of these Hamiltoni-
ans. Throughout the paper we adopt the con-
vention ℏ = 1. The corresponding Pauli matrices
are denoted by X,Y and Z. The identity is de-
noted by I. The commutator is denoted by [·, ·].
The simulations make use of the Python packages
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QuTiP [25, 26] and Qiskit [27]. Details about the
numerical studies, including discussion about the
presentation of numerical results can be found in
Appendix D.

2 The QA-framework

Before elaborating on our new approach, in this
section we provide a very brief overview of the
adiabatic influenced algorithms mentioned in the
introduction.

In QA, typically the optimisation problem is
encoded as finding the ground-state, |ψf ⟩, of an
Ising Hamiltonian, Hf . The system is initialised
in the ground-state, |ψi⟩, of an easy to prepare
Hamiltonian Hi. Usually, Hi is taken to be the
transverse-field Hamiltonian. The optimisation
problem is solved by evolving the system to the
ground-state of Hf . We refer to this set-up as
the QA-framework. We utilise this encoding of
the optimisation problem for our new approach.

For the adiabatic influenced approaches (AQO,
QA, QAOA and QW) the system is subjected to
the following Hamiltonian:

H(t) = A(t)Hi +B(t)Hf , (1)

where t ∈ [0, T ] denotes time. The design
philosophy behind how the schedules A(t) and
B(t) are chosen, is what distinguishes these near-
term intermediate-scale quantum (NISQ) [28] ap-
proaches. For AQO, the schedules are chosen to
interpolate adiabatically between the two ground
states [4–7]. In QA, this restriction is loosened
to typically continuous, monotonically decreas-
ing for A(t) and increasing for B(t), schedules
[10, 29]. In QW A(t) and B(t) are taken to be
constants over the whole evolution [20, 21].

QAOA [19] is a gate-based design-philosophy
for determining the schedules. In QAOA either
A(t) = 1 and B(t) = 0, or A(t) = 0 and B(t) = 1.
The switching parameter, p, controls the num-
ber of times the schedules alternate between the
two parameter settings. The duration between
switching is either determined prior to the evolu-
tion by a classical computer or by using a clas-
sical variational outer-loop attempting to min-
imise ⟨Hf ⟩ by varying 2p free-parameters. QAOA
again relies on the adiabatic principle to provide a
guarantee of finding the ground-state in the limit
of infinite p. However, far from this limit, the

variational method allows QAOA to exploit non-
adiabatic evolution [30]. QAOA has been further
generalised, retaining its switching framework to
the ‘Quantum Alternating Operator Ansatz’ [31].
It has also become a popular choice for bench-
marking the performance of quantum hardware
[32–34].

Recently Brady et al. applied optimal control-
theory to help design and investigate schedules
[35–37]. They demonstrated for 0 ≤ A(t) ≤ 1 and
B(t) = 1 −A(t), that the optimal schedule starts
and finishes with a ‘bang’ (i.e., one of the controls
takes its maximum value)[35]. This claim was
further investigated in [38] and applied to open
quantum systems.

Clearly there are many design-philosophies for
tacking problems within the QA-framework. Al-
though, some have been inspired by the adiabatic
theorem, practical implementation might have
little resemblance to this original idea. The next
section provides a brief introduction to Hamil-
tonians for optimal state-transfer as well as the
motivation for the choice of Hamiltonians used in
this paper.

3 Hamiltonian design

The aim of optimal state-transfer is to find a
Hamiltonian that transfers the system from an
initial state (i.e., |ψi⟩) to a known final state (i.e.,
|ψf ⟩) in the shortest possible time. We shall refer
to this Hamiltonian as the optimal Hamiltonian
(although it is by no means unique).

One notable approach to finding the optimal
Hamiltonian comes from Nielsen et al. [39–41]
who investigated the use of differential geometry,
at the level of unitaries, to find geodesics connect-
ing the identity to the desired unitary. The length
of the geodesic was linked to the computational
complexity of the problem [40]. A second ap-
proach comes from Carnali et al.. Inspired by the
brachistochrone problem, they developed a varia-
tional approach at both the level of state-vectors
[42] and unitaries [43]. The quantum brachis-
tochrone problem has generated a considerable
amount of literature and interest [44–49].

Both approaches allow for constraints to be im-
posed on the Hamiltonian. Both concluded that
if the only constraint is on the total energy of
the Hamiltonian, the optimal Hamiltonian is con-
stant in time. In the rest of this section we outline
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the geometric argument put forward by Brody et
al. [24] to find the optimal Hamiltonian in this
case. The reader is invited to refer to the original
work for the explicit details.

The optimal Hamiltonian will generate evolu-
tion in a straight line in the (complex-projective)
space in which the states live. Intuitively, a line
in this space between |ψi⟩ and |ψf ⟩ consists of su-
perpositions of the two states. Hence, the line in
the complex-projective space can be represented
on the Bloch sphere.

If, without loss of generality, |ψi⟩ and |ψf ⟩ are
placed in the traditional z−x plane of the Bloch
sphere, it is clear that the optimal Hamiltonian
generates rotations in this plane. The optimal
Hamiltonian is then (reminiscent of the cross-
product):

Hopt = −i (|ψi⟩ ⟨ψf | − |ψf ⟩ ⟨ψi|) . (2)

This can be scaled to meet the condition on the
energy of the Hamiltonian. It then remains to cal-
culate the time required to transfer between the
two states. This will depend on how far apart the
states are and how fast the evolution is. This is
encapsulated in the Anandan-Aharonov relation-
ship [50]:

ds

dt
= 2δE(t). (3)

The left-hand-side denotes the speed of the
state, |ψ(t)⟩, where ds is the infinitesimal distance
between |ψ (t+ dt)⟩ and |ψ (t)⟩ 1. Under evolu-
tion by the Schrödinger equation, with Hamil-
tonian H, the instantaneous speed of the evolu-
tion is given by the uncertainty in the energy,
δE(t)2 = ⟨ψ(t)|H(t)2 |ψ(t)⟩ − ⟨ψ(t)|H(t) |ψ(t)⟩2.

Since the optimal Hamiltonian is constant in
time, δE can be evaluated using the initial state.
Therefore, the time of evolution is:

T = arccos |⟨ψf |ψi⟩|√
1 − |⟨ψf |ψi⟩|2

. (4)

In summary, e−iHoptT |ψi⟩ generates the state
|ψf ⟩. The goal of the rest of this paper is to har-
ness some of the physics behind this expression
for computation. To this end we primarily fo-
cus on Hamiltonians which are constant in time.

1The distance is measured by the Fubini-study met-
ric, ds2 = 4

(
1 − |⟨ψ (t)|ψ (t+ dt)⟩|2

)
, on the complex-

projective space.

Appendix A contains more details on what opti-
mal Hamiltonians might look like within the QA-
framework.

In the style of a variational quantum eigen-
solver (VQE) [51, 52], we allow T to be a vari-
ational parameter that needs to be optimised in
our new approach. In this paper we select the T
that minimises the final value of ⟨Hf ⟩. There is
scope to extend this to different metrics [53, 54].
As T is a variational parameter the Hamiltonian
is only important up to some constant factor.
Rewriting Eq. 2 up to some constant gives:

Hopt ∝ 1
2i [|ψi⟩ ⟨ψi| , |ψf ⟩ ⟨ψf |] , (5)

assuming |ψi⟩ and |ψf ⟩ have a non-zero overlap
(this is a given in the standard QA-framework).
This equation (Eq. 5) provides the starting point
for all the Hamiltonians considered in this paper.

The optimal Hamiltonian (i.e., Eq. 5) requires
knowledge of the final state. In practice, when
attempting to solve an optimisation problem, one
doesn’t have direct access to |ψf ⟩. Instead one
has easy access to Hi and Hf . Therefore, we
make the pragmatic substitutions |ψi⟩ ⟨ψi| → Hi

and |ψf ⟩ ⟨ψf | → Hf into Eq. 5

Hopt ∝ 1
2i [|ψi⟩ ⟨ψi| , |ψf ⟩ ⟨ψf |]

↓ ↓

H1 = 1
2i [ Hi , Hf ] . (6)

This Hamiltonian is the most amenable to NISQ
implementation of all the Hamiltonians consid-
ered in this paper, therefore the bulk of the pa-
per is devoted to demonstrating its performance.
The results can be seen in Sec. 5.

The substitutions |ψi⟩ ⟨ψi| → Hi and
|ψf ⟩ ⟨ψf | → Hf introduce errors, such that the
evolution under H1 no longer closely follows the
evolution under Hopt. In Sec. 6 we try to cor-
rect for this error by adding a new term to the
Hamiltonian

H1,improved = H1 +HQZ . (7)

The proposed form of HQZ is motivated by the
quantum Zermello problem [55–58].

Finally, in Sec. 7 we exploit our knowledge
of the initial state and propose the substitution
|ψf ⟩ ⟨ψf | → f(Hf ), where f(·) is some real func-
tion:
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Hopt ∝ 1
2i [|ψi⟩ ⟨ψi| , |ψf ⟩ ⟨ψf |]

↓

Hψi
= 1

2i [|ψi⟩ ⟨ψi| , f (Hf ) ] . (8)

4 Problems considered
To assess the performance of the Hamiltonians
proposed in Sec. 3, we apply them to the com-
binatorial optimisation problem known as MAX-
CUT. MAX-CUT can be encoded as finding the
ground-state of the following Ising Hamiltonian:

Hf =
∑

(i,j)∈E
ZiZj , (9)

where E denotes the set of edges in a graph
G = (V,E). Through-out this paper we ex-
amine three different types of graph: 2-regular,
3-regular and random graphs. For the random
graphs each edge is selected with probability 2/3.
More details about these graphs in the context of
the quantum algorithms discussed in Sec. 2 can
be found in Appendix B.

To measure the performance of the different ap-
proaches we look at two metrics: the ground-state
probability and approximation-ratio. We define
the approximation ratio to be ⟨Hf ⟩/Emin where
Emin is the energy of the ground-state solution
of Hf and the expectation is with respect to the
final state. Further justification of these choice of
metrics can be found in Appendix C.

Of crucial interest for NISQ implementations is
the duration of each run. For continuous-time ap-
proaches this is simply the time of each run. We
would like to compare this approach to QAOA,
which has the following ansatz:

|ψQAOA⟩ =
p∏

k=1

(
e−iβkHie−iγkHf

)
|+⟩ (10)

where the βks and γks are the variational param-
eters. We take the time of a QAOA run to be
the sum of the variational parameters. In Sec.
5.3 we compare the optimal time of QAOA p = 1
and H1, the optimal time being the time that
maximises the approximation ratio. To make a
fair comparison between the two approaches with
different problem sizes, we fix the energy of the
Hamiltonians in Sec. 5.3 to be:

1
2n Tr

{
H2

∗

}
= n, (11)

θ
m̂ n̂

k̂ = m̂ × n̂

Figure 1: The geometric intuition behind finding the
Hamiltonian for optimally transferring between the
ground-states of Hi and Hf on the Bloch sphere. The
vectors ±m̂ (±n̂) are the eigenvectors of Hi (Hf ). The
aim is to generate a rotation of θ around k̂ to map ±m̂
to ±n̂. The handedness of the cross-product takes into
account the direction.

for ∗ = i, f, 1, where n is the number of qubits.
As mentioned this paper will focus on MAX-

CUT but to illustrate the wide applicability of
these model we also apply it to a Sherrington-
Kirpatrick inspired model, the details of which
can be found in Appendix E.

5 Taking the commutator between the
initial and final Hamiltonian
In Sec. 3. we motivated the Hamiltonian

H1 = 1
2i [Hi, Hf ] (12)

by substituting out the projectors in Eq. 5 for
easily accessible Hamiltonians. In this section we
explore the effectiveness of these substitutions.
We begin by demonstrating that Eq.12 generates
the optimal rotation for a single qubit (Sec. 5.1).
In Sec. 5.2.1 we show that H1 has the potential
to outperform random guessing within the QA-
framework. The rest of the section analyses the
performance of H1 on the problems outlined in
Sec. 4.

5.1 The optimal approach for a single qubit
Here we outline a simple geometric argument
which shows that H1 generates the optimal ro-
tation for a single qubit (hence the name H1).
The eigenstates of Hi and Hf can be represented
as points on the surface of the Bloch sphere, see
Fig. 1. Since these points lie in a plane, the aim
is to write down a Hamiltonian that generates ro-
tation in this plane. By writing the Hamiltonians
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in the Pauli basis, it is clear the Hamiltonian that
generates the correct rotation is:

H1 = 1
2i [Hi, Hf ] .

For the full details see Appendix F. Again, by
using the Anandan-Aharonov relationship:

dθ

dt
= 2δE, (13)

where δE is the uncertainty in the energy and θ
is the distance between the desired states (Fig.
1), we can calculate the time required to transfer
between the two ground-states.

Having established H1 as the optimal Hamilto-
nian for a single qubit, the next section investi-
gates its performance on larger problems.

5.2 Application to larger problems
5.2.1 Outperforming random guessing for short
times

In this section we demonstrate that H1 can al-
ways do better than random guessing within
the QA-framework. Starting with the time-
dependent Schrödinger equation:∣∣∣ψ̇(t)

〉
= −iH1 |ψ(t)⟩ ,

we expand |ψ(t)⟩ in terms of the eigenbasis of Hf ,
so |ψ(t)⟩ =

∑
k ck(t) |k⟩ where |k⟩ are the eigen-

vectors of Hf with associated eigenvalue Ek. The
eigenvalues are ordered such that E0 ≤ E1 ≤
E2 . . . . Substituting this into the Schrödinger
equation gives:

∑
k

ċk(t) |k⟩ = − i

2i
∑
k

ck(t) (HiHf −HfHi) |k⟩

= −1
2
∑
k

ck(t)Ek (Hi −HfHi) |k⟩

Acting with ⟨j| on each side, to find ċj(t), gives:

ċj(t) = −1
2
∑
k

ck(t) (Ek − Ej)︸ ︷︷ ︸
"Velocity"

How the basis
states of Hf

are connected︷ ︸︸ ︷
⟨j|Hi |k⟩ . (14)

In the standard QA-framework Hi = −
∑n
k Xk,

ck(0) = 1/
√

2n, for all k, and the basis states
(e.g. |k⟩), correspond to computational basis
states. Accordingly, H1 connects computational

basis states which are a Hamming-distance of one
away.

The difference in energy of the computational
basis states intuitively provides something akin to
a velocity, with greater rates of change between
states which are further apart in energy.

