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Abstract: Accurate instantaneous electricity peak load prediction is crucial for efficient capacity
planning and cost-effective electricity network establishment. This paper aims to enhance the accuracy
of instantaneous peak load forecasting by employing models incorporating various optimization and
machine learning (ML) methods. This study examines the impact of independent inputs on peak load
estimation through various combinations and subsets using multilinear regression (MLR) equations.
This research utilizes input data from 1980 to 2020, including import and export data, population, and
gross domestic product (GDP), to forecast the instantaneous electricity peak load as the output value.
The effectiveness of these techniques is evaluated based on error metrics, including mean absolute
error (MAE), mean square error (MSE), mean absolute percentage error (MAPE), root mean square
error (RMSE), and R2. The comparison extends to popular optimization methods, such as particle
swarm optimization (PSO), and the newest method in the field, including dandelion optimizer (DO)
and gold rush optimizer (GRO). This comparison is made against conventional machine learning
methods, such as support vector regression (SVR) and artificial neural network (ANN), in terms of
their prediction accuracy. The findings indicate that the ANN and GRO approaches produce the least
statistical errors. Furthermore, the correlation matrix indicates a robust positive linear correlation
between GDP and instantaneous peak load. The proposed model demonstrates strong predictive
capabilities for estimating peak load, with ANN and GRO performing exceptionally well compared
to other methods.

Keywords: artificial neural network; dandelion optimizer; gold rush optimizer; peak load; forecast;
support vector regression; particle swarm optimization

1. Introduction

Estimating energy needs involves addressing various prediction challenges within
the utility sector. These challenges include forecasting demand, generation, prices, and
power load across different timeframes and capacities [1]. Electricity plays a pivotal role as
the primary energy source for powering industries and enabling modern life. Electricity
demand is closely intertwined with economic and population growth. Ensuring the stability
of electricity supply requires accurate planning of electricity generation capacity, which, in
turn, necessitates reliable electricity load forecasting.

Electricity load forecasting aims to achieve a harmonious balance between production
and consumption, utilizing the potential of forecasting models [2,3]. Precise electricity
load forecasting can mitigate the risk of power outages and reduce the expenses associated
with surplus electricity generation capacity. This is particularly relevant for short-term (ST)
load forecasting, which involves higher uncertainty levels than long-term (LT) aggregated
planning. In essence, ST load forecasting aims to predict electricity demand within hourly
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to weekly intervals. Its primary objectives are to ensure power security, facilitate the
efficient scheduling of power plant operations, and enable effective load dispatching [4,5].

Electricity load forecasting provides valuable insights for maintaining the security
and stability of the electricity system, achieving a balance between electricity generation
and consumption, and informing decision making in the electricity sector. These efforts
aim to minimize economic losses at a national level and safeguard the environment [6].
Power companies primarily aim to deliver their customers an adequate and dependable
power supply. As a result, the operation and planning of power systems heavily depend
on load forecasting [7]. To facilitate informed decision making and planning, various
forecasting models have been developed to predict peak load, energy consumption, and
production. These models take into account economic, demographic, geographical, and
social factors [8].

Excessive activations of power supply units, resulting in increased energy consump-
tion and surplus reserves, occur when the load estimates exceed electricity demands. Con-
versely, lower load projections can push the system into a precarious situation, leading to
insufficient supply [9]. Nonetheless, load and demand forecasts serve as the foundation for
various decisions in the energy market, enabling the efficient, transparent, and dependable
planning and administration of electricity markets to meet the sector’s requirements [10].

Machine learning (ML) has gained popularity for automatically identifying valuable
patterns in large datasets. ML is a widely used technique for classification and regression
tasks and is known for its excellent performance. Supervised machine learning (SML)
algorithms are the preferred choice for forecasting studies as they involve generating
general hypotheses based on externally provided instances to predict future ones [11].
Various SML techniques have been proposed in the literature, with support vector machines
(SVM), artificial neural network (ANN), and naïve Bayes classifier (NBC) being among
the most popular [12,13]. Deep learning (DL), also known as ANN, is a subset of ML that
enables computers to learn through a hierarchical set of concepts across multiple layers.
Each concept is defined in terms of simpler ones, and this hierarchy of concepts facilitates
the learning of complex scenarios. ANNs come in various types, categorized based on their
network structure and operating algorithms, such as long–short-term memory (LSTM) and
multilayer perceptron (MLP) [14]. A study by [15] found that support vector regression
(SVR) outperformed binary nonlinear fitting regression in estimating various types of
electricity consumption.

Research by [16] employed a hybrid data mining algorithm, the PSO-SVR method, to
forecast LT electricity load and demand. Ref. [17] developed a hybrid framework for ST
electricity load forecasting. Their model uses linear regression and XGBoost to decompose
raw load data into fluctuation sub-series and trend series. The model’s performance was
assessed using smart meter data from China and Ireland.

For a significant period, improving the precision of forecasting electrical energy load—both
peak load and electricity consumption—has been a significant area of research. Over the
years, researchers have developed various prediction techniques [18], categorized into two
broad categories: time series models based on econometrics and ML (or deep) models based
on AI algorithms [19,20]. Both model types perform well in predicting peak load when
electricity market conditions exhibit a consistent trend [21]. However, when the market
undergoes rapid nonlinear changes, time series models are unable to provide accurate
forecasts because they rely on linear formulations based on previous time steps. In such
cases, ML models that can handle nonlinear data outperform time series models [22].

Peak load forecasting has been a topic of substantial interest in both ML and time series
models. Moreover, ML models have been applied to forecast factors such as power genera-
tion and electricity prices, which are closely linked to peak load and demand [23,24]. Classi-
cal methods employ various statistical modelling techniques, including exponential smooth-
ing, Kalman filters, time series analysis, the Box–Jenkins model, and regression. These
options offer diverse choices for model creation, such as SVR [25], grey models [26–28],
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autoregressive integrated moving average (ARIMA) methods [29,30], ANNs [31–33], and
hybrid models [34–36].