Focusing on the derivative of the ground-state
amplitude at t = 0 we have:

ċ0(0) = −1
2
∑
k

ck(0)︸ ︷︷ ︸
>0

(Ek − E0)︸ ︷︷ ︸
≥0

⟨0| −
∑
j

Xj |k⟩

︸ ︷︷ ︸
=0 or −1

,

(15)
so ċ0(0) ≥ 0, with equality if all states in a
Hamming-distance of one have the same energy
as |0⟩. In this case the above logic can be re-
peated for these states. Hence, at t = 0, the
ground state amplitude is increasing - meaning
H1 can do better than random guessing by mea-
suring on short times. This is evidence that H1 is
capturing something of the of the optimal Hamil-
tonian for short times. Indeed, for short times all
the amplitudes flow from higher-energy states to
lower-energy states.

The above logic can be extended to the case
where Hi is any stoquastic Hamiltonian in the
computational basis [59, 8] and |ψi⟩ the corre-
sponding ground-state. That is to say, we require
Hi to have non-positive off-diagonal elements in
the computational basis (i.e. stoquastic) and as
a consequence we can can write the ground-state
of Hi with real non-negative amplitudes [8]. Con-
sequently, for any stoquastic choice of Hi the
ground-state amplitude is increasing at t = 0 and
can do better than the initial value of c0 at short
times.

We could also take a generalised version of H1:

H1,gen = 1
2i [f (Hi) , g (Hf )] , (16)

where f and g are real functions. Eq. 14 becomes:

ċj(t) = −1
2
∑
k

ck(t) (g (Ek) − g (Ej)) ⟨j| f (Hi) |k⟩ .

(17)
The function acting on Hi (i.e., f(·)) con-

trols how the computational-basis states are con-
nected, while the function acting onHf (i.e., g(·))
controls the velocity between computational ba-
sis states. If f(·) is the identity and Hi stoquas-
tic, then any monotonic function for g(·) (e.g.,
H3
f , H

5
f , exp{Hf},...) will do better than c0(0)
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Figure 2: A time-domain plot of the ground-state prob-
ability (in pink) and approximation ratio (in blue) for
H1 applied to MAX-CUT on a 2-regular graph with 400
qubits. Random guessing corresponds to a ground-state
probability of 2−399 ≈ 10−120. The dashed purple line
shows the location of the optimal time, corresponding
to the maximum in approximation ratio.

for short t. Taking Hi to be the transverse-
field Hamiltonian, that is better than random-
guessing.

The above analysis demonstrates that H1 has
potential for tackling generic problems within the
QA-framework. The next sections apply H1 to
specific examples in an attempt to quantify the
success of this approach. For the rest of this paper
we takeHi to be the transverse-field Hamiltonian.

5.2.2 MAX-CUT on two-regular graphs

Here we study the performance of H1 on MAX-
CUT with two-regular graphs. The explicit form
of H1 is then:

H1 =
n∑
j=1

(YjZj+1 + ZjYj+1) . (18)

This can be solved analytically by mapping
the problem onto free fermions via the Jordan-
Wigner transformation. Details can be found in
Appendix G.

A time domain plot for the approximation ra-
tio and ground-state probability is shown in Fig.
2 for 400 qubits. The peak in approximation ratio
corresponding to the optimal time. As expected
from the previous section (Sec. 5.2.1) the approx-
imation ratio is increasing at t = 0. There is a
clear peak in ground-state probability at a time
of t ≈ 0.275. This peak remains present for larger

problem sizes too. The peak also occurs at a later
time than the peak in approximation ratio. Fur-
ther insight into this phenomena may be found in
Sec. 7.

The key result of this section is shown in Fig.
3a, showing the optimal approximation ratio ver-
sus problem size for even numbers of qubits only.
The corresponding plot for odd numbers of qubits
can be found in Appendix G. Notably the approx-
imation ratio saturates for large problem sizes,
achieving an approximation ratio of 0.5819, com-
pared to 0.5 for QAOA p = 1. This is despite
QAOA p = 1 having two variational parameters,
compared to the single variational parameter for
H1. This behaviour is suggestive of H1 optimis-
ing locally, since its approximation ratio is largely
independent of problem size.

Despite MAX-CUT on two-regular graphs be-
ing an easy problem, the ground-state probability
scales exponentially with problem size (Fig. 3b).
This is not necessarily a problem, as we present
H1 as an approximate approach only. Optimis-
ing the performance to give the best ground-state
probability provides a small gain in performance
but does not change the overall exponential scal-
ing. The optimal times for both approximation
ratio and ground-state probability can be found
in Fig. 3c. Both times freeze out at constant val-
ues for problem sizes greater than 10 qubits.

We have demonstrated with MAX-CUT on
two-regular graphs, at large problem sizes, that
H1 can provide a better approximation ratio than
QAOA p = 1. We explore this comparison with
QAOA p = 1 further in Sec. 5.3.

5.2.3 Performance on MAX-CUT problems with
three-regular graphs

By exploiting locality in QA with short run-times,
Braida et al. [61] were able to prove bounds
on QA on MAX-CUT with three-regular graphs.
Here we apply this approach to H1. For details of
the method the reader is referred to [61] and for
explicit details of this computation to Appendix
H. We find that that H1 finds at least 0.6003
times the best cut. Hence H1 has a marginally
better worst-case than QA (which is 0.5933 times
the best cut [61]), when this method is applied.
Both bounds are not necessarily (and unlikely
to be) tight. Resorting to numerical simulation
gives Fig. 4a. Here we can see, for the random
instances considered, that H1 never does worse
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(a) The approximation ratio for H1
applied to MAX-CUT on two-regular
graphs (solid line). The dashed lines
show the performance of QAOA for
this problem when p < n/2 [19, 60].
The corresponding optimal times can
be found in Fig. 3c. The approxima-
tion ratio for H1 freezes out at 0.5819,
with a corresponding time of 0.2301.

(b) The ground-state probability for
different problem sizes under the evo-
lution of H1. The blue line shows
the ground-state probability for times
that maximise the approximation ra-
tio. The optimised ground-state prob-
ability is shown in pink. The dashed
purple line shows the probability of
randomly guessing the ground-state.

(c) The optimal times for MAX-CUT
on two-regular graphs. The blue
(pink) line shows the time that opti-
mises the approximation ratio (ground
state probability).

Figure 3: Performance of H1 on MAX-CUT with 2-regular graphs. Only even numbers of qubits are plotted.

(a) The y-axis shows the average cut-value from sampling
H1. The final time has been numerically optimised to give
the best approximation ratio.

(b) The optimal time for the three-regular MAX-CUT in-
stances considered in Fig. 4a. The optimal time was found
by dividing the interval [0, 2π] into 1000 time steps.

Figure 4: The performance of H1 on randomly generated instances of three-regular graphs. For each problem size,
100 instances were generated. After accounting for graph isomorphisms the number of samples in order of ascending
problem size were [15, 46, 87, 97]. Disconnected graphs were allowed.

(a) Approximation ratio for randomly
generated MAX-CUT.

(b) Ground-state probability for ran-
domly generated MAX-CUT.

(c) Optimal times for MAX-CUT on
randomly generated graphs. The op-
timal time was found by dividing the
interval [0, 2π] into 1000 time steps.

Figure 5: Performance of H1 on 100 randomly-generated instances of MAX-CUT.
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than the QAOA p = 1 worst bound. Direct com-
parisons to QAOA p = 1 can be found in Ap-
pendix I. Fig. 4a also shows that the approxima-
tion ratio of H1 on three-regular graphs has little
dependence on the problem size, again suggesting
that it is optimising locally.

5.2.4 Numerical simulations on random instances
of MAX-CUT

In the previous two sections we established the
performance of H1 on problems with a high de-
gree of structure, allowing for more analytical in-
vestigation. In this section we explore the per-
formance of H1 numerically on MAX-CUT with
random graphs. Consequently, we are restricted
to exploring problem sizes that can be simulated
classically. Further details about the numerics
can be found in Appendix D.

For each problem size we consider 100
randomly-generated instances. The results can
be seen in Fig. 5. For each instance the time
has been numerically optimised to maximise the
approximation ratio within the interval [0, 2π).
From Fig. 5 we draw some conclusions from the
simulations, with the caveat that either much
larger sizes need to be simulated and/or analytic
work is required to fully substantiate the claims.
On all the problems considered H1 performed
better than random guessing (which results in an
approximation ratio of 0).

Focusing first on Fig. 5a: there appears to be
some evidence that the distribution of approxi-
mation ratios is becoming smaller as the prob-
lem size is increased. In addition the approxima-
tion ratio tends to a constant value, independent
of the problem size. From analysing the regular
graphs, it is reasonable to assume that H1 is op-
timising locally. Therefore, we would expect the
performance of H1 to depend on the subgraphs in
the problem. If the performance is limited by one,
or a certain combination of subgraphs, then that
would explain the constant approximation ratio.
As the problem size is increased the chance of
having an atypical combination of subgraphs is
likely to decrease, resulting in a smaller distribu-
tion.

The ground-state probability shows a clear ex-
ponential dependence on problem size (Fig. 5b).

0 1 2 3
(a) A subgraph of two-
regular graphs

0

1

2 3

4

5
(b) A small subgraph con-
tained in three-regular graphs
which is prevalent in graphs
that H1 performs worse on.

Figure 6: Example subgraphs

5.2.5 Estimating the optimal time

Presenting the application of H1 as a varia-
tional approach begs the question of how to find
good initial guesses for the time, T , at which
to measure the system. As previously noted
the optimal time corresponds to the maximum
approximation-ratio.

For our method we are not interested in finding
the true maximum in approximation ratio. Sam-
pling from a local maximum, close to t = 0 is
more achievable and reduces the time the system
needs to be coherent. From Sec. 5.2.1 we expect
the first turning point in approximation ratio af-
ter t = 0 to be a local maximum. This is shown by
Eq. 14, with all amplitudes flowing from higher
energy states to lower energy states a Hamming
distance of one away at t = 0. Further to this,
throughout the work so far we have seen evidence
of H1 behaving locally. This local behaviour will
allow us to motivate good initial guesses for H1.
As H1 is optimising locally, its performance does
not depend on the graph as a whole, but only on
subgraphs.

The optimal time for MAX-CUT on two-
regular graphs was T = 0.23. Under the assump-
tion that H1 is behaving locally we can estimate
the optimal times by considering a smaller sub-
graph. The subgraph in question is shown in Fig.
6a. By numerically optimising ⟨Z1Z2⟩ for this
subgraph with Hf = Z0Z1 +Z1Z2 +Z2Z3, we can
find good estimates for the optimal T . Optimis-
ing this subgraph, within the interval T ∈ [0, 1),
gives T = 0.22. This estimate matches the opti-
mal time well. Choosing a larger subgraph will
give a better estimate on the time.

Fig. 4b shows the optimal time for the larger in-
stances of three-regular graphs considered in Fig.
4a. The range of optimal times varied very lit-
tle between problem instances and problem sizes,
centered around T = 0.176. As with the two-

Accepted in Quantum 2024-02-06, click title to verify. Published under CC-BY 4.0. 8



regular case we can examine subgraphs. In this
case we consider the subgraph shown in Fig. 6b.
This is the subgraph that saturates the Lieb-
Robinson bound (Appendix H). Numerically op-
timising ⟨Z2Z3⟩ for this subgraph with Hf =
Z0Z2 +Z1Z2 +Z2Z3 +Z3Z4 +Z3Z5 gives a time
of T = 0.19. This again is a good estimate of the
optimal time.

For problems with well understood local struc-
ture, such as regular graphs, we have shown that
we can exploit this knowledge to provide reason-
able estimates of the optimal times. These sub-
graphs are also of the same size used in finding
the optimal time in QAOA p = 1 [19].

For the MAX-CUT problems in Sec. 5.2.4, the
optimal times can be found in Fig. 5c. It ap-
pears that the optimal time tends to a constant
value (or a small range of values), with T < 1.
The optimal times are clustered together, sug-
gesting good optimal times might be transfer-
able between problem instances. This approach
is common within the QAOA literature [62].

So far we have explored the performance of H1.
We have demonstrated thatH1 can provide a bet-
ter approximation ratio for MAX-CUT on two-
regular graphs. The intuition gained by studying
QAOA p = 1 has been transferable to the un-
derstanding of H1. In the final part of this sec-
tion we make some direct comparisons between
QAOA p = 1 and H1.

5.3 Direct numerical comparisons to QAOA
p=1

We have established in the previous sections that
H1 operates in a local fashion. Calculating the
optimal time for sub-graphs the same size as those
involved in QAOA p = 1 gave good estimates for
the optimal time for larger problem sizes. There-
fore it is reasonable to assume that H1 sees a
similar proportion of the graph as QAOA p = 1.
Both approaches are variational with short run-
times too. Since both approaches are using com-
parable resources, in this section we attempt to
compare the two. Again we focus on the problems
outlined in Sec. 4.

For two-regular graphs, the optimal time for
QAOA p = 1 is 2.4 times longer than the opti-
mal time for H1 for large problem sizes, despite
providing a poorer approximation ratio.

(a) Approximation ratio comparison for MAX-CUT on ran-
domly generated graphs.

(b) Optimal time comparison for MAX-CUT on randomly
generated graphs.

Figure 7: Comparison of H1 (y-axis on the above plots)
with QAOA p = 1 (x-axis on the above plots) for the
problem instances considered in Sec. 5.2.4. The top line
of figures compares approximation ratios. The bottom
line of figures compares the optimal times (i.e. the time
that maximises the approximation ratios) of the two ap-
proaches. The dashed purple line corresponds to equal
performance.

The results comparing H1 and QAOA p = 1,
for all the problem instances considered in Sec.
5.2.4, are shown in Fig. 7.

The approximation ratios for each approach
are largely correlated, suggesting in general that
harder problems for QAOA p = 1 corresponded
to harder problems for H1.For all instances con-
sidered, H1 gave a greater than or equal to ap-
proximation ratio compared to QAOA p = 1 (Fig.
7a).

Turning now to the optimal time, H1 had in the
majority of cases the shorter optimal time (Fig.
7b). In Appendix J we elaborate further on the
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exceptions, that is the MAX-CUT problems that
have longer run-times than QAOA p=1.

This section has numerically demonstrated
that H1 provides a better approximation ratio
than QAOA p = 1 in a significantly shorter time
for the majority of instances considered, justifing
our description of this this approach as rapid,
which is crucial for NISQ implementation [28].
Given that, H1 tends to provide a better approx-
imation ratio, in a shorter time, with fewer vari-
ational parameters, it raises the question - does
QAOA p = 1, the foundation of any QAOA cir-
cuit, make effective use of its afforded resources?

6 An improvement inspired by the
Quantum Zermello problem

6.1 The approach

With QAOA it is clear how to get better approx-
imation ratios, that is by increasing p. It is less
clear how to do this with H1. One suggestion
might be to append this Hamiltonian to a QAOA
circuit. However, the aim of this paper is to ex-
plore how Hamiltonians for optimal state-transfer
can provide a guiding design principle. Therefore,
in this section we explore adding another term,
motivated by this new design principle, to H1 to
improve the approximation ratio.

In Sec. 3 we motivated H1 from the optimal
Hamiltonian by making the pragmatic substitu-
tions |ψi⟩ ⟨ψi| → Hi and |ψf ⟩ ⟨ψf | → Hf . Sub-
sequently, we demonstrated that H1 provides a
reasonable performance. However, H1 no longer
closely followed the evolution under the optimal
Hamiltonian. To partially correct for this error
we add another term to the Hamiltonian:

H1,improved = H1 +HQZ . (19)

Again, we make use of Hamiltonians for opti-
mal state-transfer to motivate the form of HQZ .
Finding the optimal Hamiltonian in the presence
of an uncontrollable term in the Hamiltonian is
known as the quantum Zermello (QZ) problem
[55–58].

In the rest of this section we expand on the
details of the QZ problem. From the exact form
of the optimal correction, Hcor, we then apply
a series of approximations so that Hcor is time-
independent and does not rely on knowledge of

|ψi⟩

|ψf⟩

eiHQWT |ψf⟩

e−iHt |ψi⟩

Figure 8: A cartoon of the evolution of states in the QZ
problem for constant HQW . In the interaction picture,
with background Hamiltonian HQW , it appears the final
state is moving under the influence of this Hamiltonian.
In this frame Eq. 2 can then be applied. It then remains
to move out of the interaction picture to get Eq. 21.

|ψf ⟩. This final Hamiltonian will be HQZ in Eq.
19.

The QZ problem, like the quantum brachis-
tochrone problem, asks what is the Hamiltonian
that transfers the system from |ψi⟩ to the final
state |ψf ⟩ in the shortest possible time. Unlike
the quantum brachistochrone problem, part of
the Hamiltonian is uncontrollable. In the case of
a constant uncontrollable term, the total Hamil-
tonian can be written as:

Hopt|QW = HQW +Hcor(t), (20)

where HQW is the constant ‘quantum wind’ that
cannot be changed and H(t) is the Hamiltonian
we are free to vary. Typically, HQW is understood
as a noise term [63, 64]. Instead, here we will take
HQW to be H1 to provide a favourable quantum
wind that Hcor(t) can provide an improvement
on.

The optimal form of Hcor(t) is (up to some fac-
tor) [56]:

Hcor(t) = −ie−iH1t
(
|ψi⟩ ⟨ψf | e−iH1T

−eiH1T |ψf ⟩ ⟨ψi|
)
eiH1t, (21)

where t is the time and T is the final time. The
motivation for this equation can be found in Fig.
8. This Hamiltonian requires knowledge of the
final state, so we introduce a series of approxima-
tions to make Hcor(t) more amenable for imple-
mentation.
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Since we know that the optimum evolution un-
der H1 tends to be short, we make the assump-
tion that the total time T is small. Therefore, we
approximate the optimal correction with Hcor(t)
with

Hcor(0) = −i
(
|ψi⟩ ⟨ψf | e−iH1T

−eiH1T |ψf ⟩ ⟨ψi|
)
. (22)

Introducing the commutator structure (Sec. 3)
with the same pragmatic substitutions as before
for H1 gives:

HQZ = −i
[
Hi, e

iH1THfe
−iH1T

]
, (23)

where we have introduced the subscript QZ to
distinguish this Hamiltonian from Hcor(0) prior
to the substitutions. Expanding this expression
in T gives:

HQZ = −i [Hi, Hf + iT [H1, Hf ]

−T 2 [H1, [H1, Hf ]] /2 + O
(
T 3
)]
. (24)

From the QZ problem we have motivated the
form of the correction HQZ in Eq. 19. In spite of
this we have no guarantee on its performance - to
this end we carry out numerical simulations.

In both its philosophy and structure HQZ is
reminiscent of shortcuts to adiabaticity (STA)
[65]. In STA the aim is to modify the Hamil-
tonian in Eq. 1 to reach the adiabatic result in a
shorter time, typically by appending to the stan-
dard QA Hamiltonian. The approach here is dis-
tinctly different for three key reasons, besides the
initial starting point of Hamiltonian.

1. The aim here is to do something distinctly
different from H1, not to recover its be-
haviour in a shorter time.

2. In the QZ-inspired approach we make use of
the excited states, with the aim of finding
approximate solutions, as opposed to exact
solutions.

3. Here we only consider time-independent
Hamiltonians.

A clear downside to HQZ is the increased com-
plexity, compared to say QAOA. However, ifHQZ

is decomposed into a QAOA-style circuit, the sin-
gle free parameter in HQZ might translate to
fewer free parameters in the QAOA circuit, al-
lowing for easier optimisation.

(a) Numerically optimised performance of Eq. 24. Each point
has been optimised in the time interval [0,0.3] by considering
3000 divisions.

(b) The corresponding optimal times for Fig. 9a. The norm
of each Hamiltonian, for each problem size has been fixed so
Eq. 11 is true, to make comparisons fair.

Figure 9: The performance of Eq. 24 on two-regular
graphs. The legend shows the order of T , with ‘exp’ re-
ferring to Eq. 23. The dashed lines show the asymptotic
performance of QAOA.

6.2 Numerical simulations

6.2.1 MAX-CUT on two-regular graphs

Here we focus on applying Eq. 24 up to various
orders in T to MAX-CUT on two-regular graphs
with an even number of qubits. We focus on this
problem as it is trivial to scale and the perfor-
mance of QAOA and H1 on this problem is well
understood.

The results for MAX-CUT with two-regular
graphs can be seen in Fig. 9a. Increasing the
expansion in T appears to improve the approx-
imation ratio. But the improvement is capped,
shown by the data labelled ‘exp’. Notably, this
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approach with a single variational parameter at
order T 2 is performing better than QAOA p = 3
(with 6 variational parameters) for 10 qubits.

The optimal T for the QZ-inspired Hamiltoni-
ans can be seen in Fig. 9b. Again, the optimal
time for each order in T appears to be tending to
a constant value, suggesting this approach is still
acting in a local fashion. This is consistent with
the approximation ratio plateauing. As we can
see the QZ-inspired approach is still operating in
a rapid fashion.

6.2.2 MAX-CUT on random graphs

To complete this section we examine the perfor-
mance of the QZ-inspired approach (Eq. 24) to
the randomly generated instances of MAX-CUT,
detailed in Sec. 4.

The results for different orders in T for the ap-
proximation ratio can be seen in Fig. 10a. All
the QZ-inspired approaches provide an improve-
ment on the original H1 Hamiltonian, indexed by
0 in the figures. However, the performance is not
monotonically increasing with the order of the ex-
pansion. This is not unusual for a Taylor series
of an oscillatory function. Consequently, achiev-
ing better approximation ratios is not as simple
as increasing the order of T . At the same time,
this means that it is not necessary to go to high
orders in T , with very non-local terms, to achieve
a significant gain in performance. For example,
in going to first order achieves a substantial im-
provement.

The optimal times for the QZ-inspired ap-
proach can be found in Fig. 10b. For clarity we
only show the optimal times for the larger prob-
lem instances. As with H1 the optimal times are
clustered for a given order. The lack of depen-
dence on problem size for optimal times and ap-
proximation ratios suggests that the QZ-inspired
approach is still optimising locally. Compared
to the H1 case, the operators have a larger sup-
port. Despite optimising locally, they are opti-
mising less locally than H1, hence the increased
performance.

Here we have numerically demonstrated that
the QZ-inspired approach can provide an im-
provement over H1, suggesting how this new de-
sign philosophy might be extended. The numerics
also suggest that going to first order may provide
the best possible advantage.

(a) The approximation ratio.

(b) The optimal times for the problem instances seen in
Fig.10a. The norm of each Hamiltonian, for each problem
size has been fixed, according to Eq. 11, ensuring a fair com-
parison.

Figure 10: The performance of the QZ-inspired approach
on 100 random MAX-CUT instances. The x-axis label
refers to the order of T in the expansion of Eq. 24, with
0 being H1 and e referring to the full exponential (i.e.
Eq. 23)
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7 Using knowledge of the initial state
As introduced in Sec. 3, in this section we exploit
our knowledge of the initial state and evaluate
the performance of

Hψi
= −i [|ψi⟩ ⟨ψi| , f(Hf )] (25)

within the QA-framework. We take f(·) to be a
real function such that:

f(Hf ) =
∑
k

f(Ek) |Ek⟩ ⟨Ek| , (26)

where |Ek⟩ and Ek are the eigenvectors and asso-
ciated eigenvalues of Hf .

Evolution under Hψi
can be calculated analyt-

ically - the details can be found in Appendix K.
By evolving |ψi⟩ the state:

|ω⟩ = 1√
Tr f2(Hf )

∑
k

f(Ek) |Ek⟩ , (27)

can be reached. Indeed Hψi
will generate linear

superpositions of |ω⟩ and |ψi⟩ only.
Assuming that the state |ω⟩ is prepared, then

the probability of finding the ground-state is

Pgs = gf2(Egs)
Tr f2(Hf ) , (28)

where g is the ground-state degeneracy and Egs
the associated energy. If f(·) is the identity, then
TrHf scales approximately as 2n and Egs might
scale with n. Hence the ground state probabil-
ity will scale as ∼ n2/2n. Indeed if f(Hf ) = Hm

f ,
where m is some positive integer, then the ground
state probability might scale as ∼ n2m/2n. This
is an improvement over random guessing, but
still with exponential scaling. This may be of
some practical benefit, depending on the compu-
tational cost of calculating f(Hf ). If f(·) is the
projector onto the ground-state then Pgs = 1 (as
expected).

Calculating the expectation of Hf for |ω⟩ gives:

⟨Hf ⟩ = 1
Tr f2(Hf )

∑
k

Ekf
2(Ek). (29)

Here we can see that ⟨Hf ⟩ will be dominated by
states for which f2(Ek) is large. If f(·) is the
identify this most likely means low energy states
and high energy states. Hence, we do not expect
a good approximation ratio. This provides some

insight into Sec. 5.2.2 where the observed peak
in ground-state probability did not coincide with
the optimal approximation ratio.

This approach has the potential to provide
a modest practical speed-up with a polynomial
prefactor on the hardest problems. However, the
success of this approach depends on the (un-
likely) feasibility of implementingHψi

and f(Hf ).
It does however provide further evidence of the
power of commutators for designing algorithms
to tackle optimisation problems.

8 Discussion and Conclusion

Designing quantum algorithms to tackle combi-
natorial optimisation problems, especially within
the NISQ framework, remains a challenge. Many
algorithms have used AQO in their inspiration,
such as in the choice of Hamiltonians. In this pa-
per we have explored using optimal Hamiltonians
as a guiding design principle.

With H1, the commutator between Hi and Hf ,
we demonstrated that we can outperform QAOA
p=1, with fewer resources. The short run-times
which do not appear to scale with problem size
suggest that this approach is acting locally. An
effective Lieb-Robinson bound prevents the infor-
mation about the problem propagating instanta-
neously [66, 67]. This helps provide some insights
into the performance of H1:

• In the local regime, the effective local Hilbert
space is smaller than the global Hilbert
space, consequently H1 will be a better
approximation of the optimal Hamiltonian.
This accounts for why we might expect H1
to work better on short run-times.

• A local algorithm is unlikely to be able to
solve an optimisation problem, as it cannot
see the whole graph. It follows that such
an approach would have poor scaling of the
ground-state probability.

Due to the local nature of H1 we were able
to utilise some analytical tricks to assist the nu-
merical assessment of its performance, allowing
for some guarantee of the performance of the ap-
proach on large problem sizes. The techniques
used had already been developed or deployed by
the continuous-time quantum computing commu-
nity in the context of QA/QAOA, indicative of
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the wide applicability of the tools being devel-
oped to assess these algorithms.

Local approaches have clear advantages in
NISQ-era computations. The short run-times put
fewer demands on the coherence times of the de-
vice. The local nature can also help mitigate
some errors. If, for example, there is a control
misspecification in one part of the Hamiltonian
this is unlikely to propagate through the whole
system and affect the entire computation.

Buoyed by the relative success of utiliz-
ing Hamiltonians for optimal state-transfer we
turned to the quantum Zermello problem to help
find improvements. These Hamiltonians compro-
mised a single variational parameter and short
run-times, for increased complexity in the Hamil-
tonian. Again, the saturation of the optimal time
suggest these approaches are still operating lo-
cally.

The success of this approach, within the NISQ
era, will depend on the feasibility of implement-
ing these Hamiltonians. This might be achieved
through decomposition into a product formula
[68] for gate based approaches, resulting in a
QAOA like circuit. Alternatively, one could at-
tempt to explicitly engineer the interactions in-
volved. Indeed, for exponentially scaling prob-
lems, implementing these Hamiltonians for short
times could be less challenging then maintaining
coherence for exponentially increasing times.

Although the results of this paper are not
fully conclusive, it has shown that by considering
Hamiltonians for optimal state-transfer we can
develop promising new algorithms. We hope the
results presented in this paper will encourage fur-
ther work into the success of these Hamiltonians.
There is scope for taking this work further. This
could include changing the choice of Hi, exploit-
ing our observation that any stoquastic Hamilto-
nian can lead to an increase in ground state prob-
ability. For Hf we have only explored problems
with trivial Ising encodings. There is scope to ex-
plore new encodings such as LHZ [69] or Domain-
wall [70] encodings. Such encodings will result in
different H1 and presumably distinct dynamics.

Acknowledgments

We gratefully acknowledge Filip Wudarski, Glen
Mbeng, Henry Chew, Natasha Feinstein, and
Sougato Bose for inspiring discussion and helpful

comments. This work was supported by the En-
gineering and Physical Sciences Research Council
through the Centre for Doctoral Training in De-
livering Quantum Tech- nologies [grant number
EP/S021582/1] and the ESPRC Hub in Quan-
tum Computing and Simulation [grant number
EP/T001062/1]. For the purpose of open ac-
cess, the author has applied a Creative Commons
Attribution (CC BY) licence to any Author Ac-
cepted Manuscript version arising.