Both [37] and [38] examined the use of the adaptive neuro-fuzzy inference systems
(ANFIS) method for ST load forecasting. Similarly, [39] applied the ANFIS method to
predict LT peak loads in Gulf Cooperation Council countries. These studies concluded
that the ANFIS method outperformed other models in accuracy. Extensive research has
focused on utilizing ML models for forecasting, resulting in hybrid models integrating
statistical and traditional models with contemporary ML models [40]. Ref. [41] proposes an
ST electric load forecasting model utilizing the back propagation neural network (BPNN)
algorithm, employing the particle swarm optimization (PSO) and genetic algorithm (GA)
to optimize the BPNN parameters.

Due to their performance, ANNs have gained increasing popularity in the field of
energy and peak load estimation. They particularly excel when handling large datasets, as
they require substantial data for effective model training [42]. A review by [43] focused
on using ANN algorithms to predict hourly energy consumption. The study found that
the ANN algorithm consistently delivers excellent results for single- and multistep-ahead
forecasting. It concluded that data-driven methods like ANN are well suited for energy load
prediction. In another study, the performance of ANN and SVM was compared to forecast
the hourly electricity load in office buildings. The dataset included information from
507 buildings, with input features such as meteorological data (wind speed, atmospheric
pressure, dew point, outdoor temperature) and building data (floor type and area). The
findings indicated that ANN outperformed SVM, as evidenced by a lower root-mean-square
error (RMSE) value of 5.71 compared to 7.35, respectively [44].

Recently, researchers have recognized the effectiveness of combining various methods,
leading to the development of hybrid models to improve prediction accuracy. These hybrid
models integrate techniques such as traditional forecasting models (e.g., linear regres-
sion and grey models), seasonal adjustment/quarterly average methods, and intelligent
optimization algorithms like PSO [45], sine cosine algorithm (SCA) [46], and whale opti-
mization algorithm (WOA) [9,47], among others. As a result, numerous hybrid forecasting
models have emerged and are used in applications in various domains, including electricity
load and price prediction [48–51] and wind energy prediction [32,52,53].

DO and GRO metaheuristic algorithms show significant performance in solving engi-
neering problems. Metaheuristic optimization methods can be used to forecast problems
such as energy and electricity peak load forecasting. Often, metaheuristics are used to
search for variables in optimization problems, but these methods can also be effective in de-
veloping predictive models and obtaining meaningful predictions from complex, dynamic
data sets. In energy and electricity peak load prediction, metaheuristics can often be used
to optimise model parameters or find the most suitable model structures. For example,
to ensure the best performance of a model used for energy consumption prediction, the
parameters of these models (e.g., weights and hyperparameters) can be optimized using
metaheuristic methods. Investigating different model structures or feature combinations
can also be an application area of metaheuristic optimization.

Despite all these positive features, ML and optimization are still faced with challenges
when applied to real-world problems. The practical use of ML has faced specific challenges,
particularly in engineering or physics-related scenarios [54]. Initially, the training of these
methods often necessitates high-quality training data to ensure optimal performance.
Nevertheless, obtaining such training data proves to be costly, or data are scarce across
various scenarios. Furthermore, ML models can probably generate results that might be
physically implausible without attentive design and domain-specific expertise. Lastly, it
remains impractical to establish a theoretical assurance regarding the generalizability of
ML, meaning that ML cannot ensure consistent performance beyond the data it was trained
on [55].

This study compares the performances of traditional methods such as ANN, MLR,
PSO, and SVR, which are used in the literature for peak load prediction, and current
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optimization methods such as GRO and DO. The fact that GRO and DO optimization
algorithms have not been used for peak load prediction before and that they are more
efficient than other algorithms in the literature has resulted in effective choices for these
two new algorithms [56,57].

The contributions of this study can be summarized in the following points:

• Recommends the current and effective optimization algorithm models for estimat-
ing instantaneous electricity peak load. Notably, it emphasizes the utilization and
advantages of the recently developed DO and GRO in this context, showcasing their
efficiency and suitability.

• Through an evaluation process using error metrics applied to inter-monthly data,
this study rigorously assesses and analyses the accuracy of forecasting methods for
predicting instantaneous peak load, offering comprehensive insights into the precision
of the forecasting model.

• Provides predicted instantaneous peak load results as dependable and informative
references for optimizing future energy resource planning and allocation strategies,
facilitating informed decision making.

• Utilizing the framework of multiple linear regression (MLR), this study systematically
investigates and analyses the impact of diverse combinations and subsets of indepen-
dent inputs on the forecast output, particularly for estimating instantaneous peak load
and elucidating critical dependencies and relationships.

• Involves a technical analysis aimed at determining the optimal parameters of the
method, utilizing output–input correlation matrices. This reveals the extent to which
the input (independent) data influence the output (dependent) data and provides
deeper insights into the modelling process.

• The accurate prediction of instantaneous peak load, as accomplished in this study,
significantly contributes to operational efficiency by effectively steering the prevention
of unnecessary reserves and ensuring the optimized functioning of the energy system,
thereby providing effective resource utilization.

The rest of the paper is organised as follows: Section 2 presents the materials and
methods, including the MLR, ANN, SVR, PSO, DO, and GRO algorithms, and error metrics.
Section 3 details the proposed techniques. In Section 4, we analyse and compare the
experimental results of these algorithms. Finally, Section 5 provides the conclusions and
outlines future work.