References
[1] Christos H. Papadimitriou and Kenneth

Steiglitz. “Combinatorial optimization: Al-
gorithms and complexity”. Dover Publica-
tions. (1981).

[2] M. H. S. Amin. “Consistency of the adi-
abatic theorem”. Phys. Rev. Lett. 102,
220401 (2009).

[3] Ben W. Reichardt. “The quantum adiabatic
optimization algorithm and local minima”.
In Proceedings of the Thirty-Sixth Annual
ACM Symposium on Theory of Computing.
Page 502–510. STOC ’04New York, NY,
USA (2004). Association for Computing Ma-
chinery.

[4] B. Apolloni, C. Carvalho, and D. de
Falco. “Quantum stochastic optimization”.
Stochastic Processes and their Applications
33, 233–244 (1989).

[5] Edward Farhi, Jeffrey Goldstone, Sam Gut-
mann, and Michael Sipser. “Quantum com-
putation by adiabatic evolution” (2000).
arXiv:0001106.

[6] Tadashi Kadowaki and Hidetoshi Nishimori.
“Quantum annealing in the transverse ising
model”. Phys. Rev. E 58, 5355–5363 (1998).

[7] A.B. Finnila, M.A. Gomez, C. Sebenik,
C. Stenson, and J.D. Doll. “Quantum an-
nealing: A new method for minimizing mul-
tidimensional functions”. Chemical Physics
Letters 219, 343–348 (1994).

[8] Tameem Albash and Daniel A. Lidar. “Adi-
abatic quantum computation”. Reviews of
Modern Physics90 (2018).

[9] N. G. Dickson, M. W. Johnson, M. H.
Amin, R. Harris, F. Altomare, A. J. Berkley,
P. Bunyk, J. Cai, E. M. Chapple, P. Chavez,
F. Cioata, T. Cirip, P. deBuen, M. Drew-
Brook, C. Enderud, S. Gildert, F. Hamze,

Accepted in Quantum 2024-02-06, click title to verify. Published under CC-BY 4.0. 14

https://dx.doi.org/10.1103/PhysRevLett.102.220401
https://dx.doi.org/10.1103/PhysRevLett.102.220401
https://dx.doi.org/10.1145/1007352.1007428
https://dx.doi.org/https://doi.org/10.1016/0304-4149(89)90040-9
https://dx.doi.org/https://doi.org/10.1016/0304-4149(89)90040-9
http://arxiv.org/abs/0001106
https://dx.doi.org/10.1103/PhysRevE.58.5355
https://dx.doi.org/https://doi.org/10.1016/0009-2614(94)00117-0
https://dx.doi.org/https://doi.org/10.1016/0009-2614(94)00117-0
https://dx.doi.org/10.1103/revmodphys.90.015002
https://dx.doi.org/10.1103/revmodphys.90.015002


J. P. Hilton, E. Hoskinson, K. Karimi,
E. Ladizinsky, N. Ladizinsky, T. Lanting,
T. Mahon, R. Neufeld, T. Oh, I. Perminov,
C. Petroff, A. Przybysz, C. Rich, P. Spear,
A. Tcaciuc, M. C. Thom, E. Tolkacheva,
S. Uchaikin, J. Wang, A. B. Wilson, Z. Mer-
ali, and G. Rose. “Thermally assisted quan-
tum annealing of a 16-qubit problem”. Na-
ture Communications 4, 1903 (2013).

[10] E. J. Crosson and D. A. Lidar. “Prospects for
quantum enhancement with diabatic quan-
tum annealing”. Nature Reviews Physics 3,
466–489 (2021).

[11] Louis Fry-Bouriaux, Daniel T. O’Connor,
Natasha Feinstein, and Paul A. Warburton.
“Locally suppressed transverse-field protocol
for diabatic quantum annealing”. Phys. Rev.
A 104, 052616 (2021).

[12] Rolando D. Somma, Daniel Nagaj, and
Mária Kieferová. “Quantum speedup by
quantum annealing”. Phys. Rev. Lett. 109,
050501 (2012).

[13] Edward Farhi, Jeffrey Goldston, David Gos-
set, Sam Gutmann, Harvey B. Meyer, and
Peter Shor. “Quantum adiabatic algorithms,
small gaps, and different paths”. Quantum
Info. Comput. 11, 181–214 (2011).

[14] Lishan Zeng, Jun Zhang, and Mohan
Sarovar. “Schedule path optimization for
adiabatic quantum computing and optimiza-
tion”. Journal of Physics A: Mathematical
and Theoretical 49, 165305 (2016).

[15] Edward Farhi, Jeffrey Goldstone, and Sam
Gutmann. “Quantum adiabatic evolution
algorithms with different paths” (2002).
arXiv:quant-ph/0208135.

[16] Natasha Feinstein, Louis Fry-Bouriaux,
Sougato Bose, and P. A. Warburton. “Ef-
fects of xx-catalysts on quantum annealing
spectra with perturbative crossings” (2022).
arXiv:2203.06779.

[17] Elizabeth Crosson, Edward Farhi, Cedric
Yen-Yu Lin, Han-Hsuan Lin, and Peter Shor.
“Different strategies for optimization using
the quantum adiabatic algorithm” (2014).
arXiv:1401.7320.

[18] Vicky Choi. “Essentiality of the non-
stoquastic hamiltonians and driver graph
design in quantum optimization anneal-
ing” (2021). arXiv:2105.02110.

[19] Edward Farhi, Jeffrey Goldstone, and

Sam Gutmann. “A quantum approx-
imate optimization algorithm” (2014).
arXiv:1411.4028.

[20] Adam Callison, Nicholas Chancellor, Florian
Mintert, and Viv Kendon. “Finding spin
glass ground states using quantum walks”.
New Journal of Physics 21, 123022 (2019).

[21] Viv Kendon. “How to compute using quan-
tum walks”. Electronic Proceedings in The-
oretical Computer Science 315, 1–17 (2020).

[22] Adam Callison, Max Festenstein, Jie Chen,
Laurentiu Nita, Viv Kendon, and Nicholas
Chancellor. “Energetic perspective on rapid
quenches in quantum annealing”. PRX
Quantum 2, 010338 (2021).

[23] James G. Morley, Nicholas Chancellor,
Sougato Bose, and Viv Kendon. “Quantum
search with hybrid adiabatic–quantum-walk
algorithms and realistic noise”. Physical Re-
view A99 (2019).

[24] Dorje C Brody and Daniel W Hook. “On
optimum hamiltonians for state transforma-
tions”. Journal of Physics A: Mathematical
and General 39, L167–L170 (2006).

[25] J.R. Johansson, P.D. Nation, and Franco
Nori. “Qutip: An open-source python frame-
work for the dynamics of open quantum sys-
tems”. Computer Physics Communications
183, 1760–1772 (2012).

[26] J.R. Johansson, P.D. Nation, and Franco
Nori. “Qutip 2: A python framework for the
dynamics of open quantum systems”. Com-
puter Physics Communications 184, 1234–
1240 (2013).

[27] MD Sajid Anis, Abby-Mitchell, Héctor
Abraham, and AduOffei et al. “Qiskit: An
open-source framework for quantum com-
puting” (2021).

[28] John Preskill. “Quantum computing in
the NISQ era and beyond”. Quantum 2,
79 (2018).

[29] Philipp Hauke, Helmut G Katzgraber, Wolf-
gang Lechner, Hidetoshi Nishimori, and
William D Oliver. “Perspectives of quan-
tum annealing: methods and implementa-
tions”. Reports on Progress in Physics 83,
054401 (2020).

[30] Leo Zhou, Sheng-Tao Wang, Soonwon Choi,
Hannes Pichler, and Mikhail D. Lukin.
“Quantum approximate optimization algo-
rithm: Performance, mechanism, and imple-

Accepted in Quantum 2024-02-06, click title to verify. Published under CC-BY 4.0. 15

https://dx.doi.org/10.1038/ncomms2920
https://dx.doi.org/10.1038/ncomms2920
https://dx.doi.org/10.1038/s42254-021-00313-6
https://dx.doi.org/10.1038/s42254-021-00313-6
https://dx.doi.org/10.1103/PhysRevA.104.052616
https://dx.doi.org/10.1103/PhysRevA.104.052616
https://dx.doi.org/10.1103/PhysRevLett.109.050501
https://dx.doi.org/10.1103/PhysRevLett.109.050501
https://dx.doi.org/10.26421/qic11.3-4-1
https://dx.doi.org/10.26421/qic11.3-4-1
https://dx.doi.org/10.1088/1751-8113/49/16/165305
https://dx.doi.org/10.1088/1751-8113/49/16/165305
http://arxiv.org/abs/quant-ph/0208135
http://arxiv.org/abs/2203.06779
http://arxiv.org/abs/1401.7320
http://arxiv.org/abs/2105.02110
http://arxiv.org/abs/1411.4028
https://dx.doi.org/10.1088/1367-2630/ab5ca2
https://dx.doi.org/10.4204/eptcs.315.1
https://dx.doi.org/10.4204/eptcs.315.1
https://dx.doi.org/10.1103/PRXQuantum.2.010338
https://dx.doi.org/10.1103/PRXQuantum.2.010338
https://dx.doi.org/10.1103/physreva.99.022339
https://dx.doi.org/10.1103/physreva.99.022339
https://dx.doi.org/10.1088/0305-4470/39/11/l02
https://dx.doi.org/10.1088/0305-4470/39/11/l02
https://dx.doi.org/https://doi.org/10.1016/j.cpc.2012.02.021
https://dx.doi.org/https://doi.org/10.1016/j.cpc.2012.02.021
https://dx.doi.org/https://doi.org/10.1016/j.cpc.2012.11.019
https://dx.doi.org/https://doi.org/10.1016/j.cpc.2012.11.019
https://dx.doi.org/https://doi.org/10.1016/j.cpc.2012.11.019
https://dx.doi.org/10.22331/q-2018-08-06-79
https://dx.doi.org/10.22331/q-2018-08-06-79
https://dx.doi.org/10.1088/1361-6633/ab85b8
https://dx.doi.org/10.1088/1361-6633/ab85b8


mentation on near-term devices”. Phys. Rev.
X 10, 021067 (2020).

[31] Stuart Hadfield, Zhihui Wang, Bryan
O'Gorman, Eleanor Rieffel, Davide Ven-
turelli, and Rupak Biswas. “From the quan-
tum approximate optimization algorithm to
a quantum alternating operator ansatz”. Al-
gorithms 12, 34 (2019).

[32] Matthew P. Harrigan, Kevin J. Sung,
Matthew Neeley, and Kevin J. Satzinger et
al. “Quantum approximate optimization of
non-planar graph problems on a planar su-
perconducting processor”. Nature Physics
17, 332–336 (2021).

[33] T. M. Graham, Y. Song, J. Scott, C. Poole,
L. Phuttitarn, K. Jooya, P. Eichler, X. Jiang,
A. Marra, B. Grinkemeyer, M. Kwon,
M. Ebert, J. Cherek, M. T. Lichtman,
M. Gillette, J. Gilbert, D. Bowman, T. Bal-
lance, C. Campbell, E. D. Dahl, O. Craw-
ford, N. S. Blunt, B. Rogers, T. Noel, and
M. Saffman. “Multi-qubit entanglement and
algorithms on a neutral-atom quantum com-
puter”. Nature 604, 457–462 (2022).

[34] J. S. Otterbach, R. Manenti, N. Alidoust,
A. Bestwick, M. Block, B. Bloom, S. Cald-
well, N. Didier, E. Schuyler Fried, S. Hong,
P. Karalekas, C. B. Osborn, A. Papageorge,
E. C. Peterson, G. Prawiroatmodjo, N. Ru-
bin, Colm A. Ryan, D. Scarabelli, M. Scheer,
E. A. Sete, P. Sivarajah, Robert S. Smith,
A. Staley, N. Tezak, W. J. Zeng, A. Hud-
son, Blake R. Johnson, M. Reagor, M. P.
da Silva, and C. Rigetti. “Unsupervised ma-
chine learning on a hybrid quantum com-
puter” (2017). arXiv:1712.05771.

[35] Lucas T. Brady, Christopher L. Baldwin,
Aniruddha Bapat, Yaroslav Kharkov, and
Alexey V. Gorshkov. “Optimal proto-
cols in quantum annealing and quantum
approximate optimization algorithm prob-
lems”. Phys. Rev. Lett. 126, 070505 (2021).

[36] Lucas T. Brady, Lucas Kocia, Przemys-
law Bienias, Aniruddha Bapat, Yaroslav
Kharkov, and Alexey V. Gorshkov. “Behav-
ior of analog quantum algorithms” (2021).
arXiv:2107.01218.

[37] Xinyu Fei, Lucas T. Brady, Jeffrey Lar-
son, Sven Leyffer, and Siqian Shen. “Binary
control pulse optimization for quantum sys-
tems”. Quantum 7, 892 (2023).

[38] Lorenzo Campos Venuti, Domenico
D’Alessandro, and Daniel A. Lidar. “Op-
timal control for quantum optimization of
closed and open systems”. Physical Review
Applied16 (2021).

[39] M.A. Nielsen. “A geometric approach to
quantum circuit lower bounds”. Quan-
tum Information and Computation 6,
213–262 (2006).

[40] Michael A. Nielsen, Mark R. Dowling, Mile
Gu, and Andrew C. Doherty. “Quantum
computation as geometry”. Science 311,
1133–1135 (2006).

[41] M.R. Dowling and M.A. Nielsen. “The ge-
ometry of quantum computation”. Quan-
tum Information and Computation 8,
861–899 (2008).

[42] Alberto Carlini, Akio Hosoya, Tatsuhiko
Koike, and Yosuke Okudaira. “Time-optimal
quantum evolution”. Phys. Rev. Lett. 96,
060503 (2006).

[43] Alberto Carlini, Akio Hosoya, Tatsuhiko
Koike, and Yosuke Okudaira. “Time-
optimal unitary operations”. Physical Re-
view A75 (2007).

[44] A. T. Rezakhani, W.-J. Kuo, A. Hamma,
D. A. Lidar, and P. Zanardi. “Quantum adia-
batic brachistochrone”. Physical Review Let-
ters103 (2009).