2. Materials and Methods

This research utilized various forecasting techniques, including the MLR, ANN, SVR,
PSO, DO, and GRO, to assess the accuracy of estimating instantaneous peak load. The
performance of these diverse ML methods underwent evaluation using input variables.
Following the analysis, ANN and GRO emerged as the preferred choices due to their
enhanced predictive precision.

Furthermore, the comparison extended to both established (PSO) and emerging (DO
and GRO) optimization methods within the field, contrasting their prediction accuracy
against conventional ML techniques. Based on the results of the statistical analysis, we
identified the forecasting method that demonstrated the most favourable performance in
predicting the output. Various error metrics (MAE, MAPE, RMSE, MSE, and R2) were
utilized to evaluate and compare how effectively the methods estimated outcomes. The
correlation matrix illustrates the interrelationships among independent variables (import,
export, population, and GDP) and the dependent variable (instantaneous peak load). This
matrix highlights the extent to which each variable influences peak load. Furthermore, the
input parameters (import, export, GDP, and population) are further split into subsets within
different regression equations. These equations unveil the influence of each parameter on
R2 and p-value performance, providing insight into how much they affect the output.
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2.1. Multiple Linear Regression Modelling

The MLR model is a methodology that establishes the causal relationship between
independent and dependent variables through a mathematical framework. The MLR model
accurately defines the connections among these variables, precisely characterising their
associations [3].

In peak load forecasting, multiple regression analyses find widespread use. In this con-
text, the dependent variable “y” is considered a function of several independent variables
(x1, x2, . . ., xk) [58]. This mathematical relationship can be represented as follows:

y = a0 + a1x1 + a2x2 + . . . + anxn (1)

Equation (1) represents the peak load demand as variable y, where the regression
coefficients a0, a1, and a2 are currently unknown. This equation includes the exogenous
variables x1 and x2. Utilizing the multiple regression approach allows for determining a0,
a1, and a2 by minimizing the sum of squared projected errors. Moreover, these coefficients
elucidate the distinct effects of each independent variable on the dependent variable.
Equation (2) can be restated as follows:

y = a + bx1 + cx2 (2)

Equation (2) employs the parameters a, b, and c in the regression analysis of the mean
value of y concerning x1 and x2, with c representing an exogenous factor. These equations
can be conveniently expressed using matrix notation [3].

y = xβ + ε (3)

where terms y, x, β, and ε are defined through Equations (4)–(7).

y =


y1
y2
...

yn

 (4)

x =


1 x11 x21 · · · xk1
1 x12 x22 . . . xk2
...

...
...

. . .
...

1 x1n x2n · · · xkn

 (5)

β =


β0
β1
β2
...

βk

 (6)

ε =


ε1
ε2
...

εk

 (7)

where y is the scalar response, β0 to βk are scalar regression coefficients, and the vector
component denoted by x represents each independent parameter. The subscript k is utilized
to indicate the number of independent variables, while the subscript n denotes the number
of historical observations, and ε1 to εk are the scalar noise terms (biases) of the model. The
MLR technique is applied to determine unknown coefficients of β0 to βk.
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In this specific investigation, the technique of least squares fitting has been employed
to predict the regression coefficients in the MLR model. The process of creating a fit using
a linear model involves minimizing the sum of the squares of the residuals. Graphically
representing the residuals offers a deep insight into the appropriateness of the fit. Fur-
thermore, the goodness of fit can be assessed using the coefficient of determination (R²)
and the adjusted coefficient of determination (R2), both of which indicate the degree of
correspondence between the obtained values and the model’s dependent variable.

When the least squares method (utilizing metrics like R-squared, F-test, and RMSE)
is translated into defined matrix notations to achieve zero error, it can be transformed as
shown below: 

n
n
∑

i=1
x1i

n
∑

i=1
x2i

n
∑

i=1
x1i

n
∑

i=1
x2

1i

n
∑

i=1
x1ix2i

n
∑

i=1
x2i

n
∑

i=1
x1ix2i

n
∑

i=1
x2

2i


a

b
c

 =



n
∑

i=1
yi

n
∑

i=1
x1iyi

n
∑

i=1
x2iyi

 (8)

Certainly, here is the revised paragraph:
By solving Equation (8), the parameters a, b, and c are computed. In this context,

y represents the electricity demand, x1i and x2i denote historical independent variables,
and Xni (where “n” depends on the number of independent variables) refers to additional
variables. Furthermore, “n” stands for the number of years being forecasted.

The peak load forecast results can be obtained by substituting the regression parame-
ters into Equation (2).

2.2. Artificial Neural Networks

Artificial intelligence focuses on researching and developing techniques that enable
machines to exhibit cognitive abilities comparable to those of humans. These abilities in-
clude reasoning, judgment, emotional experiences, language comprehension, and problem
solving. One prominent technique in AI is the use of ANNs, designed to replicate the
architecture of the human brain. However, unlike the approximately 15 billion neurons in
the human brain, the number used in an ANN is determined by the specific demands of
the task at hand [9].

An ANN consists of three fundamental layers: the input, hidden, and output. Every
individual neuron establishes a connection with a subsequent neuron in the following layer
through weight multiplication. Therefore, weights play a pivotal role in influencing the
level of interconnectedness among inputs. In contrast, the summation function constitutes
the phase where the product of each input data point (multiplied by its respective weight)
is aggregated alongside a threshold data point. The neuron’s output is calculated using
Equations (9) and (10), presented in mathematical notation.

aj =
n

∑
i=0

WjiXi (9)

yi = f (ai) (10)

In this context, “i“ defines the input parameter data, “Xi” previous layer values, “j”
denotes the number of neurons, “a” signifies the weighted inputs sum, “f ” represents the
transfer function, “w” stands for weight, and “y” corresponds to the output (dependent)
data. Equation (11) defines the sigmoid transfer function as shown below:

f
(
aj
)
= yj =

1
1 + e−aj

(11)

This paper employs a feedforward multilayer perceptron neural network to forecast
instantaneous peak load. The ANN architecture consists of a hidden layer with ten neurons,
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an input layer with five neurons, and an output layer with one neuron. Input variables,
including import, export, population, and GDP, were utilized to predict peak load, which
is the ANN model’s output [59].

2.3. Support Vector Regression

A comprehensive study has been conducted to utilize SVM to solve regression prob-
lems. In regression problems, when training examples are given in the form of {(xi, yi)}N

i=1,
the response variable is defined as yi ∈ R instead of yi ∈ {+1,−1}. Let us consider that
the conditions stated in Equation (12) are satisfied by the dataset [60].

(x1, y1), (x2, y2), . . . ., (xi, yi), x ∈ Rd, y ∈ R
f (x) = w × xi + b

(12)

In Equation (12), xi represents the input vector in the space of dimension d; w stands
for the output vectors, the normal of the hyperplane, which is also the weight vector; and
the bias is represented by b.

SVR is divided into linear and nonlinear support vectors. As depicted in Figure 1, in a
linear SVR, the assumption is made that the relationship between X and Y is linear. The
initial determination of the maximum value of the training error indicates that the error
term is represented accurately for data equal to or less than ε [61].
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2.4. Particle Swarm Optimization

PSO, an intelligent stochastic algorithm based on swarm intelligence, effectively
addresses optimization challenges across various domains [62–64]. In this approach, a
swarm, consisting of individual particles representing potential solutions, continuously
adjusts its positions within a multidirectional search space until the optimal outcome
is achieved, all while considering computational constraints. The speed at which the
solution is approached varies randomly, often resulting in individuals within the group
finding themselves in improved positions with each new movement. This iterative process
concludes upon achieving the defined objective [65,66].

The fundamental factors of utmost significance within the PSO algorithm involve
characterizing velocity and position for individual particles. The subsequent renewal
regulations, combining stochastic and deterministic components, elucidate the process of
updating a particle’s speed and position. The particle’s upcoming position is calculated
by employing Equations (13) and (14) to determine the new velocity and position vector.
These equations are derived from data pertaining to the particle’s previous positions. The
collective velocities of the particles are demonstrated through the velocity vector outlined
in Equation (13) [67].

→
Vt+1

i = w
→
Vt

i + c1r1(
→
Pt

i −
→
Xt

i ) + c2r2(
→
Gt−

→
Xt

i ) (13)

The velocity vector comprises three elements. The first is the inertia coefficient (w),
which is necessary to maintain the current velocity and preserve the ongoing direction
of motion. The second element corresponds to the cognitive component, often referred
to as individual factors in scholarly works. This represents the disparity between each
particle’s position and its own best value (PBEST). Lastly, there is the social component.
This component delineates each particle separation from the best value (GBEST) achieved
by the rest of the swarm collective. The formula incorporates coefficients denoted as r1
and r2, introducing stochastic elements into the algorithm, with values ranging from zero
to one. Concurrently, the coefficients c1 and c2 play a role in assigning significance to the

stochastic factors’ acceleration.
→
Pt

i demonstrates the personal best solution. Initial lower
limit and upper limit data are randomly assigned in the initial phase. The particle count
is set at 50, with both C1 and C2 taking on a value of 2 each. The maximum iteration
(MaxIter) is defined as 100, and the inertia values Wmax and Wmin are established as 0.9 and
0.2, respectively [3]. Each individual particle position is:

→
Xt+1

i =
→
Xt

i +
→

Vt+1
i (14)

indicated through the employment of the position vector illustrated in Equation (14).

To define each particle’s next position’ (
→

Xt+1
i ), the velocity value (

→
Vt+1

i ) in the next

iteration is added to its current position (
→
Xt

i ). In every iteration, there is a continuous update
of position, velocity, PBEST, and GBEST values. The index i in the equations signifies the
particle number, while the superscript t indicates the iteration count [68]. This study
developed a more accurate prediction model by optimizing linear regression parameters
with PSO.

2.5. Dandelion Optimizer Algorithm

Heuristics methods are behaviours from natural processes. DO is a next-generation
nature-inspired optimization algorithm that uses swarm intelligence to tackle continuous
optimization problems. DO was developed with inspiration from the wind-blown be-
haviour of the dandelion plant. Seeds travel in three stages: ascending, descending, and
settling in a random location during the landing stage. As shown in Figure 3a, the pieces
that break off from the plant start to fly, spin, and fly away, as shown in Figure 3b. This
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algorithm has undergone validation and testing using the CEC2017 international standard
benchmark functions [56].
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The outlined DO algorithm mathematical procedures can be summarized as shown
below:

2.5.1. Initial Population

The random starting points population is defined.

population =

 D1
1 . . . DDim

1
...

. . .
...

D1
pop . . . DDim

pop

 (15)

In this context, pop signifies the population magnitude, and Dim represents the
dimensionality of the variable. Every potential solution is generated randomly, falling
within the range defined by the upper bound (UB) and the lower bound (LB) of the specific
problem. The individual i, denoted as Di, is articulated as follows. The term “rand”
corresponds to a function that produces values distributed randomly within the interval
[0, 1] [69].

Di = rand × (UB − LB) + LB (16)

2.5.2. Calculation of Fitness Values

Fitness function evaluations are performed for each individual within the problem
under optimization. The individual that exhibits the highest fitness value is regarded as
the elite candidate. fbest is the most suitable position for the dandelion seed to flourish. The
initial elite candidate (Delite) solution can be represented mathematically as follows [69,70]:

Delite = D( f ind( fbest = f (Di))) (17)

2.5.3. Ascension Stage

Individuals’ updated positions are established based on their fitness function values,
leading to upward movement. Analogously, chamomile seeds ascend to varying altitudes
due to factors like wind speed and air humidity. In this context, weather conditions are
categorized into the subsequent two states.
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Case 1: Under clear atmospheric conditions, wind velocities can be approximated
using a lognormal distribution, lnY∼N (µ, σ2). The computation of the seeds’ updated
positions is determined by the expression provided in Equation (18).