[45] Xiaoting Wang, Michele Allegra, Kurt Ja-
cobs, Seth Lloyd, Cosmo Lupo, and Ma-
soud Mohseni. “Quantum brachistochrone
curves as geodesics: Obtaining accurate
minimum-time protocols for the control of
quantum systems”. Phys. Rev. Lett. 114,
170501 (2015).

[46] Hiroaki Wakamura and Tatsuhiko Koike. “A
general formulation of time-optimal quan-
tum control and optimality of singular
protocols”. New Journal of Physics 22,
073010 (2020).

[47] Ding Wang, Haowei Shi, and Yueheng
Lan. “Quantum brachistochrone for mul-
tiple qubits”. New Journal of Physics 23,
083043 (2021).

[48] Alan C. Santos, C. J. Villas-Boas, and
R. Bachelard. “Quantum adiabatic brachis-
tochrone for open systems”. Phys. Rev. A
103, 012206 (2021).

[49] Jing Yang and Adolfo del Campo.
“Minimum-time quantum control and the

Accepted in Quantum 2024-02-06, click title to verify. Published under CC-BY 4.0. 16

https://dx.doi.org/10.1103/PhysRevX.10.021067
https://dx.doi.org/10.1103/PhysRevX.10.021067
https://dx.doi.org/10.3390/a12020034
https://dx.doi.org/10.3390/a12020034
https://dx.doi.org/10.1038/s41567-020-01105-y
https://dx.doi.org/10.1038/s41567-020-01105-y
https://dx.doi.org/10.1038/s41586-022-04603-6
http://arxiv.org/abs/1712.05771
https://dx.doi.org/10.1103/PhysRevLett.126.070505
http://arxiv.org/abs/2107.01218
https://dx.doi.org/10.22331/q-2023-01-04-892
https://dx.doi.org/10.1103/physrevapplied.16.054023
https://dx.doi.org/10.1103/physrevapplied.16.054023
https://dx.doi.org/10.26421/qic6.3-2
https://dx.doi.org/10.26421/qic6.3-2
https://dx.doi.org/10.26421/qic6.3-2
https://dx.doi.org/10.1126/science.1121541
https://dx.doi.org/10.1126/science.1121541
https://dx.doi.org/10.26421/qic8.10-1
https://dx.doi.org/10.26421/qic8.10-1
https://dx.doi.org/10.26421/qic8.10-1
https://dx.doi.org/10.1103/PhysRevLett.96.060503
https://dx.doi.org/10.1103/PhysRevLett.96.060503
https://dx.doi.org/10.1103/physreva.75.042308
https://dx.doi.org/10.1103/physreva.75.042308
https://dx.doi.org/10.1103/physrevlett.103.080502
https://dx.doi.org/10.1103/physrevlett.103.080502
https://dx.doi.org/10.1103/PhysRevLett.114.170501
https://dx.doi.org/10.1103/PhysRevLett.114.170501
https://dx.doi.org/10.1088/1367-2630/ab8ab3
https://dx.doi.org/10.1088/1367-2630/ab8ab3
https://dx.doi.org/10.1088/1367-2630/ac1df5
https://dx.doi.org/10.1088/1367-2630/ac1df5
https://dx.doi.org/10.1103/PhysRevA.103.012206
https://dx.doi.org/10.1103/PhysRevA.103.012206


quantum brachistochrone equation” (2022).
arXiv:2204.12792.

[50] J. Anandan and Y. Aharonov. “Geometry
of quantum evolution”. Phys. Rev. Lett. 65,
1697–1700 (1990).

[51] Alberto Peruzzo, Jarrod McClean, Peter
Shadbolt, Man-Hong Yung, Xiao-Qi Zhou,
Peter J. Love, Alán Aspuru-Guzik, and
Jeremy L. O’Brien. “A variational eigenvalue
solver on a photonic quantum processor”.
Nature Communications 5, 4213 (2014).

[52] Dmitry A. Fedorov, Bo Peng, Niranjan
Govind, and Yuri Alexeev. “VQE method: a
short survey and recent developments”. Ma-
terials Theory6 (2022).

[53] Li Li, Minjie Fan, Marc Coram, Patrick Ri-
ley, and Stefan Leichenauer. “Quantum op-
timization with a novel gibbs objective func-
tion and ansatz architecture search”. Phys.
Rev. Research 2, 023074 (2020).

[54] Panagiotis Kl. Barkoutsos, Giacomo Nan-
nicini, Anton Robert, Ivano Tavernelli, and
Stefan Woerner. “Improving variational
quantum optimization using CVaR”. Quan-
tum 4, 256 (2020).

[55] Dorje C. Brody and David M. Meier. “So-
lution to the quantum zermelo naviga-
tion problem”. Phys. Rev. Lett. 114,
100502 (2015).

[56] Dorje C Brody, Gary W Gibbons, and
David M Meier. “Time-optimal navigation
through quantum wind”. New Journal of
Physics 17, 033048 (2015).

[57] Benjamin Russell and Susan Stepney. “Zer-
melo navigation and a speed limit to quan-
tum information processing”. Phys. Rev. A
90, 012303 (2014).

[58] Benjamin Russell and Susan Stepney. “Zer-
melo navigation in the quantum brachis-
tochrone”. Journal of Physics A: Mathemat-
ical and Theoretical 48, 115303 (2015).

[59] Sergey Bravyi and Barbara Terhal. “Com-
plexity of stoquastic frustration-free hamil-
tonians”. SIAM Journal on Computing 39,
1462–1485 (2010).

[60] Glen Bigan Mbeng, Rosario Fazio, and
Giuseppe Santoro. “Quantum annealing: a
journey through digitalization, control, and
hybrid quantum variational schemes” (2019).
arXiv:1906.08948.

[61] Arthur Braida, Simon Martiel, and Ioan

Todinca. “On constant-time quantum an-
nealing and guaranteed approximations for
graph optimization problems”. Quantum
Science and Technology 7, 045030 (2022).

[62] Alexey Galda, Xiaoyuan Liu, Danylo Lykov,
Yuri Alexeev, and Ilya Safro. “Transferabil-
ity of optimal qaoa parameters between ran-
dom graphs”. In 2021 IEEE International
Conference on Quantum Computing and En-
gineering (QCE). Pages 171–180. (2021).

[63] M. Lapert, Y. Zhang, M. Braun, S. J.
Glaser, and D. Sugny. “Singular extremals
for the time-optimal control of dissipative
spin 1

2 particles”. Phys. Rev. Lett. 104,
083001 (2010).

[64] Victor Mukherjee, Alberto Carlini, An-
drea Mari, Tommaso Caneva, Simone Mon-
tangero, Tommaso Calarco, Rosario Fazio,
and Vittorio Giovannetti. “Speeding up
and slowing down the relaxation of a qubit
by optimal control”. Phys. Rev. A 88,
062326 (2013).

[65] D. Guéry-Odelin, A. Ruschhaupt, A. Kiely,
E. Torrontegui, S. Martínez-Garaot, and
J. G. Muga. “Shortcuts to adiabaticity:
Concepts, methods, and applications”. Rev.
Mod. Phys. 91, 045001 (2019).

[66] Elliott H. Lieb and Derek W. Robinson. “The
finite group velocity of quantum spin sys-
tems”. Communications in Mathematical
Physics 28, 251–257 (1972).

[67] Zhiyuan Wang and Kaden R.A. Hazzard.
“Tightening the lieb-robinson bound in lo-
cally interacting systems”. PRX Quantum
1, 010303 (2020).

[68] Andrew M. Childs and Nathan Wiebe.
“Product formulas for exponentials of com-
mutators”. Journal of Mathematical Physics
54, 062202 (2013).

[69] Wolfgang Lechner, Philipp Hauke, and Peter
Zoller. “A quantum annealing architecture
with all-to-all connectivity from local inter-
actions”. Science Advances1 (2015).

[70] Nicholas Chancellor. “Domain wall encoding
of discrete variables for quantum annealing
and QAOA”. Quantum Science and Technol-
ogy 4, 045004 (2019).

[71] Helmut G. Katzgraber, Firas Hamze, Zheng
Zhu, Andrew J. Ochoa, and H. Munoz-
Bauza. “Seeking quantum speedup through

Accepted in Quantum 2024-02-06, click title to verify. Published under CC-BY 4.0. 17

http://arxiv.org/abs/2204.12792
https://dx.doi.org/10.1103/PhysRevLett.65.1697
https://dx.doi.org/10.1103/PhysRevLett.65.1697
https://dx.doi.org/10.1038/ncomms5213
https://dx.doi.org/10.1186/s41313-021-00032-6
https://dx.doi.org/10.1186/s41313-021-00032-6
https://dx.doi.org/10.1103/PhysRevResearch.2.023074
https://dx.doi.org/10.1103/PhysRevResearch.2.023074
https://dx.doi.org/10.22331/q-2020-04-20-256
https://dx.doi.org/10.22331/q-2020-04-20-256
https://dx.doi.org/10.1103/PhysRevLett.114.100502
https://dx.doi.org/10.1103/PhysRevLett.114.100502
https://dx.doi.org/10.1088/1367-2630/17/3/033048
https://dx.doi.org/10.1088/1367-2630/17/3/033048
https://dx.doi.org/10.1103/PhysRevA.90.012303
https://dx.doi.org/10.1103/PhysRevA.90.012303
https://dx.doi.org/10.1088/1751-8113/48/11/115303
https://dx.doi.org/10.1088/1751-8113/48/11/115303
https://dx.doi.org/10.1137/08072689X
https://dx.doi.org/10.1137/08072689X
http://arxiv.org/abs/1906.08948
https://dx.doi.org/10.1088/2058-9565/ac8e91
https://dx.doi.org/10.1088/2058-9565/ac8e91
https://dx.doi.org/10.1109/QCE52317.2021.00034
https://dx.doi.org/10.1103/PhysRevLett.104.083001
https://dx.doi.org/10.1103/PhysRevLett.104.083001
https://dx.doi.org/10.1103/PhysRevA.88.062326
https://dx.doi.org/10.1103/PhysRevA.88.062326
https://dx.doi.org/10.1103/RevModPhys.91.045001
https://dx.doi.org/10.1103/RevModPhys.91.045001
https://dx.doi.org/10.1007/BF01645779
https://dx.doi.org/10.1007/BF01645779
https://dx.doi.org/10.1103/PRXQuantum.1.010303
https://dx.doi.org/10.1103/PRXQuantum.1.010303
https://dx.doi.org/10.1063/1.4811386
https://dx.doi.org/10.1063/1.4811386
https://dx.doi.org/10.1126/sciadv.1500838
https://dx.doi.org/10.1088/2058-9565/ab33c2
https://dx.doi.org/10.1088/2058-9565/ab33c2


spin glasses: The good, the bad, and the
ugly”. Physical Review X5 (2015).

[72] M.R. Garey, D.S. Johnson, and L. Stock-
meyer. “Some simplified np-complete graph
problems”. Theoretical Computer Science 1,
237–267 (1976).

[73] Christos H. Papadimitriou and Mihalis Yan-
nakakis. “Optimization, approximation, and
complexity classes”. Journal of Computer
and System Sciences 43, 425–440 (1991).

[74] Zhihui Wang, Stuart Hadfield, Zhang Jiang,
and Eleanor G. Rieffel. “Quantum ap-
proximate optimization algorithm for Max-
Cut: A fermionic view”. Physical Review
A97 (2018).

[75] Glen Bigan Mbeng, Angelo Russomanno,
and Giuseppe E. Santoro. “The quan-
tum ising chain for beginners” (2020).
arXiv:2009.09208.

[76] David Gamarnik and Quan Li. “On the
max-cut of sparse random graphs”. Ran-
dom Structures & Algorithms 52, 219–
262 (2018).

[77] Don Coppersmith, David Gamarnik, Mo-
hammadTaghi Hajiaghayi, and Gregory B.
Sorkin. “Random max sat, random max cut,

and their phase transitions”. Random Struc-
tures & Algorithms 24, 502–545 (2004).

[78] Anthony Polloreno and Graeme Smith.
“The qaoa with slow measurements” (2022).
arXiv:2205.06845.

[79] David Sherrington and Scott Kirkpatrick.
“Solvable model of a spin-glass”. Phys. Rev.
Lett. 35, 1792–1796 (1975).

[80] Tadashi Kadowaki and Hidetoshi Nishimori.
“Greedy parameter optimization for dia-
batic quantum annealing”. Philosophical
Transactions of the Royal Society A: Math-
ematical, Physical and Engineering Sci-
ences381 (2022).

[81] J. D. Hunter. “Matplotlib: A 2d graphics
environment”. Computing in Science & En-
gineering 9, 90–95 (2007).

[82] Frederik Michel Dekking, Cornelis
Kraaikamp, Hendrik Paul Lopuhaä, and
Ludolf Erwin Meester. “A modern introduc-
tion to probability and statistics”. Springer
London. (2005).

[83] K. F. Riley, Marcella Paola Hobson, and
Stephen Bence. “Mathematical methods for
physics and engineering - 3rd edition”. Cam-
bridge University Press. (2006).