D(t+1) = Dt + δ × vx × vy × ln Y × (Ds − Dt) (18)

In this context, Dt symbolizes the dandelion seed position in the tth iteration. Ds
denotes a location within the search region that is randomly selected during the tth iteration.
The coefficients vx and vy stand for the lift component factors linked to the distinct aerial
motion of the dandelion. δ is a coefficient ranging from 0 to 1, which follows a nonlinear
reduction pattern converging towards zero.

The lognormal distribution given in Equation (18) is defined as µ = 0, and σ2 = 1 and
can be expressed by the following Equation (19) [56]:

ln Y =

{
1

y
√

2π
exp

[
− 1

2σ2

(
ln y)2

]
y ≥ 0

0 y < 0
(19)

Within the DO algorithm, the selection of the y value is governed by the standard
normal distribution within the range of (0, 1). In each iteration of the algorithm, an
adaptable factor denoted as ‘γ’ is employed to manage the extent of the search operation
across the entirety of T iterations. The formulation of γ is outlined as follows [69,70]:

γ = rand ∗
(

1
T2 t2 − 2

T
t + 1

)
(20)

Case 2: On days characterized by rain, the ascent of dandelion seeds is impeded by
elements like air resistance, humidity, and various other variables. Consequently, these
seeds exhibit a tendency to remain in proximity to their initial position, and their actions
can be accurately elucidated through a specific mathematical equation.

D(t+1) = Dt × (1 − rand × p) (21)

The parameter “p” is employed to control the extent of the local search region for a
dandelion, and its calculation is determined by the expression presented in Equation (22).
Its value is dynamically adjusted in every iteration, contingent upon both the maximum
iteration count and the available number of iterations [71].

p =

(
t2 − 2t + 1

T2 − 2T + 1
+ 1

)
(22)

In this context, T defines the iterations’ maximum number, and t demonstrates the
value of the number of iterations available.

2.5.4. Descent Phase

During the ascension phase, individuals descend to the altitude established and,
subsequently, their positions are modified.

Dt+1 = Dt − α × βt × (Dmean_t − α × βt × Dt) (23)

In this instance, βt signifies the Brownian motion, which results from selecting a
random number from the standard normal distribution, and α is an adaptive parameter
used to adjust the search step length [72]. Dmean_t indicates the population mean position
in the i th iteration.
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2.5.5. Landing Location Determination

As a result of wind and atmospheric conditions, seeds come to rest in a randomly
chosen spot in their updated position. As the population advances, the ultimate best
solution for the entire group is denoted by Equation (24).

Dt+1 = Delite + levy(λ)× α × (Delite − Dt × σ) (24)

In this context, Delite refers to the best (most optimal) position the dandelion seed
attains in the ith iteration. The function levy(λ) is indicative of the Levy flight and its
determination is governed by the subsequent equation [73]:

levy(λ) = s × w × σ∣∣∣t| 1
B

(25)

In this equation, B is assigned a random value within the range of [0, 2]. The constant
S holds a fixed value of 0.01. It is randomly chosen between the values of ω and t, within
the range of [0, 1]. The calculation for σ is as follows [71–73]:

σ =

 Γ(1 + B)× sin
(

πB
2

)
Γ
(

1+B
2

)
× B × 2(

B+1
2 )

 (26)

2.6. Gold Rush Optimizer Algorithm

GRO, an optimization algorithm rooted in meta-heuristics, draws inspiration from
the actions of real gold prospectors. By emulating the movements of these prospectors,
the algorithm addresses a range of optimization problems, capitalizing on its exploratory
and prospection attributes. The GRO algorithm is structured around five fundamental
phases that mimic gold prospectors’ behaviours: exploration, core formation, main core,
dispersion, and final decision stage. In each of these stages, new solution contenders are
generated by integrating existing solutions with investigative and exploratory potential, all
aimed at identifying the most optimal solution from this pool of candidates [57,74].

Gold prospectors’ location is stored in a GGP matrix, as demonstrated in Equation (27).
In this equation, Gij defines the position of the i-th seeker in the j-th dimension. d shows
dimension, and n represents gold prospector [57,74].

GGP =


G11 G12 . . . G1d
G21 G22 . . . G2d

...
...

. . .
...

Gn1 Gn2 . . . Gnd

 (27)

A certain objective function is necessary for appraising the gold prospectors, and the
outcomes of assessing the fitness function of these prospectors are logged in the FGP matrix
defined by Equation (28). In this matrix, Gij denotes the location of the i-th seeker within
the j-th dimension. The variable d signifies the dimension, n stands for the gold prospector,
and f indicates the fitness function [57,74].

FGP =


f (G11 G12 . . . G1d)
f (G21 G22 . . . G2d)

...
...

. . .
...

f (Gn1 Gn2 . . . Gnd)

 (28)

When a gold mine is found, individuals interested in prospecting for gold move to
that region to extract gold. In the process of executing the metaheuristic algorithm, the best
point within the exploration area is pinpointed to symbolize the site of the most lucrative
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gold mine. Because the precise location of this mine is not known, the position of the most
successful gold prospector is employed as an estimation for the optimal mine location,
as illustrated in Figure 4. The movement of a gold prospector toward the gold mine is
simulated through the utilization of Equations (29) and (30) Formun Üstü [57].

→
D1 =

→
C1 ·

→
X
∗
(t)−

→
Xi(t) (29)

→
Xnewi(t + 1) =

→
Xi(t) +

→
A1 ·

→
D1 (30)
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→
X
∗
(t),

→
Xi(t), and t, determine the position of the best gold mine, respectively, the

i-th gold prospector position, and t the current iteration.
→

Xnewi, where i is the new

gold prospector position, and
→
A1 and

→
D1 are the vector coefficients calculated as given in

Equations (31) and (32) [74].
→
A1 = 1 + l1

(
→
r 1 −

1
2

)
(31)

→
C1 = 2

→
r 2 (32)

→
A1 and

→
C1, are random vectors whose values are in the range [0, 1]. l1 is the conver-

gence component defined by Equation (33). If e is equal to 1, it decreases linearly from 2 to
1

maxiter
value and nonlinearly decreases for values greater than 1.

le =
(

maxiter− iter
maxiter−1

)e(
2 − 1

maxiter

)
+

1
maxiter

(33)

To mathematically represent the scenario of gold prospecting, each gold prospector
position approximates a gold mine’s location. The related mathematical correlations
pertaining to gold mining are presented in Equations (34) and (35) [57].

→
D2 =

→
Xi(t)−

→
Xr(t) (34)

→
Xnewi(t + 1) =

→
Xr(t) +

→
A2 ·

→
D2 (35)

→
Xr(t),

→
Xi(t), t, and

→
Xnewi indicate the randomly chosen gold finder, the position of

the i-th gold digger, t the current iteration, and the new position of the i-th gold finder,
respectively. A2 is the vector coefficient transformed and defined by Equation (36).

→
A2 = 2l2

→
r1 − l2 (36)
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In this equation, the parameter l2 is employed instead of l1 to enhance the mining
method’s exploitation potential.

The collaborative nature of gold prospecting has led to the mathematical Equations (37)
and (38)’s application to shed light on cooperation among prospectors. In this context, g1
and g2 represent a pair of gold prospectors selected at random. A three-person cooperation

is performed between i, gl and g2, and
→
D3 is the cooperation vector [57,74].

→
D3 =

→
Xg2(t)−

→
Xg1(t) (37)

→
Xnewi(t + 1) =

→
Xi(t) +

→
r 1 ·

→
D3 (38)

Gold prospectors can move their positions as time progresses. While engaged in
gold mining, these prospectors can shift from their present locations to explore uncharted
regions or discover additional gold deposits. This procedure is mathematically depicted in
Equation (39).

→
Xi(t + 1) =

→
Xnewi(t + 1) if f

( →
Xnewi(t + 1)

)
< f

(→
Xi(t)

)
(39)

The GRO method starts with a gold prospector’s initial population scattered randomly
in the exploration region. The most optimal position found during exploration becomes
the primary gold mine (global optimum). In each iteration, prospectors move based on
three strategies: gold mining, collaboration, or migration. The prospector moves if the gold
quantity at the new position (measured by the objective function) is better. This procedure
persists until the iteration concludes and the algorithm’s result is determined to be the best
solution obtained [57,74].

2.7. Error Metrics

Error metrics, also known as performance metrics or evaluation metrics, are criteria
used to assess the performance of a model or an algorithm. These metrics are used to
understand how well a model performs and to evaluate the alignment between a model’s
predictions and actual values. They encompass several fundamental measures: MAE,
which calculates the average absolute differences between actual and predicted values;
MSE, determining the average of squared differences between actual and predicted values;
and RMSE, the square root of MSE that provides a scaled perspective of errors in relation
to actual values. Additionally, MAPE computes the average of absolute percentage errors
about actual values, which is particularly useful in evaluating time series data [75,76].

Additionally, the correlation coefficient R defines the correlation between actual and
predicted data [77]. The R2 value signifies the extent to which variations in the dependent
variable can be changed to differences in the independent variable. Its range lies between 0
and 1, with 0 < R2 < 1, with values closer to 1 indicating a stronger alignment of the regres-
sion line. This suggests that alterations in the independent data contribute significantly to
changes in the dependent. The mathematical expressions for MSE, R2, MAE, MAPE, and
RMSE can be found in Equations (40)–(44) [3,9,78–83].

R2 =

(
∑N

i=1
(
x∗i − x∗i

)
(xi − xi))

2

∑N
i=1

(
x∗i − x∗i

)2
∑N

i=1(xi − xi)
2

(40)

RMSE =

√√√√ 1
N

N

∑
i=1

(
x∗i − xi

)2 (41)

MSE =
1
N

N

∑
i=1

(xi − x∗i )
2 (42)
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MAE =
1
N

N

∑
i=1

|xi − x∗i | (43)

MAPE =
100
N

N

∑
i=1

∣∣xi − x∗i
∣∣

xi
(44)

Note: xi, x∗i , N, xi, x∗i represent the predicted value, actual value, sample size, mean
predicted value, and mean actual value, respectively.

3. Proposed Model

This research focuses on analysing potential socio-economic factors impacting the
growth of electricity peak load in Turkey’s electrification system. Initially, data from 1980
to 2020 concerning monthly electricity peak load were gathered from the Turkish Electricity
Transmission Corporation to comprehend historical patterns [84]. After calculating monthly
averages, this process resulted in a dataset of 492 rows and five columns. Subsequently,
the investigation aimed to identify the key variables significantly affecting instantaneous
electricity peak load prediction. The model was formulated utilizing four input factors
encompassing socio-economic indicators and an output factor of electricity peak load
measured in megawatt-hours (MWh). Population statistics were sourced from the Turkish
Statistical Institute (TSI) [85], while import, export, and GDP data were obtained from the
World Bank Open Database [86]. Import, population, export, and GDP figures were used
as inputs, with electricity peak load serving as the output variable.