Accepted in Quantum 2024-02-06, click title to verify. Published under CC-BY 4.0. 18

https://dx.doi.org/10.1103/physrevx.5.031026
https://dx.doi.org/https://doi.org/10.1016/0304-3975(76)90059-1
https://dx.doi.org/https://doi.org/10.1016/0304-3975(76)90059-1
https://dx.doi.org/https://doi.org/10.1016/0022-0000(91)90023-X
https://dx.doi.org/https://doi.org/10.1016/0022-0000(91)90023-X
https://dx.doi.org/10.1103/physreva.97.022304
https://dx.doi.org/10.1103/physreva.97.022304
http://arxiv.org/abs/2009.09208
https://dx.doi.org/https://doi.org/10.1002/rsa.20738
https://dx.doi.org/https://doi.org/10.1002/rsa.20738
https://dx.doi.org/https://doi.org/10.1002/rsa.20738
https://dx.doi.org/10.1002/rsa.20015
https://dx.doi.org/10.1002/rsa.20015
http://arxiv.org/abs/2205.06845
https://dx.doi.org/10.1103/PhysRevLett.35.1792
https://dx.doi.org/10.1103/PhysRevLett.35.1792
https://dx.doi.org/10.1098/rsta.2021.0416
https://dx.doi.org/10.1098/rsta.2021.0416
https://dx.doi.org/10.1098/rsta.2021.0416
https://dx.doi.org/10.1098/rsta.2021.0416
https://dx.doi.org/10.1109/MCSE.2007.55
https://dx.doi.org/10.1109/MCSE.2007.55
https://dx.doi.org/https://doi.org/10.1007/1-84628-168-7
https://dx.doi.org/https://doi.org/10.1007/1-84628-168-7
https://dx.doi.org/https://doi.org/10.1017/CBO9780511810763
https://dx.doi.org/https://doi.org/10.1017/CBO9780511810763


A Optimal Hamiltonians for the QA-framework
In Sec. 3 we saw that the Hamiltonian (up to some constant factor):

Hopt = −i (|ψi⟩ ⟨ψf | − |ψf ⟩ ⟨ψi|) . (30)

transfers the system from |ψi⟩ to |ψf ⟩ in the shortest possible time.
In standard QA, the time-varying Hamiltonian interpolates between Hi = −

∑
iXi and an Ising

Hamiltonian Hf . Consider the overlap of Hi with Eq. 30:

Tr{HiHopt} = − iTr{Hi (|ψi⟩ ⟨ψf | − |ψf ⟩ ⟨ψi|)}

= − iE
(0)
i Tr{|ψi⟩ ⟨ψf | − |ψf ⟩ ⟨ψi|}

=0,

where E(0)
i is the ground-state energy of Hi. The final line follows since in QA, typically ⟨ψi|ψf ⟩ =

g/
√

2n, where g is the degeneracy of the ground-state. We also choose |ψi⟩ and |ψf ⟩ to have a real
overlap in deriving Eq. 30. Similarly,

Tr{HfHopt} = 0.
Eq. 30 has no overlap with any of the Hamiltonians typically used in QA. More generally, if M is

any operator whose eigenstates include |ψi⟩ or |ψf ⟩, then

Tr{MHopt} = 0.

This means Eq. 30 has no overlap with other Hamiltonians besides Hi and Hf , including XX terms.
As a final example, consider the optimal Hamiltonian for MAX-CUT on a two-regular graph with

four qubits. The Hamiltonian (up to some scaling factor):

H4 = Z1Y2 + Y1Z2 + Z2Y3 + Y2Z3 + Z3Y4 + Y3Z4 + Z1Y4 + Y1Z4 − Z1Y3 − Y1Z3 − Z2Y4 − Y2Z4

− Y1Z2Z3Z4 − Z1Y2Z3Z4 − Z1Z2Y3Z4 − Z1Z2Z3Y4 +X1Y2Z3 + Y1X2Z4 − Y1X2Z3 −X1Y2Z4

+ Y1Z2X3 +X1Z2Y3 +X1Y3Z4 + Y1X3Z4 + Y1Z2X4 +X1Z3Y4 − Y1Z3X4 −X1Z2Y4

+ Z1Y2X3 +X2Y3Z4 − Z1X2Y3 − Y2X3Z4 + Z1Y2X4 + Y2Z3X4 +X2Z3Y4 + Z1X2Y4

+ Z2Y3X4 + Z1X3Y4 − Z1Y3X4 − Z2X3Y4 +X1X2Y3Z4 + Y1X2X3Z4 −X1Y2X3Z4 + Y1Y2Y3Z4

+X1Y2Z3X4 +X1X2Z3Y4 −Y1X2Z3X4 +Y1Y2Z3Y4 +Y1Z2X3X4 +X1Z2Y3X4 −X1Z2X3Y4 +Y1Z2Y3Y4

+ Z1Y2X3X4 + Z1X2X3Y4 − Z1X2Y3X4 + Z1Y2Y3Y4,

(31)

solves the problem in the shortest possible time. This Hamiltonian has a huge number of terms, yet
none of them are the ones typically used in QA. Note every term involves a Y Pauli.

Although Eq. 31 is clearly not implementable, it raises the question of whether QA uses the correct
terms in the Hamiltonian to achieve practical speed-up, especially in NISQ devices. This suggests terms
like Hi, Hf (unless used in a targeted way) might not be the most successful choice of Hamiltonians
for fast NISQ algorithms.

B Background on the problems considered
The Hamiltonians proposed in Sec. 3 need to be applied to optimisation problems to assess their
performance. Algorithms are unlikely to work uniformly well on all problems; for instance QA is
believed to work better on problems with tall, thin barriers in the energy landscape [71]. Consequently
the apparent performance of a heuristic algorithm will, in general, be dependent on the optimisation
problem considered as well as the algorithm. With this caveat in mind this paper makes focuses on the
canonical optimisation problems MAX-CUT. To further substantiate the claims made we provide a
further numerical study on the Sherrington-Kirkpatrick-inspired problem in Appendix E. This section
briefly outlines these problems.
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B.1 MAX-CUT
MAX-CUT seeks to find the maximum cut of a graph, G = (V,E). A cut separates the nodes of
the graph into two disjoint sets. The value of the cut is equal to the number of edges between the
two disjoint sets. In general, MAX-CUT is an NP-hard problem [72]. Indeed, finding very good
approximations for MAX-CUT is a computationally hard problem [73].

The corresponding Ising formulation of this problem is:

Hf =
∑

(i,j)∈E
ZiZj , (32)

up to a constant offset (i.e. a term proportional to the identity) and multiplicative factor. In this
paper we explore MAX-CUT on a range of graphs.

B.1.1 Two-regular graphs

MAX-CUT on two-regular graphs (also known as the Ring of Disagrees or the anti-ferromagnetic ring)
is a well studied problem in the context of QA and QAOA [5, 74, 60, 19]. The problem Hamiltonian

Hf =
n∑
i=1

ZiZi+1 (33)

with n+ 1 = 1, consists of nearest-neighbour terms only. The performance of QA and QAOA on this
problem has been understood by applying the Jordan-Wigner transformation to map the problem onto
free fermions [5, 74]. In Sec. 5.2.2 we follow the approach laid out by [74] to apply this technique to
H1. A further useful tutorial for tackling the Ising chain with the Jordan-Wigner transformations can
be found in [75].

Alternatively, provided p is sufficiently small, the performance of QAOA can be understood in terms
of locality [19]. Due to the structure of the ansatz in QAOA (i.e. Eq. 10), to find the expectation of
a term in Hf , such as ZiZi+1, it is only necessary to consider a subgraph. This subgraph consists of
all nodes connected by no more than p edges to a node in the support of the expectation value being
calculated. For two regular graphs this is a chain consisting of 2p+ 2 nodes. Provided this subgraph is
smaller than the problem graph (i.e. the two-regular graph has more than 2p+ 2 nodes), then QAOA
is operating locally.

For a given p, all the subgraphs are identical for a two-regular graph. Hence, the performance of
QAOA for this problem depends only on its performance on this subgraph. As a direct consequence
of the locality, the approximation ratio of QAOA will not change as the size of the two-regular graph
is scaled. By optimising over this subgraph with a classical resource, it is therefore possible to find the
optimal time and approximation ratio of QAOA for this problem.

B.1.2 Three-regular graphs

MAX-CUT on three-regular graphs was considered in the original QAOA paper by Farhi et al. [19].
The local-nature of QAOA allowed them to calculate explicit bounds on the performance of their
algorithm. To this end, the graph was broken down into subgraphs to measure local expectation
values (i.e., ⟨ZiZi+1⟩). For QAOA p = 1, there are three distinct subgraphs. By simulating QAOA
for the subgraphs and bounding the proportion of subgraphs in the problem, they calculated a lower
bound on the performance. The small number of relevant subgraphs for three-regular graphs, makes
this approach particularly amenable. They found that QAOA p = 1 will produce a distribution whose
average will correspond to at least 0.6924 times the best-cut. This lower-bound is saturated by triangle-
free graphs. These graphs consist of a single subgraph. Therefore, the performance of QAOA p = 1 is
largely dependent of the proportion of edges in this problem that belong to this subgraph. We refer
to the performance of a local approach being limited by its performance on one subgraph (or possibly
a small handful of subgraphs) as being dominated by this subgraph.
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This method was later extended by Braida et al. [61] who applied it to QA by using an approach
inspired by Lieb-Robinson bounds. By operating QA on short times it can be treated as a local
algorithm. By then simulating local sub-graphs (as in the QAOA case) and calculating the bounds
outlined in the paper, the worst-case performance for each sub-graph can be calculated. This approach
does not necessarily find a tight bound, but it is nonetheless impressive, with bounds in continuous-
time quantum computation a rarity. They show that QA finds at least 0.5933 times the best cut. The
authors conjecture that 0.6963 times the best cut might be a tighter bound on the performance but
are unable to rigorously show that this is the case.

In Sec. 5.2.3 we make use of the approach formulated by Braida et al. to prove a lower bound for
H1 for this problem.

B.1.3 Random graph instances

To generalise the MAX-CUT instances discussed above, we also consider MAX-CUT on randomly
generated graphs. These graphs do not have fixed degree. The graphs are generated by selecting an
edge between any two nodes with probability p. MAX-CUT undergoes a computational phase change
for random graphs at p = 1/2 (harder problems appear for p > 1/2) [76–78]. We set p = 2/3 for this
paper (note that this is no guarantee of hardness for the problem instances considered).

B.2 Sherrington-Kirkpatrick inspired model

In a MAX-CUT problem all the couplers in the graph are set to the same value. Here we introduce a
second problem, the Sherrington-Kirkpatrick model (SKM), where this is not the case. The problem
is to find the ground-state of

Hf =
∑
i,j

Ji,jZiZj (34)

where the Ji,j ’s are randomly selected from a normal distribution with mean 0 and variance 1 [79].
Each qubit is coupled to every other qubit.

To further distinguish the SKM from the MAX-CUT problems we introduce bias terms to the
Hamiltonian,

Hf =
∑
i,j

Ji,jZiZj +
n∑
i

hiZi, (35)

where the hi’s are also randomly selected from a normal distribution with mean 0 and variance 1. We
use the SKM in Appendix E to give an indicative idea of the performance of the proposed Hamiltonians
on a wider range of problem instances, rather than just MAX-CUT.

C Details on the choice of metrics

Once a problem and algorithm have been determined it remains to decide on the metric (or metrics)
by which to assess the performance. A common choice is the ground-state probability, Pgs. This is a
reasonable measure for an exact solver. It fails to capture the performance of an approximate solver (a
solver that finds good enough solutions). A common measure for approximate solvers, such as QAOA,
is the approximation ratio. The approximation ratio is a measure on the final distribution produced
by the approach. Here we define the approximation ratio to be ⟨Hf ⟩/Emin where Emin is the energy of
the ground-state solution and the expectation is with respect to the final state. If the approach finds
the ground-state exactly, then ⟨Hf ⟩/Emin = 1. Random guessing (for all the problem Hamiltonians
considered in Sec. 4 ) has an approximation ratio of 0. This is distinct from other papers that include
terms proportional to the identity in the Hamiltonian. For example, in [19] they use terms proportional
to the identity meaning random guessing achieves a non-zero approximation-ratio. We make this choice
to achieve consistency across different problems. If an algorithm for a specific problem is cited to have
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Figure 11: The approximation ratio for MAX-CUT on random graphs (shown as box-plot in Fig. 5a) as a strip-plot,
showing the raw data. The horizontal width of the distribution is only to try and minimise overplotting.

a approximation ratio with no explicit reference to time, this refers to an optimised approximation
ratio.

In Appendix E, we consider the width of the final energy distribution. Wider distributions may
mean the algorithm is harder to optimise in practice. We use
σ =

√
⟨H2

f ⟩ − ⟨Hf ⟩/|Emin| to measure the width of the distribution.
These are by no means all possible metrics to assess the performance of an algorithm. For example

time to solution is another popular metric choice [8, 80].

D Details on numerical work and presentation

This work makes use of numerical experiments to establish the performance of new approaches. The
results are often presented as a box-plot [81, 82]. The central line shows the median. The top and
bottom line of the central box shows the lower and upper inter-quartile. Outliers are determined if they
are more than 1.5 times more than the inter-quartile range away from the median and denoted by circles.
The two caps at the end of the plot show the maximum and minimum data points, excluding outliers.
Fig. 11 shows Fig. 5a in terms of the raw-data. The box-plot makes no assumption about the underlying
distribution and provides a reasonable representation of the distribution for easy comparison.

As part of the numerics, we need to find the optimum time. For the new methods, this is found by
a brute force grid search, dividing the optimal time into 1000 in the time-interval [0, 2π]. For QAOA
p=1, the grid was 100 by 100 in the interval β ∈ [0, π] and γ ∈ [0, 2π]. By using brute force search we
minimise the effect of the classical optimiser on the quantum algorithm.

E A further numerical study on a Sherrington-Kirkpatrick inspired model

To provide further evidence of the applicability of our approach in this section we repeat the numerical
experiments performed on MAX-CUT on a Sherrington-Kirkpatrick inspired model (SKM). The details
of the model can be found in Appendix B.

Starting with assessing the performance of H1, Fig. 12 shows the performance of H1 on 100 randomly
generated instances of the SKM. The approximation ratio appears to have little dependence on the
problem size for more than 7 qubits, an indicator that the dynamics under H1 is approximately local
for these times. The ground-state probability also appears to decline exponentially (Fig. 12b). The
optimal times can be found in Fig. 12c. It appears that the optimal time tends to a constant value (or
a small range of values), with T < 1.
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(a) Approximation ratio for the SKM. (b) Ground-state probability for the
SKM.

(c) Optimal times for the SKM. The
optimal time was found by dividing the
interval [0, 2π] into 1000 time steps.

Figure 12: Performance of H1 on 100 randomly-generated instances of SKM.

(a) Randomly generated SKM instances. (b) Randomly generated MAX-CUT instances.

Figure 13: Width of the final distribution, σ, for randomly generated instances of MAX-CUT and SKM.

As mentioned in Appendix C, knowing the width of the distribution associated with the approxima-
tion ratio can also be useful. This is shown for SKM as well as the MAX-CUT instances on randomly
generated graphs in Fig. 13. The width, σ is non-zero, suggesting the final state is not a computational
basis state.

In Fig. 14 the performance of H1 is directly compared to QAOA p=1 on 100 instances. For a
handful of problems with the SKM, QAOA p = 1 outperformed H1, but for the vast majority of
problems instances H1 performed better for both approximation ratio and optimal time. In Appendix
J we elaborate further on the exceptions.

Finally, in Fig. 15 we assess the performance of the Quantum-Zermello inspired approach for 100
SKM instances. Again, all the QZ-inspired approaches provide an improvement on the original H1
Hamiltonian, indexed by 0 in the figures. Going to first order achieves a substantial improvement as
with the MAX-CUT instances. The optimal times for the QZ-inspired approach can be found in Fig.
15b for the SKM.

In this section we have demonstrated that the approaches inspired by Hamiltonians for optimal
state-transfer operate qualitatively similar on SKM as they do on MAX-CUT.
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(a) Approximation ratio comparison for the SKM. (b) Optimal time comparison for the SKM.

Figure 14: Comparison of H1 (y-axis on the above plots) with QAOA p = 1 (x-axis on the above plots). The dashed
purple line corresponds to equal performance.

(a) The approximation ratio for the QZ-inspired approach on
100 instances of SKM.

(b) The optimal time for the QZ-inspired approach on 100
instances of the SKM. The norm of each Hamiltonian, for
each problem size has been fixed, according to Eq. 11, en-
suring a fair comparison.

Figure 15: Performance on the QZ-inspired approach on 100 instances of the SKM. The x-axis label refers to the
order of T in the expansion of Eq. 24, with 0 being H1 and e referring to the full exponential (i.e. Eq. 23).
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F Optimal state-transfer for a single qubit
This appendix outlines the explicit details for calculating the Hamiltonian for optimal state-transfer for
a single qubit. To simplify the calculations, we make use of index notation and the Einstein summation
notation convention. For this reason, in this appendix the kth Pauli matrix is denoted by σk, with σ0
being the identity.

The first step is to construct traceless Hamiltonians with a trace-norm of one.

H̃i = Hi − 1/2 Tr (Hi)σ0√
1
2 Tr

[
(Hi − 1/2 Tr (Hi)σ0)2

] , (36)

and
H̃f = Hf − 1/2 Tr (Hf )σ0

1
2

√
Tr
[
(Hf − 1/2 Tr (Hf )σ0)2

] . (37)

The Hamiltonians, H̃i and H̃f , have both the same eigenvectors, and ordering in terms of energy, as
Hi and Hf . Expanding H̃i and H̃f in terms of Pauli matrices gives: H̃i = m̂ · σ⃗ and H̃f = n̂ · σ⃗, where
σ⃗ = (σx, σy, σz) and, m̂ and n̂ are real vectors with Euclidean norm of one.

The eigenvectors of H̃i and H̃f correspond to ±m̂ and ±n̂ in the Bloch sphere representation.
Ignoring the trivial case, when m̂ and n̂ are parallel, the two vectors define a plane. The vector
k̂ = m̂× n̂ is perpendicular to the plane an, k̂ · σ⃗ generates rotations in the m̂, n̂ plane. Note that:

1
2i
[
H̃i, H̃f

]
= 1

2i [miσi, njσj ]

= 1
2iminj [σi, σj ]

= minjϵijkσk

= ϵkijminjσk

= (m̂× n̂) · σ⃗,

where ϵijk is the Levi-Civita tensor [83].
It is clear that

[
H̃i, H̃f

]
/2i generates a rotation in the plane spanned by m̂ and n̂. This result also

follows trivially from Eq. 2 for the single qubit case. The second step is to calculate the angle, θ,
between the respective ground states (which is the same as the angle between the excited states). This
can be deduced from the overlap between H̃i and H̃f :

1
2 Tr

(
H̃iH̃f

)
= 1

2 Tr(minjσiσj)

= 1
2minj Tr(δijI + iϵijkσk)

= mini

= cos(θ).

Relating this angle to a time can be done by using the Anandan-Aharonov relation:

dθ

dt
= 2δE(t), (38)

where δE(t) =
√

⟨ψ(t)|H(t)2 |ψ(t)⟩ − ⟨ψ(t)|H(t) |ψ(t)⟩2. The Hamiltonian being considered is con-
stant in time. Thus δE(t) can be calculated using the initial state (i.e., δE(0) := δE). Hence, we can
deduce the time of evolution as:

T =
arccos

[
Tr
(
H̃iH̃f

)
/2
]

2δE . (39)
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Finally, the Hamiltonians, H0 and H1, can be replaced by the original Hamiltonians. The time-
optimal Hamiltonian for a single-qubit is:

H1 = 1
2i [Hi, Hf ] . (40)

The corresponding time is:

T =
arccos

[
1
2 Tr

(
H̃iH̃f

)]
2δE , (41)

where δE is the uncertainty in energy corresponding to H1, and H̃i, H̃f are as defined earlier in this
appendix.

It remains an open question as to how much of this geometric intuition in three dimensions can be
mapped onto higher dimensional problems. Promisingly, the final operations (commutator, trace) are
well defined outside of three dimensions.

G Mapping the evolution to free fermions for MAX-CUT on two-regular graphs
In this appendix we outline how to utilize the Jordan-Wigner transformation to analyse the performance
of H1 for MAX-CUT on two-regular graphs with n qubits. The end goal is to map H1 =

∑
j YjZj+1 +

ZjYj+1, Hi = −
∑
j Xj , and Hf =

∑
j ZjZj+1 onto fermionic operators. Applying a Fourier Transform

then decouples the Hamiltonians into pseudo-spins that can be easily studied. The notation and
method closely follows the calculation presented in [74].

The first step is to introduce spin-raising and -lowering operators:

S+
j = 1

2 (Yj + iZj) , (42)

S−
j = 1

2 (Yj − iZj) . (43)

In terms of these new operators:

Hi =
∑
j

I − 2S+
j S

−
j , (44)

Hf =
∑
j

S+
j S

−
j+1 + S−

j S
+
j+1 − S+

j S
+
j+1 − S−

j S
−
j+1, (45)

H1 =2i
∑
j

S−
j S

−
j+1 − S+

j S
+
j+1. (46)

The Jordan-Wigner transformation can now be applied to map these spin operators onto fermionic
operators, aj and a†

j , where:

aj = S−
j e

−iϕj , (47)

a†
j = S+

j e
iϕj , (48)

and ϕj = π
∑
j′<j a

†
j′aj′ . The fermionic operators obey the standard anti-commutation relationship for

fermionic operators (i.e., {a†
j , ak} = δj,k). In terms of the fermionic operators the Hamiltonians are:

Hi =
n∑
j=1

I − 2a†
jaj , (49)

Hf =
n−1∑
j=1

a†
jaj+1 − aja

†
j+1 − a†

ja
†
j+1 + ajaj+1 +G

(
−a†

na1 + ana
†
1 + a†

na
†
1 − ana1

)
, (50)
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and

H1 = −2i
n−1∑
j=1

a†
ja

†
j+1 + ajaj+1 + 2iG

(
a†
na

†
1 + ana1

)
, (51)

where G = e
iπ
∑n

j=1 a
†
jaj . For even n, G = 1 (anti-periodic boundary conditions - ABC) and for odd n,

G = −1 (periodic boundary conditions - PBC).
Apply a Fourier Transform with appropriate p, such that eipn = 1 for PBC and eipn = −1 for ABC,

such that,

cp = 1√
n

∑
j

eipjaj . (52)

The Hamiltonians in this new basis are:

Hi =
n−1∑
k=0

I − 2c†
kck (53)

Hf = 2
⌊ n−1

2 ⌋∑
k=0

cos θk
(
c†
kck + c†

−kc−k
)

+ i sin θk
(
ckc−k + c†

kc
†
−k

)
+Hf,0 (54)

and

H1 = 4
⌊ n−1

2 ⌋∑
k=0

sin θk
(
c†
kc

†
−k − ckc−k

)
, (55)

where for odd n:

θk = 2πk
n

Hf,0 = −2c†
0c0

c−k = cn−k,

and for even n:

θk = (2k + 1)π
n

Hf,0 = 0
c−k = cn−1−k.

These Hamiltonians couple the vacuum state, |∅⟩, with doubly-excited states with opposite momen-
tum, e.g., c†

kc
†
−k |∅⟩. Therefore, we can express the Hamiltonians as pseudo-spins,

H∗ =
⌊ n−1

2 ⌋∑
k=0

H∗,k, (56)

with ∗ = i, f, 1 and:

Hi,k = −2Z (57)
Hf,k = 2 cos θkZ − 2 sin θkY (58)
H1,k = 4 sin θkX, (59)

with the exception ofH∗,0 for ∗ = i, f , for odd n, which is half of the above expressions. The observation
that H1,k generates rotations in the plane spanned by the eigenvectors of Hf,k and Hi,k provides further
evidence that H1 is capturing some of Hopt.
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(a) The approximation ratio for H1 on MAX-CUT with two-
regular graphs, compared to the performance of QAOA. The
approximation ratio freezes out at 0.5830 - marginally higher
than the even case (see Fig. 3a). The time also freezes out
at 0.2301 (not shown).

(b) The ground-state probability for different problem sizes
under the evolution of H1. The system is measured at times
that maximises the approximation ratio. Like the even qubit
case (Fig. 3b), the ground-state probability scales exponen-
tially.

Figure 16: The performance of H1 on MAX-CUT with two-regular graphs on an odd number of qubits

The initial state for each pseudo-spin is the ground-state of −Z. Calculating the evolution for each
pseudo-spin gives:

⟨Hf ⟩ =
⌊ n−1

2 ⌋∑
k=0

Fk, (60)

with F0 = 1 for odd n, otherwise:

Fk = 2 cos θk cos (8 sin θkt) − 2 sin θk sin (8 sin θkt). (61)

The ground state probability is given by:

Pgs =
⌊ n−1

2 ⌋∏
k=0

Gk, (62)

again G0 = 1 for odd n, otherwise:

Gk = 1
2 (1 − cos θk cos (8 sin θkt) + sin θk sin (8 sin θkt)) . (63)

This completes the analytical work used to analyse the performance of H1 for MAX-CUT on two-
regular graphs. It remains to find the optimal time to minimise ⟨Hf ⟩ - this was done numerically. Here
we include the plots for an odd number of qubits (Fig. 16a and Fig. 16b).

H Lieb-Robinson inspired bound
In this section we outline how the Lieb-Robinson inspired bound (LRB) from [61] was applied to
analysing the performance of H1 on three-regular graphs.

First, we demonstrate how the bound was derived in [61]. The goal of this approach is to estimate
the expectation value of a local observable OL by simulating part of the system. For this to be a useful
estimate it is necessary to quantify the error in doing do, that is to calculate:

ϵ =
∣∣∣⟨ψi|U †(t)OLU(t) |ψi⟩ − ⟨ψi|U †

L(t)OLUL(t) |ψi⟩
∣∣∣, (64)
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j − 1 j j + 1 j + 2j − 2 j + 3j − 3 j + 4

Figure 17: A cartoon for calculating the LRB on MAX-CUT with two-regular graphs. Each node represents a qubit,
and each edge the interactions between them. To estimate a local expectation-value, say ZjZj+1, the local subgraph
in pink is simulated. Bounding the error requires ∆H, corresponding to all the interactions leaving the subgraph. In
this case this corresponds to all the interactions which connect the blue qubits to the pink ones.

where |ψi⟩ is the initial state of the system, U(t) is the global unitary evolution of the system and
UL(t) the local unitary we wish to simulate. The error is bounded by

ϵ ≤ ∥U †(t)OLU(t) − U †
L(t)OLUL(t)∥, (65)

where ∥ · ∥ is the matrix-norm. Adapting the proof from [61] for the case of evolution under a global
time-independent Hamiltonian H and local time-independent Hamiltonian HL gives:

∥∥∥U †(t)OLU(t) − U †
L(t)OLUL(t)

∥∥∥ =
∥∥∥∥∫ t

0
ds

d

ds

(
U †(s)UL(s)U †

L(t)OLUL(t)U †
L(s)U(s)

)∥∥∥∥
Substitute in the Schrödinger equation for the time derivatives to get:

=
∥∥∥∥∫ t

0
ds U †(s) (H −HL)UL(s)ÕL(t)U †

L(s)U(s) + U †(s)UL(s)ÕL(t)U †
L(s) (HL −H)U(s)

∥∥∥∥ ,
where ÕL(t) = U †

L(t)OLUL(t). Tidying this up with ∆H = H −HL gives:

=
∥∥∥∥∫ t

0
ds U †(s)

[
∆H,UL(s)ÕLU(s)

]
U(s)

∥∥∥∥ (66)

Using the triangle-inequality,

ϵ ≤
∫ t

0
ds
∥∥∥[∆H,UL(s)ÕLU(s)

]∥∥∥
This is essentially the expression (and proof) given in [61]. For Hamiltonians constant in time this

can further be tidied up to:

ϵ ≤
∫ t

0
du
∥∥∥[∆H, eiHluOLe

−iHlu
]∥∥∥ (67)

The right-hand-side term in the commutator is a local operator depending only on the local system
which we wish to simulate, while ∆H only includes terms in H but not HL. Therefore, in the context
of simulating qubits, the only terms in ∆H that do not commute through are the ones that couple
qubits from the local system to qubits outside the system being simulated.

At this point it is useful to examine a simple system. Take MAX-CUT on two-regular graphs with
H1. We wish to estimate ⟨ZjZj+1⟩, so we estimate the value by simulating the evolution under H1 for
the interactions between the pink qubits shown in Fig. 17. Choosing a larger subgraph should make
the computation more accurate but will also result in a more difficult computation. Then using Eq.
67 we can calculate a bound on the error. Here ∆H corresponds to the interactions between the pink
qubits and the blue qubits. Calculating the local estimate with LRB gives Fig. 18. The figure also
shows the result for the MAX-CUT for a two-regular graph with 400 qubits.

The simulation shows that the bound is not very tight and, except at very short times, is not
meaningful. It also demonstrates that H1 behaves in a local fashion, with the full simulation (through
the Jordan-Wigner transformation) closely matching the estimate from the local simulation. The LRB
would be the lowest upper-bound shown in Fig. 18
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Figure 18: LRB applied to MAX-CUT on two-regular graphs. The dashed blue line shows the local estimate of
⟨ZjZj+1⟩ and the shaded violet region the allowed region from the LRB. The red line shows the actual value for 400
qubits. They dynamics of H1 closely resembles the local simulation.

Subgraph 1 Subgraph 2 Subgraph 3

i j

∗

∗

i j

∗

∗ ∗

i j

∗

∗

∗

∗
Local estimate of ZiZj -0.2056 -0.2676 -0.3377

Upper estimate from LRB -0.1333 -0.1652 -0.2007
Cut value 0.5666 0.5826 0.6003

Table 1: Numerical details for the LRB applied to H1 on MAX-CUT with three-regular graphs. Each column
shows, from top to bottom, the local subgraph being simulated; the local estimate of ZiZj to be minimised; the
corresponding worst case from the LRB; and the corresponding cut value for this worst case. All of these values are
taken at the optimised time of 0.093.