The initial crucial step in developing and training the models involved data pre-
processing. Firstly, all variables were consolidated and organised into a single Excel file
in an appropriate format. This organized file was then imported into MATLAB R2021b.
Following this, the complete dataset was divided into different sets: a test set (20%), a
training set (70%), and a validation set (10%), while preserving the chronological order
within the data. Specifically, the data from 1980 to 2007 were allocated to the training
set, data between 2008 and 2015 were earmarked as the test set, and values from 2016
to 2020 were assigned to the validation set monthly. Whether developing, stagnant, or
declining, the direction of GDP growth influences electricity peak load estimation. In a
developing nation, industrialization leads to increased income and heightened electricity
demands. The new constructions correspond to new consumption points, implying that as
a population grows, electricity consumption is likely to increase [87]. Previous research has
indicated that exports and imports generally exhibit positive correlations with electricity
consumption [88].

The numerical computations were conducted on a laptop with a quad-core processor
running at 2.40 GHz and on 16.00 GB of RAM. As mentioned, simulations employed the
MLR, ANN, SVR, DO, GRO, and PSO algorithms (Figure 5). MATLAB source codes for
MLR, ANN, SVR, PSO, DO, and GRO were adapted and applied to address the prediction
of instantaneous electricity peak loads.

For all optimization algorithms, a population size of 50 individuals with a maximum
of 100 iterations was set. Each optimization was repeated ten times for every modulation
index value, and the best outcomes were recorded in tabular form. Input variables such
as import, export, population, and GDP were used to predict peak load, serving as the
output in the ANN architecture. The MATLAB Neural Network Toolbox was employed for
constructing the ANN structure, following the feedforward pattern inherent in multilayer
perceptron neural networks regarding layer and neuron arrangement.
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4. Results and Discussion
4.1. Instantaneous Peak Load Forecasting

Turkey faces significant electricity demands, with a substantial portion met through
imports. As the global landscape has evolved, driven by population growth and the integra-
tion of new technologies into daily life, the demand for electricity has increased. Achieving
sustainable development requires Turkey’s increasing reliance on domestic sources to
power its growing 2023 population. To realize this goal, the primary electricity require-
ments are calculated for the upcoming years, and strategies are explored to meet these
demands. Accurate electricity peak load and demand estimation are essential for strategic
investments in power systems and intelligent grid facilities. The choice of the appropriate
forecasting approach is of paramount importance, as it can lead to reduced electricity costs
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and time savings. Economic and demographic factors such as imports, exports, GDP, and
population are commonly employed in predicting peak load and electricity demand.

The results produced by the ANN closely match the official findings. Among the vari-
ous techniques, the GRO method demonstrated superior performance. Figure 6 illustrates
a comparison between the output predicted by GRO and the peak load real data. The GRO
method generates estimations that closely align with the actual data. Figure 7 compares
the real peak load values from 1980 to 2020 with the forecasted data from the six methods
(PSO, ANN, SVR, MLR, DO, and GRO). The actual data align with both the GRO and
ANN methods.
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Figure 6. Real and estimated values for peak load by the GRO method.
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Figure 7. Comparison between estimated values for peak loads with different uses of models and
real data.

4.2. Error Metrics

In the literature and experimental studies, RMSE, MSE, MAE, MAPE, and R2 are
commonly chosen and widely used indicators to assess method performance. A higher
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R2 value shows a more effective prediction by the applied method’s performance. RMSE
relies on the sample standard deviation of the differences between estimated and actual
values [89]. MAE measures the differences between two data points and is often preferred
for its straightforward interpretability, finding application in regression and time series
scenarios [90].

Table 1 displays the mean data of MSE, RMSE, MAPE, MAE, and R2 using the ANN,
SVR, MLR, PSO, DO and GRO methods. Additionally, it is evident that while the R2 values
obtained by GRO and ANN were higher than the others, the MAPE, RMSE, MAE, and
MSE data obtained by GRO and ANN were lower than those of the other methods. This
suggests that GRO’s forecasting performance outperforms the other methods.

Table 1. Statistical analysis results.

ANN SVR MLR PSO DO GRO

R2 0.938 0.894 0.844 0.881 0.915 0.966
RMSE 910.63 1033.36 1502.9 1164.88 948.69 870.09
MSE 829,246.9 1,067,839.91 2,258,715.72 1,356,945.4 900,012.71 757,057.01
MAE 784.63 823.41 1233.17 976.23 802.45 704.17

MAPE 5.14 7.26 8.58 7.83 7.05 4.78

4.3. Multi Regression Equations

Within Table 2, the initial row displays the multi-regression equation characterized
by four parameters (a, b, c, and d, which are import, export, population, GDP), boasting
the highest R2 value of 0.995. This underscores the robust representation of the relation-
ship amid the F equations by this four-parameter equation. Notably, the equations that
lack the variables c and d in Equation (55) (as shown in Table 2) exhibit low R2 perfor-
mance, implying limited generalization capabilities for these equations. Nevertheless, the
d coefficient incorporation, identified as having the strongest correlation values among
Equations (45)–(54), results in improved R2 performance within the equations. Notably,
although the R2 performances among Equations (45)–(54) in Table 2 are closely ranked, ‘a’
stands out as the parameter with the least generalization ability, consequently leading to a
lower correlation value.

Table 2. Regression equations, R2 performance, and multiple subset factors.