Having established the idea behind the LRB, we now apply it to find the performance of H1 on
three-regular graphs. To do this we use

Hf =
∑

(i,j)∈E
ZiZj (68)

for the graph (or subgraph) G = (V,E) being considered. The minimum value of ⟨Hf ⟩ is then mapped
onto the length of the cut for easier comparison with QAOA and QA.

The performance of H1 was determined by looking at the three local sub-graphs that can be found
in [19, 61]. The error was calculated, taking the worst-case scenario, where each sub-graph has the
maximum number of interactions exiting the sub-graph. Using the relative ratios of the sub-graphs
[19], a worst case performance can be calculated. The numerical details can be found in Tab. 1.

Similarly to QAOA and QA [61], the LRB approach suggests that H1 struggles the most with
triangle-free graphs. The LRB, with local estimate, for the triangle-free subgraph can be seen in Fig.
19.

The LRB is taken at a time of 0.093, while the minimum for the local estimate occurs at around 0.2.
Hence the LRB is sampling far from what is optimal for the local graph. Since we know the bound
is not very tight, it is reasonable to assume that the worst-case performance of H1 is actually better
than the LRB and occurs at a later time (around 0.2).
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Figure 19: The Lieb-Robinson inspired bound for subgraph 3 in Table 1. This subgraph dominates the worst-case
bound. The LRB has a minimum at around a time of 0.1 while the locally estimated value has a minimum at around
a time of 0.2.

(a) Approximation ratio (b) Optimal time comparison for MAX-CUT

Figure 20: Comparison of H1 (y-axis on the above plots) with QAOA p = 1 (x-axis on the above plots) for three-
regular graphs. The dashed purple line shows QAOA and H1 performing the same.

I Direct comparison of QAOA p=1 with three-regular graph
In Sec. 5.2.3 we comparedH1 to the lower bound of QAOA p=1. In Fig. 20 we make a direct comparison
for the problem instances. For all instances H1 provides a better approximation ratio and in the vast
majority of instances in a shorter optimal time. Details on the outliers can be found in Appendix J.
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Graph 1 Graph 2 Graph 3 Graph 4

Table 2: The exceptions for the three-regular graphs.

(a) Approximation ratio (b) Optimal time.

Figure 21: The performance of H1 compared to QAOA p=1 on MAX-CUT with three-regular graphs. The instances
with atypical run-times for H1 are highlighted in pink. The rest of the data has been faded for clarity and to show
how the remaining data is clustered, with darker regions corresponding to more data points. The dashed purple line
shows both approaches performing the same.

J Instances for which QAOA p=1 outperforms H1

The aim of this section is to explore the instances where QAOA p=1 has a shorter run-time than H1
and/or provides a better approximation ratio, as shown in Fig. 5. The first thing to note is that these
tend to be the exception, rather than the rule.

Looking first at the MAX-CUT instances for three-regular graphs, H1 always provided a better
approximation ratio than QAOA p=1, typically in a much shorter time. There are four instances (two
with the same approximation ratio) where QAOA has a similar or shorter run-time as highlighted in
Fig. 21. The corresponding graphs are shown in Tab. 2. The first thing to note is that these problems
are small, the largest being 8 qubits, despite problem sizes up to 12 qubits being considered. Graph 1
is a complete graph with four nodes and Graph 4 is two copies of this graph. Both Graph 2 and 3 (a
cube) consist of a large number of small loops. Due to the relatively high degree of connectivity in these
problems, it is likely H1 is no longer operating in the local regime as with the rest of the three-regular
problems. In Fig. 22 we investigate operating H1 suboptimally, optimising only over run-times shorter
than QAOA p=1 for these four problems. The result is a negligible decrease in performance. Hence,
even for these instances for which H1 has atypical optimal times, it is possible for H1 to provide a
better approximation ratio in a shorter time than QAOA p=1.

As with the three-regular graphs, H1 always gave a better approximation ratio than QAOA p=1
on MAX-CUT with the randomly generated graphs (highlighted in Fig. 23). Similarly, we can look
at the instances with atypical optimal times for H1. The story is similar to before, with only 116 out
of 900 instances having run-times longer than QAOA. None of these problem instances consisted of
more than 7 qubits (despite simulations going up to 12 qubits). Again we conclude that these atypical
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(a) Approximation ratio (b) Optimal time.

Figure 22: The performance of H1 compared to QAOA p=1 on MAX-CUT with three-regular graphs. The highlighted
pink dots show the instances with atypical H1 run-times, optimised to give the best possible approximation ratio with
shorter run-times than QAOA p=1. The new run-times are shown in the lower plot, with the updated approximation
ratio plotted in the upper plot. The dashed purple line shows both approaches performing the same.

optimal times are likely a small problem-setting phenomenon. We can also look for run-times of H1
that provide a better approximation ratio in a shorter time than QAOA p=1 for these problems. The
results are shown in Fig. 24 which shows the performance and new run-times of H1 compared to QAOA
p=1. For all problem instances it is possible to operate H1 with a shorter run-time than QAOA p=1
and provide a better approximation ratio. Unlike the previous discussion with three-regular graphs,
the change in approximation ratio with these new run-times is not negligible for some of the problem
instances.

Finally, we turn to the SKM instances where QAOA p=1 was able to provide a better approximation
ratio than H1 for 7 problem instances (out of 900). Five of these instances are 4-qubit problems, the
remaining two are 5-qubit problems. In Fig. 25 we have plotted the SKM data, including only those
instances with problem sizes between 6 and 12 qubits. As we can see by ignoring small problem
sizes from the data set, the behaviour is more predictable, with both the approximation ratio and the
optimal time more clustered, largely independent of problem size.

In summary, we have demonstrated numerically that QAOA p=1 might have some advantages over
H1 on small, highly connected problems. In general these problems are unlikely to be of any practical
interest. Indeed for the MAX-CUT instances it was possible to operate H1 suboptimally so that it still
outperformed QAOA p=1 with a shorter run-time.
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(a) Approximation ratio (b) Optimal time.

Figure 23: The performance of H1 compared to QAOA p=1 on MAX-CUT with randomly generated graphs. The
instances with atypical run-times for H1 are highlighted in blue. The rest of the data has been faded for clarity and
to show how the remaining data is clustered, with darker regions corresponding to more data points. The dashed
purple line shows both approaches performing the same.

(a) Approximation ratio (b) Optimal time.

Figure 24: The performance of H1 compared to QAOA p=1 on MAX-CUT with randomly generated graphs. The
instances with atypical run-times for H1 are highlighted in blue, these have been optimised to give the best possible
approximation ratio with a corresponding run-time smaller than the QAOA p=1 optimal time. The new run-times
are shown in the lower plot, with the updated approximation ratio plotted in the upper plot. The rest of the data
has been faded for clarity. The dashed purple line shows both approaches performing the same.
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(a) Approximation ratio (b) Optimal time.

Figure 25: The performance of H1 compared to QAOA p=1 on the SKM. Here we neglect smaller problem instances,
plotting problem sizes between 6 and 12 qubits.

K Details for using knowledge of the initial state
In this appendix we provide the details for Hψi

= −i [|ψi⟩ ⟨ψi| , f(Hf )]. First rewriting Hψi
in terms

of the eigenstates of Hf , |Ek⟩s with associated eigenenergies Ek:

Hψi
= −i [|ψi⟩ ⟨ψi| , f(Hf )]

= −i
[
|ψi⟩ ⟨ψi| ,

∑
k

f(Ek) |Ek⟩ ⟨Ek|
]

= −i
(

|ψi⟩
∑
k

f(Ek) ⟨ψi|Ek⟩ ⟨Ek| −
∑
k

f(Ek) ⟨Ek|ψi⟩ |Ek⟩ ⟨ψi|
)
.

Let
|ω⟩ =

∑
k f(Ek) ⟨Ek|ψi⟩ |Ek⟩√∑
k f

2(Ek)|⟨Ek|ψi⟩|2
. (69)

Apply the Gram-Schmidt procedure to generate an orthonormal basis {|ψi⟩ ,
∣∣∣ω⊥

〉
}, spanning the

same space as {|ψi⟩ , |ω⟩}. ∣∣∣ω⊥
〉

∝ |ω⟩ − ⟨ψi|ω⟩ |ψi⟩

Rearranging for |ω⟩ gives:

|ω⟩ =
√

1 − |⟨ψi|ω⟩|2
∣∣∣ω⊥

〉
+ ⟨ψi|ω⟩ |ψi⟩ , (70)

substituting this into Hψi
gives:

Hψi
= −iβ

{
|ψi⟩

(〈
ω⊥
∣∣∣+ ⟨ω|ψi⟩ ⟨ψi|

)
−
(∣∣∣ω⊥

〉
+ ⟨ψi|ω⟩ |ψi⟩

)
⟨ψi|

}
, (71)

where

β =

√√√√(1 − |⟨ψi|ω⟩|2
)(∑

k

f2(Ek)|⟨Ek|ψi⟩|2
)
. (72)

Using the freedom in the global-phase of the wave-function, choose ⟨ω|ψi⟩ to be real, giving:

Hψi
= −iβ

(
|ψi⟩

〈
ω⊥
∣∣∣− ∣∣∣ω⊥

〉
⟨ψi|

)
. (73)
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From Eq. 73 it is clear that Hψi
evolves |ψi⟩ to linear superpositions of |ψi⟩ and

∣∣∣ω⊥
〉
. Again by using

the Anandan-Aharonov relation, we can determine the time to generate |ω⟩ and
∣∣∣ω⊥

〉
. Calculating

δE:

⟨Hψi
⟩ = −iβ ⟨ψi|

(
|ψi⟩

〈
ω⊥
∣∣∣− ∣∣∣ω⊥

〉
⟨ψi|

)
|ψi⟩

= 0
⟨H2

ψi
⟩ = β2 ⟨ψi|G2 |ψi⟩

= β2

δE =
√

⟨H2
lp⟩ − ⟨Hlp⟩2

= β.

The distance between |ψi⟩ and
∣∣∣ω⊥

〉
is

θω⊥ = 2 arccos
〈
ψi
∣∣∣ω⊥

〉
= π.

The distance between |ψi⟩ and
∣∣∣ω⊥

〉
is

θω = 2 arccos |⟨ω|ψi⟩|.

The time then to evolve |ψi⟩ to
∣∣∣ω⊥

〉
is tω⊥ = π/2β and the time to evolve to |ω⟩ is tω =

arccos |⟨ω|ψi⟩|/β.
We can explicitly verify this by exponentiating Hψi

. Focusing on G = −i
(
|ψi⟩

〈
ω⊥
∣∣∣− ∣∣∣ω⊥

〉
⟨ψi|

)
,

then

G2 = −
(
|ψi⟩

〈
ω⊥
∣∣∣− ∣∣∣ω⊥

〉
⟨ψi|

) (
|ψi⟩

〈
ω⊥
∣∣∣− ∣∣∣ω⊥

〉
⟨ψi|

)
=
(
|ψi⟩ ⟨ψi| +

∣∣∣ω⊥
〉〈
ω⊥
∣∣∣) .

This is a projector. Calculating G3 gives:

G3 = −i
(
|ψi⟩ ⟨ψi| +

∣∣∣ω⊥
〉〈
ω⊥
∣∣∣) (|ψi⟩

〈
ω⊥
∣∣∣− ∣∣∣ω⊥

〉
⟨ψi|

)
= −i

(
|ψi⟩

〈
ω⊥
∣∣∣− ∣∣∣ω⊥

〉
⟨ψi|

)
= G.

Let H be a Hamiltonian, where H2 = P , P being a projector. Then substituting H into the
power-series for the exponential gives:

e−iHt =
∞∑
k=0

(−iHt)k

k!

=
∞∑

even k

(−iHt)k

k! +
∞∑

odd k

(−iHt)k

k!

=
∞∑
k=0

(−iHt)2k

(2k)! +
∞∑
k=0

(−iHt)2k+1

(2k + 1)!

= I +
∞∑
k=1

(−1)k t2k

(2k)! P − i
∞∑
k=0

(−1)k t2k+1

(2k + 1)! PH

= I + (cos(t) − 1)P − i sin(t)PH
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Therefore,
e−iHlpt = I + (cos(βt) − 1)G2 − i sin (βt)G (74)

and |ψ(t)⟩ = e−iHlpt |ψi⟩,
|ψ(t)⟩ = cos(βt) |ψi⟩ + sin (βt)

∣∣∣ω⊥
〉
. (75)

Checking the times from the Anandan-Aharonov relationship gives:

|ψ(π/2β)⟩ = cos(π/2) |ψi⟩ + sin (π/2)
∣∣∣ω⊥

〉
=
∣∣∣ω⊥

〉
and

|ψ(arccos |⟨ψi|ω⟩|/β)⟩

= |⟨ψi|ω⟩| |ψi⟩ +
√

1 − |⟨ψi|ω⟩|2
∣∣∣ω⊥

〉
= |ω⟩ .

Up to now we have kept the conversation in this section fairly general. Now we apply Hlp to the QA-
framework with |ψi⟩ = |+⟩ and |Ek⟩s corresponding to computational basis states, so ⟨+|Ek⟩ = 1/

√
2n.

Simplifying |ω⟩ gives:

|ω⟩ = 1√∑
k f

2(Ek)|⟨Ek|+⟩|2
∑
k

f(Ek) ⟨Ek|+⟩ |Ek⟩

= 1√∑
k f

2(Ek)
∑
k

f(Ek) |Ek⟩

= 1√
Tr{f2(Hf )}

∑
k

f(Ek) |Ek⟩

and the overlap with the initial state is:

⟨+|ω⟩ =
√

2n√∑
k f

2(Ek)
∑
k

1√
2n
f(Ek) ⟨+|Ek⟩

= 1√∑
k f

2(Ek)
∑
k

1√
2n
f(Ek)

= 1√
2n

Tr{f(Hf )}√
Tr{f2(Hf )}

.

To summarise, the Hamiltonian Hlp = −i[|+⟩ ⟨+| , f(Hf )] evolves |+⟩ to

|ω⟩ = 1√
Tr f2(Hf )

∑
k

f(Ek) |Ek⟩ , (76)

in a time

T =
√

2n arccos |⟨+|ω⟩|√
Tr{f2(Hf )}

(
1 − |⟨+|ω⟩|2

) , (77)

where
⟨+|ω⟩ = 1√

2n
Tr{f(Hf )}√
Tr{f2(Hf )}

. (78)
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