Equation No Parameters Multi Regression Equations R2 p-Value

(45) a, b, c, d F = −33,584 + 156.19 ∗ a − 324.41 ∗ b + 2698.8 ∗ c + 717.15 ∗ d 0.995 2.41 × 10−37

(46) b, c, d F = −33,167 − 243.75 ∗ b + 2732.5 ∗ c + 738.83 ∗ d 0.993 2.25 × 10−38

(47) a, c, d F = −28,086 − 23.476 ∗ a + 3165.8 ∗ c + 558.26 ∗ d 0.991 1.92 × 10−36

(48) c, d F = −27,886 + 3183.1 ∗ c + 545.38 ∗ d 0.99 3.98 × 10−38

(49) a, b, c F = −8827.2 + 255.2 ∗ a + 1.357 ∗ b + 5195.9 ∗ c 0.981 4.43 × 10−31

(50) a, b, d F = −57,645 + 196.1 ∗ a − 572.63 ∗ b + 1364.5 ∗ d 0.981 3.34 × 10−31

(51) a, c F = −8827.3 + 256.28 ∗ a + 5196.4 ∗ c 0.981 1.26 × 10−32

(52) b, d F = −57,498 − 474.93 ∗ b + 1402 ∗ d 0.981 2.27 × 10−32

(53) b, c F = −6884.8 + 152.14 ∗ b + 5377.9 ∗ c 0.98 5.47 × 10−32

(54) a, d F = −54,928 − 155.37 ∗ a + 1269.1 ∗ d 0.972 1.99 × 10−29

(55) a, b F = −28,844 + 1765.9 ∗ a + 536.96 ∗ b 0.717 7.06 × 10−11

4.4. Correlation Matrix

The correlation matrix illustrates relationships among multiple variables within a
dataset, with these relationships depicted on a scale ranging from −1 to 1. It is com-
monly understood that as the relationship value approaches 1, the association between
the two variables strengthens; conversely, as it moves towards −1, an inverse relationship
becomes more pronounced. When the value approaches zero, it indicates the absence of a
linear relationship between the variables [3].
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This study constructed a correlation matrix to depict the interplay between an output
value (dependent) and input values (independent) using various methods such as MLR,
ANN, SVR, PSO, DO, and GRO. The correlation matrix in Figure 8 reveals the connections
between specific inputs, such as import, export, GDP, population, and the designated
output, which is the electricity peak load. A strong positive linear correlation (0.9872) exists
between GDP and instantaneous peak load. Similarly, a robust positive linear relationship
(0.9692) is observed between GDP and population.
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5. Conclusions

Predicting instantaneous electricity peak load is essential for efficiently planning capac-
ity and establishing cost-effective electricity networks. To ensure precise forecasts, decision
makers need to evaluate different approaches and identify the method that offers the most
beneficial outcomes. This study aimed to improve the accuracy of instantaneous peak load
prediction by employing forecasting models that incorporate various optimization and ML
methods. The impact of independent inputs on peak load estimation was assessed using
various combinations and subsets within MLR equations.

The research involved technical analysis to determine optimal method parameters us-
ing output–input correlation matrices. This analysis provided insight into how independent
variables impacted the dependent variable, enhancing our understanding of the forecasting
procedure. The accurate prediction of instantaneous peak load as obtained from this study
is valuable for avoiding unnecessary reserves and ensuring optimal system operation.

Various forecasting techniques, including MLR, ANN, SVR, PSO, DO, and GRO,
were employed in the study. DO and GRO were selected for their accurate predictive
capabilities. The comparison of optimization methods (PSO, DO, GRO) with conventional
ML techniques highlighted their superior prediction accuracy.

MLR is easier to understand and implement than more complex machine learning
algorithms, making it a good starting point for regression analysis. MLR assumes a linear
relationship between predictors and the target variable. It may not capture complex
nonlinear relationships, reducing accuracy in modelling nonlinear data. ANNs can learn
complex patterns and relationships within data, making them robust for tasks like pattern
recognition, classification, regression, and function approximation. Also, ANNs require a
substantial amount of data for training and are prone to overfitting, especially with small
datasets or when the model becomes too complex for the available data. SVR operates
within an ε-insensitive tube, establishing a margin of tolerance around predicted values,
thereby mitigating the impact of outliers and rendering it less susceptible to overfitting in
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contrast to traditional regression methods. Nonetheless, when the data exceed a certain
number, the prediction performance of SVR decreases.

PSO is relatively simple to implement and understand compared to other optimization
techniques. It is based on the principles of swarm intelligence and does not involve complex
mathematical computations. The performance of PSO is sensitive to its parameters, such
as inertia weight, acceleration coefficients, and population size. Improper tuning of these
parameters can affect the convergence speed and final solution quality. Like other swarm-
based algorithms, GRO and DO excel in balancing exploration of the search space (searching
for new solutions) and exploitation of promising areas (refining existing solutions), aiding
in finding optimal or near-optimal solutions. As newer optimization techniques, there
might be limited literature, research, and practical applications of GRO and DO compared
to more established algorithms. This limitation might restrict their proven efficacy across a
wide range of problems.

This research utilized a range of error metrics, such as RMSE, MAPE, R2, MAE, and
MSE, to evaluate method performance. The correlation matrix illustrated the relationships
between independent variables (population, import, GDP, and export) and the dependent
variable (peak load), revealing their respective influences. The results show a strong
positive linear correlation between GDP and instantaneous peak load. The proposed model
demonstrated strong predictive capabilities for estimating instantaneous peak load, with
GRO and ANN performing exceptionally well compared to other methods. This study’s
contributions are essential for effective instantaneous electricity peak load estimating,
significantly optimizing resource allocation and energy management in power systems.

Both ANN and GRO might entail significant computational requirements. Implement-
ing and training these models on large datasets or complex architectures might demand
substantial computational resources, hindering their practicality in certain settings with
limited resources. The effectiveness of ANN and GRO might rely heavily on the availability
and quality of data. Suppose that these models require extensive and high-quality data
for training. In that case, their performance might be limited in sparse or low-quality
data scenarios, constraining their utility in certain practical applications. In future studies,
machine learning and optimization approaches will be incorporated in hybrid models to
assess the accuracy of the forecasting models.
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